1
|
Chu X, Yang Y, Guo H, Ji X. SARS-CoV-2 NSP2 specifically interacts with cellular protein SmgGDS. Biochem Biophys Res Commun 2025; 764:151828. [PMID: 40253909 DOI: 10.1016/j.bbrc.2025.151828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The novel coronavirus, SARS-CoV-2, is responsible for the ongoing global pandemic of Coronavirus disease 2019 (COVID-19). SARS-CoV-2 belongs to the Coronaviridae family, which also includes the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Recent studies using affinity purification mass spectrometry analysis have revealed that SARS-CoV-2 NSP2 may interact with cellular protein Small G-protein dissociation stimulator (SmgGDS), a guanine nucleotide exchange factor (GEF) that specifically regulates RhoA and RhoC proteins, which are involved in a range of cellular activities, including actin reorganization, cell motility and adhesion. Biochemical experiments have confirmed that NSP2 binds directly to SmgGDS and that this interaction requires the full-length NSP2. Given the low sequence conservation compared to other coronaviruses, this interaction with SmgGDS appears specific to SARS-CoV-2, with similar proteins in other coronaviruses unable to bind SmgGDS. Further studies have revealed that the binding of SARS-CoV-2 NSP2 to SmgGDS has a significant inhibitory effect on the GEF activity of SmgGDS. This inhibition disrupts the nucleotide exchange process on RhoA, impairing its function and potentially contributing to the pathogenic mechanisms of SARS-CoV-2. These findings highlight a novel pathway through which SARS-CoV-2 may influence host cellular processes, providing insights into the unique impact of coronaviruses on cellular regulation.
Collapse
Affiliation(s)
- Xiaoyu Chu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yixuan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China.
| |
Collapse
|
2
|
Pamidimukkala JV, Parthasarathy BR, Senapati S. Decoding potential host protein targets against Flaviviridae using protein-protein interaction network. Int J Biol Macromol 2025; 310:143217. [PMID: 40250655 DOI: 10.1016/j.ijbiomac.2025.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Flaviviridae family comprises some of the most vulnerable viruses known for causing widespread outbreaks, high mortality rates, and severe long-term health complications in humans. Viruses like Dengue (DENV), Zika (ZIKV) and Hepatitis C (HCV) are endemic across the globe, especially in tropical and subtropical regions, infecting multiple tissues and leading to significant health crises. Investigating virus-host interactions across tissues can reveal tissue-specific drug targets and aid antiviral drug repurposing. In this study, we employed a multi-step computational approach to construct a comprehensive virus-human interactome by integrating virus-host protein-protein interactions (PPIs) with tissue-specific gene expression profiles to study key protein targets associated with Flaviviridae infections. Mapping drug-target predictions revealed druggable proteins - CCNA2 in peripheral blood mononuclear cells (PBMC) and EIF2S2, CDK7 and CARS in the liver, with Tamoxifen, Sirolimus, Entrectinib and L-cysteine as potential repurposable drugs, respectively. Further protein-ligand docking and molecular dynamics (MD) simulations were conducted to assess the stability of the complexes. These findings highlight common druggable human targets exploited by DENV, ZIKV and HCV, providing a foundation for broad-spectrum antiviral therapies. By focusing on shared host pathways and targets in viral replication, we propose promising drug candidates, supporting the development of unified therapeutic strategies against Flaviviridae viruses.
Collapse
Affiliation(s)
- Jaya Vasavi Pamidimukkala
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bharath Raj Parthasarathy
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Liu J, Guo L, Zhong J, Wu Y, Wang X, Tang X, Min K, Yang Y, Peng W, Wang Q, Ding T, Gu X, Zhang H, Liu Y, Huang C, Cao B, Wang J, Ren L, Yang J. Proteomic Analysis of 442 Clinical Plasma Samples From Individuals With Symptom Records Revealed Subtypes of Convalescent Patients Who Had COVID-19. J Med Virol 2025; 97:e70203. [PMID: 40207927 PMCID: PMC11984345 DOI: 10.1002/jmv.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 04/11/2025]
Abstract
After the coronavirus disease 2019 (COVID-19) pandemic, the postacute effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have gradually attracted attention. To precisely evaluate the health status of convalescent patients with COVID-19, we analyzed symptom and proteome data of 442 plasma samples from healthy controls, hospitalized patients, and convalescent patients 6 or 12 months after SARS-CoV-2 infection. Symptoms analysis revealed distinct relationships in convalescent patients. Results of plasma protein expression levels showed that C1QA, C1QB, C2, CFH, CFHR1, and F10, which regulate the complement system and coagulation, remained highly expressed even at the 12-month follow-up compared with their levels in healthy individuals. By combining symptom and proteome data, 442 plasma samples were categorized into three subtypes: S1 (metabolism-healthy), S2 (COVID-19 retention), and S3 (long COVID). We speculated that convalescent patients reporting hair loss could have a better health status than those experiencing headaches and dyspnea. Compared to other convalescent patients, those reporting sleep disorders, appetite decrease, and muscle weakness may need more attention because they were classified into the S2 subtype, which had the most samples from hospitalized patients with COVID-19. Subtyping convalescent patients with COVID-19 may enable personalized treatments tailored to individual needs. This study provides valuable plasma proteomic datasets for further studies associated with long COVID.
Collapse
Grants
- This work was supported by grants from the National Key R&D Program of China (2023YFC2507102), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, China (CIFMS2022-I2M-1-011, CIFMS2022-I2M-2-001, CIFMS2021-I2M-1-057, CIFMS2021-I2M-1-049, CIFMS2021-I2M-1-044, CIFMS2021-I2M-1-016, CIFMS2021-I2M-1-001, 2022-I2M-CoV19-003, and CIFMS2022-I2M-JB-003), the National Natural Science Foundation of China (82341064), the Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00008 and 22HHKYZX0034), and State Key Laboratory Special Fund 2060204.
