1
|
Lujan AL, Foresti O, Wojnacki J, Bigliani G, Brouwers N, Pena MJ, Androulaki S, Hashidate-Yoshida T, Kalyukina M, Novoselov SS, Shindou H, Malhotra V. TANGO2 is an acyl-CoA binding protein. J Cell Biol 2025; 224:e202410001. [PMID: 40015245 DOI: 10.1083/jcb.202410001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Loss of TANGO2 in humans precipitates metabolic crises during periods of heightened energy demand, such as fasting, infections, or high fever. TANGO2 has been implicated in various functions, including lipid metabolism and heme transport, and its cellular localization remains uncertain. In our study, we demonstrate that TANGO2 localizes to the mitochondrial lumen via a structural region containing LIL residues. Mutations in these LIL residues cause TANGO2 to relocate to the periphery of lipid droplets. We further show that purified TANGO2 binds acyl-coenzyme A, and mutations in the highly conserved NRDE sequence of TANGO2 inhibit this binding. Collectively, our findings suggest that TANGO2 serves as an acyl-coenzyme A binding protein. These insights may provide new avenues for addressing the severe cardiomyopathies and rhabdomyolysis associated with defective TANGO2 in humans.
Collapse
Affiliation(s)
- Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Jose Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Maria Jesus Pena
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Stefania Androulaki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Maria Kalyukina
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sergey S Novoselov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
- ICREA , Barcelona, Spain
| |
Collapse
|
2
|
Sandkuhler SE, Mackenzie SJ. Mitochondrial mayhem: Disrupting conserved N-terminal motifs in TANGO2 impacts its localization and function. J Cell Biol 2025; 224:e202503010. [PMID: 40232182 PMCID: PMC11998701 DOI: 10.1083/jcb.202503010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
TANGO2 deficiency in humans leads to progressive neurological impairment, punctuated by life-threatening metabolic crises. In this issue, Lujan and colleagues demonstrate that TANGO2 localizes within the mitochondrial lumen and binds acyl-CoA species, potentially implicating it as a lipid trafficking protein.
Collapse
Affiliation(s)
- Sarah E. Sandkuhler
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
3
|
Qian Y, Wang X, Liu Y, Wang Y, Li J, Du G, Zhao X, Chen J. Enhancing heme import to synthesize active myoglobin and hemoglobin in Pichia pastoris. 3 Biotech 2025; 15:115. [PMID: 40191454 PMCID: PMC11971115 DOI: 10.1007/s13205-025-04286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Myoglobin and hemoglobin are both heme-binding proteins that have widespread applications in food processing and medical treatments. Pichia pastoris is often chosen to produce heterologous hemoproteins. However, due to the insufficient heme supply, the inactive hemoproteins take a large proportion of synthesized products. To overcome this problem, the intracellular heme supply was increased by improving heme uptake efficiency. At first, an efficient method was created for the screen of potential heme importers from various microorganisms by knocking out HEM1 gene to obtain a deficient P. pastoris strain X33-ΔKu70-ΔHEM1 (HEMEX) in heme synthesis. Based on the significantly improved cell growth, two effective heterogenous heme importers (Caflc1 and Shu1) were selected when the exogenous heme was supplemented. Finally, the titers of porcine myoglobin (PMB) and soybean hemoglobin (SHB) increased by 112.28% and 5.78-fold, respectively, through the overexpression of heme importers. The applied strategy provides a promising approach to synthesize other valuable hemoproteins in P. pastoris. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04286-6.
Collapse
Affiliation(s)
- Yuan Qian
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xuan Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yang Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yunpeng Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
4
|
Mukhtiar K, Ibrahim S, Khalid QUA. TANGO-2: A Rare Genetic Condition With Severe Clinical Presentation of Encephalopathy, Rhabdomyolysis, and Cardiac Rhythm Disorders in 2 Children. J Child Neurol 2025:8830738251328404. [PMID: 40156300 DOI: 10.1177/08830738251328404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Biallelic pathogenic or likely pathogenic variants in Transport and Golgi Organization 2 (TANGO-2) are associated with a spectrum of clinical features including encephalopathy, rhabdomyolysis, cardiac rhythm disorders, and neurologic regression. We are reporting on 2 unrelated children with biallelic TANGO-2 pathogenic variants. These variants were identified through a Next Generation Sequencing (NGS) panel of genes associated with hereditary rhabdomyolysis. Both children had a history of developmental delay, especially in their motor milestones. They also experienced episodic transient weakness with acute illness. One of the children's siblings had similar complaints and died at an early age. During their illness, both children developed extreme lethargy with very high CPK levels, lactic acidosis, rising trends of transaminases, and recurrent hypoglycemia. Both patients developed ventricular tachyarrhythmias, and the echocardiogram showed cardiomyopathy. Despite intensive symptomatic management, both patients died of cardiac failure because of fatal ventricular arrhythmia. Genetic testing revealed the presence of biallelic pathogenic variants TANGO-2. This rare genetic condition should be suspected in any patient with episodic recurrent weakness, rhabdomyolysis, abdominal pain, and cardiac arrhythmias, because of its diverse clinical presentation. However, early diagnosis is challenging because there are no specific biochemical markers for the disease. There is strong evidence that vitamin B supplementation can significantly reduce the number of metabolic crises in these children. Although this is not a targeted therapy, it can be a potentially life-saving treatment for these patients.
