1
|
Liu X, Zhang H, Xu L, Ye H, Huang J, Jing Xiang, He Y, Zhou H, Fang L, Zhang Y, Xiang X, Cannon RD, Ji P, Zhai Q. cGAMP-targeting injectable hydrogel system promotes periodontal restoration by alleviating cGAS-STING pathway activation. Bioact Mater 2025; 48:55-70. [PMID: 40303968 PMCID: PMC12038443 DOI: 10.1016/j.bioactmat.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 05/02/2025] Open
Abstract
The impaired function of periodontal ligament stem cells (PDLSCs) impedes restoration of periodontal tissues. The cGAS-cGAMP-STING pathway is an innate immune pathway that sensing cytosolic double-stranded DNA (dsDNA), but its role in regulating the function of PDLSCs is still unclear. In this study, we found that mitochondrial DNA (mtDNA) was released into the cytoplasm through the mitochondrial permeability transition pore (mPTP) in PDLSCs upon inflammation, which binds to cGAS and activated the STING pathway by promoting the production of cGAMP, and ultimately impaired the osteogenic differentiation of PDLSCs. Additionally, it is first found that inflammation can down-regulate the level of the ATP-binding cassette membrane subfamily member C1 (ABCC1, a cGAMP exocellular transporter) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, a cGAMP hydrolase), which further aggravated the accumulation of intracellular cGAMP, leading to the persistent activation of the cGAS-STING pathway and thus the impaired the differentiation capacity of PDLSCs. Furthermore, we designed a hydrogel system loaded with a mPTP blocker, an ABCC1 agonist and ENPP1 to promote periodontal tissue regeneration by modulating the production, exocytosis, and clearance of cGAMP. In conclusion, our results highlight the profound effects, and specific mechanisms, of the cGAS-STING pathway on the function of stem cells and propose a new strategy to promote periodontal tissue restoration based on the reestablishment of cGAMP homeostasis.
Collapse
Affiliation(s)
- Xiang Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Department of Stomatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Huayu Ye
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Jinghuan Huang
- Orthopedic Department of Shanghai Sixth People's Hospital, Shanghai, China
| | - Jing Xiang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yunying He
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lingli Fang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yunyan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Xuerong Xiang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| |
Collapse
|
2
|
Wang JL, Li Z, Song ZX, Zhao S, Zhao LB, Shuang PZ, Liu FF, Li HZ, Wang XL, Liu P. The effect of spinal cord STING/ATG5-mediated autophagy activation on the development of diabetic neuropathic pain in rats. Biochem Biophys Res Commun 2025; 760:151686. [PMID: 40174367 DOI: 10.1016/j.bbrc.2025.151686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Diabetic neuropathic pain (DNP) is associated with concurrent spinal cord autophagy activation, mTOR pathway activation, and neuroinflammation. However, the mechanistic interplay between these processes remains unclear, as mTOR activation typically suppresses autophagy under physiological conditions. This study investigates the role of spinal STING/ATG5-mediated autophagy in DNP pathogenesis and its relationship with mTOR signaling and neuroinflammatory pathways. Utilizing a rat model of DNP, we observed significant increases in spinal autophagosome density, LC3-II/LC3-I ratio, and STING/ATG5 expression, accompanied by elevated p-mTOR/mTOR ratios, compared to healthy controls. Notably, Beclin-1 expression remained unchanged. Pharmacological inhibition of STING or ATG5 silencing via intrathecal administration attenuated mechanical allodynia and reduced LC3-II/LC3-I ratios, whereas STING activation exacerbated pain behaviors while further upregulating STING/ATG5 expression and LC3-II/LC3-I ratios, but paradoxically decreased p-mTOR/mTOR ratios. mTOR inhibition with rapamycin alleviated DNP symptoms and suppressed TNF-α/IL-1β-mediated neuroinflammation, yet failed to modulate LC3-II/LC3-I ratios despite increasing Beclin-1 expression. Crucially, STING/ATG5 pathway manipulation did not alter pro-inflammatory cytokine levels, while rapamycin's analgesic effects correlated with anti-inflammatory activity. These findings demonstrate that STING/ATG5-driven autophagy contributes to DNP progression through a mechanism independent of both canonical mTOR-dependent autophagy regulation and inflammatory cytokine modulation. Conversely, mTOR inhibition exerts therapeutic effects predominantly via anti-inflammatory pathways rather than autophagy regulation. This study identifies a novel non-canonical autophagy pathway in DNP pathophysiology and clarifies distinct mechanistic bases for STING/ATG5-versus mTOR-targeted interventions.
Collapse
Affiliation(s)
- Jia-Lu Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhao Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhi-Xue Song
- HeBei Medical University, No. 361, Zhong Shan Road, Shi jia zhuang, 050000, China
| | - Shuang Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Long-Biao Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng-Zhan Shuang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Fei-Fei Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Hui-Zhou Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Xiu-Li Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
3
|
Yan H, Huang J, Wang Y, Zhang Y, Ren W, Zhai Z, Tang Y, Lai H, Fan X, Liu L, Leung ELH. Berbamine as potential STING inhibitor For KRAS-mutant non-small cell lung cancer. Pharmacol Res 2025; 216:107777. [PMID: 40383171 DOI: 10.1016/j.phrs.2025.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/27/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Lung adenocarcinoma (LUAD) is a leading cause of cancer-related mortality. Poor prognostic results in LUAD are frequently associated with KRAS mutations and drug resistance. KRAS mutations can induce STING activation by triggering DNA damage response (DDR) activation. This persistently activated STING signaling gives rise to an immunosuppressive microenvironment, thereby complicating treatment efforts. In this study, we identified that the low-toxicity pro-apoptotic drug Berbamine (BBM) as a potential therapeutic agent for LUAD cells with KRAS mutations. BBM exhibits anti-tumor effects by triggering cell cycle arrest, enhancing senescence, and activating apoptosis. BBM also targets STING, leading to the downregulation of p-STING (Ser366) and CCL2. This in turn reduced the infiltration of M-MDSCs into the tumor microenvironment. These combined mechanisms not only suppress STING-dependent tumor growth but also remodel the immunosuppressive tumor microenvironment, thereby enhancing anti-tumor immunity. Collectively, our findings position BBM as a promising therapeutic agent for LUAD with KRAS mutations, offering a strategy to target STING-associated pathways, overcome immune suppression, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Haoxin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Yizhong Zhang
- Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong 519031, China
| | - Wenkang Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao
| | - Zhiran Zhai
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Huanling Lai
- Guangzhou National Laboratory, Guangzhou, Guangdong 510000, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao.
| | - Lihua Liu
- School of Economics and Management, Yanbian University, Yanji 133000, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao.