Collapse
Affiliation(s)
- Jiangfeng Liu
- Haihe Laboratory of Cell EcosystemTianjinChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical SciencesBeijingChina
| | - Jingchuan Zhong
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical SciencesBeijingChina
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical SciencesBeijingChina
| | - Xiaoyue Tang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Kaiyuan Min
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Wanjun Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Xiaoying Gu
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
- Department of Pulmonary and Critical Care MedicineNational Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Hui Zhang
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
- Department of Pulmonary and Critical Care MedicineNational Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Ying Liu
- Medical DepartmentJin Yin‐Tan HospitalWuhanHubeiChina
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical SciencesWuhanHubeiChina
| | - Chaolin Huang
- Medical DepartmentJin Yin‐Tan HospitalWuhanHubeiChina
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical SciencesWuhanHubeiChina
| | - Bin Cao
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
- Department of Pulmonary and Critical Care MedicineNational Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux LaboratoryInstitute of Pathogen Biology, Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Respiratory Disease PathogenomicsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Juntao Yang
- Haihe Laboratory of Cell EcosystemTianjinChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Dugied G, Laurent EM, Attia M, Gimeno JP, Bachiri K, Samavarchi-Tehrani P, Donati F, Rahou Y, Munier S, Amara F, Dos Santos M, Soler N, Volant S, Pietrosemoli N, Gingras AC, Pavlopoulos GA, van der Werf S, Falter-Braun P, Aloy P, Jacob Y, Komarova A, Sofianatos Y, Coyaud E, Demeret C. Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization. Commun Biol 2025; 8:501. [PMID: 40140549 PMCID: PMC11947133 DOI: 10.1038/s42003-025-07933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
An accurate spatial representation of protein-protein interaction networks is needed to achieve a realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the predictive value of our 3D map for direct interactions, meaning that proteins in closer proximity tend to interact physically. Several functionally important virus-host complexes were detected, and robust structural models were obtained, opening the way to structure-directed drug discovery screens. This PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes, which, when applied to viruses or other pathogens, can provide significant information for infection. Thus, it represents a promising tool for coping with emerging infectious diseases.
Collapse
Affiliation(s)
- Guillaume Dugied
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Estelle Mn Laurent
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Mikaël Attia
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Jean-Pascal Gimeno
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Kamel Bachiri
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | | | - Flora Donati
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Yannis Rahou
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Faustine Amara
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Mélanie Dos Santos
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Nicolas Soler
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10 -12, 08020, Barcelona, Spain
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Munich, Germany
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10 -12, 08020, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançat (ICREA), Pg. Lluís Companys, 23, 08010, Barcelona, Spain
| | - Yves Jacob
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Anastassia Komarova
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Yorgos Sofianatos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece.
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| | - Caroline Demeret
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
5
|
Pashkov EA, Shikvin DA, Pashkov GA, Nagieva FG, Bogdanova EA, Bykov AS, Pashkov EP, Svitich OA, Zverev VV. Assessment of the preventive effect of knockdown of cellular genes NXF1, PRPS1 PRPS1 and NAA10 in influenza infection in an in vitro model. Vopr Virusol 2025; 70:66-77. [PMID: 40233338 DOI: 10.36233/0507-4088-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Influenza is an acute respiratory viral infectious disease caused by the influenza viruses. Current preventive and therapeutic approaches are of great anti-epidemic importance, but there are a number of problems, such as the rapid emergence of resistant strains, the lack of cross-immunity and the effectiveness of vaccines. One of the approaches to the development of anti-influenza agents is the use of RNA interference and small interfering RNAs complementary to the mRNA target of viral and cellular genes. Aim ‒ to evaluate the prophylactic anti-influenza effect of siRNAs directed to the cellular genes NXF1, PRPS1 and NAA10 in an in vitro model. MATERIALS AND METHODS Antigenic variants of influenza A virus: A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1); cell cultures A549 and MDCK. The study was performed using molecular genetic (transfection, NC isolation, RT-PCR-RV) and virological (cell culture infection, titration by visual CPE, viral titer assessment using the Ramakrishnan method) methods. RESULTS It was shown that siRNAs targeting the cellular genes NXF1, PRPS1 and NAA10, when used prophylactically in cell culture at a concentration of 0.25 μg per well, during infection with influenza virus strains A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1) at a multiplicity of infection of 0.01, reduced viral replication to a level of 220 TCID50 per 1 ml of cell medium, whereas in control untreated cells the viral yield was ~106 TCID50 per 1 ml of medium. CONCLUSIONS Reproduction of influenza A viruses directly depends on the protein products of the NXF1, PRPS1, and NAA10 genes. Reduced expression of these genes disrupts the life cycle and activity of influenza viruses. Such an approach can potentially be studied and used for closely and distantly related representatives of other virus families.
Collapse
Affiliation(s)
- E A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - D A Shikvin
- Moscow State University of Fine Chemical Technologies
| | - G A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - F G Nagieva
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - E A Bogdanova
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - A S Bykov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - E P Pashkov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - O A Svitich
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - V V Zverev
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| |
Collapse
|
6
|
Dhaka P, Singh A, Nehul S, Choudhary S, Panda PK, Sharma GK, Kumar P, Tomar S. Disruption of Molecular Interactions between the G3BP1 Stress Granule Host Protein and the Nucleocapsid (NTD-N) Protein Impedes SARS-CoV-2 Virus Replication. Biochemistry 2025; 64:823-840. [PMID: 39708056 DOI: 10.1021/acs.biochem.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1NTF-2) and the intrinsically disordered N-terminal domain (NTD-N1-25) of the N-protein plays a crucial role in regulating viral replication and pathogenicity. Interestingly, the current study identified an additional upstream stretch of residues (128KDGIIWVATEG138) (N128-138) within the N-terminal domain of the N-protein (NTD-N41-174) that also forms molecular contacts with the G3BP1 protein, as revealed through in silico analysis, site-directed mutagenesis, and biochemical analysis. Remarkably, WIN-62577, and fluspirilene, the small molecules targeting the conserved peptide-binding pocket in G3BP1NTF-2, not only disrupted the protein-protein interactions (PPIs) between NTD-N41-174 and G3BP1NTF-2 but also exhibited significant antiviral efficacy against SARS-CoV-2 replication with EC50 values of ∼1.8 and ∼1.3 μM, respectively. The findings of this study, validated by biophysical thermodynamics and biochemical investigations, advance the potential of developing therapeutics targeting the SG host protein against SARS-CoV-2, which may also serve as a broad-spectrum antiviral target.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prasan Kumar Panda
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh 249203, India
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
de
Lima IL, Cataldi TR, Brites C, Labate MT, Vaz SN, Deminco F, da Cunha GS, Labate CA, Eberlin MN. 4D-DIA Proteomics Uncovers New Insights into Host Salivary Response Following SARS-CoV-2 Omicron Infection. J Proteome Res 2025; 24:499-514. [PMID: 39803891 PMCID: PMC11812090 DOI: 10.1021/acs.jproteome.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/08/2025]
Abstract
Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.2, and BA.4/5) by using an untargeted four-dimensional data-independent acquisition (4D-DIA)-based proteomics approach. We identified 137 proteins whose abundance levels differed between the COVID-19 positive and negative groups. Salivary signatures were mainly enriched in ribosomal proteins, linked to mRNAviral translation, protein synthesis and processing, immune innate, and antiapoptotic signaling. The higher abundance of 14-3-3 proteins (YWHAG, YWHAQ, YWHAE, and SFN) in saliva, first reported here, may be associated with increased infectivity and improved viral replicative fitness. We also identified seven proteins (ACTN1, H2AC2, GSN, NDKA, CD109, GGH, and PCYOX) that yielded comprehension into Omicron infection and performed outstandingly in screening patients with COVID-19 in a hospital setting. This panel also presented an enhanced anti-COVID-19 and anti-inflammatory signature, providing insights into disease severity, supported by comparisons with other proteome data sets. The salivary signature provided valuable insights into the host's response to SARS-CoV-2 Omicron infection, shedding light on the pathophysiology of COVID-19, particularly in cases associated with mild disease. It also underscores the potential clinical applications of saliva for disease screening in hospital settings. Data are available via ProteomeXchange with the identifier PXD054133.
