1
|
Hafez OA, Chang RB. Regulation of Cardiac Function by the Autonomic Nervous System. Physiology (Bethesda) 2025; 40:0. [PMID: 39585760 DOI: 10.1152/physiol.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The autonomic nervous system is critical for regulating cardiovascular physiology. The neurocardiac axis encompasses multiple levels of control, including the motor circuits of the sympathetic and parasympathetic nervous systems, sensory neurons that contribute to cardiac reflexes, and the intrinsic cardiac nervous system that provides localized sensing and regulation of the heart. Disruption of these systems can lead to significant clinical conditions. Recent advances have enhanced our understanding of the autonomic control of the heart, detailing the specific neuronal populations involved and their physiologic roles. In this review, we discuss this research at each level of the neurocardiac axis. We conclude by discussing the clinical field of neurocardiology and attempts to translate this new understanding of neurocardiac physiology to the clinic. We highlight the contributions of autonomic dysfunction in prevalent cardiovascular diseases and assess the current status of novel neuroscience-based treatment approaches.
Collapse
Affiliation(s)
- Omar A Hafez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rui B Chang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Li J, Liu Y. Vagal sensory circuits of the lower airway in respiratory physiology: Insights from neuronal diversity. Curr Opin Neurobiol 2025; 92:103000. [PMID: 40101474 DOI: 10.1016/j.conb.2025.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Sensory neurons innervating the lower airway provide essential feedback information that regulates respiratory physiology. These neurons synapse with second-order neurons in the central nervous system, which project directly or indirectly to the respiratory and autonomic centers. Both primary sensory neurons and second-order neurons within these circuits exhibit significant heterogeneity, and the precise roles of individual neuronal subtypes in coding the airway's internal states and modulating respiratory and autonomic outputs remain incompletely understood. In this review, we summarize recent advances in understanding the neuronal diversity along sensory circuits of the lower airway and their physiological functions. We also highlight the challenges in elucidating the roles of specific neuronal subtypes due to the extensive molecular and anatomical diversity among these neurons. Improving targeting specificity for neuronal manipulation, combined with the development of a comprehensive connectivity map, will be critical for revealing the coding and wiring logics that underlie the precise control of respiratory physiology.
Collapse
Affiliation(s)
- Jie Li
- HHMI/Janelia Research Campus, Ashburn, VA 20147, USA
| | - Yin Liu
- HHMI/Janelia Research Campus, Ashburn, VA 20147, USA.
| |
Collapse
|
3
|
Yan M, Lv X, Zhang S, Song Z, Hu B, Qing X, Kou H, Chen S, Shao Z, Liu H. Alleviation of inflammation in paraventricular nucleus and sympathetic outflow by melatonin efficiently repairs endplate porosities and attenuates spinal hyperalgesia. Int Immunopharmacol 2025; 149:114213. [PMID: 39914282 DOI: 10.1016/j.intimp.2025.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Low back pain, largely attributed to intervertebral disc (IVD) degeneration, is correlated with increased sympathetic nerve activity. Toll-like receptor 4 (TLR4)-mediated inflammation in the paraventricular nucleus (PVN) triggers sympathetic nerve activation, which remains uncharted in IVD degeneration. We hypothesized that lumbar spine instability (LSI) surgery in mice elevated sympathetic outflow by activating TLR4/NF-κB axis in PVN, and exacerbated endplate porosities and spinal hyperalgesia following 4 or 8 weeks LSI surgery. Treatment of melatonin for 8 weeks notably alleviated the inflammation and sympathetic outflow in the PVN, and attenuated sympathetic nerve activity, oxidative stress, endplate porosities and spinal hyperalgesia in the peripheral. These effects were abolished by melatonin receptor antagonist luzindole. Immunofluorescent staining of melatonin receptor 1A (MT1) and 1B (MT2) confirmed that MT2 expression exceeded that of MT1 in PVN. Knockdown of MT2 in PVN blocked the inhibitory effect of melatonin on inflammation and sympathetic activation both in PVN and endplate, as well as spinal hyperalgesia, oxidative stress, and porosities of endplate. Additionally, norepinephrine induces inflammation and oxidative stress, disrupts metabolic homeostasis of endplate cells via α2-adrenergic receptor in vitro. This study suggests that melatonin, via activation of MT2, inhibits inflammation and sympathetic activities both in PVN and endplate, therefore, efficiently repairing endplate porosities and alleviating spinal hyperalgesia induced by LSI.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071 China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China.
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China.