| |
Collapse
|
4
|
Wang XT, Zhu X, Lian ZH, Liu Q, Yan HH, Qiu Y, Ge XY. AUP1 and UBE2G2 complex targets STING signaling and regulates virus-induced innate immunity. mBio 2025; 16:e0060225. [PMID: 40237449 PMCID: PMC12077101 DOI: 10.1128/mbio.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the host immune response triggered by DNA pathogens. Precise regulation of STING is crucial for maintaining a balanced immune response and preventing harmful autoinflammation. Activation of STING requires its translocation from the ER to the Golgi apparatus. However, the mechanisms that maintain STING in its resting state remain largely unclear. Here, we find that deficiency of the ancient ubiquitous protein 1 (AUP1) causes spontaneous activation of STING and enhances the expression of type I interferons (IFNs) under resting conditions. Furthermore, deficiency of UBE2G2, a cofactor of AUP1, also promotes the abnormal activation of STING. AUP1 deficiency significantly enhances STING signaling induced by DNA virus, and AUP1 deficiency exhibits increased resistance to DNA virus infection in vitro and in vivo. Mechanistically, AUP1 may form a complex with UBE2G2 to interact with STING, preventing its exit from the ER membrane. Notably, infection with the RNA virus vesicular stomatitis virus (VSV) promotes the accumulation of lipid droplets (LDs) and AUP1 proteins. Additionally, AUP1 deficiency markedly inhibits the replication of VSV because AUP1 deficiency reduces lipid accumulation and alters the expression of lipid metabolism genes, such as carnitine palmitoyltransferase 1A (CPT1A), monoglyceride lipase (MGLL), and sterol regulatory element-binding transcription factor 1 (SREBF1). This study uncovers the essential roles of AUP1 in the STING signaling pathway and lipid metabolism pathway, highlighting its dual role in regulating virus replication.IMPORTANCEThe stimulator of interferon genes (STING) signaling cascade plays an essential role in coordinating innate immunity against DNA pathogens and autoimmunity. Precise regulation of the innate immune response is essential for maintaining homeostasis. In this study, we demonstrate that ancient ubiquitous protein 1 (AUP1) and UBE2G2 act as negative regulators of the innate immune response by targeting STING. Notably, AUP1 interacts with STING to retain STING in the endoplasmic reticulum (ER), preventing STING translocation and thereby limiting STING signaling in the resting state. In addition, deficiency of AUP1 markedly inhibits the replication of DNA virus and RNA virus. Our findings provide new insights into the regulation of STING signaling and confirm AUP1 has a dual role in regulating virus replication.
Collapse
Affiliation(s)
- Xin-Tao Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhong-Hao Lian
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Hui-Hui Yan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
5
|
Qu Y, Li Z, Yin J, Huang H, Ma J, Jiang Z, Zhou Q, Tang Y, Li Y, Huang M, Zeng Z, Guo A, Fang F, Shen Y, Zhao R, Wang Y, Gao D. cGAS mRNA-Based Immune Agonist Promotes Vaccine Responses and Antitumor Immunity. Cancer Immunol Res 2025; 13:680-695. [PMID: 40067177 DOI: 10.1158/2326-6066.cir-24-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
mRNA vaccines are a potent tool for immunization against viral diseases and cancer. However, the lack of a vaccine adjuvant limits the efficacy of these treatments. In this study, we used cGAS mRNA, which encodes the DNA innate immune sensor, complexed with lipid nanoparticles (LNP), to boost the immune response. By introducing specific mutations in human cGAS mRNA (hcGASK187N/L195R), we significantly enhanced cGAS activity, resulting in a more potent and sustained stimulator of interferon gene (STING)-mediated IFN response. cGAS mRNA-LNPs exhibited stimulatory effects on maturation, antigen engulfment, and antigen presentation by antigen-presenting cells, both in vitro and in vivo. Moreover, the hcGASK187N/L195R mRNA-LNP combination demonstrated a robust adjuvant effect and amplified the potency of mRNA and protein vaccines, which was a result of strong humoral and cell-mediated responses. Remarkably, the hcGASK187N/L195R mRNA-LNP complex, either alone or in combination with antigens, demonstrated exceptional efficacy in eliciting antitumor immunity. In addition to its immune-boosting properties, hcGASK187N/L195R mRNA-LNP exerted antitumor effects with IFNγ directly on tumor cells, further promoting tumor restriction. In conclusion, we developed a cGAS mRNA-based immunostimulatory adjuvant compatible with various vaccine forms to boost the adaptive immune response and cancer immunotherapies.
Collapse
Affiliation(s)
- Yali Qu
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhibin Li
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahao Yin
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - He Huang
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Jialu Ma
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhelin Jiang
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Qian Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Ying Tang
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Yuting Li
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Minpeng Huang
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhutian Zeng
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ao Guo
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Fang Fang
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanqiong Shen
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruibo Zhao
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Yucai Wang
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daxing Gao
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
6
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1309-1323. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
7
|
Lang J, Bergner T, Zinngrebe J, Lepelley A, Vill K, Leiz S, Wlaschek M, Wagner M, Scharffetter-Kochanek K, Fischer-Posovszky P, Read C, Crow YJ, Hirschenberger M, Sparrer KMJ. Distinct pathogenic mutations in ARF1 allow dissection of its dual role in cGAS-STING signalling. EMBO Rep 2025; 26:2232-2261. [PMID: 40128408 PMCID: PMC7617634 DOI: 10.1038/s44319-025-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Tight control of cGAS-STING-mediated DNA sensing is crucial to avoid auto-inflammation. The GTPase ADP-ribosylation factor 1 (ARF1) is crucial to maintain cGAS-STING homeostasis and various pathogenic ARF1 variants are associated with type I interferonopathies. Functional ARF1 inhibits STING activity by maintaining mitochondrial integrity and facilitating COPI-mediated retrograde STING trafficking and deactivation. Yet the factors governing the two distinct functions of ARF1 remained unexplored. Here, we dissect ARF1's dual role by a comparative analysis of disease-associated ARF1 variants and their impact on STING signalling. We identify a de novo heterozygous s.55 C > T/p.R19C ARF1 variant in a patient with type I interferonopathy symptoms. The GTPase-deficient variant ARF1 R19C selectively disrupts COPI binding and retrograde transport of STING, thereby prolonging innate immune activation without affecting mitochondrial integrity. Treatment of patient fibroblasts in vitro with the STING signalling inhibitors H-151 and amlexanox reduces chronic interferon signalling. Summarizing, our data reveal the molecular basis of a ARF1-associated type I interferonopathy allowing dissection of the two roles of ARF1, and suggest that pharmacological targeting of STING may alleviate ARF1-associated auto-inflammation.
