1
|
Mcneil TR, Sikder S, Dalal Y. Cancer cells' chamber of secrets: the link between micronuclei, chromothripsis and malignancy. Open Biol 2025; 15:240388. [PMID: 40359993 DOI: 10.1098/rsob.240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Micronuclei exhibit defective proteomes rendering their chromatin vulnerable to fragmentation. This fragmentation process, known as chromothripsis, promotes tumorigenesis by catalysing the activation of oncogenes and the silencing of tumor suppressors. With this role in mind, micronuclei serve as promising targets for therapeutic intervention. This review will explore recent discoveries regarding how micronuclei form, their function in catalysing chromothripsis and how chromothripsis provides a selective advantage for cancer cells.
Collapse
Affiliation(s)
| | - Sweta Sikder
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Ribas-Maynou J, Parra A, Martínez-Díaz P, Rubio CP, Lucas X, Yeste M, Roca J, Barranco I. Protective role of extracellular vesicles against oxidative DNA damage. Biol Res 2025; 58:14. [PMID: 40075425 PMCID: PMC11905505 DOI: 10.1186/s40659-025-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Oxidative stress, a source of genotoxic damage, is often the underlying mechanism in many functional cell disorders. Extracellular vesicles (EVs) have been shown to be key regulators of cellular processes and may be involved in maintaining cellular redox balance. Herein, we aimed to develop a method to assess the effects of EVs on DNA oxidation using porcine seminal plasma extracellular vesicles (sEVs). RESULTS The technique was set using a cell-free plasmid DNA to avoid the bias generated by the uptake of sEVs by sperm cells, employing increasing concentrations of hydrogen peroxide (H2O2) that generate DNA single-strand breaks (SSBs). Because SSBs contain a free 3'-OH end that allow the extension through quantitative PCR, such extension -and therefore the SYBR intensity- showed to be proportional to the amount of SSB. In the next stage, H2O2 was co-incubated with two size-differentiated subpopulations (small and large) of permeabilized and non-permeabilized sEVs to assess whether the intravesicular content (IC) or the surface of sEVs protects the DNA from oxidative damage. Results obtained showed that the surface of small sEVs reduced the incidence of DNA SSBs (P < 0.05), whereas that of large sEVs had no impact on the generation of SSBs (P > 0.05). The IC showed no protective effect against DNA oxidation (P > 0.05). CONCLUSIONS Our results suggest that the surface of small sEVs, including the peripheral corona layer, may exert a protective function against alterations that are originated by oxidative mechanisms. In addition, our in vitro study opens path to detect, localize and quantify the protective effects against oxidation of extracellular vesicles derived from different fluids, elucidating their function in physiopathological states.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
- Unit of Cell Biology and Medical Genetics; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (Technosperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
5
|
Sasaki N, Homme M, Murayama T, Osaki T, Tenma T, An T, Takegami Y, Tani T, Gedeon PC, Kobayashi Y, Cañadas I, Barbie DA, Yao R, Kitajima S. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol Cell 2025; 85:770-786.e7. [PMID: 39706184 PMCID: PMC11888943 DOI: 10.1016/j.molcel.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Activation of cytosolic dsRNA sensing cooperates with double-stranded DNA (dsDNA) sensing to upregulate immune cell migration and antigen-presenting machinery. Tracing of dsRNA-sequences reveals that dsRNA-forming transcripts are predominantly generated from non-exonic regions, particularly in locations proximal to genes exhibiting high chromatin accessibility. Activation of this pathway by pulsed monopolar spindle 1 (MPS1) inhibitor treatment, which potently induces micronuclei formation, upregulates cytoplasmic dsRNA sensing and thus promotes anti-tumor immunity mediated by cytotoxic lymphocyte activation in vivo. Collectively, our findings uncover a mechanism in which dsRNA sensing cooperates with dsDNA sensing to boost immune responses, offering an approach to enhance the efficacy of cancer therapies targeting genomic instability.