| |
Collapse
|
4
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Thompson N, Ravagli E, Mastitskaya S, Challita R, Hadaya J, Iacoviello F, Idil AS, Shearing PR, Ajijola OA, Ardell JL, Shivkumar K, Holder D, Aristovich K. Towards spatially selective efferent neuromodulation: anatomical and functional organization of cardiac fibres in the porcine cervical vagus nerve. J Physiol 2025; 603:1983-2004. [PMID: 39183636 PMCID: PMC11955868 DOI: 10.1113/jp286494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Spatially selective vagus nerve stimulation (sVNS) offers a promising approach for addressing heart disease with enhanced precision. Despite its therapeutic potential, VNS is limited by off-target effects and the need for time-consuming titration. Our research aimed to determine the spatial organization of cardiac afferent and efferent fibres within the vagus nerve of pigs to achieve targeted neuromodulation. Using trial-and-error sVNS in vivo and ex vivo micro-computed tomography fascicle tracing, we found significant spatial separation between cardiac afferent and cardiac efferent fibres at the mid-cervical level and they were localized on average on opposite sides of the nerve cross-section. This was consistent between both in vivo and ex vivo methods. Specifically, cardiac afferent fibres were located near pulmonary fibres, consistent with findings of cardiopulmonary convergent circuits and, notably, cardiac efferent fascicles were exclusive. These cardiac efferent regions were located in close proximity to the recurrent laryngeal regions. This is consistent with the roughly equitable spread across the nerve of the afferent and efferent fibres. Our study demonstrated that targeted neuromodulation via sVNS could achieve scalable heart rate decreases without eliciting cardiac afferent-related reflexes; this is desirable for reducing sympathetic overactivation associated with heart disease. These findings indicate that understanding the spatial organization of cardiac-related fibres within the vagus nerve can lead to more precise and effective VNS therapy, minimizing off-target effects and potentially mitigating the need for titration. KEY POINTS: Spatially selective vagus nerve stimulation (sVNS) presents a promising approach for addressing chronic heart disease with enhanced precision. Our study reveals significant spatial separation between cardiac afferent and efferent fibres in the vagus nerve, particularly at the mid-cervical level. Utilizing trial-and-error sVNS in vivo and micro-computed tomography fascicle tracing, we demonstrate the potential for targeted neuromodulation, achieving therapeutic effects such as scalable heart rate decrease without stimulating cardiac afferent-related reflexes. This spatial understanding opens avenues for more effective VNS therapy, minimizing off-target effects and potentially eliminating the need for titration, thereby expediting therapeutic outcomes in myocardial infarction and related conditions.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Enrico Ravagli
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Ahmad Shah Idil
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Paul R. Shearing
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - David Holder
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kirill Aristovich
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
6
|
Wang T, Teng B, Yao DR, Gao W, Oka Y. Organ-specific sympathetic innervation defines visceral functions. Nature 2025; 637:895-902. [PMID: 39604732 DOI: 10.1038/s41586-024-08269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
The autonomic nervous system orchestrates the functions of the brain and body through the sympathetic and parasympathetic pathways1. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here we show topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex. Using multi-modal transcriptomic analyses, we identified molecularly distinct sympathetic populations in the coeliac-superior mesenteric ganglia (CG-SMG). Of note, individual CG-SMG populations exhibit selective and mutually exclusive axonal projections to visceral organs, targeting either the gastrointestinal tract or secretory areas including the pancreas and bile tract. This combinatorial innervation pattern suggests functional segregation between different CG-SMG populations. Indeed, our neural perturbation experiments demonstrated that one class of neurons regulates gastrointestinal transit, and another class of neurons controls digestion and glucagon secretion independent of gut motility. These results reveal the molecularly diverse sympathetic system and suggest modular regulation of visceral organ functions by sympathetic populations.
Collapse
Affiliation(s)
- Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bochuan Teng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Wang Z, Li L, Li M, Lu Z, Qin L, Naumann RK, Wang H. Chemogenetic Modulation of Preoptic Gabre Neurons Decreases Body Temperature and Heart Rate. Int J Mol Sci 2024; 25:13061. [PMID: 39684772 DOI: 10.3390/ijms252313061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
The preoptic area of the hypothalamus is critical for regulation of brain-body interaction, including circuits that control vital signs such as body temperature and heart rate. The preoptic area contains approximately 70 molecularly distinct cell types. The Gabre gene is expressed in a subset of preoptic area cell types. It encodes the GABA receptor ε-subunit, which is thought to confer resistance to anesthetics at the molecular level, but the function of Gabre cells in the brain remains largely unknown. We generated and have extensively characterized a Gabre-cre knock-in mouse line and used chemogenetic tools to interrogate the function of Gabre cells in the preoptic area. Comparison with macaque GABRE expression revealed the conserved character of Gabre cells in the preoptic area. In awake mice, we found that chemogenetic activation of Gabre neurons in the preoptic area reduced body temperature, whereas chemogenetic inhibition had no effect. Furthermore, chemogenetic inhibition of Gabre neurons in the preoptic area decreased the heart rate, whereas chemogenetic activation had no effect under isoflurane anesthesia. These findings suggest an important role of preoptic Gabre neurons in maintaining vital signs such as body temperature and heart rate during wakefulness and under anesthesia.
Collapse
Affiliation(s)
- Ziyue Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lanxiang Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Zhonghua Lu
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Robert Konrad Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
8
|
Zhang H, Ren X, Wu C, He X, Huang Z, Li Y, Liao L, Xiang J, Li M, Wu L. Intracellular calcium dysregulation in heart and brain diseases: Insights from induced pluripotent stem cell studies. J Neuropathol Exp Neurol 2024; 83:993-1002. [PMID: 39001792 DOI: 10.1093/jnen/nlae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xueming Ren
- Department of Ophthalmology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chunyu Wu
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xinsen He
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Zhengxuan Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yangpeng Li
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lei Liao
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Xiang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Lovelace JW, Ma J, Augustine V. Defining cardioception: Heart-brain crosstalk. Neuron 2024; 112:3671-3674. [PMID: 39500326 DOI: 10.1016/j.neuron.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024]
Abstract
Interoception, the sensation and perception of internal bodily states, should be conceptualized through specialized modalities like cardioception, pulmoception, gastroception, and uroception. This NeuroView emphasizes cardioception, exploring heart-brain interactions, cardiac reflexes, and their influence on mental states and behavior.
Collapse
Affiliation(s)
| | - Jingrui Ma
- Department of Neurobiology, University of California, San Diego, CA, USA
| | - Vineet Augustine
- Department of Neurobiology, University of California, San Diego, CA, USA.
| |
Collapse
|
10
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 PMCID: PMC11676005 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: Local, reflex, and central communication. Cell 2024; 187:5877-5890. [PMID: 39423806 PMCID: PMC11624509 DOI: 10.1016/j.cell.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
Behavior is tightly synchronized with bodily physiology. Internal needs from the body drive behavior selection, while optimal behavior performance requires a coordinated physiological response. Internal state is dynamically represented by the nervous system to influence mood and emotion, and body-brain signals also direct responses to external sensory cues, enabling the organism to adapt and pursue its goals within an ever-changing environment. In this review, we examine the anatomy and function of the brain-body connection, manifested across local, reflex, and central regulation levels. We explore these hierarchical loops in the context of the immune system, specifically through the lens of immunoception, and discuss the impact of its dysregulation on human health.