Collapse
Affiliation(s)
- Khairunnisa Mukhtiar
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahnaz Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Quart-Ul-Ain Khalid
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
5
|
Huang Y, Chen K, Xiao X, Zhong S. Identification of FLVCR1 as the iron metabolism-related gene of statin-associated diabetes. Acta Diabetol 2025:10.1007/s00592-025-02491-6. [PMID: 40146399 DOI: 10.1007/s00592-025-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
AIMS Long-term statin use has been linked to increased diabetes risk. Iron metabolism disruption may explain this association. The objective of this study was to identify the co-expression gene modules and the iron metabolism-related gene (IMG) linking statin administration and diabetes, making the hunt for novel therapeutic targets necessary. METHODS Weighted gene co-expression network analysis (WGCNA) was applied to the GSE130991 dataset to detect co-expressed gene modules. Enrichment analysis and single sample gene set enrichment analysis (ssGSEA) were conducted to characterize the biological processes and iron metabolism differences, respectively. Candidate IMGs were identified by intersecting WGCNA hub genes, differentially expressed genes (DEGs) from the statin-using and non-using obese individuals within the GSE130991 liver tissue dataset, and IMGs from Molecular Signatures Database Molecular Signatures Database (MisgDB). Mediation analysis was utilized to identify the definitive IMG. Expression validation was conducted through reverse transcription quantitative PCR (RT-qPCR) experiments and cross-referencing with additional datasets. RESULTS A shared gene module was identified between statin-users and diabetes patients, with functional enrichment analysis indicating involvement in iron ion binding. ssGSEA revealed differentially expressed iron metabolism in both statin-users and diabetes patients. Five IMG genes (CYP51A1, SC5D, MSMO1, SCD, and FLVCR1) were shortlisted, with FLVCR1 emerging as the key intermediary biomarker. FLVCR1 was positively correlated with insulin resistance and demonstrated robust predictive capabilities for diabetes. An increase in FLVCR1 mRNA levels was observed following statin treatment, as confirmed by RT-qPCR experiments and the GSE24188 dataset. Elevated FLVCR1 mRNA was also noted in diabetes patients across datasets GSE130991, GSE23343, and GSE95849. CONCLUSION In this study, bioinformatics evidence supporting the association between statin use and diabetes was presented. FLVCR1 was identified as the iron metabolism-related mediator gene implicated in this relationship. Overall, our findings provide a theoretical foundation for new directions for future research exploring the complex interplay between statin treatment, iron metabolism regulation, and diabetes pathogenesis.
Collapse
Affiliation(s)
- YiJia Huang
- South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Kai Chen
- South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Shilong Zhong
- South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Laboratory of Phase I Clinical Trials, Guangzhou, China.
| |
Collapse
|
6
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
7
|
Liu S, Feng Z, Su M, Liu C, Xi Y, Chen H, Luo L, Tian X, Zhao F, Li L. Tango6 regulates HSPC proliferation and definitive haematopoiesis via Ikzf1 and Cmyb in caudal haematopoietic tissue. Development 2025; 152:dev202903. [PMID: 39620979 DOI: 10.1242/dev.202903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/30/2024] [Indexed: 01/04/2025]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) arise from the aorta-gonad-mesonephros and migrate to the caudal haematopoietic tissue (CHT) in zebrafish, where nascent HSPCs undergo tightly controlled proliferation and differentiation to promote definitive haematopoiesis. Effective expansion of HSPCs requires the coordination of well-established vesicle trafficking systems and appropriate transcription factors. However, the underlying molecules are yet to be identified. Using large-scale genetic screening of zebrafish larvae, Tango6 of the coat protein complex I (COPI) vesicle trafficking system was found to be indispensable for HSPC proliferation and definitive haematopoiesis. Homozygous tango6cq72 mutants display defective expansion of HSPCs in the CHT and compromised haematopoiesis. However, haematopoietic overexpression of Tango6 promoted haematopoietic expansion. tango6 deficiency caused a decline in RNA polymerase II subunit B and accumulation of DNA damage, which suppressed cell expansion in a P53-dependent manner. ikzf1 and cmyb (myb), two indispensable haematopoietic transcription factors, are targets of P53 and are used by tango6 in haematopoiesis. The haematopoietic phenotype was partially recovered by compensating for loss of ikzf1 and cmyb in tango6cq72 mutants. This study reveals a vesicle trafficking-mediated Tango6-P53-Ikzf1/Cmyb axis in zebrafish definitive haematopoiesis.