Collapse
Affiliation(s)
- Johannes Lang
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alice Lepelley
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, LMU-University of Munich, Munich, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, Ulm, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner site Ulm, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Yanick J Crow
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
8
|
Song K, Heng L, Yan N. STING: a multifaced player in cellular homeostasis. Hum Mol Genet 2025:ddae175. [PMID: 40292755 DOI: 10.1093/hmg/ddae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
The stimulator of interferon gene (STING) is an important innate immune mediator of the cytoplasmic DNA sensing pathway. As a mediator known for its role in the immune response to infections, STING is also surprisingly at the center of a variety of non-infectious human diseases, including cancer, autoimmune diseases and neurodegenerative diseases. Recent studies have shown that STING has many signaling activities, including type I interferon (IFN-I) and other IFN-independent activities, many of which are poorly understood. STING also has the unique property of being continuous transported from the ER to the Golgi then to the lysosome. Mutations of STING or trafficking cofactors are associated with human diseases affecting multiple immune and non-immune organs. Here, we review recent advances in STING trafficking and signaling mechanisms based in part on studies of STING-associated monogenic inborn error diseases.
Collapse
Affiliation(s)
- Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Lyu Heng
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
9
|
Liu Y, Li F, Wu B, Huang L, Qi Y. The clathrin adaptor AP1-S1 is associated with immune infiltration and HLA loss, as a potential therapeutic target in lung adenocarcinoma. Int Immunopharmacol 2025; 152:114385. [PMID: 40049084 DOI: 10.1016/j.intimp.2025.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
The clathrin adaptor protein 1 (AP1) plays a pivotal role in the endocytosis of cell surface proteins and transportation between the golgi apparatus and lysosomes. Despite its critical functions, the implications of AP1 dysregulation in human cancers have yet to be elucidated. The structural analysis of AP1 subunits was conducted utilizing data from the Protein Data Bank (PDB), which is composed of four subunits: AP1-S1, AP1-B1, AP1-G1, and AP1-M1. Notably, the expression levels of AP1 subunits exhibit significant variability between tumor and normal tissues across different cancer types using data from the CPTAC, GEO, and TCGA databases. Kaplan-Meier (K-M) curve analysis has revealed that certain AP1 subunits are correlated with patient prognosis in various cancers. For instance, the AP1-S1 subunit is related to poor survival outcomes in head and neck squamous carcinoma, clear cell renal cell carcinoma, and lung adenocarcinoma. Furthermore, the aberrant expression of AP1-S1 demonstrated a negative correlation with immune cells infiltration, particularly in lung adenocarcinoma. Concurrently, a significant negative relationship between AP1-S1 and HLA molecules was observed, indicating a potential mechanism for AP1-induced HLA degradation. In vitro experiments demonstrated that the knockdown of AP1-S1 led to an upregulation of HLA-B protein expression and inhibited the viability, migration, and invasion capabilities of tumor cells in lung adenocarcinoma cell lines, specifically A549 and H1299. Immunohistochemical staining further revealed the abnormal expression of AP1-S1 in lung adenocarcinoma specimens. Through a comprehensive pan-cancer multi-omics analysis and experimental validation, this study explored the prognostic significance of four AP1 subunits. Additionally, it examined the regulatory relationship between AP1-S1 and HLA-B, which may play a role in immune escape. Additionally, the research identified AP1-S1 as a valuable biomarker and a potential target for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Chen X, Zhuo SH, Li YM. Oligomerization of STING and Chemical Regulatory Strategies. Chembiochem 2025; 26:e202400888. [PMID: 39900536 DOI: 10.1002/cbic.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in innate immunity. Upon the recognition of cytosolic dsDNA, STING undergoes several structural changes, with oligomerization playing a key role in initiating a cascade of immune responses. Therefore, controlling the STING pathway by manipulating STING oligomerization is a practical strategy. This review focuses on the detailed mechanism of STING oligomerization, highlighting its decisive role. It also describes oligomerization-based strategies to regulate STING protein, such as the use of small-molecule agonists and biomacromolecules, highlighting their interaction modes and potential therapeutic applications. This knowledge may lead to the development of innovative approaches for treating cancer and immune disorders.
Collapse
Affiliation(s)
- Xi Chen
- Zhili College, Tsinghua University, Beijing, 100084, P. R. China
| | - Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
12
|
Smarduch S, Moreno-Velasquez SD, Ilic D, Dadsena S, Morant R, Ciprinidis A, Pereira G, Binder M, García-Sáez AJ, Acebrón SP. A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA. EMBO J 2025; 44:2157-2182. [PMID: 39984755 PMCID: PMC11962129 DOI: 10.1038/s44318-025-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.
Collapse
Affiliation(s)
- Steve Smarduch
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | | | - Doroteja Ilic
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shashank Dadsena
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Ryan Morant
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Ciprinidis
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Molecular Biology of Centrosome and Cilia, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
- IKERBASQUE, Basque Foundation of Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
13
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Poddar S, Chauvin SD, Archer CH, Qian W, Castillo-Badillo JA, Yin X, Disbennett WM, Miner CA, Holley JA, Naismith TV, Stinson WA, Wei X, Ning Y, Fu J, Ochoa TA, Surve N, Zaver SA, Wodzanowski KA, Balka KR, Venkatraman R, Liu C, Rome K, Bailis W, Shiba Y, Cherry S, Shin S, Semenkovich CF, De Nardo D, Yoh S, Roberson EDO, Chanda SK, Kast DJ, Miner JJ. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 2025; 188:1605-1622.e26. [PMID: 39947179 PMCID: PMC11928284 DOI: 10.1016/j.cell.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher H Archer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - W Miguel Disbennett
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xiaochao Wei
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Trini A Ochoa
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shivam A Zaver
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Canyu Liu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Rome
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Will Bailis
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Luksch H, Schulze F, Geißler-Lösch D, Sprott D, Höfs L, Szegö EM, Tonnus W, Winkler S, Günther C, Linkermann A, Behrendt R, Teichmann LL, Falkenburger BH, Rösen-Wolff A. Tissue inflammation induced by constitutively active STING is mediated by enhanced TNF signaling. eLife 2025; 14:e101350. [PMID: 40111902 PMCID: PMC11996172 DOI: 10.7554/elife.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
Constitutive activation of STING by gain-of-function mutations triggers manifestation of the systemic autoinflammatory disease STING-associated vasculopathy with onset in infancy (SAVI). In order to investigate the role of signaling by tumor necrosis factor (TNF) in SAVI, we used genetic inactivation of TNF receptors 1 and 2 in murine SAVI, which is characterized by T cell lymphopenia, inflammatory lung disease, and neurodegeneration. Genetic inactivation of TNFR1 and TNFR2, however, rescued the loss of thymocytes, reduced interstitial lung disease, and neurodegeneration. Furthermore, genetic inactivation of TNFR1 and TNFR2 blunted transcription of cytokines, chemokines, and adhesions proteins, which result from chronic STING activation in SAVI mice. In addition, increased transendothelial migration of neutrophils was ameliorated. Taken together, our results demonstrate a pivotal role of TNFR signaling in the pathogenesis of SAVI in mice and suggest that available TNFR antagonists could ameliorate SAVI in patients.