Collapse
Affiliation(s)
- Megan Sammons
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Miranda C Popescu
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jingyi Chi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Asya Rolls
- Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
12
|
Hernández-Domínguez RA, Herrera-Orozco JF, Salazar-Calderón GE, Chávez-Canales M, Márquez MF, González-Álvarez F, Totomoch-Serra A, Reyes-Cruz T, Lip F, Aceves-Buendía JJ. Optogenetic modulation of cardiac autonomic nervous system. Auton Neurosci 2024; 255:103199. [PMID: 39059299 DOI: 10.1016/j.autneu.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The following is a narrative review of the fundamentals of optogenetics. It focuses on the advantages and constraints of manipulating the autonomic nervous system by modifying the pathophysiological characteristics that arise in different diseases. Although the use of this technique is currently experimental, we will discuss improvements that have been implemented and identify the necessary measures for potential preclinical translation in the control of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- Ramon A Hernández-Domínguez
- Electrocardiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1 Belisario Domínguez secc. 16 Tlalpan CP 14080, Mexico City, Mexico; Surgery Department, Hospital Regional de Alta Especialidad Dr. Juan Graham Casasús, Calle Uno S/N, Miguel Hidalgo III Etapa, Villahermosa, 86126, Tabasco, Mexico
| | - Jorge F Herrera-Orozco
- Electrocardiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1 Belisario Domínguez secc. 16 Tlalpan CP 14080, Mexico City, Mexico
| | - Guadalupe E Salazar-Calderón
- Neurology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Belisario Domínguez, Secc. 16, Tlalpan CP 14080, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan 14080, Ciudad de México Instituto de Investigaciones Biomédicas, Universidad, Nacional Autónoma de México, Coyoacán 04510, México
| | - Manlio F Márquez
- Electrocardiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1 Belisario Domínguez secc. 16 Tlalpan CP 14080, Mexico City, Mexico
| | - Felipe González-Álvarez
- Neurology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Belisario Domínguez, Secc. 16, Tlalpan CP 14080, Mexico City, Mexico
| | - Armando Totomoch-Serra
- Electrocardiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1 Belisario Domínguez secc. 16 Tlalpan CP 14080, Mexico City, Mexico
| | - Tania Reyes-Cruz
- Microbiology Laboratory, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100 Villa Quietud Coyoacán CP 04960, Mexico City, Mexico
| | - Finn Lip
- Neurology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Belisario Domínguez, Secc. 16, Tlalpan CP 14080, Mexico City, Mexico
| | - José J Aceves-Buendía
- Neurology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Belisario Domínguez, Secc. 16, Tlalpan CP 14080, Mexico City, Mexico.
| |
Collapse
|
13
|
Wang T, Teng B, Yao DR, Gao W, Oka Y. Organ-specific Sympathetic Innervation Defines Visceral Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613934. [PMID: 39345605 PMCID: PMC11430017 DOI: 10.1101/2024.09.19.613934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The autonomic nervous system orchestrates the brain and body functions through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here, we show unique topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex. Using multi-modal transcriptomic analyses, we identified distinct sympathetic populations that are both molecularly and spatially separable in the celiac-superior mesenteric ganglia (CG-SMG). Notably, individual CG-SMG populations exhibit selective and mutually exclusive axonal projections to visceral organs, targeting either the gastrointestinal (GI) tract or secretory areas including the pancreas and bile tract. This combinatorial innervation pattern suggests functional segregation between different CG-SMG populations. Indeed, our neural perturbation experiments demonstrated that one class of neurons selectively regulates GI food transit. Another class of neurons controls digestion and glucagon secretion independent of gut motility. These results reveal the molecularly diverse sympathetic system and suggest modular regulations of visceral organ functions through distinct sympathetic populations.
Collapse
|
14
|
Fujiu K. Brain-Heart Dialogue - Decoding Its Role in Homeostasis and Cardiovascular Disease. Circ J 2024; 88:1354-1359. [PMID: 37967922 DOI: 10.1253/circj.cj-23-0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite advancements in treatments for heart failure and lethal arrhythmias, achieving satisfactory life prognoses remains a challenge. A fresh perspective on the pathogenesis of heart disease is imperative to improve these prognoses. Our research has highlighted the role of cardiac macrophages in inhibiting the onset of heart failure and sudden cardiac death. We have recently unveiled a collaborative mechanism involving immune cells, brain neural networks, and the kidneys, which work in concert to combat cardiovascular diseases. This intricate organ network, orchestrated by the brain neural network and immune system, is pivotal in maintaining whole-body homeostasis. Disruptions in this harmonious interplay can precipitate various conditions, including heart failure and multiple organ failure, underscoring the significance of technological advancements in analytical methods and the advent of artificial intelligence. Recent strides in circulatory organ research have facilitated concurrent high-level analysis of the neural network and cardiovascular system. This review encapsulates these cutting-edge reports, evaluates the progress of research anchored in the fundamental concept that system failure of the cardiovascular organ precipitates cardiovascular disease, and offers valuable insights to guide future research.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo
| |
Collapse
|
15
|
Shao M, Yao C, Han Y, Zhou X, Lu Y, Zhang L, Li Y, Tang B. Ablation of myocardial autonomic ganglion plexus in the treatment of bradyarrhythmia A one-arm interventional study. Clinics (Sao Paulo) 2024; 79:100448. [PMID: 39096858 PMCID: PMC11334784 DOI: 10.1016/j.clinsp.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/07/2024] [Accepted: 06/30/2024] [Indexed: 08/05/2024] Open
Abstract
OBJECTIVES To study the complications and effectiveness of the treatment of chronic arrhythmias with cardiac Ganglion Plexus (GP) ablation, and to explore the value of the treatment of chronic arrhythmias with GP ablation. METHODS This study was a one-arm interventional study of patients from the first hospital of Xinjiang Medical University and the People's Hospital of Xuancheng City admitted (09/2018-08/2021) because of bradyarrhythmia. The left atrium was modeled using the Carto3 mapping system. The ablation endpoint was the absence of a vagal response under anatomically localized and high-frequency stimulation guidance. Postoperative routine follow-up was conducted. Holter data at 3-, 6-, and 12-months were recorded. RESULTS Fifty patients (25 male, mean age 33.16 ± 7.89 years) were induced vagal response by either LSGP, LIGP, RAGP, or RIGP. The heart rate was stable at 76 bpm, SNRT 1.092s. DC, DR, HR, SDNN, RMSSD values were lower than that before ablation. AC, SSR, TH values were higher than those before ablation, mean heart rate and the slowest heart rate were significantly increased. There were significant differences in follow-up data between the preoperative and postoperative periods (all p < 0.05). All the patients were successfully ablated, and their blood pressure decreased significantly. No complications such as vascular damage, vascular embolism and pericardial effusion occurred. CONCLUSIONS Left Atrial GP ablation has good long-term clinical results and can be used as a treatment option for patients with bradyarrhythmia.