Collapse
Affiliation(s)
- Shengnan Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Zhi Feng
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ming Su
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chenchen Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuan Xi
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Huan Chen
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Li Li
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
8
|
Ti W, Liu M, Xie A, Wang Y, Wu S, Sheng Q, Lan M. Application of Ti 4+ embedded functional composite materials in simultaneous enrichment of glycopeptides and phosphopeptides. Talanta 2025; 282:126955. [PMID: 39357403 DOI: 10.1016/j.talanta.2024.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation and phosphorylation of proteins represent crucial forms of post-translational modifications (PTMs), playing pivotal roles in various biological processes. Research indicates a strong correlation between the development of type 2 diabetes (T2D) and abnormal protein translation in the body. Therefore, studying glycosylation and phosphorylation at the molecular level can be used for monitoring disease progression and refining research methodologies. In this study, the material is modified and functionally engineered by utilizing graphene oxide (GO) as the substrate, and incorporating titanium ions (Ti4+) into chondroitin sulfate. The composite was successfully applied to the selective enrichment of glycopeptides and phosphopeptides by utilizing the bifunctionality of hydrophilic interaction chromatography and metal ion chelation chromatography. This approach allowed for the capture of 57 glycopeptides and 2 phosphopeptides from normal human serum, and 141 glycopeptides and 10 phosphopeptides from T2D serum, respectively. This approach effectively tackles the challenges of detecting low-abundance glycopeptides and phosphopeptides in complex environments, enabling the successful capture from serum samples. The design and application of this material provide new insights into the development of PTMs and their connection to the study of T2D diabetes.
Collapse
Affiliation(s)
- WenGeng Ti
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - MeiYan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - AnYu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - YueYao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - SiJin Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - QianYing Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
9
|
de Calbiac H, Montealegre S, Straube M, Renault S, Debruge H, Chentout L, Ciura S, Imbard A, Guillou EL, Marian A, Goudin N, Caccavelli L, Fabrega S, Hubas A, van Endert P, Dupont N, Diana J, Kabashi E, de Lonlay P. TANGO2-related rhabdomyolysis symptoms are associated with abnormal autophagy functioning. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2306766. [PMID: 39722856 PMCID: PMC7617261 DOI: 10.1080/27694127.2024.2306766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 12/28/2024]
Abstract
Patients with pathogenic variants in the TANGO2 gene suffer from severe and recurrent rhabdomyolysis episodes precipitated by fasting. Autophagy functioning was analyzed in vitro, in primary skeletal myoblasts from TANGO2 patients, in basal and fasting conditions, and TANGO2 mutations were associated with reduced LC3-II levels upon starvation. In zebrafish larvae, tango2 inhibition induced locomotor defects which were exacerbated by exposure to atorvastatin, a compound known to cause rhabdomyolysis. Importantly, rhabdomyolysis features of tango2 knockdown were associated with autophagy and mitophagy defects in zebrafish. Calpeptin treatment was sufficient to rescue the locomotor properties thanks to its beneficial effect on autophagy functioning in zebrafish and to improve LC3-II levels in starved primary muscle cells of TANGO2 patients. Overall, we demonstrated that TANGO2 plays an important role in autophagy thus giving rise to new therapeutic perspectives in the prevention of RM life-threatening episodes.
Collapse
Affiliation(s)
- Hortense de Calbiac
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Sebastian Montealegre
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
| | - Marjolène Straube
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Solène Renault
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Hugo Debruge
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Loïc Chentout
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Sorana Ciura
- Translational Research for Neurological Diseases, Institut Imagine, INSERM UMR 1163, Université Paris Cité, F-75015, Paris, France
| | - Apolline Imbard
- Metabolic biochemistry, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, Université Paris Cité, F-75015, Paris, France
| | - Edouard Le Guillou
- Metabolic biochemistry, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, Université Paris Cité, F-75015, Paris, France
| | - Anca Marian
- Translational Research for Neurological Diseases, Institut Imagine, INSERM UMR 1163, Université Paris Cité, F-75015, Paris, France
| | - Nicolas Goudin
- Cell Imaging & Flow Cytometry Core Facilities, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, F-75015, France
| | - Laure Caccavelli
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| | - Sylvie Fabrega
- Platform, Structure Fédérative de Recherche Necker, F-75015, Paris, France
| | - Arnaud Hubas
- Genetics and Molecular Biology, Laboratoire de culture cellulaire, Hôpital Universitaire Cochin, AP-HP, F-75014, Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Nicolas Dupont
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
| | - Julien Diana
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
| | - Edor Kabashi
- Translational Research for Neurological Diseases, Institut Imagine, INSERM UMR 1163, Université Paris Cité, F-75015, Paris, France
| | - Pascale de Lonlay
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Filière G2M, MetabERN, F-75015, Paris, France
| |
Collapse
|
10
|
Shen J, Xie E, Shen S, Song Z, Li X, Wang F, Min J. Essentiality of SLC7A11-mediated nonessential amino acids in MASLD. Sci Bull (Beijing) 2024; 69:3700-3716. [PMID: 39366830 DOI: 10.1016/j.scib.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains a rapidly growing global health burden. Here, we report that the nonessential amino acid (NEAA) transporter SLC7A11 plays a key role in MASLD. In patients with MASLD, we found high expression levels of SLC7A11 that were correlated directly with clinical grade. Using both loss-of-function and gain-of-function genetic models, we found that Slc7a11 deficiency accelerated MASLD progression via classic cystine/cysteine deficiency-induced ferroptosis, while serine deficiency and a resulting impairment in de novo cysteine production were attributed to ferroptosis-induced MASLD progression in mice overexpressing hepatic Slc7a11. Consistent with these findings, we found that both serine supplementation and blocking ferroptosis significantly alleviated MASLD, and the serum serine/glutamate ratio was significantly lower in these preclinical disease models, suggesting that it might serve as a prognostic biomarker for MASLD in patients. These findings indicate that defects in NEAA metabolism are involved in the progression of MASLD and that serine deficiency-triggered ferroptosis may provide a therapeutic target for its treatment.