Collapse
Affiliation(s)
- Iasmim Lopes de
Lima
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| | - Thais Regiani Cataldi
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Carlos Brites
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Mônica Teresa
Veneziano Labate
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Sara Nunes Vaz
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Felice Deminco
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Gustavo Santana da Cunha
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| | - Carlos Alberto Labate
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Marcos Nogueira Eberlin
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| |
Collapse
|
8
|
Feng Y, Cao S, Shi Y, Sun A, Flanagan ME, Leverenz JB, Pieper AA, Jung JU, Cummings J, Fang EF, Zhang P, Cheng F. Human herpesvirus-associated transposable element activation in human aging brains with Alzheimer's disease. Alzheimers Dement 2025; 21:e14595. [PMID: 39985481 PMCID: PMC11846481 DOI: 10.1002/alz.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Human herpesvirus (HHV) has been linked to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. METHODS We leveraged functional genomics data from Religious Orders Study or the Rush Memory and Aging Project (ROS/MAP) and Mount Sinai Brain Bank (MSBB) brain biobanks and single-cell RNA-sequencing data from HHV-infected forebrain organoids to investigate HHV-infection-associated transposable element (TE) dysregulation underlying AD etiologies. RESULTS We identified widespread TE dysregulation in HHV-positive human AD brains, including an astrocyte-specific upregulation of LINE1 subfamily TEs in HHV-positive human AD brains. We further pinpointed astrocyte-specific LINE1 upregulation that could potentially regulate target gene NEAT1 expression via long-range enhancer-promoter chromatin interactions. This LINE1 dysregulation can be partially reversed by the usage of anti-HHV drugs (valacyclovir and acyclovir) in a virus-infected human brain organoid model. Finally, we demonstrated that valacyclovir rescued tau-associated neuropathology and alleviated LINE1 activation in an experimental tau aggregation model. DISCUSSION Our analysis provides associations linking molecular, clinical, and neuropathological AD features with HHV infection, which warrants future clinical validation. HIGHLIGHTS Via analysis of bulk RNA-seq data in two large-scale human brain biobanks, ROS/MAP (n = 109 pathologically confirmed AD and n = 44 cognitively healthy controls) and MSBB (n = 284 AD and n = 150 cognitively healthy controls), we identified widespread TE activation in HHV-positive human AD brains and significantly positive associations of HHV RNA abundance with APOE4 genotype, Braak staging score, and CERAD score. We identified cell type-specific LINE1 upregulation in both microglia and astrocytes of human AD brains via long-range enhancer-promoter chromatin interactions on lncRNA nuclear enriched abundant transcript 1 (NEAT1). We determined that usage of valacyclovir and acyclovir was significantly associated with reduced incidence of AD in a large real-world patient database. Using the HEK293 tau P301S model and U2OS mt-Keima cell model, we determined that valacyclovir treatment rescued tau-associated neuropathology and alleviated activation of LINE1 with increased cellular autophagy-level mechanistically supported clinical benefits of valacyclovir in real-world patient data.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Shu‐Qin Cao
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Yi Shi
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Anna Sun
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Margaret E. Flanagan
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Lou Ruvo Center for Brain Health, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Andrew A. Pieper
- Harrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric Psychiatry, GRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeuroscienceCase Western Reserve University, School of MedicineClevelandOhioUSA
| | - Jae U. Jung
- Department of Cancer Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Program of Infectious Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Evandro Fei Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Pengyue Zhang
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
9
|
Lee JS, Dittmar M, Miller J, Li M, Ayyanathan K, Ferretti M, Hulahan J, Whig K, Etwebi Z, Griesman T, Schultz DC, Cherry S. Pressure to evade cell-autonomous innate sensing reveals interplay between mitophagy, IFN signaling, and SARS-CoV-2 evolution. Cell Rep 2025; 44:115115. [PMID: 39708319 DOI: 10.1016/j.celrep.2024.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
SARS-CoV-2 emerged, and continues to evolve, to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling occurring only in bystander cells. How the virus continues to evolve in the face of innate responses has important consequences, but the pathways involved are incompletely understood. Here, we find that autophagy genes regulate innate immune signaling, impacting the basal set point of interferons and, thus, permissivity to infection. Mechanistically, autophagy (mitophagy) genes negatively regulate MAVS, and this low basal level of MAVS is efficiently antagonized by SARS-CoV-2 ORF9b, blocking interferon activation in infected cells. However, loss of autophagy increased MAVS and overcomes ORF9b-mediated antagonism. This has driven the evolution of SARS-CoV-2 to express more ORF9b, allowing SARS-CoV-2 to replicate under conditions of increased MAVS signaling. Altogether, we find a critical role of mitophagy in the regulation of innate immunity and uncover an evolutionary trajectory of SARS-CoV-2 ORF9b to overcome host defenses.