Collapse
Affiliation(s)
- Mingliang Shao
- Department of Cardiovascular, The People's Hospital of Xuancheng City, Xuancheng City, Anhui Province, China; Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Chenhuan Yao
- Department of Research and Teaching, The People's Hospital of Xuancheng City, Xuancheng City, Anhui Province, China
| | - Yafan Han
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Xianhui Zhou
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Yanmei Lu
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Ling Zhang
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Yaodong Li
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
16
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
17
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
18
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh + neurons control allergen-induced airway hyperreactivity. Nature 2024; 631:601-609. [PMID: 38987587 PMCID: PMC11254774 DOI: 10.1038/s41586-024-07608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jinhao Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ziai Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisun Chin
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Le Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Haoze Yu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victoria Nudell
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Barsha Dash
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Esteban A Moya
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y. Top-down brain circuits for operant bradycardia. Science 2024; 384:1361-1368. [PMID: 38900870 DOI: 10.1126/science.adl3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Heart rate (HR) can be voluntarily regulated when individuals receive real-time feedback. In a rat model of HR biofeedback, the neocortex and medial forebrain bundle were stimulated as feedback and reward, respectively. The rats reduced their HR within 30 minutes, achieving a reduction of approximately 50% after 5 days of 3-hour feedback. The reduced HR persisted for at least 10 days after training while the rats exhibited anxiolytic behavior and an elevation in blood erythrocyte count. This bradycardia was prevented by inactivating anterior cingulate cortical (ACC) neurons projecting to the ventromedial thalamic nucleus (VMT). Theta-rhythm stimulation of the ACC-to-VMT pathway replicated the bradycardia. VMT neurons projected to the dorsomedial hypothalamus (DMH) and DMH neurons projected to the nucleus ambiguus, which innervates parasympathetic neurons in the heart.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shota Morikawa
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eriko Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruki Takeuchi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Fogarty MJ. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front Cell Neurosci 2024; 18:1409974. [PMID: 38933178 PMCID: PMC11199410 DOI: 10.3389/fncel.2024.1409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 μm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 μm) was traced in 3D to determine dendritic arbourisation. Results We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
21
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
22
|
Zhao H, Liu J, Shao Y, Feng X, Zhao B, Sun L, Liu Y, Zeng L, Li XM, Yang H, Duan S, Yu YQ. Control of defensive behavior by the nucleus of Darkschewitsch GABAergic neurons. Natl Sci Rev 2024; 11:nwae082. [PMID: 38686177 PMCID: PMC11057443 DOI: 10.1093/nsr/nwae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Jinrong Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Binhan Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
23
|
Chen J, Lai X, Song Y, Su X. Neuroimmune recognition and regulation in the respiratory system. Eur Respir Rev 2024; 33:240008. [PMID: 38925790 PMCID: PMC11216688 DOI: 10.1183/16000617.0008-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimmune recognition and regulation in the respiratory system is a complex and highly coordinated process involving interactions between the nervous and immune systems to detect and respond to pathogens, pollutants and other potential hazards in the respiratory tract. This interaction helps maintain the health and integrity of the respiratory system. Therefore, understanding the complex interactions between the respiratory nervous system and immune system is critical to maintaining lung health and developing treatments for respiratory diseases. In this review, we summarise the projection distribution of different types of neurons (trigeminal nerve, glossopharyngeal nerve, vagus nerve, spinal dorsal root nerve, sympathetic nerve) in the respiratory tract. We also introduce several types of cells in the respiratory epithelium that closely interact with nerves (pulmonary neuroendocrine cells, brush cells, solitary chemosensory cells and tastebuds). These cells are primarily located at key positions in the respiratory tract, where nerves project to them, forming neuroepithelial recognition units, thus enhancing the ability of neural recognition. Furthermore, we summarise the roles played by these different neurons in sensing or responding to specific pathogens (influenza, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, human metapneumovirus, herpes viruses, Sendai parainfluenza virus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, amoebae), allergens, atmospheric pollutants (smoking, exhaust pollution), and their potential roles in regulating interactions among different pathogens. We also summarise the prospects of bioelectronic medicine as a third therapeutic approach following drugs and surgery, as well as the potential mechanisms of meditation breathing as an adjunct therapy.
Collapse
Affiliation(s)
- Jie Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 PMCID: PMC10830892 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Strain MM, Conley NJ, Kauffman LS, Espinoza L, Fedorchak S, Martinez PC, Crook ME, Jalil M, Hodes GE, Abbott SB, Güler AD, Campbell JN, Boychuk CR. Dorsal motor vagal neurons can elicit bradycardia and reduce anxiety-like behavior. iScience 2024; 27:109137. [PMID: 38420585 PMCID: PMC10901094 DOI: 10.1016/j.isci.2024.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole-cell patch-clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs and is capable of cardioinhibition and robust anxiolysis.
Collapse
Affiliation(s)
- Misty M. Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Lily S. Kauffman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carie R. Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024; 156:190-200. [PMID: 36641366 PMCID: PMC10336178 DOI: 10.1016/j.semcdb.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.