Collapse
Affiliation(s)
- Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China; The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuying Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zijun Song
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaopeng Li
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Zhang Z, Fang Y, He Y, Farag MA, Zeng M, Sun Y, Peng S, Jiang S, Zhang X, Chen K, Xu M, Han Z, Zhang J. Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites. NPJ Biofilms Microbiomes 2024; 10:144. [PMID: 39632843 PMCID: PMC11618631 DOI: 10.1038/s41522-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Sarcopenia is a major health challenge due to an aging population. Probiotics may improve muscle function through gut-muscle axis, but their efficacy and mechanisms in treating sarcopenia remain unclear. This study investigated the impact of Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) on old mice and sarcopenia patients. We analyzed 43 subjects, including gut microbiome, fecal metabolome, and serum metabolome, using a multi-omics approach to assess whether Probio-M8 can improve sarcopenia by modulating gut microbial metabolites. Probio-M8 significantly improved muscle function in aged mice and enhanced physical performance in sarcopenia patients. It reduced pathogenic gut species and increased beneficial metabolites such as indole-3-lactic acid, acetoacetic acid, and creatine. Mediating effect analyses revealed that Probio-M8 effectively reduced n-dodecanoyl-L-homoserine lactone level in gut concurrent with increased creatine circulation, to significantly enhance host physical properties. These findings provide new insights into probiotics as a potential treatment for sarcopenia by modulating gut microbiota metabolism.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Min Zeng
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Siqi Peng
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Xian Zhang
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Meng Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China.
- One Health Institute, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
12
|
Sandkuhler SE, Youngs KS, Owlett L, Bandora MB, Naaz A, Kim ES, Wang L, Wojtovich AP, Gupta VA, Sacher M, Mackenzie SJ. Heme's relevance genuine? Re-visiting the roles of TANGO2 homologs including HRG-9 and HRG-10 in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569072. [PMID: 38106020 PMCID: PMC10723261 DOI: 10.1101/2023.11.29.569072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mutations in the TANGO2 gene cause severe illness in humans, including life-threatening metabolic crises. However, the function of TANGO2 protein remains unknown. Using Caenorhabditis elegans and other models, it has recently been proposed that TANGO2 transports heme within and between cells, from areas with high heme concentrations to those with lower concentrations. Here, we demonstrate that heme-related observations in nematodes may be better explained by a previously unreported metabolic phenotype in these worms, characterized by reduced feeding, decreased lifespan and brood sizes, and poor motility. We also show that several genes not implicated in heme transport are upregulated in the low heme state and conversely demonstrate that hrg-9 in particular is highly responsive to oxidative stress, independent of heme status. Collectively, these data implicate bioenergetic failure and oxidative stress as key factors in the pathophysiology of TANGO2 deficiency, in alignment with observations from human patients. Our group performed several experiments in yeast and zebrafish deficient in TANGO2 homologs and was unable to replicate prior findings from these models. Overall, we believe there is insufficient evidence to support heme transport as the primary function for TANGO2.
Collapse
Affiliation(s)
- Sarah E. Sandkuhler
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kayla S. Youngs
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Laura Owlett
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | | | - Aaliya Naaz
- Department of Biology, McGill University, Montreal, Canada
| | - Euri S. Kim
- Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA
| | - Lili Wang
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Andrew P. Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY
| | - Vandana A. Gupta
- Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA
| | - Michael Sacher
- Department of Biology, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, Concordia, Montreal, Canada
| | - Samuel J. Mackenzie
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
13
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
14
|
Tse-Kang SY, Wani KA, Peterson ND, Page A, Humphries F, Pukkila-Worley R. Intestinal immunity in C. elegans is activated by pathogen effector-triggered aggregation of the guard protein TIR-1 on lysosome-related organelles. Immunity 2024; 57:2280-2295.e6. [PMID: 39299238 PMCID: PMC11464196 DOI: 10.1016/j.immuni.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amanda Page
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
15
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
16
|
Chen C, Guo L, Shen Y, Hu J, Gu J, Ji G. Oxidative damage and cardiotoxicity induced by 2-aminobenzothiazole in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135032. [PMID: 38959826 DOI: 10.1016/j.jhazmat.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