Collapse
Affiliation(s)
- Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minghua Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kanupriya Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Griesman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
dos Santos F, Vindel-Alfageme J, Ciordia S, Castro V, Orera I, Garaigorta U, Gastaminza P, Corrales F. Dynamic Cellular Proteome Remodeling during SARS-CoV-2 Infection. Identification of Plasma Protein Readouts. J Proteome Res 2025; 24:171-188. [PMID: 39593238 PMCID: PMC11705369 DOI: 10.1021/acs.jproteome.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The outbreak of COVID-19, led to an ongoing pandemic with devastating consequences for the global economy and human health. With the global spread of SARS-CoV-2, multidisciplinary initiatives were launched to explore new diagnostic, therapeutic, and vaccination strategies. From this perspective, proteomics could help to understand the mechanisms associated with SARS-CoV-2 infection and to identify new therapeutic options. A TMT-based quantitative proteomics and phosphoproteomics analysis was performed to study the proteome remodeling of human lung alveolar cells expressing human ACE2 (A549-ACE2) after infection with SARS-CoV-2. Detectability and the prognostic value of selected proteins was analyzed by targeted PRM. A total of 6802 proteins and 6428 phospho-sites were identified in A549-ACE2 cells after infection with SARS-CoV-2. The differential proteins here identified revealed that A549-ACE2 cells undergo a time-dependent regulation of essential processes, delineating the precise intervention of the cellular machinery by the viral proteins. From this mechanistic background and by applying machine learning modeling, 29 differential proteins were selected and detected in the serum of COVID-19 patients, 14 of which showed promising prognostic capacity. Targeting these proteins and the protein kinases responsible for the reported phosphorylation changes may provide efficient alternative strategies for the clinical management of COVID-19.
Collapse
Affiliation(s)
- Fátima
Milhano dos Santos
- Functional
Proteomics Laboratory, National Center for
Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Jorge Vindel-Alfageme
- Functional
Proteomics Laboratory, National Center for
Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Sergio Ciordia
- Functional
Proteomics Laboratory, National Center for
Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Victoria Castro
- Department
of Molecular and Cell Biology, National
Center for Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Irene Orera
- Proteomics
Research Core Facility, Instituto Aragonés
de Ciencias de la Salud (IACS), Zaragoza 50009, Spain
| | - Urtzi Garaigorta
- Department
of Molecular and Cell Biology, National
Center for Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Pablo Gastaminza
- Department
of Molecular and Cell Biology, National
Center for Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Fernando Corrales
- Functional
Proteomics Laboratory, National Center for
Biotechnology (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| |
Collapse
|
11
|
Tikhomirova MA, Kuzmenko OL, Arifulin EA, Shirokova OM, Musinova YR, Sheval EV. The Nucleocapsid (N) Proteins of Different Human Coronaviruses Demonstrate a Variable Capacity to Induce the Formation of Cytoplasmic Condensates. Int J Mol Sci 2024; 25:13162. [PMID: 39684875 DOI: 10.3390/ijms252313162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
To date, seven human coronaviruses (HCoVs) have been identified. Four of these viruses typically manifest as a mild respiratory disease, whereas the remaining three can cause severe conditions that often result in death. The reasons for these differences remain poorly understood, but they may be related to the properties of individual viral proteins. The nucleocapsid (N) protein plays a crucial role in the packaging of viral genomic RNA and the modification of host cells during infection, in part due to its capacity to form dynamic biological condensates via liquid-liquid phase separation (LLPS). In this study, we investigated the capacity of N proteins derived from all HCoVs to form condensates when transiently expressed in cultured human cells. Some of the transfected cells were observed to contain cytoplasmic granules in which most of the N proteins were accumulated. Notably, the N proteins of SARS-CoV and SARS-CoV-2 showed a significantly reduced tendency to form cytoplasmic condensates. The condensate formation was not a consequence of overexpression of N proteins, as is typical for LLPS-inducing proteins. These condensates contained components of stress granules (SGs), indicating that the expression of N proteins caused the formation of SGs, which integrate N proteins. Thus, the N proteins of two closely related viruses, SARS-CoV and SARS-CoV-2, have the capacity to antagonize SG induction and/or assembly, in contrast to all other known HCoVs.
Collapse
Affiliation(s)
- Maria A Tikhomirova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Oleg L Kuzmenko
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya M Shirokova
- Central Scientific Research Laboratory, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Yana R Musinova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Degnan DJ, Strauch CW, Obiri MY, VonKaenel ED, Kim GS, Kershaw JD, Novelli DL, Pazdernik KT, Bramer LM. Protein-Protein Interaction Networks Derived from Classical and Machine Learning-Based Natural Language Processing Tools. J Proteome Res 2024; 23:5395-5404. [PMID: 39526844 DOI: 10.1021/acs.jproteome.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The study of protein-protein interactions (PPIs) provides insight into various biological mechanisms, including the binding of antibodies to antigens, enzymes to inhibitors or promoters, and receptors to ligands. Recent studies of PPIs have led to significant biological breakthroughs. For example, the study of PPIs involved in the human:SARS-CoV-2 viral infection mechanism aided in the development of SARS-CoV-2 vaccines. Though several databases exist for the manual curation of PPI networks, text mining methods have been routinely demonstrated as useful alternatives for newly studied or understudied species, where databases are incomplete. Here, the relationship extraction performance of several open-source classical text processing, machine learning (ML)-based natural language processing (NLP), and large language model (LLM)-based NLP tools was compared. Overall, our results indicated that networks derived from classical methods tend to have high true positive rates at the expense of having overconnected networks, ML-based NLP methods have lower true positive rates but networks with the closest structures to the target network, and LLM-based NLP methods tend to exist between the two other approaches, with variable performances. The selection of a specific NLP approach should be tied to the needs of a study and text availability, as models varied in performance due to the amount of text provided.