Collapse
Affiliation(s)
| | - Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Ok, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, Ok, USA
| | - Chuyue Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
28
|
Han Y, Shao M, Yang H, Sun H, Sang W, Wang L, Wang L, Yang S, Jian Y, Tang B, Li Y. Safety and efficacy of cardioneuroablation for vagal bradycardia in a single arm prospective study. Sci Rep 2024; 14:5926. [PMID: 38467744 PMCID: PMC10928196 DOI: 10.1038/s41598-024-56651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Cardioneuroablation (CNA) is currently considered as a promising treatment option for patients with symptomatic bradycardia caused by vagotonia. This study aims to further investigate its safety and efficacy in patients suffering from vagal bradycardia. A total of 60 patients with vagal bradycardia who underwent CNA in the First Affiliated Hospital of Xinjiang Medical University from November 2019 to June 2022. Preoperative atropine tests revealed abnormal vagal tone elevation in all patients. First, the electroanatomic structures of the left atrium was mapped out by using the Carto 3 system, according to the protocol of purely anatomy-guided and local fractionated intracardiac electrogram-guided CNA methods. The upper limit of ablation power of superior left ganglion (SLGP) and right anterior ganglion (RAGP) was not more than 45W with an ablation index of 450.Postoperative transesophageal cardiac electrophysiological examination was performed 1 to 3 months after surgery. The atropine test was conducted when appropriate. Twelve-lead electrocardiogram, Holter electrocardiogram, and skin sympathetic nerve activity were reviewed at 1, 3, 6 and 12 months after operation. Adverse events such as pacemaker implantation and other complications were also recorded to analyze the safety and efficacy of CNA in the treatment of vagus bradycardia. Sixty patients were enrolled in the study (38 males, mean age 36.67 ± 9.44, ranging from 18 to 50 years old). None of the patients had a vascular injury, thromboembolism, pericardial effusion, or other surgical complications. The mean heart rate, minimum heart rate, low frequency, low/high frequency, acceleration capacity of rate, and skin sympathetic nerve activity increased significantly after CNA. Conversely, SDNN, PNN50, rMSSD, high frequency, and deceleration capacity of rate values decreased after CNA (all P < 0.05). At 3 months after ablation, the average heart rate, maximum heart rate, and acceleration capacity of heart rate remained higher than those before ablation, and the deceleration capacity of heart rate remained lower than those before ablation and the above results continued to follow up for 12 months after ablation (all P < 0.05). There was no significant difference in other indicators compared with those before ablation (all P > 0.05). The remaining 81.67% (49/60) of the patients had good clinical results, with no episodes of arrhythmia during follow-up. CNA may be a safe and effective treatment for vagal-induced bradycardia, subject to confirmation by larger multicenter trials.
Collapse
Affiliation(s)
- Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Medical Science and Technology Innovation Center, College of Laboratory Animals (Provincial Laboratory Animal Center), Shandong First Medical University, Affiliated Provincial Hospital, Jinan, 250117, China
| | - Mingliang Shao
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Cardiovascular Department, The People's Hospital of Xuancheng City, Anhui, 242000, China
| | - Hang Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huaxin Sun
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, Sichuan, China
| | - Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Liang Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Suxia Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
29
|
Thompson N, Ravagli E, Mastitskaya S, Challita R, Hadaya J, Iacoviello F, Shah Idil A, Shearing PR, Ajijola OA, Ardell JL, Shivkumar K, Holder D, Aristovich K. Anatomical and functional organization of cardiac fibers in the porcine cervical vagus nerve allows spatially selective efferent neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574861. [PMID: 38260584 PMCID: PMC10802425 DOI: 10.1101/2024.01.09.574861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cardiac disease progression reflects the dynamic interaction between adversely remodeled neurohumoral control systems and an abnormal cardiac substrate. Vagal nerve stimulation (VNS) is an attractive neuromodulatory option to dampen this dynamic interaction; however, it is limited by off-target effects. Spatially-selective VNS (sVNS) offers a promising solution to induce cardioprotection while mitigating off-target effects by specifically targeting pre-ganglionic parasympathetic efferent cardiac fibers. This approach also has the potential to enhance therapeutic outcomes by eliminating time-consuming titration required for optimal VNS. Recent studies have demonstrated the independent modulation of breathing rate, heart rate, and laryngeal contraction through sVNS. However, the spatial organization of afferent and efferent cardiac-related fibers within the vagus nerve remains unexplored. By using trial-and-error sVNS in vivo in combination with ex vivo micro-computed tomography fascicle tracing, we show the significant spatial separation of cardiac afferent and efferent fibers (179±55° SD microCT, p<0.05 and 200±137° SD, p<0.05 sVNS - degrees of separation across a cross-section of nerve) at the mid-cervical level. We also show that cardiac afferent fibers are located in proximity to pulmonary fibers consistent with recent findings of cardiopulmonary convergent neurons and circuits. We demonstrate the ability of sVNS to selectively elicit desired scalable heart rate decrease without stimulating afferent-related reflexes. By elucidating the spatial organization of cardiac-related fibers within the vagus nerve, our findings pave the way for more targeted neuromodulation, thereby reducing off-target effects and eliminating the need for titration. This, in turn, will enhance the precision and efficacy of VNS therapy in treating cardiac pathology, allowing for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Enrico Ravagli
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | - Ahmad Shah Idil
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Paul R. Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David Holder
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
30
|
Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, Zhang H, Cheng PK, Jin Y, Zhu MY, Zhao W, Mao Y, Wang H, Zhang Y, Wang H, Tao W, Tian Y, Bai L, Zhang Z. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci 2024; 27:471-483. [PMID: 38291284 DOI: 10.1038/s41593-023-01561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Pain involves neuroimmune crosstalk, but the mechanisms of this remain unclear. Here we showed that the splenic T helper 2 (TH2) immune cell response is differentially regulated in male mice with acute versus chronic neuropathic pain and that acetylcholinergic neurons in the dorsal motor nucleus of the vagus (AChDMV) directly innervate the spleen. Combined in vivo recording and immune cell profiling revealed the following two distinct circuits involved in pain-mediated peripheral TH2 immune response: glutamatergic neurons in the primary somatosensory cortex (GluS1HL)→AChDMV→spleen circuit and GABAergic neurons in the central nucleus of the amygdala (GABACeA)→AChDMV→spleen circuit. The acute pain condition elicits increased excitation from GluS1HL neurons to spleen-projecting AChDMV neurons and increased the proportion of splenic TH2 immune cells. The chronic pain condition increased inhibition from GABACeA neurons to spleen-projecting AChDMV neurons and decreased splenic TH2 immune cells. Our study thus demonstrates how the brain encodes pain-state-specific immune responses in the spleen.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao-Di Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuxin Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, P. R. China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, P. R. China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China.