Collapse
MESH Headings
- Humans
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- Animals
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/immunology
- Cell Line, Tumor
- Mice
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/antagonists & inhibitors
- Mice, Inbred C57BL
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Signal Transduction
- Micronuclei, Chromosome-Defective
- Immunity, Innate
- Lymphocyte Activation
- Genomic Instability
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiyuki Tenma
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick C Gedeon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
6
|
Nichols A, Norman R, Chen Y, Choi Y, Striepen J, Salataj E, Toufektchan E, Koche R, Maciejowski J. Mitotic transcription ensures ecDNA inheritance through chromosomal tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637945. [PMID: 39990406 PMCID: PMC11844496 DOI: 10.1101/2025.02.12.637945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extrachromosomal DNA (ecDNA) are circular DNA bodies that play critical roles in tumor progression and treatment resistance by amplifying oncogenes across a wide range of cancer types. ecDNA lack centromeres and are thus not constrained by typical Mendelian segregation, enabling their unequal accumulation within daughter cells and associated increases in copy number. Despite intrinsic links to their oncogenic potential, the fidelity and mechanisms of ecDNA inheritance are poorly understood. Here, we show that ecDNA are protected against cytosolic mis-segregation through mitotic clustering and by tethering to the telomeric and subtelomeric regions of mitotic chromosomes. ecDNA-chromosome tethering depends on BRD4 transcriptional co-activation and mitotic transcription of the long non-coding RNA PVT1 , which is co-amplified with MYC in colorectal and prostate cancer cell lines. Disruption of ecDNA-chromosome tethering through BRD4 inhibition, PVT1 depletion, or inhibiting mitotic transcription results in cytosolic mis-segregation, ecDNA reintegration, and the formation of homogeneously staining regions (HSRs). We propose that nuclear inheritance of ecDNA is facilitated by an RNA-mediated physical tether that links ecDNA to mitotic chromosomes and thus protects against cytosolic mis-segregation and chromosomal integration.
Collapse
|
7
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
8
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2025; 26:31-46. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Yang QL, Xie Y, Qiao K, Lim JYS, Wu S. Modern biology of extrachromosomal DNA: A decade-long voyage of discovery. Cell Res 2025; 35:11-22. [PMID: 39748050 PMCID: PMC11701097 DOI: 10.1038/s41422-024-01054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of cancer and is a major driving force of tumorigenesis. A key manifestation of genomic instability is the formation of extrachromosomal DNAs (ecDNAs) - acentric, circular DNA molecules ranging from 50 kb to 5 Mb in size, distinct from chromosomes. Ontological studies have revealed that ecDNA serves as a carrier of oncogenes, immunoregulatory genes, and enhancers, capable of driving elevated transcription of its cargo genes and cancer heterogeneity, leading to rapid tumor evolution and therapy resistance. Although ecDNA was documented over half a century ago, the past decade has witnessed a surge in breakthrough discoveries about its biological functions. Here, we systematically review the modern biology of ecDNA uncovered over the last ten years, focusing on how discoveries during this pioneering stage have illuminated our understanding of ecDNA-driven transcription, heterogeneity, and cancer progression. Furthermore, we discuss ongoing efforts to target ecDNA as a novel approach to cancer therapy. This burgeoning field is entering a new phase, poised to reshape our knowledge of cancer biology and therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Lin Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yipeng Xie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kailiang Qiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Ma B, Wu H, Gou S, Lian M, Xia C, Yang K, Jin L, Liu J, Wu Y, Shu Y, Yan H, Li Z, Lai L, Fan Y. A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. J Genet Genomics 2024; 51:1494-1504. [PMID: 39490920 DOI: 10.1016/j.jgg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Multi-nucleotide variants (MNVs) are critical genetic variants associated with various genetic diseases. However, tools for precisely installing MNVs are limited. In this study, we present the development of a dual-base editor, BDBE, by integrating TadA-dual and engineered human N-methylpurine DNA glycosylase (eMPG) into nCas9 (D10A). Our results demonstrate that BDBE effectively converts A-to-G/C/T (referred to as A-to-B) and C-to-T/G/A (referred to as C-to-D) simultaneously, yielding nine types of dinucleotides from adjacent CA nucleotides while maintaining minimal off-target effects. Notably, BDBE4 exhibits exceptional performance across multiple human cell lines and successfully simulated all nine dinucleotide MNVs from the gnomAD database. These findings indicate that BDBE significantly expands the product range of base editors and offers a valuable resource for advancing MNV research.