Collapse
Affiliation(s)
- Hella Luksch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Felix Schulze
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - David Geißler-Lösch
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - David Sprott
- Department of Physiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Lennart Höfs
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Eva M Szegö
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine and University Hospital Carl GustavDresdenGermany
| | - Stefan Winkler
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine and University Hospital Carl GustavDresdenGermany
| | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital BonnBonnGermany
| | | | - Björn H Falkenburger
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- Deutsches Zentrum für Neurodegenerative ErkrankungenDresdenGermany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| |
Collapse
|
16
|
Wang J, Niu S, Hu X, Li T, Liu S, Tu Y, Shang Z, Zhao L, Xu P, Lin J, Chen L, Billadeau DD, Jia D. Trans-Golgi network tethering factors regulate TBK1 trafficking and promote the STING-IFN-I pathway. Cell Discov 2025; 11:23. [PMID: 40097395 PMCID: PMC11914254 DOI: 10.1038/s41421-024-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
The cGAS-STING pathway mediates the innate immune response to cytosolic DNA, contributing to surveillance against microbial invasion or cellular damage. Once activated, STING recruits TBK1 at the trans-Golgi network (TGN), which in turn phosphorylates IRF3 to induce type I interferon (IFN-I) expression. In contrast to STING, little is known about how TBK1 is transported to the TGN for activation. Here, we show that multiple TGN tethering factors, a group of proteins involved in vesicle capturing, are indispensable for STING-IFN-I signaling. Deletion of TBC1D23, a recently reported tethering factor, in mice impairs the STING-IFN-I signaling, but with insignificant effect on STING-NF-κB signaling. Mechanistically, TBC1D23 interacts with TBK1 via the WASH complex subunit FAM21 and promotes its endosome-to-TGN translocation. Furthermore, multiple TGN tethering factors were reduced in aged mice and senescent fibroblasts. In summary, our study uncovers that TGN tethering factors are key regulators of the STING-IFN-I signaling and suggests that their reduction in senescence may produce aberrant STING signaling.
Collapse
Affiliation(s)
- Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Masi M, Poppi L, Previtali V, Nelson SR, Wynne K, Varignani G, Falchi F, Veronesi M, Albanesi E, Tedesco D, De Franco F, Ciamarone A, Myers SH, Ortega JA, Bagnolini G, Ferrandi G, Farabegoli F, Tirelli N, Di Stefano G, Oliviero G, Walsh N, Roberti M, Girotto S, Cavalli A. Investigating synthetic lethality and PARP inhibitor resistance in pancreatic cancer through enantiomer differential activity. Cell Death Discov 2025; 11:106. [PMID: 40091075 PMCID: PMC11911456 DOI: 10.1038/s41420-025-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The RAD51-BRCA2 interaction is central to DNA repair through homologous recombination. Emerging evidence indicates RAD51 overexpression and its correlation with chemoresistance in various cancers, suggesting RAD51-BRCA2 inhibition as a compelling avenue for intervention. We previously showed that combining olaparib (a PARP inhibitor (PARPi)) with RS-35d (a BRCA2-RAD51 inhibitor) was efficient in killing pancreatic ductal adenocarcinoma (PDAC) cells. However, RS-35d impaired cell viability even when administered alone, suggesting potential off-target effects. Here, through multiple, integrated orthogonal biological approaches in different 2D and 3D PDAC cultures, we characterised RS-35d enantiomers, in terms of mode of action and single contributions. By differentially inhibiting both RAD51-BRCA2 interaction and sensor kinases ATM, ATR and DNA-PK, RS-35d enantiomers exhibit a 'within-pathway synthetic lethality' profile. To the best of our knowledge, this is the first reported proof-of-concept single small molecule capable of demonstrating this built-in synergism. In addition, RS-35d effect on BRCA2-mutated, olaparib-resistant PDAC cells suggests that this compound may be effective as an anticancer agent possibly capable of overcoming PARPi resistance. Our results demonstrate the potential of synthetic lethality, with its diversified applications, to propose new and concrete opportunities to effectively kill cancer cells while limiting side effects and potentially overcoming emerging drug resistance.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Giulia Varignani
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), I-40129, Bologna, Italy
| | | | - Andrea Ciamarone
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giovanni Ferrandi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
18
|
Dong H, Zhang H, Song P, Hu Y, Chen D. DSTYK phosphorylates STING at late endosomes to promote STING signaling. EMBO Rep 2025; 26:1620-1646. [PMID: 39979465 PMCID: PMC11933320 DOI: 10.1038/s44319-025-00394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Stimulator of interferon genes (STING) is essential for innate immune pathway activation in response to pathogenic DNA. Proper activation of STING signaling requires STING translocation and phosphorylation. Here, we show that dual serine/threonine and tyrosine protein kinase (DSTYK) directly phosphorylates STING Ser366 at late endosomes to promote the activation of STING signaling. We find that TBK1 promotes STING post-Golgi trafficking via its kinase activity, thereby enabling the interaction between DSTYK and STING. We also demonstrate that DSTYK and TBK1 can both promote STING phosphorylation at late endosomes. Using an in vivo Dstyk-knockout model, we showed that mice deficient in DSTYK demonstrate reduced STING signaling activation and are more susceptible to infection with a DNA virus. Together, we reveal the previously unknown cellular function of DSTYK in phosphorylating STING and our findings provide insights into the mechanism of STING signaling activation at late endosomes.