Collapse
Affiliation(s)
- David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Clayton W Strauch
- AI & Data Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Moses Y Obiri
- Earth Systems Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Erik D VonKaenel
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Grace S Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - James D Kershaw
- Earth Systems Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - David L Novelli
- AI & Data Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Karl Tl Pazdernik
- AI & Data Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
14
|
Wang L, Li R, Guan X, Yan S. Prediction of protein interactions between pine and pine wood nematode using deep learning and multi-dimensional feature fusion. FRONTIERS IN PLANT SCIENCE 2024; 15:1489116. [PMID: 39687321 PMCID: PMC11646721 DOI: 10.3389/fpls.2024.1489116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Pine Wilt Disease (PWD) is a devastating forest disease that has a serious impact on ecological balance ecological. Since the identification of plant-pathogen protein interactions (PPIs) is a critical step in understanding the pathogenic system of the pine wilt disease, this study proposes a Multi-feature Fusion Graph Attention Convolution (MFGAC-PPI) for predicting plant-pathogen PPIs based on deep learning. Compared with methods based on single-feature information, MFGAC-PPI obtains more 3D characterization information by utilizing AlphaFold and combining protein sequence features to extract multi-dimensional features via Transform with improved GCN. The performance of MFGAC-PPI was compared with the current representative methods of sequence-based, structure-based and hybrid characterization, demonstrating its superiority across all metrics. The experiments showed that learning multi-dimensional feature information effectively improved the ability of MFGAC-PPI in plant and pathogen PPI prediction tasks. Meanwhile, a pine wilt disease PPI network consisting of 2,688 interacting protein pairs was constructed based on MFGAC-PPI, which made it possible to systematically discover new disease resistance genes in pine trees and promoted the understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Liuyan Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Rongguang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuemei Guan
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management, School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Hultgren NW, Petcherski A, Torriano S, Komirisetty R, Sharma M, Zhou T, Burgess BL, Ngo J, Osto C, Shabane B, Shirihai OS, Kelesidis T, Williams DS. Productive infection of the retinal pigment epithelium by SARS-CoV-2: Initial effects and consideration of long-term consequences. PNAS NEXUS 2024; 3:pgae500. [PMID: 39712068 PMCID: PMC11660945 DOI: 10.1093/pnasnexus/pgae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 12/24/2024]
Abstract
As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture. Separate lentiviral studies showed that SARS-CoV-2 Spike protein mediates viral entry and replication in RPE cells, while the Envelope and ORF3a proteins induce morphological changes. Infection with major variants of SARS-CoV-2 compromised the RPE barrier function and phagocytic capacity. It also caused complement activation and production of cytokines and chemokines, resulting in an inflammatory response that spread across the RPE layer. This inflammatory signature has similarities to that associated with the onset of age-related macular degeneration (AMD), a major cause of human blindness, resulting from RPE pathology that eventually leads to photoreceptor cell loss. Thus, our findings suggest that post-acute sequelae of SARS-CoV-2 infection of the RPE may have long-term implications for vision, perhaps comparable to the increased occurrence of AMD found among individuals infected by HIV, but with greater public health consequences due to the much larger number of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Nan W Hultgren
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Anton Petcherski
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Simona Torriano
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Ravikiran Komirisetty
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tianli Zhou
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Jennifer Ngo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Osto
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Orian S Shirihai
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine; Molecular Biology Institute; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Wang M, Valadez-Ingersoll M, Gilmore TD. Control of nuclear localization of the nucleocapsid protein of SARS-CoV-2. Virology 2024; 600:110232. [PMID: 39265446 DOI: 10.1016/j.virol.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The nucleocapsid (N) protein of coronaviruses is a structural protein that binds viral RNA for assembly into the mature virion, a process that occurs in the cytoplasm. Several coronavirus N proteins also localize to the nucleus. Herein, we identify that two sequences (NLSs) are required for nuclear localization of the SARS-CoV-2 N protein. Deletion or mutation of these two sequences creates an N protein that does not localize to the nucleus in HEK293T cells. Overexpression of both wild-type and NLS-mutated N proteins dysregulate a largely overlapping set of mRNAs in HEK293T cells, suggesting that these N proteins do not have direct nuclear effects on transcription. Consistent with that hypothesis, both N proteins induce nuclear localization of NF-κB p65 and dysregulate a set of previously identified NF-κB-dependent genes. The effects of N on nuclear properties are proposed to alter host cell functions that contribute to viral pathogenesis or replication.
Collapse
Affiliation(s)
- Mengrui Wang
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
19
|
Solopov PA, Colunga Biancatelli RML, Day T, Gregory B, Sharlow ER, Lazo JS, Catravas JD. KVX-053, a protein tyrosine phosphatase 4A3 inhibitor, ameliorates SARS-CoV-2 spike protein subunit 1-induced acute lung injury in mice. J Pharmacol Exp Ther 2024; 392:100022. [PMID: 39969268 DOI: 10.1124/jpet.124.002154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS), often preceded by acute lung injury (ALI), is characterized by the accumulation of inflammatory fluid in the lung alveoli, leaky alveolar epithelium and endothelium, and overexpression of proinflammatory cytokines. This progression from ALI to ARDS is a major contributor to the high mortality observed in patients with COVID-19. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to lung angiotensin-converting enzyme 2 (ACE2), and in addition to facilitating viral cell entry, it plays an important role in the development of ALI and ARDS, especially in the later phases of COVID-19 as well as long-COVID. Protein tyrosine phosphatase (PTP) 4A3 is a key mediator of ARDS pathology. This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19-associated ALI. Intratracheal administration of SARS-CoV-2 spike protein subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines, structural lung injury, and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings provide the first evidence supporting a role for PTP4A3 in the development of SARS-CoV-2-mediated ALI. SIGNIFICANCE STATEMENT: This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19-associated ALI/ARDS. Intratracheal administration of SARS-CoV-2 spike protein subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines and chemokines, structural lung injury, and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings suggest that this novel PTP4A3 inhibitor may be useful against COVID-19 and potentially other viral-induced ARDS.
Collapse
Affiliation(s)
- Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
| | | | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Elizabeth R Sharlow
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia; KeViRx Inc, Charlottesville, Virginia
| | - John S Lazo
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia; KeViRx Inc, Charlottesville, Virginia
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
20
|
Nguyen MH, Palfy G, Fogeron ML, Ninot Pedrosa M, Zehnder J, Rimal V, Callon M, Lecoq L, Barnes A, Meier BH, Böckmann A. Analysis of the structure and interactions of the SARS-CoV-2 ORF7b accessory protein. Proc Natl Acad Sci U S A 2024; 121:e2407731121. [PMID: 39508769 PMCID: PMC11573672 DOI: 10.1073/pnas.2407731121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
SARS-CoV-2 carries a sizeable number of proteins that are accessory to replication but may be essential for virus-host interactions and modulation of the host immune response. Here, we investigated the structure and interactions of the largely unknown ORF7b, a small membranous accessory membrane protein of SARS-CoV-2. We show that structural predictions indicate a transmembrane (TM) leucine zipper for ORF7b, and experimentally confirm the predominantly α-helical secondary structure within a phospholipid membrane mimetic by solid-state NMR. We also show that ORF7b forms heterogeneous higher-order multimers. We determined ORF7b interactions with cellular TM leucine zipper proteins using both biochemical and NMR approaches, providing evidence for ORF7b interaction with the TM domains of E-cadherin, as well as phospholamban. Our results place ORF7b as a hypothetical interferer in cellular processes that utilize leucine zipper motifs in transmembrane multimerization domains.