Collapse
Affiliation(s)
- Bingxiu Ma
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Cong Xia
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kaiming Yang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junyuan Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yunlin Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yahai Shu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
11
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
12
|
Engel JL, Zhang X, Wu M, Wang Y, Espejo Valle-Inclán J, Hu Q, Woldehawariat KS, Sanders MA, Smogorzewska A, Chen J, Cortés-Ciriano I, Lo RS, Ly P. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024; 187:6055-6070.e22. [PMID: 39181133 PMCID: PMC11490392 DOI: 10.1016/j.cell.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
Collapse
Affiliation(s)
- Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingming Wu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kidist S Woldehawariat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SD, UK; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Zeng WJ, Chen ZP, Lei YM, Liang WB, Chai YQ, Yuan R, Zhuo Y. Multienzymatic Orthogonal Activation of DNA Codec Enables Tumor-Specific Imaging of Base Excision Repair Activity. Anal Chem 2024; 96:15915-15923. [PMID: 39324376 DOI: 10.1021/acs.analchem.4c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Accurate monitoring of base excision repair (BER) activity in cancer cells is critical for advancing the comprehension of DNA repair processes, gaining insights into cancer development, and guiding treatment strategies. However, current assay techniques for assessing BER activity in cancer cells face challenges due to the heterogeneous origins and diversity of BER enzymes. In this work, we present a highly reliable triple loop-interlocked DNA codec (GATED) that enables precise assessment of BER activity in cancer cells through signal amplification mediated by multienzyme orthogonal activation. The GATED device features a dumbbell-shaped DNA probe to encode two BER enzymes for BER-related signal conversion as well as two bound circular DNA to decode the apurinic/apyrimidinic sites for apurinic/apyrimidinic endonuclease 1 (APE1)-mediated signal amplification. Importantly, GATED is orthogonally activated by multiple target BER enzymes (i.e., uracil DNA glycosylase, thymine DNA glycosylase, and APE1), resulting in a unified fluorescent signal that significantly improves the detection specificity and sensitivity to BER enzymes. Additionally, we demonstrate that the GATED has exceptional biostability within complex biological systems, where it was successfully employed to monitor BER activity in cancer cells with high specificity and enabled cell-based high-throughput screening for BER inhibitors. The GATED provides a much-needed tool for the real-time monitoring of BER activity and the screening of BER inhibitors in cancer cells, potentially advancing both the investigation and clinical application of BER biology.
Collapse
Affiliation(s)
- Wei-Jia Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan-Mei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
15
|
Di Bona M, Bakhoum SF. A new microscopy pipeline for studying the initial stages of nuclear and micronuclear rupture and repair. Front Cell Dev Biol 2024; 12:1475095. [PMID: 39359718 PMCID: PMC11445188 DOI: 10.3389/fcell.2024.1475095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Nuclear envelope repair is a fundamental cellular response to stress, especially for cells experiencing frequent nuclear ruptures, such as cancer cells. Moreover, for chromosomally unstable cancer cells, characterized by the presence of micronuclei, the irreversible rupture of these structures constitutes a fundamental step toward cancer progression and therapy resistance. For these reasons, the study of nuclear envelope rupture and repair is of paramount importance. Nonetheless, due to the constraint imposed by the stochastic nature of rupture events, a precise characterization of the initial stage of nuclear repair remains elusive. In this study, we overcame this limitation by developing a new imaging pipeline that deterministically induces rupture while simultaneously imaging fluorescently tagged repair proteins. We provide a detailed step-by-step protocol to implement this method on any confocal microscope and applied it to study the major nuclear repair protein, barrier-to-autointegration factor (BAF). As a proof of principle, we demonstrated two different downstream analysis methods and showed how BAF is differentially recruited at sites of primary and micronuclear rupture. Additionally, we applied this method to study the recruitment at primary nuclei of the inner nuclear membrane protein LEM-domain 2 (LEMD2) and Charged Multivesicular Protein 7 (CHMP7), the scaffolding protein of the endosomal sorting complex required for transport III (ESCRT-III) membrane remodeling complex. The CHMP7-LEMD2 binding is the fundamental step allowing the recruitment of ESCRT-III, which represents the other major nuclear repair mechanism. This demonstrates the method's applicability for investigating protein dynamics at sites of nuclear and micronuclear envelope rupture and paves the way to more time-resolved studies of nuclear envelope repair.