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, P. R. China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
31
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh+ Neurons Control Chronic Allergen-Induced Airway Hyperreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.04.527145. [PMID: 36778350 PMCID: PMC9915738 DOI: 10.1101/2023.02.04.527145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)-and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Collapse
|
32
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
33
|
Jalil M, Coverdell TC, Gutierrez VA, Crook ME, Shi J, Stornetta DS, Schwalbe DC, Abbott SBG, Campbell JN. Molecular Disambiguation of Heart Rate Control by the Nucleus Ambiguus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571991. [PMID: 38168262 PMCID: PMC10760142 DOI: 10.1101/2023.12.16.571991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nucleus ambiguus (nAmb) provides parasympathetic control of cardiorespiratory functions as well as motor control of the upper airways and striated esophagus. A subset of nAmb neurons innervates the heart through the vagus nerve to control cardiac function at rest and during key autonomic reflexes such as the mammalian diving reflex. These cardiovagal nAmb neurons may be molecularly and anatomically distinct, but how they differ from other nAmb neurons in the adult brain remains unclear. We therefore classified adult mouse nAmb neurons based on their genome-wide expression profiles, innervation of cardiac ganglia, and ability to control HR. Our integrated analysis of single-nucleus RNA-sequencing data predicted multiple molecular subtypes of nAmb neurons. Mapping the axon projections of one nAmb neuron subtype, Npy2r-expressing nAmb neurons, showed that they innervate cardiac ganglia. Optogenetically stimulating all nAmb vagal efferent neurons dramatically slowed HR to a similar extent as selectively stimulating Npy2r+ nAmb neurons, but not other subtypes of nAmb neurons. Finally, we trained mice to perform voluntary underwater diving, which we use to show Npy2r+ nAmb neurons are activated by the diving response, consistent with a cardiovagal function for this nAmb subtype. These results together reveal the molecular organization of nAmb neurons and its control of heart rate.
Collapse
Affiliation(s)
- Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Jiachen Shi
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | - Dana C. Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
34
|
Strain MM, Conley NJ, Kauffman LS, Espinoza L, Fedorchak S, Martinez PC, Crook ME, Jalil M, Hodes GE, Abbott SBG, Güler AD, Campbell JN, Boychuk CR. Dorsal Motor Vagal Neurons Can Elicit Bradycardia and Reduce Anxiety-Like Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566855. [PMID: 38014247 PMCID: PMC10680764 DOI: 10.1101/2023.11.14.566855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole cell patch clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs capable of cardioinhibition and robust anxiolysis.
Collapse
Affiliation(s)
- Misty M. Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | | | - Lily S. Kauffman
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Carie R. Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
35
|
Zhang X, Deng X, Zhang L, Wang P, Tong X, Mo Y, Zhang Y, Zhang Y, Mo C, Zhang L. Single-cell RNA sequencing analysis of lung cells in COVID-19 patients with diabetes, hypertension, and comorbid diabetes-hypertension. Front Endocrinol (Lausanne) 2023; 14:1258646. [PMID: 38144556 PMCID: PMC10748394 DOI: 10.3389/fendo.2023.1258646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Background There is growing evidence that the lung is a target organ for injury in diabetes and hypertension. There are no studies on the status of the lungs, especially cellular subpopulations, and related functions in patients with diabetes, hypertension, and hypertension-diabetes after combined SARS-CoV-2 infection. Method Using single-cell meta-analysis in combination with bulk-RNA analysis, we identified three drug targets and potential receptors for SARS-CoV-2 infection in lung tissues from patients with diabetes, hypertension, and hypertension-diabetes, referred to as "co-morbid" patients. Using single-cell meta-analysis analysis in combination with bulk-RNA, we identified drug targets and potential receptors for SARS-CoV-2 infection in the three co-morbidities. Results The single-cell meta-analysis of lung samples from SARS-CoV-2-infected individuals with diabetes, hypertension, and hypertension-diabetes comorbidity revealed an upregulation of fibroblast subpopulations in these disease conditions associated with a predictive decrease in lung function. To further investigate the response of fibroblasts to therapeutic targets in hypertension and diabetes, we analyzed 35 upregulated targets in both diabetes and hypertension. Interestingly, among these targets, five specific genes were upregulated in fibroblasts, suggesting their potential association with enhanced activation of endothelial cells. Furthermore, our investigation into the underlying mechanisms driving fibroblast upregulation indicated that KREMEN1, rather than ACE2, could be the receptor responsible for fibroblast activation. This finding adds novel insights into the molecular processes involved in fibroblast modulation in the context of SARS-CoV-2 infection within these comorbid conditions. Lastly, we compared the efficacy of Pirfenidone and Nintedanib as therapeutic interventions targeting fibroblasts prone to pulmonary fibrosis. Our findings suggest that Nintedanib may be a more suitable treatment option for COVID-19 patients with diabetes and hypertension who exhibit fibrotic lung lesions. Conclusion In the context of SARS-CoV-2 infections, diabetes, hypertension, and their coexistence predominantly lead to myofibroblast proliferation. This phenomenon could be attributed to the upregulation of activated endothelial cells. Moreover, it is noteworthy that therapeutic interventions targeting hypertension-diabetes demonstrate superior efficacy. Regarding treating fibrotic lung conditions, Nintedanib is a more compelling therapeutic option.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University (The First People’s Hospital of Shuangliu District, Chengdu), Chengdu, China
| | - Xiaoqian Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangliang Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Pengbo Wang
- School of Professional Studies, Columbia University, New York, NY, United States
| | - Xia Tong
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University (The First People’s Hospital of Shuangliu District, Chengdu), Chengdu, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Yuansheng Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lanlan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Veerakumar A, Head JP, Krasnow MA. A brainstem circuit for phonation and volume control in mice. Nat Neurosci 2023; 26:2122-2130. [PMID: 37996531 PMCID: PMC10689238 DOI: 10.1038/s41593-023-01478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Mammalian vocalizations are critical for communication and are produced through the process of phonation, in which expiratory muscles force air through the tensed vocal folds of the larynx, which vibrate to produce sound. Despite the importance of phonation, the motor circuits in the brain that control it remain poorly understood. In this study, we identified a subpopulation of ~160 neuropeptide precursor Nts (neurotensin)-expressing neurons in the mouse brainstem nucleus retroambiguus (RAm) that are robustly activated during both neonatal isolation cries and adult social vocalizations. The activity of these neurons is necessary and sufficient for vocalization and bidirectionally controls sound volume. RAm Nts neurons project to all brainstem and spinal cord motor centers involved in phonation and activate laryngeal and expiratory muscles essential for phonation and volume control. Thus, RAm Nts neurons form the core of a brain circuit for making sound and controlling its volume, which are two foundations of vocal communication.