Collapse
Affiliation(s)
- Hao Dong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
| | - Heng Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
| | - Pu Song
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Hu
- School of Life Sciences, Peking University, Beijing, China
| | - Danying Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
19
|
Wang X, Zhang D, Xiao J, Wang L, Wang J, Cui X, Tan J, Liu Y, Miao S. Enhanced therapeutic efficacy of anti-PD-1 blockade by targeting LAMP2A inhibits lysosomal degradation of STING and TBK1. Theranostics 2025; 15:3207-3222. [PMID: 40083918 PMCID: PMC11898276 DOI: 10.7150/thno.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 03/16/2025] Open
Abstract
Rationale: LAMP2A is a key translocase in chaperone-mediated autophagy (CMA), and the STING/TBK1 axis is crucial in antitumor immunity. This study explored the complex mechanisms by which CMA regulates the STING/TBK1 degradation and whether targeting LAMP2A could enhance the efficacy of PD-1 monoclonal antibodies. Methods: The expression of STING and TBK1 was detected after treatment with various inhibitors of protein degradation pathways. Confocal microscopy was used to detect the localization of STING and TBK1 in lysosomes. R software was used to analyze LAMP2A expression and prognosis. The biological function of LAMP2A was examined by in vitro and in vivo experiments. Results: Through in vitro and in vivo experiments and a review of clinical specimens, we identified STING/TBK1 as a novel substrate of CMA. Downregulation of LAMP2A enhanced IFNβ production and cellular antiviral response by inhibiting CMA-mediated degradation of STING and TBK1. Based on these observations, further in vivo experiments confirmed that the LAMP2A loss combined with PD-1 monoclonal antibodies significantly stimulated the activation of infiltrating CD8+ T cells, thereby inhibiting tumor growth. Also, non-responder head and neck squamous cell carcinoma (HNSCC) patients undergoing neoadjuvant immuno-chemotherapy had higher levels of LAMP2A and lower levels of PD-L1 expression in their tumor tissues. Conclusions: Our study has revealed a prospective combination therapy, in which diclofenac functioning as a LAMP2A inhibitor, enhances the anti-tumor efficacy of PD-1 monoclonal antibody by inhibiting the degradation of STING and TBK1.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
| | - Jiaqing Xiao
- Institute of Heilongjiang Province Center for Disease Control Disinfection and Infection, Harbin 150081, Heilongjiang, The People's Republic of China
| | - Lei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, The People's Republic of China
| | - Junrong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, The People's Republic of China
| | - Xiaoqiao Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, The People's Republic of China
| | - Jiaqi Tan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, No. 87 Xiangya Road, Changsha 410008, Hunan, The People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, Hunan, The People's Republic of China
| | - Susheng Miao
- Department of Otorhinolaryngology Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, The People's Republic of China
| |
Collapse
|
20
|
Lee TJ, Liao HC, Salim A, Nettleford SK, Kleinman KL, Carlson BA, Prabhu KS. Selenoproteome depletion enhances oxidative stress and alters neutrophil functions in Citrobacter rodentium infection leading to gastrointestinal inflammation. Free Radic Biol Med 2025; 227:499-507. [PMID: 39662689 PMCID: PMC11757042 DOI: 10.1016/j.freeradbiomed.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in modulating a range of proinflammatory functions in neutrophils, as well as regulating neutrophil apoptosis and facilitating the resolution of an inflammatory response. Selenoproteins with the 21st amino acid, selenocysteine (Sec), regulate immune mechanisms through the modulation of redox homeostasis aiding in the efficient resolution of inflammation, while their role in neutrophil functions during diseases remains unclear. To study the role of selenoproteins in neutrophils during infection, we challenged the granulocyte-specific tRNASec (Trsp) knockout mice (TrspN) with Citrobacter rodentium (C. rodentium), a murine pathogenic bacterium. Reduced bacterial shedding during the disease-clearing phase and increased tissue damage and neutrophil accumulation in the colon of the TrspN mice were observed following infection. TrspN neutrophils showed increased intracellular ROS accumulation during ex vivo C. rodentium stimulation and upregulated fMLP or Cx3cl1-induced chemotaxis. We also observed delayed neutrophil apoptosis, reduced efferocytosis of TrspN neutrophils, and increased abundance of apoptotic cells in the colon of TrspN mice. Together, these studies indicate that selenoprotein depletion results in increased neutrophil migration to the gut accompanied by ROS accumulation, while downregulating neutrophil apoptosis and subsequent efferocytosis by macrophages. Such an increase in inflammation followed by impaired resolution culminates in decreased bacterial load but with exacerbated host tissue damage.
Collapse
Affiliation(s)
- Tai-Jung Lee
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Hsiao-Chi Liao
- School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Agus Salim
- School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Kendall L Kleinman
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA.
| |
Collapse
|
21
|
Rui Y, Shen S, Wang Y, Cheng L, Chen S, Hu Y, Cai Y, Wei W, Su J, Yu XF. HIV-1 Vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling. Sci Signal 2025; 18:eadd6593. [PMID: 39836751 DOI: 10.1126/scisignal.add6593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/12/2023] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1. The HIV-1 nonstructural protein Vpu bound to STING and prevented it from interacting with the upstream NF-κB pathway kinase inhibitor of NF-κB subunit β (IKKβ), thus blocking NF-κB signaling. This function of Vpu was conserved among Vpu proteins from diverse HIV-1 and simian immunodeficiency virus strains and was distinct from its action in disrupting other host antiviral pathways. Furthermore, the ORF3a protein from the coronavirus SARS-CoV-2 also promoted viral replication by interacting with STING and blocking STING-induced activity of NF-κB but not of IRF3. These findings demonstrate that diverse viral proteins have convergently evolved to selectively inhibit NF-κB-mediated innate immunity downstream of STING activation, suggesting that targeting this pathway may represent a promising antiviral strategy.
Collapse
Affiliation(s)
- Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ying Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yong Cai
- School of Life Science, Jilin University, Changchun 130012, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine and Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
22
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
You Y, Chang Y, Pan S, Bu Q, Ling J, He W, Chen T. Cleavage of Homonuclear Chalcogen-Chalcogen Bonds in a Hybrid Platform in Response to X-Ray Radiation Potentiates Tumor Radiochemotherapy. Angew Chem Int Ed Engl 2025; 64:e202412922. [PMID: 39175166 DOI: 10.1002/anie.202412922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Chalcogens are used as sensitive redox-responsive reagents in tumor therapy. However, chalcogen bonds triggered by external ionizing radiation, rather than by internal environmental stimuli, enable site-directed and real-time drug degradation in target lesions. This approach helps to bypass chemoresistance and global systemic toxicity, presenting a significant advancement over traditional chemoradiotherapy. In this study, we fabricated a hybrid monodisperse organosilica nanoprodrug based on homonuclear single bonds (disulfide bonds (S-S, approximately 240 kJ/mol), diselenium bonds (Se-Se, approximately 172 kJ/mol), and tellurium bonds (Te-Te, 126 kJ/mol)), including ditelluride-bond-bridged MONs (DTeMSNs), diselenide-bond-bridged MONs (DSeMSNs) and disulfide-bond-bridged MONs (DSMSNs). The results demonstrated that differences in electronegativities and atomic radii influenced their oxidation sensitivities and reactivities. Tellurium, with the lowest electronegativity, showed the highest sensitivity, followed by selenium and sulfur. DTeMSNs exhibited highly responsive cleavage upon exposure to X-rays, resulting in oxidation to TeO3 2-. Furthermore, chalcogen-hybridized organosilica was loaded with manganese ions (Mn2+) to enhance the release of Mn2+ during radiotherapy, thereby activating the the stimulator of interferon genes (STING) pathway and enhancing the tumor immune response to inhibit tumor growth. This investigation of hybrid organosilica deepens our understanding of chalcogens response characteristics to radiotherapy and enriches the design principles for nanomedicine based on prodrugs.