Collapse
Affiliation(s)
- Melody Di Bona
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Samuel F Bakhoum
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
16
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
17
|
Aubuchon LN, Verma P. Endogenous base damage as a driver of genomic instability in homologous recombination-deficient cancers. DNA Repair (Amst) 2024; 141:103736. [PMID: 39096699 DOI: 10.1016/j.dnarep.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Homologous recombination (HR) is a high-fidelity DNA double-strand break (DSB) repair pathway. Both familial and somatic loss of function mutation(s) in various HR genes predispose to a variety of cancer types, underscoring the importance of error-free repair of DSBs in human physiology. While environmental sources of DSBs have been known, more recent studies have begun to uncover the role of endogenous base damage in leading to these breaks. Base damage repair intermediates often consist of single-strand breaks, which if left unrepaired, can lead to DSBs as the replication fork encounters these lesions. This review summarizes various sources of endogenous base damage and how these lesions are repaired. We highlight how conversion of base repair intermediates, particularly those with 5'or 3' blocked ends, to DSBs can be a predominant source of genomic instability in HR-deficient cancers. We also discuss how endogenous base damage and ensuing DSBs can be exploited to enhance the efficacy of Poly (ADP-ribose) polymerase inhibitors (PARPi), that are widely used in the clinics for the regimen of HR-deficient cancers.
Collapse
Affiliation(s)
- Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Di Bona M, Chen Y, Agustinus AS, Mazzagatti A, Duran MA, Deyell M, Bronder D, Hickling J, Hong C, Scipioni L, Tedeschi G, Martin S, Li J, Ruzgaitė A, Riaz N, Shah P, D’Souza EK, Brodtman DZ, Sidoli S, Diplas B, Jalan M, Lee NY, Ordureau A, Izar B, Laughney AM, Powell S, Gratton E, Santaguida S, Maciejowski J, Ly P, Jeitner TM, Bakhoum SF. Micronuclear collapse from oxidative damage. Science 2024; 385:eadj8691. [PMID: 39208110 PMCID: PMC11610459 DOI: 10.1126/science.adj8691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.
Collapse
Affiliation(s)
- Melody Di Bona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyang Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albert S. Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mercedes A. Duran
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Deyell
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Bronder
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Hickling
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christy Hong
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenzo Scipioni
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Giulia Tedeschi
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Sara Martin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aušrinė Ruzgaitė
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parin Shah
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Edridge K. D’Souza
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - D. Zack Brodtman
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bill Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Izar
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Ashley M. Laughney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Gratton
- School of Engineering, University of California, Irvine, CA 92697, USA
| | - Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas M. Jeitner
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samuel F. Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
20
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
21
|
Zannini L, Cardano M, Liberi G, Buscemi G. R-loops and impaired autophagy trigger cGAS-dependent inflammation via micronuclei formation in Senataxin-deficient cells. Cell Mol Life Sci 2024; 81:339. [PMID: 39120648 PMCID: PMC11335261 DOI: 10.1007/s00018-024-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.
Collapse
Affiliation(s)
- Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| |
Collapse
|
22
|
Li J, Jordana L, Mehsen H, Wang X, Archambault V. Nuclear reassembly defects after mitosis trigger apoptotic and p53-dependent safeguard mechanisms in Drosophila. PLoS Biol 2024; 22:e3002780. [PMID: 39186808 PMCID: PMC11379398 DOI: 10.1371/journal.pbio.3002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/06/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.
Collapse
Affiliation(s)
- Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Laia Jordana
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Xinyue Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
23
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
24
|
Huang M, Chen B, Chen X, Liu T, Liang S, Hu H, Bai X, Gong Y. RanGAP1 maintains chromosome stability in limb bud mesenchymal cells during bone development. Cell Signal 2024; 120:111222. [PMID: 38729327 DOI: 10.1016/j.cellsig.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-β/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.