Collapse
Affiliation(s)
- Minh-Ha Nguyen
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Gyula Palfy
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Martí Ninot Pedrosa
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Johannes Zehnder
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Vaclav Rimal
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Alexander Barnes
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| |
Collapse
|
21
|
Oliveira BR, Nehlmeier I, Kempf AM, Venugopalan V, Rehders M, Ceniza MEP, Cavalcanti PADTPV, Hoffmann M, Pöhlmann S, Brix K. Cytoskeletal β-tubulin and cysteine cathepsin L deregulation by SARS-CoV-2 spike protein interaction with the neuronal model cell line SH-SY5Y. Biochimie 2024; 226:49-61. [PMID: 38432290 DOI: 10.1016/j.biochi.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in β-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.
Collapse
Affiliation(s)
- Bernardo R Oliveira
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany
| | - Inga Nehlmeier
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany.
| | - Amy Madeleine Kempf
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | | | - Maren Rehders
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | - Marianne E P Ceniza
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | | | - Markus Hoffmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Stefan Pöhlmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Klaudia Brix
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| |
Collapse
|
22
|
Zhang Y, Dong M, Deng J, Wu J, Zhao Q, Gao X, Xiong D. Graph masked self-distillation learning for prediction of mutation impact on protein-protein interactions. Commun Biol 2024; 7:1400. [PMID: 39462102 PMCID: PMC11513059 DOI: 10.1038/s42003-024-07066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Assessing mutation impact on the binding affinity change (ΔΔG) of protein-protein interactions (PPIs) plays a crucial role in unraveling structural-functional intricacies of proteins and developing innovative protein designs. In this study, we present a deep learning framework, PIANO, for improved prediction of ΔΔG in PPIs. The PIANO framework leverages a graph masked self-distillation scheme for protein structural geometric representation pre-training, which effectively captures the structural context representations surrounding mutation sites, and makes predictions using a multi-branch network consisting of multiple encoders for amino acids, atoms, and protein sequences. Extensive experiments demonstrated its superior prediction performance and the capability of pre-trained encoder in capturing meaningful representations. Compared to previous methods, PIANO can be widely applied on both holo complex structures and apo monomer structures. Moreover, we illustrated the practical applicability of PIANO in highlighting pathogenic mutations and crucial proteins, and distinguishing de novo mutations in disease cases and controls in PPI systems. Overall, PIANO offers a powerful deep learning tool, which may provide valuable insights into the study of drug design, therapeutic intervention, and protein engineering.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Mingyuan Dong
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Junsheng Deng
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Jiafeng Wu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Xieping Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, China.
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
24
|
Chatterjee B, Thakur SS. Valuable Contributions and Lessons Learned from Proteomics and Metabolomics Studies of COVID-19. J Proteome Res 2024; 23:4171-4187. [PMID: 39157976 DOI: 10.1021/acs.jproteome.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus infected more than 775,686,716 humans and was responsible for the death of more than 7,054,093 individuals. COVID-19 has taught us that the development of vaccines, repurposing of drugs, and understanding the mechanism of a disease can be done within a short time. The COVID-19 proteomics and metabolomics has contributed to its diagnosis, understanding of its progression, host-virus interaction, disease mechanism, and also in the search of suitable anti-COVID therapeutics. Mass spectrometry based proteomics was used to find the potential biomarkers of different stages of COVID-19 including severe and nonsevere cases in the blood serum. Notably, protein-protein interaction techniques to understand host-virus interactions were also significantly useful. The single-cell proteomics studies were carried out to ascertain the changes in immune cell composition and its activation in mild COVID-19 patients versus severe COVID-19 patients using whole-blood and peripheral-blood mononuclear cells. Modern technologies were helpful to deal with the pandemic; however, there is still scope for further development. Further, attempts were made to understand the protein-protein, metabolite-metabolite, and protein-metabolite interactomes, derived from proteins and metabolite fingerprints of COVID-19 patients by reanalysis of COVID-19 public mass spectrometry based proteomics and metabolomics studies. Further, some of these interactions were supported by the literature as validations in the COVID-19 studies.
Collapse
Affiliation(s)
| | - Suman S Thakur
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
25
|
Saratov GA, Belogurov AA, Kudriaeva AA. Myelin basic protein antagonizes the SARS-CoV-2 protein ORF3a-induced autophagy inhibition. Biochimie 2024; 225:1-9. [PMID: 38703943 DOI: 10.1016/j.biochi.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Inhibition of autophagy is one of the hallmarks of the SARS-CoV-2 infection. Recently it was reported that SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes via interaction with VPS39 thus preventing binding of homotypic fusion and protein sorting (HOPS) complex to RAB7 GTPase. Here we report that myelin basic protein (MBP), a major structural component of the myelin sheath, binds ORF3a and is colocalized with it in mammalian cells. Co-expression of MBP with ORF3a restores autophagy in mammalian cells, inhibited by viral protein. Our data suggest that basic charge of MBP drives suppression of ORF3a-induced autophagy inhibition as its deaminated variants lost ability to bind ORF3a and counteract autophagy blockade. These results together with our recent findings, indicating that MBP interacts with structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3) and Sec1/Munc18-1 family members, may suggest protective role of the MBP in terms of the maintaining of protein traffic and autophagosome-lysosome fusion machinery in oligodendrocytes during SARS-CoV-2 infection. Finally, our data may indicate that deimination of MBP observed in the patients with multiple sclerosis (MS) may contribute to the previously reported worser outcomes of COVID-19 and increase of post-COVID-19 neurologic symptoms in patients with MS.