There is limited information available on cardiovascular toxicity of 2-Aminobenzothiazole (NTH), a derivative of benzothiazole (BTH) commonly used in tire production, in aquatic organisms. In the present study, the zebrafish embryos were exposed to varying concentrations of NTH (0, 0.05, 0.5, and 5 mg/L) until adulthood and the potential cardiovascular toxicity was assessed. NTH exposure resulted in striking aberrations in cardiac development, including heart looping failure and interference with atrioventricular canal differentiation. RNA-sequencing analysis indicated that NTH causes oxidative damage to the heart via ferroptosis, leading to oxygen supply disruption, cardiac malformation, and ultimately, zebrafish death. Quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated the dysregulation of genes associated with early heart development, contraction, and oxidative stress. Additionally, reactive oxygen species accumulation and glutathione/malondialdehyde levels changes suggested a potential link between cardiac developmental toxicity and oxidative stress. In adult zebrafish, NTH exposure led to ventricular enlargement, decreased heart rate, reduced blood flow, and prolonged RR, QRS, and QTc intervals. To the best of our knowledge, this study is the first to provide evidence of cardiac toxicity and the adverse effects of ontogenetic NTH exposure in zebrafish, revealing the underlying toxic mechanisms connected with oxidative stress damage. These findings may provide crucial insights into the environmental risks associated with NTH and other BTHs.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
17
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
18
|
Tan CH, Wang TY, Park H, Lomenick B, Chou TF, Sternberg PW. Single-tissue proteomics in Caenorhabditis elegans reveals proteins resident in intestinal lysosome-related organelles. Proc Natl Acad Sci U S A 2024; 121:e2322588121. [PMID: 38861598 PMCID: PMC11194598 DOI: 10.1073/pnas.2322588121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
19
|
Su T, Le B, Zhang W, Bak KH, Soladoye PO, Zhao Z, Zhao Y, Fu Y, Wu W. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Res Int 2024; 186:114351. [PMID: 38729699 DOI: 10.1016/j.foodres.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Le
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Center for Sustainable Protein, DeePro Technology (Beijing) Co., Ltd., Beijing 101200, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Philip O Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Sacher M, DeLoriea J, Mehranfar M, Casey C, Naaz A, Gamberi C. TANGO2 deficiency disease is predominantly caused by a lipid imbalance. Dis Model Mech 2024; 17:dmm050662. [PMID: 38836374 PMCID: PMC11179719 DOI: 10.1242/dmm.050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
TANGO2 deficiency disease (TDD) is a rare genetic disorder estimated to affect ∼8000 individuals worldwide. It causes neurodegeneration often accompanied by potentially lethal metabolic crises that are triggered by diet or illness. Recent work has demonstrated distinct lipid imbalances in multiple model systems either depleted for or devoid of the TANGO2 protein, including human cells, fruit flies and zebrafish. Importantly, vitamin B5 supplementation has been shown to rescue TANGO2 deficiency-associated defects in flies and human cells. The notion that vitamin B5 is needed for synthesis of the lipid precursor coenzyme A (CoA) corroborates the hypothesis that key aspects of TDD pathology may be caused by lipid imbalance. A natural history study of 73 individuals with TDD reported that either multivitamin or vitamin B complex supplementation prevented the metabolic crises, suggesting this as a potentially life-saving treatment. Although recently published work supports this notion, much remains unknown about TANGO2 function, the pathological mechanism of TDD and the possible downsides of sustained vitamin supplementation in children and young adults. In this Perspective, we discuss these recent findings and highlight areas for immediate scientific attention.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Jay DeLoriea
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| | - Mahsa Mehranfar
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada
| | - Cody Casey
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| | - Aaliya Naaz
- Department of Biology, Concordia University, Montreal H4B 1R6, Canada
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| |
Collapse
|
21
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
22
|
Jayaram DT, Sivaram P, Biswas P, Dai Y, Sweeny EA, Stuehr DJ. Heme allocation in eukaryotic cells relies on mitochondrial heme export through FLVCR1b to cytosolic GAPDH. RESEARCH SQUARE 2024:rs.3.rs-4314324. [PMID: 38746106 PMCID: PMC11092803 DOI: 10.21203/rs.3.rs-4314324/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Heme is an iron-containing cofactor essential for life. In eukaryotes heme is generated in the mitochondria and must leave this organelle to reach protein targets in other cell compartments. Mitochondrial heme binding by cytosolic GAPDH was recently found essential for heme distribution in eukaryotic cells. Here, we sought to uncover how mitochondrial heme reaches GAPDH. Experiments involving a human cell line and a novel GAPDH reporter construct whose heme binding in live cells can be followed by fluorescence revealed that the mitochondrial transmembrane protein FLVCR1b exclusively transfers mitochondrial heme to GAPDH through a direct protein-protein interaction that rises and falls as heme transfers. In the absence of FLVCR1b, neither GAPDH nor downstream hemeproteins received any mitochondrial heme. Cell expression of TANGO2 was also required, and we found it interacts with FLVCR1b to likely support its heme exporting function. Finally, we show that purified GAPDH interacts with FLVCR1b in isolated mitochondria and triggers heme transfer to GAPDH and its downstream delivery to two client proteins. Identifying FLVCR1b as the sole heme source for GAPDH completes the path by which heme is exported from mitochondria, transported, and delivered into protein targets within eukaryotic cells.
Collapse
Affiliation(s)
| | - Pranav Sivaram
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Elizabeth A. Sweeny
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dennis J. Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
23
|
Tse-Kang S, Wani KA, Peterson ND, Page A, Pukkila-Worley R. Activation of intestinal immunity by pathogen effector-triggered aggregation of lysosomal TIR-1/SARM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569946. [PMID: 38106043 PMCID: PMC10723332 DOI: 10.1101/2023.12.04.569946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.