Collapse
Affiliation(s)
- Minjun Huang
- Department of Spine Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China; Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bochong Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianxiao Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siying Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongling Hu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan 528399, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan Gong
- Department of Spine Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Hu Q, Espejo Valle-Inclán J, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Lu H, Davis AJ, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Nat Commun 2024; 15:5611. [PMID: 38965240 PMCID: PMC11224358 DOI: 10.1038/s41467-024-49985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Liu G. Chromosomal aberration analysis: Novel noninvasive techniques for early-stage cancer screening. Clin Chim Acta 2024; 560:119736. [PMID: 38763468 DOI: 10.1016/j.cca.2024.119736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Chromosome breakage is a catastrophic event that leads to the progressive development and progression of cancer. In order to analyze the changes of peripheral blood microenvironment of tumor patients, to explore the indicators of non-specific non-invasive tumor early screening. This paper presents a new idea of whether the gene sequence near the DNA damage break point is the gene sequence that controls the unrestricted growth of normal cells. METHODS The chromosomal aberrations of peripheral blood lymphocytes were analysed in 60 healthy adult and 49 cancer patients before radiotherapy. RESULTS The detection rate of chromosomal aberrations was high in tumor patients, and "dicentric + translocations" of chromosomes were detected in 36 patients (73.47 %). The chi-square test showed statistically significant differences (P < 0.01), and chromosome adhesion and dissolution were observed. CONCLUSIONS "Dicentric + Translocation" chromosome can be used as a nonspecific early screening indicator for cancer. This is worthy of further study. This index can be used to determine the genetic basis of various cancers at the gene level to modify the base sequence and prevent the occurrence of cancer. It is worthy of further study, and it can provide a new method for gene therapy of tumors.
Collapse
Affiliation(s)
- Gang Liu
- Gansu Provincial Center for Disease Control and Prevention, (Joint Laboratory of Institute of Radiology, Chinese Academy of Medical Sciences), NO.310 Donggang West Road, Lanzhou, Gansu, China.
| |
Collapse
|
27
|
Nageshan RK, Ortega R, Krogan N, Cooper JP. Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown. Nat Commun 2024; 15:4707. [PMID: 38830842 PMCID: PMC11148042 DOI: 10.1038/s41467-024-48382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Persisting replication intermediates can confer mitotic catastrophe. Loss of the fission yeast telomere protein Taz1 (ortholog of mammalian TRF1/TRF2) causes telomeric replication fork (RF) stalling and consequently, telomere entanglements that stretch between segregating mitotic chromosomes. At ≤20 °C, these entanglements fail to resolve, resulting in lethality. Rif1, a conserved DNA replication/repair protein, hinders the resolution of telomere entanglements without affecting their formation. At mitosis, local nuclear envelope (NE) breakdown occurs in the cell's midregion. Here we demonstrate that entanglement resolution occurs in the cytoplasm following this NE breakdown. However, in response to taz1Δ telomeric entanglements, Rif1 delays midregion NE breakdown at ≤20 °C, in turn disfavoring entanglement resolution. Moreover, Rif1 overexpression in an otherwise wild-type setting causes cold-specific NE defects and lethality, which are rescued by membrane fluidization. Hence, NE properties confer the cold-specificity of taz1Δ lethality, which stems from postponement of NE breakdown. We propose that such postponement promotes clearance of simple stalled RFs, but resolution of complex entanglements (involving strand invasion between nonsister telomeres) requires rapid exposure to the cytoplasm.
Collapse
Affiliation(s)
- Rishi Kumar Nageshan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Raquel Ortega
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
28
|
LaBella KA, Hsu WH, Li J, Qi Y, Liu Y, Liu J, Wu CC, Liu Y, Song Z, Lin Y, Blecher JM, Jiang S, Shang X, Han J, Spring DJ, Zhang J, Xia Y, DePinho RA. Telomere dysfunction alters intestinal stem cell dynamics to promote cancer. Dev Cell 2024; 59:1475-1486.e5. [PMID: 38574731 PMCID: PMC11379129 DOI: 10.1016/j.devcel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3β inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.
Collapse
Affiliation(s)
- Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yutao Qi
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonghong Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M Blecher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Zhang Q, Hu J, Li DL, Qiu JG, Jiang BH, Zhang CY. Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review. Anal Chim Acta 2024; 1298:342395. [PMID: 38462345 DOI: 10.1016/j.aca.2024.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
30
|
MacDonald KM, Khan S, Lin B, Hurren R, Schimmer AD, Kislinger T, Harding SM. The proteomic landscape of genotoxic stress-induced micronuclei. Mol Cell 2024; 84:1377-1391.e6. [PMID: 38423013 DOI: 10.1016/j.molcel.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.