Collapse
Affiliation(s)
- George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Moscow Institute of Physics and Technology (national Research University), Phystech School of Biological and Medical Physics, 141701, Dolgoprudny, Moscow Region, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Russian University of Medicine, Department of Biological Chemistry, Ministry of Health of Russian Federation, 127473, Moscow, Russia.
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
| |
Collapse
|
26
|
Vello F, Filippini F, Righetto I. Bioinformatics Goes Viral: I. Databases, Phylogenetics and Phylodynamics Tools for Boosting Virus Research. Viruses 2024; 16:1425. [PMID: 39339901 PMCID: PMC11437414 DOI: 10.3390/v16091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Computer-aided analysis of proteins or nucleic acids seems like a matter of course nowadays; however, the history of Bioinformatics and Computational Biology is quite recent. The advent of high-throughput sequencing has led to the production of "big data", which has also affected the field of virology. The collaboration between the communities of bioinformaticians and virologists already started a few decades ago and it was strongly enhanced by the recent SARS-CoV-2 pandemics. In this article, which is the first in a series on how bioinformatics can enhance virus research, we show that highly useful information is retrievable from selected general and dedicated databases. Indeed, an enormous amount of information-both in terms of nucleotide/protein sequences and their annotation-is deposited in the general databases of international organisations participating in the International Nucleotide Sequence Database Collaboration (INSDC). However, more and more virus-specific databases have been established and are progressively enriched with the contents and features reported in this article. Since viruses are intracellular obligate parasites, a special focus is given to host-pathogen protein-protein interaction databases. Finally, we illustrate several phylogenetic and phylodynamic tools, combining information on algorithms and features with practical information on how to use them and case studies that validate their usefulness. Databases and tools for functional inference will be covered in the next article of this series: Bioinformatics goes viral: II. Sequence-based and structure-based functional analyses for boosting virus research.
Collapse
Affiliation(s)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (F.V.); (I.R.)
| | | |
Collapse
|
27
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
28
|
Qian J, Yang B, Wang S, Yuan S, Zhu W, Zhou Z, Zhang Y, Hu G. Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders. Int J Mol Sci 2024; 25:8917. [PMID: 39201608 PMCID: PMC11354300 DOI: 10.3390/ijms25168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
Collapse
Affiliation(s)
- Jing Qian
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Bin Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Shuo Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Su Yuan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Wenjing Zhu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Fujimoto A, Kawai H, Kawamura R, Kitamura A. Interaction of Receptor-Binding Domain of the SARS-CoV-2 Omicron Variant with hACE2 and Actin. Cells 2024; 13:1318. [PMID: 39195208 PMCID: PMC11352305 DOI: 10.3390/cells13161318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024] Open
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2021 as a variant with heavy amino acid mutations in the spike protein, which is targeted by most vaccines, compared to previous variants. Amino acid substitutions in the spike proteins may alter their affinity for host viral receptors and the host interactome. Here, we found that the receptor-binding domain (RBD) of the omicron variant of SARS-CoV-2 exhibited an increased affinity for human angiotensin-converting enzyme 2, a viral cell receptor, compared to the prototype RBD. Moreover, we identified β- and γ-actin as omicron-specific binding partners of RBD. Protein complex predictions revealed that many omicron-specific amino acid substitutions affected the affinity between RBD of the omicron variant and actin. Our findings indicate that proteins localized to different cellular compartments exhibit strong binding to the omicron RBD.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan; (A.F.)
| | - Haruki Kawai
- Laboratory of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan; (A.F.)
| | - Rintaro Kawamura
- Laboratory of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan; (A.F.)
| | - Akira Kitamura
- Laboratory of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan
- PRIME, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
30
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
31
|
Cousins HC, Nayar G, Altman RB. Computational Approaches to Drug Repurposing: Methods, Challenges, and Opportunities. Annu Rev Biomed Data Sci 2024; 7:15-29. [PMID: 38598857 DOI: 10.1146/annurev-biodatasci-110123-025333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Drug repurposing refers to the inference of therapeutic relationships between a clinical indication and existing compounds. As an emerging paradigm in drug development, drug repurposing enables more efficient treatment of rare diseases, stratified patient populations, and urgent threats to public health. However, prioritizing well-suited drug candidates from among a nearly infinite number of repurposing options continues to represent a significant challenge in drug development. Over the past decade, advances in genomic profiling, database curation, and machine learning techniques have enabled more accurate identification of drug repurposing candidates for subsequent clinical evaluation. This review outlines the major methodologic classes that these approaches comprise, which rely on (a) protein structure, (b) genomic signatures, (c) biological networks, and (d) real-world clinical data. We propose that realizing the full impact of drug repurposing methodologies requires a multidisciplinary understanding of each method's advantages and limitations with respect to clinical practice.
Collapse
Affiliation(s)
- Henry C Cousins
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| | - Gowri Nayar
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| | - Russ B Altman
- Departments of Genetics, Medicine, and Bioengineering, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| |
Collapse
|
32
|
Ma M, Huang M, He Y, Fang J, Li J, Li X, Liu M, Zhou M, Cui G, Fan Q. Network Medicine: A Potential Approach for Virtual Drug Screening. Pharmaceuticals (Basel) 2024; 17:899. [PMID: 39065749 PMCID: PMC11280361 DOI: 10.3390/ph17070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein-protein interactions rather than single gene abnormalities. Addressing this limitation requires a comprehensive drug screening strategy. Network medicine is rooted in systems biology and provides a comprehensive framework for understanding disease mechanisms, prevention, and therapeutic innovations. This approach not only explores the associations between various diseases but also quantifies the relationships between disease genes and drug targets within interactome networks, thus facilitating the prediction of drug-disease relationships and enabling the screening of therapeutic drugs for specific complex diseases. An increasing body of research supports the efficiency and utility of network-based strategies in drug screening. This review highlights the transformative potential of network medicine in virtual therapeutic screening for complex diseases, offering novel insights and a robust foundation for future drug discovery endeavors.