Collapse
|
24
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
Dominic IM, Willoughby MM, Freer AK, Moore CM, Donegan RK, Martinez-Guzman O, Hanna DA, Reddi AR. Fluorometric Methods to Measure Bioavailable and Total Heme. Methods Mol Biol 2024; 2839:151-194. [PMID: 39008253 DOI: 10.1007/978-1-0716-4043-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme b (iron protoporphyrin IX) is an essential but potentially cytotoxic cofactor, signaling molecule, and nutritional source of iron. Its importance in cell biology and metabolism is underscored by the fact that numerous diseases, including various cancers, neurodegenerative disorders, infectious diseases, anemias, and porphyrias, are associated with the dysregulation of heme synthesis, degradation, trafficking, and/or transport. Consequently, methods to measure, image, and quantify heme in cells are required to better understand the physiology and pathophysiology of heme. Herein, we describe fluorescence-based protocols to probe heme bioavailability and trafficking dynamics using genetically encoded fluorescent heme sensors in combination with various modalities, such as confocal microscopy, flow cytometry, and microplate readers. Additionally, we describe a protocol for measuring total heme and its precursor protoporphyrin IX using a fluorometric assay that exploits porphyrin fluorescence. Together, the methods described enable the monitoring of total and bioavailable heme to study heme homeostatic mechanisms in virtually any cell type and organism.
Collapse
Affiliation(s)
- Iramofu M Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Abigail K Freer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | | | - Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - David A Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA.
| |
Collapse
|
26
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Tan CH, Ding K, Zhang MG, Sternberg PW. Fluorescence dynamics of lysosomal-related organelle flashing in the intestinal cells of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562538. [PMID: 37904973 PMCID: PMC10614822 DOI: 10.1101/2023.10.16.562538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The biological roles of the autofluorescent lysosome-related organelles ("gut granules") in the intestinal cells of many nematodes, including Caenorhabditis elegans, have been shown to play an important role in metabolic and signaling processes, but they have not been fully characterized. We report here a previously undescribed phenomenon in which the autofluorescence of these granules increased and then decreased in a rapid and dynamic manner that may be associated with nutrient availability. We observed that two distinct types of fluorophores are likely present in the gut granules. One displays a "flashing" phenomenon, in which fluorescence decrease is preceded by a sharp increase in fluorescence intensity that expands into the surrounding area, while the other simply decreases in intensity. Gut granule flashing was observed in the different life stages of C. elegans and was also observed in Steinernema hermaphroditum, an evolutionarily distant nematode. We hypothesize that the "flashing" fluorophore is pH-sensitive, and the fluorescence intensity change results from the fluorophore being released from the lysosome-related organelles into the relatively higher pH environment of the cytosol. The visually spectacular dynamic fluorescence phenomenon we describe might provide a handle on the biochemistry and genetics of these lysosome-related organelles.
Collapse
Affiliation(s)
| | - Keke Ding
- Present address: Innoland biosciences, Hangzhou, 310000, China
| | | | | |
Collapse
|
28
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 2023; 19:1256-1266. [PMID: 37710075 PMCID: PMC10897909 DOI: 10.1038/s41589-023-01413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme-nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan S Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Kim ES, Casey JG, Tao BS, Mansur A, Mathiyalagan N, Wallace ED, Ehrmann BM, Gupta VA. Intrinsic and extrinsic regulation of rhabdomyolysis susceptibility by Tango2. Dis Model Mech 2023; 16:dmm050092. [PMID: 37577943 PMCID: PMC10499024 DOI: 10.1242/dmm.050092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Rhabdomyolysis is a clinical emergency characterized by severe muscle damage, resulting in the release of intracellular muscle components, which leads to myoglobinuria and, in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations in TANGO2 result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia. The underlying mechanism contributing to disease onset in response to specific triggers remains unclear. To address these challenges, we created a zebrafish model of Tango2 deficiency. Here, we demonstrate that the loss of Tango2 in zebrafish results in growth defects, early lethality and increased susceptibility of skeletal muscle defects in response to extrinsic triggers, similar to TANGO2-deficient patients. Using lipidomics, we identified alterations in the glycerolipid pathway in tango2 mutants, which is critical for membrane stability and energy balance. Therefore, these studies provide insight into key disease processes in Tango2 deficiency and have increased our understanding of the impacts of specific defects on predisposition to environmental triggers in TANGO2-related disorders.
Collapse
Affiliation(s)
- Euri S. Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer G. Casey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Brian S. Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Nishanthi Mathiyalagan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio 2023; 14:e0132023. [PMID: 37462360 PMCID: PMC10470608 DOI: 10.1128/mbio.01320-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.
Collapse
Affiliation(s)
- Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Chen C, Hamza I. Notes from the Underground: Heme Homeostasis in C. elegans. Biomolecules 2023; 13:1149. [PMID: 37509184 PMCID: PMC10377359 DOI: 10.3390/biom13071149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in various biological processes, including oxygen transport, electron transport, signal transduction, and catalysis. However, free heme is hydrophobic and potentially toxic to cells. Organisms have evolved specific pathways to safely transport this essential but toxic macrocycle within and between cells. The bacterivorous soil-dwelling nematode Caenorhabditis elegans is a powerful animal model for studying heme-trafficking pathways, as it lacks the ability to synthesize heme but instead relies on specialized trafficking pathways to acquire, distribute, and utilize heme. Over the past 15 years, studies on this microscopic animal have led to the identification of a number of heme-trafficking proteins, with corresponding functional homologs in vertebrates. In this review, we provide a comprehensive overview of the heme-trafficking proteins identified in C. elegans and their corresponding homologs in related organisms.