Collapse
Affiliation(s)
- Kate M MacDonald
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Rose Hurren
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Aaron D Schimmer
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Radiation Oncology and Immunology, University of Toronto, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|
31
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
33
|
Huang ME, Qin Y, Shang Y, Hao Q, Zhan C, Lian C, Luo S, Liu LD, Zhang S, Zhang Y, Wo Y, Li N, Wu S, Gui T, Wang B, Luo Y, Cai Y, Liu X, Xu Z, Dai P, Li S, Zhang L, Dong J, Wang J, Zheng X, Xu Y, Sun Y, Wu W, Yeap LS, Meng FL. C-to-G editing generates double-strand breaks causing deletion, transversion and translocation. Nat Cell Biol 2024; 26:294-304. [PMID: 38263276 DOI: 10.1038/s41556-023-01342-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency 'stochastic' byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts. Imperfect DSB end-joining leads to small deletions via end-resection, templated insertions or aberrant transversions during end fill-in. Chromosomal translocations were detected between the editing target and off-targets of Cas9/deaminase origin. Genetic screenings of DNA repair factors disclosed a central role of abasic site processing in DSB formation. Shielding of abasic sites by the suicide enzyme HMCES reduced CGBE-initiated DSBs, providing an effective way to minimize DSB-triggered events without affecting substitutions. This work demonstrates that CGBEs can initiate deleterious intermediate DSBs and therefore require careful consideration for therapeutic applications, and that HMCES-aided CGBEs hold promise as safer tools.
Collapse
Affiliation(s)
- Min Emma Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yining Qin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yafang Shang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Qian Hao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzong Zhan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyang Lian
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Luo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Daisy Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Senxin Zhang
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wo
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Institute of Thoracic Oncology, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuheng Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Tuantuan Gui
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Luo
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yanni Cai
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Ziye Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Dai
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Simiao Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Liang Zhang
- Hefei National Research Center for Cross Disciplinary Science, Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junchao Dong
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Sun
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Institute of Thoracic Oncology, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Leng-Siew Yeap
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
| |
Collapse
|
34
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Li M, Wang J, Huo B, Wan Q, Xing L, Wang Y, Pei H, Wang L, Xia Y, Cui H. Umbelliferone Enhances Immune Function in Cyclophosphamide-Induced Immunosuppressed Mice via Histidine and Purine Metabolism Regulation. Curr Drug Metab 2024; 25:695-705. [PMID: 39931991 DOI: 10.2174/0113892002360132250122164637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Chemotherapy-induced immunosuppression significantly impacts patient's quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study. METHODS We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites. RESULTS UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression. CONCLUSION UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.
Collapse
Affiliation(s)
- Mei Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Tianjin University, Tianjin, 300072, China
| | - Jing Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Bingjie Huo
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qianqian Wan
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Liwei Xing
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huan Pei
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Li Wang
- Tianjin University, Tianjin, 300072, China
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Yafei Xia
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, 300100, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
37
|
Jiang H, Chan YW. Chromatin bridges: stochastic breakage or regulated resolution? Trends Genet 2024; 40:69-82. [PMID: 37891096 DOI: 10.1016/j.tig.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
38
|
Coy S, Cheng B, Lee JS, Rashid R, Browning L, Xu Y, Chakrabarty SS, Yapp C, Chan S, Tefft JB, Scott E, Spektor A, Ligon KL, Baker GJ, Pellman D, Sorger PK, Santagata S. 2D and 3D multiplexed subcellular profiling of nuclear instability in human cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566063. [PMID: 37986801 PMCID: PMC10659270 DOI: 10.1101/2023.11.07.566063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nuclear atypia, including altered nuclear size, contour, and chromatin organization, is ubiquitous in cancer cells. Atypical primary nuclei and micronuclei can rupture during interphase; however, the frequency, causes, and consequences of nuclear rupture are unknown in most cancers. We demonstrate that nuclear envelope rupture is surprisingly common in many human cancers, particularly glioblastoma. Using highly-multiplexed 2D and super-resolution 3D-imaging of glioblastoma tissues and patient-derived xenografts and cells, we link primary nuclear rupture with reduced lamin A/C and micronuclear rupture with reduced lamin B1. Moreover, ruptured glioblastoma cells activate cGAS-STING-signaling involved in innate immunity. We observe that local patterning of cell states influences tumor spatial organization and is linked to both lamin expression and rupture frequency, with neural-progenitor-cell-like states exhibiting the lowest lamin A/C levels and greatest susceptibility to primary nuclear rupture. Our study reveals that nuclear instability is a core feature of cancer, and links nuclear integrity, cell state, and immune signaling.