Collapse
Affiliation(s)
- Avin Veerakumar
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua P Head
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Lovelace JW, Ma J, Yadav S, Chhabria K, Shen H, Pang Z, Qi T, Sehgal R, Zhang Y, Bali T, Vaissiere T, Tan S, Liu Y, Rumbaugh G, Ye L, Kleinfeld D, Stringer C, Augustine V. Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope. Nature 2023; 623:387-396. [PMID: 37914931 PMCID: PMC10632149 DOI: 10.1038/s41586-023-06680-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.
Collapse
Affiliation(s)
- Jonathan W Lovelace
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Jingrui Ma
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Saurabh Yadav
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | | | - Hanbing Shen
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Zhengyuan Pang
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Tianbo Qi
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Ruchi Sehgal
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Tushar Bali
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Thomas Vaissiere
- University of Florida-Scripps Biomedical Research, Jupiter, FL, USA
| | - Shawn Tan
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Yuejia Liu
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Gavin Rumbaugh
- University of Florida-Scripps Biomedical Research, Jupiter, FL, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Neurobiology, University of California, San Diego, CA, USA
- Department of Physics, University of California, San Diego, CA, USA
| | | | - Vineet Augustine
- Department of Neurobiology, University of California, San Diego, CA, USA.
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
38
|
Pelot NA, Vaseghi M, Reznikov L, Osborne PB, Conde SV. Editorial: Multiscale anatomy and biophysics of the autonomic nervous system: implications for neuromodulation. Front Neurosci 2023; 17:1289177. [PMID: 38027516 PMCID: PMC10646572 DOI: 10.3389/fnins.2023.1289177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leah Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Peregrine B. Osborne
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, iNOVA4Health, Lisboa, Portugal
| |
Collapse
|
39
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
40
|
Korsak A, Kellett DO, Aziz Q, Anderson C, D’Souza A, Tinker A, Ackland GL, Gourine AV. Immediate and sustained increases in the activity of vagal preganglionic neurons during exercise and after exercise training. Cardiovasc Res 2023; 119:2329-2341. [PMID: 37516977 PMCID: PMC10597628 DOI: 10.1093/cvr/cvad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise.
Collapse
Affiliation(s)
- Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Daniel O Kellett
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Andrew Tinker
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Mohanta SK, Sun T, Lu S, Wang Z, Zhang X, Yin C, Weber C, Habenicht AJR. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 2023; 12:2485. [PMID: 37887328 PMCID: PMC10605509 DOI: 10.3390/cells12202485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.
Collapse
Affiliation(s)
- Sarajo K. Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| | - Ting Sun
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Shu Lu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Zhihua Wang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Xi Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| |
Collapse
|
42
|
Shanks J, Pachen M, Chang JWH, George B, Ramchandra R. Cardiac Vagal Nerve Activity Increases During Exercise to Enhance Coronary Blood Flow. Circ Res 2023; 133:559-571. [PMID: 37641938 DOI: 10.1161/circresaha.123.323017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The phrase complete vagal withdrawal is often used when discussing autonomic control of the heart during exercise. However, more recent studies have challenged this assumption. We hypothesized that cardiac vagal activity increases during exercise and maintains cardiac function via transmitters other than acetylcholine. METHODS Chronic direct recordings of cardiac vagal nerve activity, cardiac output, coronary artery blood flow, and heart rate were recorded in conscious adult sheep during whole-body treadmill exercise. Cardiac innervation of the left cardiac vagal branch was confirmed with lipophilic tracer dyes (DiO). Sheep were exercised with pharmacological blockers of acetylcholine (atropine, 250 mg), VIP (vasoactive intestinal peptide; [4Cl-D-Phe6,Leu17]VIP 25 µg), or saline control, randomized on different days. In a subset of sheep, the left cardiac vagal branch was denervated. RESULTS Neural innervation from the cardiac vagal branch is seen at major cardiac ganglionic plexi, and within the fat pads associated with the coronary arteries. Directly recorded cardiac vagal nerve activity increased during exercise. Left cardiac vagal branch denervation attenuated the maximum changes in coronary artery blood flow (maximum exercise, control: 63.5±5.9 mL/min, n=8; cardiac vagal denervated: 32.7±5.6 mL/min, n=6, P=2.5×10-7), cardiac output, and heart rate during exercise. Atropine did not affect any cardiac parameters during exercise, but VIP antagonism significantly reduced coronary artery blood flow during exercise to a similar level to vagal denervation. CONCLUSIONS Our study demonstrates that cardiac vagal nerve activity actually increases and is crucial for maintaining cardiac function during exercise. Furthermore, our findings show the dynamic modulation of coronary artery blood flow during exercise is mediated by VIP.