Collapse
Affiliation(s)
- Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
32
|
Wang Y, Wu W, Gong J. Live or death in cells: from micronutrition metabolism to cell fate. Front Cell Dev Biol 2023; 11:1185989. [PMID: 37250891 PMCID: PMC10213646 DOI: 10.3389/fcell.2023.1185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Micronutrients and cell death have a strong relationship and both are essential for human to maintain good body health. Dysregulation of any micronutrients causes metabolic or chronic diseases, including obesity, cardiometabolic condition, neurodegeneration, and cancer. The nematode Caenorhabditis elegans is an ideal genetic organism for researching the mechanisms of micronutrients in metabolism, healthspan, and lifespan. For example, C. elegans is a haem auxotroph, and the research of this special haem trafficking pathway contributes important reference to mammal study. Also, C. elegans characteristics including anatomy simply, clear cell lineage, well-defined genetics, and easily differentiated cell forms make it a powerful tool for studying the mechanisms of cell death including apoptosis, necrosis, autophagy, and ferroptosis. Here, we describe the understanding of micronutrient metabolism currently and also sort out the fundamental mechanisms of different kinds of cell death. A thorough understanding of these physiological processes not only builds a foundation for developing better treatments for various micronutrient disorders but also provides key insights into human health and aging.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianke Gong
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Sandkuhler SE, Zhang L, Meisner JK, Ghaloul-Gonzalez L, Beach CM, Harris D, de Lonlay P, Lalani SR, Miyake CY, Mackenzie SJ. B-complex vitamins for patients with TANGO2-deficiency disorder. J Inherit Metab Dis 2023; 46:161-162. [PMID: 36550018 PMCID: PMC10204720 DOI: 10.1002/jimd.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah E. Sandkuhler
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lilei Zhang
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua K. Meisner
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Lina Ghaloul-Gonzalez
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Cheyenne M. Beach
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - David Harris
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Neurology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Pascale de Lonlay
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Pediatrics, Hôpital Necker-Enfants Malades, Paris, France
| | - Seema R. Lalani
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christina Y. Miyake
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Samuel J. Mackenzie
- TANGO2 Research Foundation, Clinical Advisory Board, Middletown, Connecticut, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
34
|
Asadi P, Milev MP, Saint-Dic D, Gamberi C, Sacher M. Vitamin B5, a coenzyme A precursor, rescues TANGO2 deficiency disease-associated defects in Drosophila and human cells. J Inherit Metab Dis 2023; 46:358-368. [PMID: 36502486 PMCID: PMC10464931 DOI: 10.1002/jimd.12579] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Mutations in the Transport and Golgi Organization 2 (TANGO2) gene are associated with intellectual deficit, neurodevelopmental delay and regression. Individuals can also present with an acute metabolic crisis that includes rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, the latter of which are potentially lethal. While preventing metabolic crises has the potential to reduce mortality, no treatments currently exist for this condition. The function of TANGO2 remains unknown but is suspected to be involved in some aspect of lipid metabolism. Here, we describe a model of TANGO2-related disease in the fruit fly Drosophila melanogaster that recapitulates crucial disease traits. Pairing a new fly model with human cells, we examined the effects of vitamin B5, a coenzyme A (CoA) precursor, on alleviating the cellular and organismal defects associated with TANGO2 deficiency. We demonstrate that vitamin B5 specifically improves multiple defects associated with TANGO2 loss-of-function in Drosophila and rescues membrane trafficking defects in human cells. We also observed a partial rescue of one of the fly defects by vitamin B3, though to a lesser extent than vitamin B5. Our data suggest that a B complex supplement containing vitamin B5/pantothenate may have therapeutic benefits in individuals with TANGO2-deficiency disease. Possible mechanisms for the rescue are discussed that may include restoration of lipid homeostasis.
Collapse
Affiliation(s)
- Paria Asadi
- Concordia University, Department of Biology, Montreal, Quebec, Canada, H4B1R6
| | - Miroslav P. Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada, H4B1R6
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada, H4B1R6
| | - Chiara Gamberi
- Coastal Carolina University, Department of Biology, Conway, South Carolina, USA, 29526
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada, H4B1R6
- McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, Canada, H3A0C7
| |
Collapse
|
35
|
A multifunctional peroxidase-based reaction for imaging, sensing and networking of spatial biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119428. [PMID: 36610614 DOI: 10.1016/j.bbamcr.2022.119428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Peroxidase is a heme-containing enzyme that reduces hydrogen peroxide to water by extracting electron(s) from aromatic compounds via a sequential turnover reaction. This reaction can generate various aromatic radicals in the form of short-lived "spray" molecules. These can be either covalently attached to proximal proteins or polymerized via radical-radical coupling. Recent studies have shown that these peroxidase-generated radicals can be utilized as effective tools for spatial research in biological systems, including imaging studies aimed at the spatial localization of proteins using electron microscopy, spatial proteome mapping, and spatial sensing of metabolites (e.g., heme and hydrogen peroxide). This review may facilitate the wider utilization of these peroxidase-based methods for spatial discovery in cellular biology.