Collapse
Affiliation(s)
- Yuanyuan You
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Department of Orthopedics of Affiliated Hospital, Department of Pharmacy, Guangdong Medical University, 524001, Zhanjiang, China
| | - Yanzhou Chang
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Department of Orthopedics of Affiliated Hospital, Department of Pharmacy, Guangdong Medical University, 524001, Zhanjiang, China
| | - Shuya Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, 325000, Wenzhou, China
| | - Qingyue Bu
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
| | - Jiabao Ling
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital and School of Medicine, Xiamen University, 361000, Xiamen, Fujian, China
| | - Tianfeng Chen
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, China
| |
Collapse
|
24
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
26
|
Zhang F, Zhang Z, Yang W, Peng Z, Sun J, Li G, Wei Y, Wang X, Zhao L, Xie W. Engineering Autologous Cell-Derived Exosomes to Boost Melanoma-Targeted Radio-Immunotherapy by Cascade cGAS-STING Pathway Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408769. [PMID: 39604223 DOI: 10.1002/smll.202408769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Radio-immunotherapy has offered emerging opportunities to treat invasive melanoma due to its immunostimulatory performances to activate antitumor immune responses. However, the immunosuppressive microenvironment and insufficient response rate significantly limit the practical efficacy. This study presents an autologous cell-derived exosomes (Exo)-engineered nanoagonist (MnExo@cGAMP) containing with metalloimmunotherapeutic agent (Mn2+ ions) and nucleotidyltransferase (2',3'-cGAMP, a STING agonist) for boosting melanoma-targeted radio-immunotherapy by cascade cGAS-STING pathway activation. The MnExo@cGAMP can efficiently accumulate in tumor cells due to the autologous targeting performance. Once internalized by tumor cells, the released Mn2+ ions will enhance stimulator of interferon gene (STING) binding and sensitize cyclic GMP-AMP (cGAS) to radiotherapy-induced double-straned DNA (dsNDA), resulting in amplification of cGAS-STING pathway activation together with X-ray irradiation. Meanwhile, loaded 2',3'-cGAMP can directly augment pathway activity acting as a secondary messenger. These cascade activations of cGAS-STING pathway trigger the overexpression of type I interferon, promote dendritic cells (DCs) maturation, antigen presentation, and increase CD8+ T cell activation, resulting effective radio-immunotherapeutic outcome by overcoming immune-suppression in melanoma. This study demonstrates a targeted therapeutic modality involving metalloimmunotherapy and agonist for efficient melanoma radio-immunotherapy by cascade cGAS-STING pathway activation.
Collapse
Affiliation(s)
- Fangming Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wanting Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuyuan Peng
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Juntao Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
27
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. Proc Natl Acad Sci U S A 2024; 121:e2411974121. [PMID: 39705307 DOI: 10.1073/pnas.2411974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 12/22/2024] Open
Abstract
Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy. Similar to yeast AP-3, human AP-3 is in a constitutively open conformation. To reconstitute AP-3 activation by adenosine di-phosphate (ADP)-ribosylation factor 1 (Arf1), a small guanosine tri-phosphate (GTP)ase, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures showing the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane recruitment is driven by one of two predicted Arf1 binding sites, which flexibly tethers AP-3 to the membrane. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher-order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3-mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| | - Mahira Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Richard W Baker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
28
|
Kamińska J, Kochański A. A Role of Inflammation in Charcot-Marie-Tooth Disorders-In a Perspective of Treatment? Int J Mol Sci 2024; 26:15. [PMID: 39795872 PMCID: PMC11720021 DOI: 10.3390/ijms26010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Despite the fact that there are published case reports and model work providing evidence of inflammation in Charcot-Marie-Tooth disorders (CMTs), in clinical practice, CMT and inflammatory neuropathies are always classified as two separate groups of disorders. This sharp separation of chronic neuropathies into two groups has serious clinical implications. As a consequence, the patients harboring CMT mutations are practically excluded from pharmacological anti-inflammatory treatments. In this review, we present that neuropathological studies of peripheral nerves taken from some patients representing familial aggregation of CMTs revealed the presence of inflammation within the nerves. This shows that neurodegeneration resulting from germline mutations and the inflammatory process are not mutually exclusive. We also point to reports demonstrating that, at the clinical level, a positive response to anti-inflammatory therapy was observed in some patients diagnosed with CMTs, confirming the role of the inflammatory component in CMT. We narrowed a group of more than 100 genes whose mutations were found in CMT-affected patients to the seven most common (MPZ, PMP22, GJB1, SEPT9, LITAF, FIG4, and GDAP1) as being linked to the coexistence of hereditary and inflammatory neuropathy. We listed studies of mouse models supporting the idea of the presence of an inflammatory process in some CMTs and studies demonstrating at the cellular level the presence of an inflammatory response. In the following, we discuss the possible molecular basis of some neuropathies involving neurodegenerative and inflammatory processes at both the clinical and morphological levels. Finally, we discuss the prospect of a therapeutic approach using immunomodulation in some patients affected by CMTs.
Collapse
Affiliation(s)
- Joanna Kamińska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Brown MC, Low JT, Bowie ML, Ashley DM. Taking the STING out of radiotherapy: STING checkpoints mediate radiation resistance. J Clin Invest 2024; 134:e186547. [PMID: 39621308 PMCID: PMC11601916 DOI: 10.1172/jci186547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway is a critical driver of type I interferon (IFN-I) and antitumor CD8+ T cell responses after radiotherapy (RT). In this issue of the JCI, two reports describe mechanisms that restrained STING signaling and abrogated antitumor immunity after RT. Wen, Wang, and colleagues discovered that IFN-I mediated the induction of YTHDF1, an RNA N6-methyladenosine-binding protein, in DCs after RT promoted cathepsin-mediated STING degradation. Zhang, Deng, Wu, and colleagues discovered that hemeoxygenase 1 (HO-1) was induced and proteolytically cleaved after RT to suppress cGAS cytoplasmic export as well as STING oligomerization at the ER. Blocking the STING-suppressive functions of YTHDF1 and HO-1, respectively, improved antitumor T cell immunity and tumor control after RT. Together, these studies support the development of clinical avenues to sustain STING signaling during RT, a standard treatment for approximately 50% of malignancies.