Collapse
Affiliation(s)
- Julia Shanks
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Mridula Pachen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Joshua W-H Chang
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Bindu George
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Grafton, New Zealand
| |
Collapse
|
43
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
44
|
Wagner JUG, Tombor LS, Malacarne PF, Kettenhausen LM, Panthel J, Kujundzic H, Manickam N, Schmitz K, Cipca M, Stilz KA, Fischer A, Muhly-Reinholz M, Abplanalp WT, John D, Mohanta SK, Weber C, Habenicht AJR, Buchmann GK, Angendohr S, Amin E, Scherschel K, Klöcker N, Kelm M, Schüttler D, Clauss S, Günther S, Boettger T, Braun T, Bär C, Pham MD, Krishnan J, Hille S, Müller OJ, Bozoglu T, Kupatt C, Nardini E, Osmanagic-Myers S, Meyer C, Zeiher AM, Brandes RP, Luxán G, Dimmeler S. Aging impairs the neurovascular interface in the heart. Science 2023; 381:897-906. [PMID: 37616346 DOI: 10.1126/science.ade4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Julian U G Wagner
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Lukas S Tombor
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Pedro Felipe Malacarne
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Lisa-Maria Kettenhausen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Josefine Panthel
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Haris Kujundzic
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Nivethitha Manickam
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Katja Schmitz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Maria Cipca
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kathrin A Stilz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Wesley T Abplanalp
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
| | - Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stephan Angendohr
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina Scherschel
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, cNEP, cardiac Neuro- and Electrophysiology Research Consortium, 40217 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüttler
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, 81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICON), LMU Munich, 80539 Munich, Germany
| | - Sebastian Clauss
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, 81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICON), LMU Munich, 80539 Munich, Germany
| | - Stefan Günther
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Boettger
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Minh-Duc Pham
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
- Genome Biologics, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, 24105 Kiel, Germany
- German Centre for Cardiovascular Research (partner site Hamburg/Kiel/Lübeck), 24105 Kiel, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, 24105 Kiel, Germany
- German Centre for Cardiovascular Research (partner site Hamburg/Kiel/Lübeck), 24105 Kiel, Germany
| | - Tarik Bozoglu
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Christian Kupatt
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Eleonora Nardini
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Selma Osmanagic-Myers
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, cNEP, cardiac Neuro- and Electrophysiology Research Consortium, 40217 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas M Zeiher
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Ralf P Brandes
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| |
Collapse
|
45
|
Yadav S, Waldeck-Weiermair M, Spyropoulos F, Bronson R, Pandey AK, Das AA, Sisti AC, Covington TA, Thulabandu V, Caplan S, Chutkow W, Steinhorn B, Michel T. Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines. Nat Commun 2023; 14:3094. [PMID: 37248315 PMCID: PMC10227029 DOI: 10.1038/s41467-023-38961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases. Here we report studies of neurovascular oxidative stress in chemogenetic transgenic mouse lines expressing yeast D-amino acid oxidase (DAAO) in neurons and vascular endothelium. When these transgenic mice are fed D-amino acids, DAAO generates hydrogen peroxide in target tissues. DAAO-TGCdh5 transgenic mice express DAAO under control of the putatively endothelial-specific Cdh5 promoter. When we provide these mice with D-alanine, they rapidly develop sensory ataxia caused by oxidative stress and mitochondrial dysfunction in neurons within dorsal root ganglia and nodose ganglia innervating the heart. DAAO-TGCdh5 mice also develop cardiac hypertrophy after chronic chemogenetic oxidative stress. This combination of ataxia, mitochondrial dysfunction, and cardiac hypertrophy is similar to findings in patients with Friedreich's ataxia. Our observations indicate that neurovascular oxidative stress is sufficient to cause sensory ataxia and cardiac hypertrophy. Studies of DAAO-TGCdh5 mice could provide mechanistic insights into Friedreich's ataxia.
Collapse
Affiliation(s)
- Shambhu Yadav
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Roderick Bronson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Apabrita Ayan Das
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alexander C Sisti
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Taylor A Covington
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Venkata Thulabandu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Shari Caplan
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - William Chutkow
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
47
|
Grossman P. FUNDAMENTAL CHALLENGES AND LIKELY REFUTATIONS OF THE FIVE BASIC PREMISES OF THE POLYVAGAL THEORY. Biol Psychol 2023:108589. [PMID: 37230290 DOI: 10.1016/j.biopsycho.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The polyvagal collection of hypotheses is based upon five essential premises, as stated by its author (Porges, 2011). Polyvagal conjectures rest on a primary assumption that the brainstem ventral and dorsal regions in mammals each have their own unique mediating effects upon vagal control of heart rate. The polyvagal hypotheses link these putative dorsal- vs. ventral-vagal differences to socioemotional behavior (e.g. defensive immobilization, and social affiliative behaviors, respectively), as well as to trends in the evolution of the vagus nerve (e.g. Porges, 2011 & 2021a). Additionally, it is essential to note that only one measurable phenomenon-as index of vagal processes-serves as the linchpin for virtually every premise. That phenomenon is respiratory sinus arrhythmia (RSA), heart-rate changes coordinated to phase of respiration (i.e. inspiration vs. expiration), often employed as an index of vagally, or parasympathetically, mediated control of heart rate. The polyvagal hypotheses assume that RSA is a mammalian phenomenon, since Porges (2011) states "RSA has not been observed in reptiles." I will here briefly document how each of these basic premises have been shown to be either untenable or highly implausible based on the available scientific literature. I will also argue that the polyvagal reliance upon RSA as equivalent to general vagal tone or even cardiac vagal tone is conceptually a category mistake (Ryle, 1949), confusing an approximate index (i.e. RSA) of a phenomenon (some general vagal process) with the phenomenon, itself.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic Medicine University Hospital Basel, Switzerland.
| |
Collapse
|
48
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
49
|
Devarajan A, Wang K, Shannon K, Su Y, Verheyden J, Sun X, Vaseghi M. Convergent cardiorespiratory neurons represent a significant portion of cardiac and respiratory neurons in the vagal ganglia. Front Cardiovasc Med 2022; 9:959815. [PMID: 36277776 PMCID: PMC9579688 DOI: 10.3389/fcvm.2022.959815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Significant cardiorespiratory coordination is required to maintain physiological function in health and disease. Sensory neuronal “cross-talk” between the heart and the lungs is required for synchronous regulation of normal cardiopulmonary function and is most likely mediated by the convergence of sensory neural pathways present in the autonomic ganglia. Using neurotracer approaches with appropriate negative control experiments in a mouse model, presence of cardiorespiratory neurons in the vagal (nodose) ganglia are demonstrated. Furthermore, we found that convergent neurons represent nearly 50% of all cardiac neurons and approximately 35% of all respiratory neurons. The current findings demonstrate a pre-existing neuronal substrate linking cardiorespiratory neurotransmission in the vagal ganglia, and a potentially important link for cardiopulmonary cross-sensitization, which may play an important role in the observed manifestations of cardiopulmonary diseases.
Collapse
Affiliation(s)
- Asokan Devarajan
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States,Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ke Wang
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States,Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kassandra Shannon
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States
| | - Yujuan Su
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States,Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Marmar Vaseghi,
| |
Collapse
|
50
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system: How does the polyvagal theory comply? Biol Psychol 2022; 174:108425. [PMID: 36100134 DOI: 10.1016/j.biopsycho.2022.108425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Due to its pivotal role in autonomic networks and interoception, the vagus attracts continued interest from both basic scientists and therapists of various clinical disciplines. In particular, the widespread use of heart rate variability as an index of autonomic cardiac control and a proposed central role of the vagus in biopsychological concepts, e.g., the polyvagal theory, provide a good opportunity to recall basic features of vagal anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents.
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|