Collapse
|
36
|
Yang Y, Zhou J, Wu F, Tong D, Chen X, Jiang S, Duan Y, Yao C, Wang T, Du A, Gasser RB, Ma G. Haem transporter HRG-1 is essential in the barber's pole worm and an intervention target candidate. PLoS Pathog 2023; 19:e1011129. [PMID: 36716341 PMCID: PMC9910794 DOI: 10.1371/journal.ppat.1011129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic roundworms (nematodes) have lost genes involved in the de novo biosynthesis of haem, but have evolved the capacity to acquire and utilise exogenous haem from host animals. However, very little is known about the processes or mechanisms underlying haem acquisition and utilisation in parasites. Here, we reveal that HRG-1 is a conserved and unique haem transporter in a broad range of parasitic nematodes of socioeconomic importance, which enables haem uptake via intestinal cells, facilitates cellular haem utilisation through the endo-lysosomal system, and exhibits a conspicuous distribution at the basal laminae covering the alimentary tract, muscles and gonads. The broader tissue expression pattern of HRG-1 in Haemonchus contortus (barber's pole worm) compared with its orthologues in the free-living nematode Caenorhabditis elegans indicates critical involvement of this unique haem transporter in haem homeostasis in tissues and organs of the parasitic nematode. RNAi-mediated gene knockdown of hrg-1 resulted in sick and lethal phenotypes of infective larvae of H. contortus, which could only be rescued by supplementation of exogenous haem in the early developmental stage. Notably, the RNAi-treated infective larvae could not establish infection or survive in the mammalian host, suggesting an indispensable role of this haem transporter in the survival of this parasite. This study provides new insights into the haem biology of a parasitic nematode, demonstrates that haem acquisition by HRG-1 is essential for H. contortus survival and infection, and suggests that HRG-1 could be an intervention target candidate in a range of parasitic nematodes.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengjun Jiang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Duan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (AD); (RBG); (GM)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AD); (RBG); (GM)
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AD); (RBG); (GM)
| |
Collapse
|
37
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol catalyzed formation of NO-ferroheme regulates canonical intravascular NO signaling. RESEARCH SQUARE 2023:rs.3.rs-2402224. [PMID: 36711928 PMCID: PMC9882697 DOI: 10.21203/rs.3.rs-2402224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is an endogenously produced physiological signaling molecule that regulates blood flow and platelet activation. However, both the intracellular and intravascular diffusion of NO is severely limited by scavenging reactions with hemoglobin, myoglobin, and other hemoproteins, raising unanswered questions as to how free NO can signal in hemoprotein-rich environments, like blood and cardiomyocytes. We explored the hypothesis that NO could be stabilized as a ferrous heme-nitrosyl complex (Fe 2+ -NO, NO-ferroheme) either in solution within membranes or bound to albumin. Unexpectedly, we observed a rapid reaction of NO with free ferric heme (Fe 3+ ) and a reduced thiol under physiological conditions to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation reaction occurs readily when the hemin is solubilized in lipophilic environments, such as red blood cell membranes, or bound to serum albumin. NO-ferroheme albumin is stable, even in the presence of excess oxyhemoglobin, and potently inhibits platelet activation. NO-ferroheme-albumin administered intravenously to mice dose-dependently vasodilates at low- to mid-nanomolar concentrations. In conclusion, we report the fastest rate of reductive nitrosylation observed to date to generate a NO-ferroheme molecule that resists oxidative inactivation, is soluble in cell membranes, and is transported intravascularly by albumin to promote potent vasodilation.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brendan S. Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jason J. Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
38
|
Giri RP, Mukhopadhyay MK. Humidity-Responsive Polymer Cushion-Supported Biomimetic Membrane: A Model System for X-ray Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15294-15302. [PMID: 36463523 DOI: 10.1021/acs.langmuir.2c02533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An effort aimed at replacing the conventional water column by a relative humidity (RH) environment for structural investigation of a soft polymer cushion-supported model phospholipid membrane has been reported. An RH-responsive well-hydrated polymer cushion layer capable of approximately 2-fold swellability under RH 96% has been employed for phospholipid model membrane fabrication. To validate the proposed method, supported lipid bilayers (SLBs) of phosphocholine and phosphoethanolamine were deposited and structurally characterized at molecular level by the X-ray scattering method. In addition, the molecular interaction of the porphyrin-based hemin molecule, having a drug-like structure, with the supported membrane has been studied for further validation. The swelling behavior of the polymer cushion has been studied at a range of RH values prior to the bilayer deposition. The RH environment, in comparison to the conventional water column, enhanced the dynamic range approximately by 100-fold and the structural resolution by 2-fold. Thus, the bilayer structural features can be assessed without being overwhelmed by the background signals from the traditional water column. This facilitates in extracting reliable layer parameters and exogenous molecule-induced minute changes from the model fit. The proposed method will have far-reaching implications in biosensor engineering, protein-lipid, and drug-lipid interaction studies, X-ray microscopy, imaging, and photon correlation spectroscopy studies from SLBs where acquiring sufficient scattered intensity is still a challenge. This study also predicts that lab-based rotating-anode X-ray instruments can potentially be an alternative to the hard-access synchrotron experiments on biomimetic membranes, keeping the dynamic range and structural resolution uncompromised.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata700064, West Bengal, India
- Institute for Experimental and Applied Physics, Kiel University, 24118Kiel, Germany
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata700064, West Bengal, India
| |
Collapse
|