Collapse
Affiliation(s)
- Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Cheng
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lindsay Browning
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yilin Xu
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sankha S. Chakrabarty
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliann B. Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emily Scott
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory J. Baker
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Joo YK, Black EM, Trier I, Haakma W, Zou L, Kabeche L. ATR promotes clearance of damaged DNA and damaged cells by rupturing micronuclei. Mol Cell 2023; 83:3642-3658.e4. [PMID: 37788673 PMCID: PMC10599252 DOI: 10.1016/j.molcel.2023.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope. In cells harboring MN, ATR or CDK1 inhibition reduces MN rupture. Consequently, ATR inhibitor (ATRi) diminishes activation of the cytoplasmic DNA sensor cGAS and compromises cGAS-dependent autophagosome accumulation in MN and clearance of micronuclear DNA. Furthermore, ATRi reduces cGAS-mediated senescence and killing of MN-bearing cancer cells by natural killer cells. Thus, in addition to the canonical ATR signaling pathway, an ATR-CDK1-Lamin A/C axis promotes MN rupture to clear damaged DNA and cells, protecting the genome in cell populations through unexpected cell-autonomous and cell-non-autonomous mechanisms.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Wisse Haakma
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Boston, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA.
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA.
| |
Collapse
|
40
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
41
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
42
|
Hu Q, Valle-Inclan JE, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552800. [PMID: 37609143 PMCID: PMC10441393 DOI: 10.1101/2023.08.10.552800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jose Espejo Valle-Inclan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Present address: Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth G. Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin L. Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
43
|
Zhou Z, Yin H, Suye S, Ren Z, Yan L, Shi L, Fu C. Fance deficiency inhibits primordial germ cell proliferation associated with transcription-replication conflicts accumulate and DNA repair defects. J Ovarian Res 2023; 16:160. [PMID: 37563658 PMCID: PMC10416540 DOI: 10.1186/s13048-023-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Fanconi anemia (FA) gene mutations are critical components in the genetic etiology of premature ovarian insufficiency (POI). Fance-/- mice detected meiotic arrest of primordial germ cells (PGCs) as early as embryonic day (E) 13.5 and exhibited decreased ovarian reserve after birth. However, the mechanism of Fance defect leading to dysgenesis of PGCs is unclear. We aimed to explore the effect of Fance defects on mitotic proliferation of PGCs. Combined with transcriptomic sequencing and validation, we examined the effect of Fance defects on cell cycle, transcription-replication conflicts (TRCs), and multiple DNA repair pathways in PGCs during active DNA replication at E11.5 and E12.5. Results showed Fance defects cause decreased numbers of PGCs during rapid mitosis at E11.5 and E12.5. Mitotic cell cycle progression of Fance-/- PGCs was blocked at E11.5 and E12.5, shown by decreased cell proportions in S and G2 phases and increased cell proportions in M phase. RNA-seq suggested the mechanisms involved in DNA replication and repair. We found Fance-/- PGCs accumulate TRCs during active DNA replication at E11.5 and E12.5. Fance-/- PGCs down-regulate multiple DNA repair pathways at E11.5 and E12.5 including the FA pathway, homologous recombination (HR) pathway, and base excision repair (BER) pathway. In conclusion, Fance defect impaired the mitotic proliferation of PGCs leading to rapidly decreased numbers and abnormal cell cycle distribution. Proliferation inhibition of Fance-/- PGCs was associated with accumulated TRCs and down-regulation of FA, HR, BER pathways. These provided a theoretical basis for identifying the inherited etiology and guiding potential fertility management for POI.
Collapse
Affiliation(s)
- Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Lei Yan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Liye Shi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China.