Collapse
|
30
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
31
|
Wang B, Yang R, Wan C, Tian Y, Wu J, Roy S, Li S, Shen J, Yin Q. Structural basis of pseudoGTPase-mediated protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620932. [PMID: 39554064 PMCID: PMC11565788 DOI: 10.1101/2024.10.30.620932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
GTPases regulate various cellular processes through conformational changes triggered by GTP or GDP binding. Recently, pseudoGTPases, the catalytically inactive counterparts of GTPases, have been identified across species from bacteria to human, although their functions and mechanisms remain unexplored. In this study, we demonstrate that the N-terminal region of the assembly chaperone AAGAB is a type i pseudoGTPase using biochemistry and X-ray crystallography. Furthermore, we discovered that the AAGAB pseudoGTPase domain (psGD) interacts with the σ subunits of AP1 and AP2 adaptor complexes, heterotetrameric complexes involved in clathrin-mediated membrane trafficking. AAGAB psGD engages the σ subunits via a unique interface distinct from the conventional GTPase interacting regions. Further biochemical and cell-based assays confirmed the crucial role of the newly identified interface in binding and membrane trafficking. Collectively, our results establish AAGAB pseudoGTPase domain as a critical protein-protein interaction module. These findings offer new insight into the structural basis and molecular mechanisms of pseudoGTPases.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
- These authors contributed equally to the work
| | - Rui Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- These authors contributed equally to the work
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Sayantan Roy
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Lead contact
| |
Collapse
|
32
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Luo Y, Chang L, Ji Y, Liang T. ER: a critical hub for STING signaling regulation. Trends Cell Biol 2024; 34:865-881. [PMID: 38423853 DOI: 10.1016/j.tcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yewei Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
34
|
Zhang MQ, Li JR, Yang L, Peng ZG, Wu S, Zhang JP. ATG10S promotes IFNL1 expression and autophagic degradation of multiple viral proteins mediated by IFNL1. Autophagy 2024; 20:2238-2254. [PMID: 38842055 PMCID: PMC11423677 DOI: 10.1080/15548627.2024.2361580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
ATG10S is a newly discovered subtype of the autophagy protein ATG10. It promotes complete macroautophagy/autophagy, degrades multiple viral proteins, and increases the expression of type III interferons. Here, we aimed to investigate the mechanism of ATG10S cooperation with IFNL1 to degrade viral proteins from different viruses. Using western blot, immunoprecipitation (IP), tandem sensor RFP-GFP-LC3B and in situ proximity ligation assays, we showed that exogenous recombinant ATG10S protein (rHsATG10S) could enter into cells through clathrin, and ATG10S combined with ATG7 with IFNL1 assistance to facilitate ATG12-ATG5 conjugation, thereby contributing to the autophagosome formation in multiple cell lines containing different virions or viral proteins. The results of DNA IP and luciferase assays also showed that ATG10S was able to directly bind to a core motif (CAAGGG) within a binding site of transcription factor ZNF460 on the IFNL1 promoter, by which IFNL1 transcription was activated. These results clarified that ATG10S promoted autophagosome formation with the assistance of IFNL1 to ensure autophagy flux and autophagic degradation of multiple viral proteins and that ATG10S could also act as a novel transcription factor to promote IFNL1 gene expression. Importantly, this study further explored the antiviral mechanism of ATG10S interaction with type III interferon and provided a theoretical basis for the development of ATG10S into a new broad-spectrum antiviral protein drug.Abbreviation: ATG: autophagy related; ATG10S: the shorter isoform of autophagy-related 10; CC50: half cytotoxicity concentration; CCV: clathrin-coated transport vesicle; CLTC: clathrin heavy chain; CM: core motif; co-IP: co-immunoprecipitation; CPZ: chlorpromazine; ER: endoplasmic reticulum; HCV: hepatitis C virus; HBV: hepatitis B virus; HsCoV-OC43: Human coronavirus OC43; IFN: interferon; PLA: proximity ligation assay; rHsATG10S: recombinant human ATG10S protein; RLU: relative light unit; SQSTM1: sequestosome 1; ZNF: zinc finger protein.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Cabana VC, Sénécal AM, Bouchard AY, Kourrich S, Cappadocia L, Lussier MP. AP-1 contributes to endosomal targeting of the ubiquitin ligase RNF13 via a secondary and novel non-canonical binding motif. J Cell Sci 2024; 137:jcs262035. [PMID: 39206621 DOI: 10.1242/jcs.262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.
Collapse
Affiliation(s)
- Valérie C Cabana
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Audrey M Sénécal
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Antoine Y Bouchard
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Saïd Kourrich
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 avenue du Président-Kennedy, Montréal, QC H2X 3X8, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Marc P Lussier
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
36
|
Zhang SD, Li H, Zhou YL, Liu XC, Li DC, Hao CF, You QD, Xu XL. Protein-protein interactions in cGAS-STING pathway: a medicinal chemistry perspective. Future Med Chem 2024; 16:1801-1820. [PMID: 39263789 PMCID: PMC11457635 DOI: 10.1080/17568919.2024.2383164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.
Collapse
Affiliation(s)
- Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - De-Chang Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chuan-Feng Hao
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
37
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
38
|
Deng H, Jia G, Li P, Tang Y, Zhao L, Yang Q, Zhao J, Wang J, Tu Y, Yong X, Zhang S, Mo X, Billadeau DD, Su Z, Jia D. The WDR11 complex is a receptor for acidic-cluster-containing cargo proteins. Cell 2024; 187:4272-4288.e20. [PMID: 39013469 PMCID: PMC11316641 DOI: 10.1016/j.cell.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.
Collapse
Affiliation(s)
- Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guowen Jia
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
He J, Zhang L. The journey of STING: Guiding immune signaling through membrane trafficking. Cytokine Growth Factor Rev 2024; 78:25-36. [PMID: 39019665 DOI: 10.1016/j.cytogfr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune signaling pathway, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence, STING protein resides in the endoplasmic reticulum (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the Golgi apparatus, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while COPI is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of cytokine production, the activation of immune cells, and the coordination of immune signaling pathways.