| |
Collapse
|
44
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
45
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
46
|
Papathanasiou S, Mynhier NA, Liu S, Brunette G, Stokasimov E, Jacob E, Li L, Comenho C, van Steensel B, Buenrostro JD, Zhang CZ, Pellman D. Heritable transcriptional defects from aberrations of nuclear architecture. Nature 2023; 619:184-192. [PMID: 37286600 PMCID: PMC10322708 DOI: 10.1038/s41586-023-06157-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Transcriptional heterogeneity due to plasticity of the epigenetic state of chromatin contributes to tumour evolution, metastasis and drug resistance1-3. However, the mechanisms that cause this epigenetic variation are incompletely understood. Here we identify micronuclei and chromosome bridges, aberrations in the nucleus common in cancer4,5, as sources of heritable transcriptional suppression. Using a combination of approaches, including long-term live-cell imaging and same-cell single-cell RNA sequencing (Look-Seq2), we identified reductions in gene expression in chromosomes from micronuclei. With heterogeneous penetrance, these changes in gene expression can be heritable even after the chromosome from the micronucleus has been re-incorporated into a normal daughter cell nucleus. Concomitantly, micronuclear chromosomes acquire aberrant epigenetic chromatin marks. These defects may persist as variably reduced chromatin accessibility and reduced gene expression after clonal expansion from single cells. Persistent transcriptional repression is strongly associated with, and may be explained by, markedly long-lived DNA damage. Epigenetic alterations in transcription may therefore be inherently coupled to chromosomal instability and aberrations in nuclear architecture.
Collapse
Affiliation(s)
- Stamatis Papathanasiou
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Institute of Molecular Biology, Mainz, Germany.
| | - Nikos A Mynhier
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shiwei Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gregory Brunette
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ema Stokasimov
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Etai Jacob
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, Waltham, MA, USA
| | - Lanting Li
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Caroline Comenho
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cheng-Zhong Zhang
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - David Pellman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
47
|
Ding H, Liu S, Du W, Su L, Chen J, Tian Y, Pan D, Chen L, Rizzello L, Zheng X, Battaglia G, Luo K, Gong Q, Tian X. Revealing the amyloid β-protein with zinc finger protein of micronucleus during Alzheimer's disease progress by a quaternary ammonium terpyridine probe. Biosens Bioelectron 2023; 236:115446. [PMID: 37290288 DOI: 10.1016/j.bios.2023.115446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micronucleus (MN) is regarded as an abnormal structure in eukaryotic cells which can be used as a biomarker for genetic instability. However, direct observation of MN in living cells is rarely achieved due to the lack of probes that are capable of distinguishing nuclear- and MN-DNA. Herein, a water-soluble terpyridine organic small molecule (ABT) was designed and employed to recognize Zinc-finger protein (ZF) for imaging intracellular MN. The in vitro experiments suggested ABT has a high affinity towards ZF. Further live cell staining showed that ABT could selectively target MN in HeLa and NSC34 cells when combined with ZF. Importantly, we use ABT to uncover the correlation between neurotoxic amyloid β-protein (Aβ) and MN during Alzheimer's disease (AD) progression. Thus, this study provides profound insight into the relationship between Aβ and genomic disorders, offering a deeper understanding for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Shangke Liu
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Liping Su
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Junyang Chen
- Department of Chemistry, University College London, London, United Kingdom
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei, 230039, China
| | - Dayi Pan
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Lei Chen
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei, 230039, China.
| | - Loris Rizzello
- Department of Pharmaceutical Sciences - University of Milan, Via G. Balzaretti 9, 20133, Milan, IT, Italy; The National Institute of Molecular Genetics (INGM), Via Francesco Sforza 35, 20122, Milan, IT, Italy
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, United Kingdom
| | - Kui Luo
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, 361021, Xiamen, Fujian, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
48
|
Trivedi P, Steele CD, Au FKC, Alexandrov LB, Cleveland DW. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 2023; 618:1049-1056. [PMID: 37316668 PMCID: PMC10424572 DOI: 10.1038/s41586-023-06216-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.
Collapse
Affiliation(s)
- Prasad Trivedi
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Christopher D Steele
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Franco K C Au
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Lin YF, Hu Q, Mazzagatti A, Valle-Inclán JE, Maurais EG, Dahiya R, Guyer A, Sanders JT, Engel JL, Nguyen G, Bronder D, Bakhoum SF, Cortés-Ciriano I, Ly P. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 2023; 618:1041-1048. [PMID: 37165191 PMCID: PMC10307639 DOI: 10.1038/s41586-023-05974-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023]
Abstract
Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob T Sanders
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giaochau Nguyen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Zhao G, Liu S, Arun S, Renda F, Khodjakov A, Pellman D. A tubule-sheet continuum model for the mechanism of nuclear envelope assembly. Dev Cell 2023; 58:847-865.e10. [PMID: 37098350 PMCID: PMC10205699 DOI: 10.1016/j.devcel.2023.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.
Collapse
Affiliation(s)
- Gengjing Zhao
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shiwei Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sanjana Arun
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|