Collapse
Affiliation(s)
- Jingyi He
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
40
|
Stocks CJ, Li X, Stow JL. New advances in innate immune endosomal trafficking. Curr Opin Cell Biol 2024; 89:102395. [PMID: 38970837 DOI: 10.1016/j.ceb.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
The exocytic and endocytic intracellular trafficking pathways in innate immune cells are known for mediating the secretion of key inflammatory mediators or the internalization of growth factors, nutrients, antigens, cell debris, pathogens and even therapeutics, respectively. Inside cells, these pathways are intertwined as an elaborate network that supports the regulation of immune functions. Endosomal membranes host dynamic platforms for molecular complexes that control signaling and inflammatory responses. High content screens, coupled with elegant microscopy across the scale of resolving molecular complexes to tracking live cellular organelles, have been employed to generate the studies highlighted here. With a focus on deactivation of STING, scaffolding by SLC15A4/TASL complexes and macropinosome shrinkage via the chloride channel protein TMEM206, new studies are identifying molecules, molecular interactions and mechanisms for immune regulation throughout endosomal pathways.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Xu Y, Wan W. Lysosomal control of the cGAS-STING signaling. Trends Cell Biol 2024; 34:622-625. [PMID: 38849222 DOI: 10.1016/j.tcb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway has a crucial role in combating pathogen infection. However, its aberrant activation is involved in several human disorders. Lysosomes are emerging as key negative regulators of cGAS-STING signaling. Here, we discuss the lysosomal control of cGAS-STING signaling and its implication in human disorders.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China.
| | - Wei Wan
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
42
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
43
|
Tian B, Tian Y, Wang X, Cai D, Wu L, Wang M, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Sun D, Huang J, Ou X, Wu Z, Cheng A. Duck STING mediates antiviral autophagy directing the interferon signaling pathway to inhibit duck plague virus infection. Vet Res 2024; 55:83. [PMID: 38943190 PMCID: PMC11214240 DOI: 10.1186/s13567-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 07/01/2024] Open
Abstract
Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.
Collapse
Affiliation(s)
- Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanming Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuetong Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liping Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
44
|
En A, Bogireddi H, Thomas B, Stutzman AV, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. Cell Rep 2024; 43:114284. [PMID: 38814785 PMCID: PMC11290591 DOI: 10.1016/j.celrep.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Briana Thomas
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexis V Stutzman
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Sachie Ikegami
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Brigitte LaForest
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Omar Almakki
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, the University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA; Department of Pathology, the University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Singh MK, Rallabandi HR, Zhou XJ, Qi YY, Zhao ZZ, Gan T, Zhang H, Looger LL, Nath SK. KLF2 enhancer variant rs4808485 increases lupus risk by modulating inflammasome machinery and cellular homoeostasis. Ann Rheum Dis 2024; 83:879-888. [PMID: 38373841 PMCID: PMC11168881 DOI: 10.1136/ard-2023-224953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE A recent genome-wide association study linked KLF2 as a novel Asian-specific locus for systemic lupus erythematosus (SLE) susceptibility. However, the underlying causal functional variant(s), cognate target gene(s) and genetic mechanisms associated with SLE risk are unknown. METHODS We used bioinformatics to prioritise likely functional variants and validated the best candidate with diverse experimental techniques, including genome editing. Gene expression was compared between healthy controls (HCs) and patients with SLE with or without lupus nephritis (LN+, LN-). RESULTS Through bioinformatics and expression quantitative trait locus analyses, we prioritised rs4808485 in active chromatin, predicted to modulate KLF2 expression. Luciferase reporter assays and chromatin immunoprecipitation-qPCR demonstrated differential allele-specific enhancer activity and binding of active histone marks (H3K27ac, H3K4me3 and H3K4me1), Pol II, CTCF, P300 and the transcription factor PARP1. Chromosome conformation capture-qPCR revealed long-range chromatin interactions between rs4808485 and the KLF2 promoter. These were directly validated by CRISPR-based genetic and epigenetic editing in Jurkat and lymphoblastoid cells. Deleting the rs4808485 enhancer in Jurkat (KO) cells disrupted NLRP3 inflammasome machinery by reducing KLF2 and increasing CASPASE1, IL-1β and GSDMD levels. Knockout cells also exhibited higher proliferation and cell-cycle progression than wild type. RNA-seq validated interplay between KLF2 and inflammasome machinery in HC, LN+ and LN-. CONCLUSIONS We demonstrate how rs4808485 modulates the inflammasome and cellular homoeostasis through regulating KLF2 expression. This establishes mechanistic connections between rs4808485 and SLE susceptibility.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Harikrishna Reddy Rallabandi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ting Gan
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Loren L Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
46
|
Bankell E, Liu L, van der Horst J, Rippe C, Jepps TA, Nilsson BO, Swärd K. Suppression of smooth muscle cell inflammation by myocardin-related transcription factors involves inactivation of TANK-binding kinase 1. Sci Rep 2024; 14:13321. [PMID: 38858497 PMCID: PMC11164896 DOI: 10.1038/s41598-024-63901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) suppress production of pro-inflammatory cytokines and chemokines in human smooth muscle cells (SMCs) through sequestration of RelA in the NF-κB complex, but additional mechanisms are likely involved. The cGAS-STING pathway is activated by double-stranded DNA in the cytosolic compartment and acts through TANK-binding kinase 1 (TBK1) to spark inflammation. The present study tested if MRTFs suppress inflammation also by targeting cGAS-STING signaling. Interrogation of a transcriptomic dataset where myocardin was overexpressed using a panel of 56 cGAS-STING cytokines showed the panel to be repressed. Moreover, MYOCD, MRTFA, and SRF associated negatively with the panel in human arteries. RT-qPCR in human bronchial SMCs showed that all MRTFs reduced pro-inflammatory cytokines on the panel. MRTFs diminished phosphorylation of TBK1, while STING phosphorylation was marginally affected. The TBK1 inhibitor amlexanox, but not the STING inhibitor H-151, reduced the anti-inflammatory effect of MRTF-A. Co-immunoprecipitation and proximity ligation assays supported binding between MRTF-A and TBK1 in SMCs. MRTFs thus appear to suppress cellular inflammation in part by acting on the kinase TBK1. This may defend SMCs against pro-inflammatory insults in disease.
Collapse
Affiliation(s)
- Elisabeth Bankell
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
- Department of Urology, Qingyuan Hospital Affiliated to Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Catarina Rippe
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Bengt-Olof Nilsson
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Karl Swärd
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
47
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597630. [PMID: 38895279 PMCID: PMC11185636 DOI: 10.1101/2024.06.05.597630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adaptor protein complex 3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 is in a constitutively open, active conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted the core of human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy (cryo-EM). Similar to yeast AP-3, human AP-3 is in a constitutively open conformation, with the cargo-binding domain of the μ3 subunit conformationally free. To reconstitute AP-3 activation by the small GTPase Arf1, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures that show the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane-recruitment is driven by one of two predicted Arf1 binding sites on AP-3. In this conformation, AP-3 is flexibly tethered to the membrane and its cargo binding domain remains conformationally dynamic. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3 mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| | - Mahira Aragon
- New York Structural Biology Center; New York, NY 10027, USA
| | - Richard W. Baker
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
- UNC Lineberger Comprehensive Cancer Center. UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| |
Collapse
|
48
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
49
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Monocytic Differentiation of Human Acute Myeloid Leukemia Cells: A Proteomic and Phosphoproteomic Comparison of FAB-M4/M5 Patients with and without Nucleophosmin 1 Mutations. Int J Mol Sci 2024; 25:5080. [PMID: 38791118 PMCID: PMC11121526 DOI: 10.3390/ijms25105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
50
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|