Collapse
Affiliation(s)
- Mingxuan Ma
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mei Huang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Yinting He
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 570000, China;
| | - Jiachao Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Xiaohan Li
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mengchen Liu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Mei Zhou
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519000, China; (M.M.); (M.H.); (Y.H.); (J.L.); (M.L.); (M.Z.)
| | - Qing Fan
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| |
Collapse
|
33
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
34
|
Yang X, Zhu J, Wang Q, Tang B, Shen Y, Wang B, Ji L, Liu H, Wuchty S, Zhang Z, Dong Y, Liang Z. Comparative analysis of dynamic transcriptomes reveals specific COVID-19 features and pathogenesis of immunocompromised populations. mSystems 2024; 9:e0138523. [PMID: 38752789 PMCID: PMC11237560 DOI: 10.1128/msystems.01385-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 06/19/2024] Open
Abstract
A dysfunction of human host genes and proteins in coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor impacting clinical symptoms and outcomes. Yet, a detailed understanding of human host immune responses is still incomplete. Here, we applied RNA sequencing to 94 samples of COVID-19 patients with and without hematological tumors as well as COVID-19 uninfected non-tumor individuals to obtain a comprehensive transcriptome landscape of both hematological tumor patients and non-tumor individuals. In our analysis, we further accounted for the human-SARS-CoV-2 protein interactome, human protein interactome, and human protein complex subnetworks to understand the mechanisms of SARS-CoV-2 infection and host immune responses. Our data sets enabled us to identify important SARS-CoV-2 (non-)targeted differentially expressed genes and complexes post-SARS-CoV-2 infection in both hematological tumor and non-tumor individuals. We found several unique differentially expressed genes, complexes, and functions/pathways such as blood coagulation (APOE, SERPINE1, SERPINE2, and TFPI), lipoprotein particle remodeling (APOC2, APOE, and CETP), and pro-B cell differentiation (IGHM, VPREB1, and IGLL1) during COVID-19 infection in patients with hematological tumors. In particular, APOE, a gene that is associated with both blood coagulation and lipoprotein particle remodeling, is not only upregulated in hematological tumor patients post-SARS-CoV-2 infection but also significantly expressed in acute dead patients with hematological tumors, providing clues for the design of future therapeutic strategies specifically targeting COVID-19 in patients with hematological tumors. Our data provide a rich resource for understanding the specific pathogenesis of COVID-19 in immunocompromised patients, such as those with hematological malignancies, and developing effective therapeutics for COVID-19. IMPORTANCE A majority of previous studies focused on the characterization of coronavirus infectious disease 2019 (COVID-19) disease severity in people with normal immunity, while the characterization of COVID-19 in immunocompromised populations is still limited. Our study profiles changes in the transcriptome landscape post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hematological tumor patients and non-tumor individuals. Furthermore, our integrative and comparative systems biology analysis of the interactome, complexome, and transcriptome provides new insights into the tumor-specific pathogenesis of COVID-19. Our findings confirm that SARS-CoV-2 potentially tends to target more non-functional host proteins to indirectly affect host immune responses in hematological tumor patients. The identified unique genes, complexes, functions/pathways, and expression patterns post-SARS-CoV-2 infection in patients with hematological tumors increase our understanding of how SARS-CoV-2 manipulates the host molecular mechanism. Our observed differential genes/complexes and clinical indicators of normal/long infection and deceased COVID-19 patients provide clues for understanding the mechanism of COVID-19 progression in hematological tumors. Finally, our study provides an important data resource that supports the increasing value of the application of publicly accessible data sets to public health.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Jialin Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qingyun Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ye Shen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Li Ji
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, Florida, USA
- Department of Biology, University of Miami, Miami, Florida, USA
- Institute of Data Science and Computation, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Ziding Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
35
|
Tang K, Sun Q, Zeng J, Tang J, Cheng P, Qiu Z, Long H, Chen Y, Zhang C, Wei J, Qiu X, Jiang G, Fang Q, Sun L, Sun C, Du X. Network-based approach for drug repurposing against mpox. Int J Biol Macromol 2024; 270:132468. [PMID: 38761900 DOI: 10.1016/j.ijbiomac.2024.132468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The current outbreak of mpox presents a significant threat to the global community. However, the lack of mpox-specific drugs necessitates the identification of additional candidates for clinical trials. In this study, a network medicine framework was used to investigate poxviruses-human interactions to identify potential drugs effective against the mpox virus (MPXV). The results indicated that poxviruses preferentially target hubs on the human interactome, and that these virally-targeted proteins (VTPs) tend to aggregate together within specific modules. Comorbidity analysis revealed that mpox is closely related to immune system diseases. Based on predicted drug-target interactions, 268 drugs were identified using the network proximity approach, among which 23 drugs displaying the least side-effects and significant proximity to MPXV were selected as the final candidates. Lastly, specific drugs were explored based on VTPs, differentially expressed proteins, and intermediate nodes, corresponding to different categories. These findings provide novel insights that can contribute to a deeper understanding of the pathogenesis of MPXV and development of ready-to-use treatment strategies based on drug repurposing.
Collapse
Affiliation(s)
- Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Preventive health division, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, PR China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69047, Germany
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jie Wei
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaoping Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China.
| |
Collapse
|
36
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
37
|
Zhou H, Li D, Ren Z, Xu C, Wang LF, Lee C. Surface plasmons-phonons for mid-infrared hyperspectral imaging. SCIENCE ADVANCES 2024; 10:eado3179. [PMID: 38809968 PMCID: PMC11135386 DOI: 10.1126/sciadv.ado3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Surface plasmons have proven their ability to boost the sensitivity of mid-infrared hyperspectral imaging by enhancing light-matter interactions. Surface phonons, a counterpart technology to plasmons, present unclear contributions to hyperspectral imaging. Here, we investigate this by developing a plasmon-phonon hyperspectral imaging system that uses asymmetric cross-shaped nanoantennas composed of stacked plasmon-phonon materials. The phonon modes within this system, controlled by light polarization, capture molecular refractive index intensity and lineshape features, distinct from those observed with plasmons, enabling more precise and sensitive molecule identification. In a deep learning-assisted imaging demonstration of severe acute respiratory syndrome coronavirus (SARS-CoV), phonons exhibit enhanced identification capabilities (230,400 spectra/s), facilitating the de-overlapping and observation of the spatial distribution of two mixed SARS-CoV spike proteins. In addition, the plasmon-phonon system demonstrates increased identification accuracy (93%), heightened sensitivity, and enhanced detection limits (down to molecule monolayers). These findings extend phonon polaritonics to hyperspectral imaging, promising applications in imaging-guided molecule screening and pharmaceutical analysis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
38
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
39
|
Du L, Deiter F, Bouzidi MS, Billaud JN, Simmons G, Dabral P, Selvarajah S, Lingappa AF, Michon M, Yu SF, Paulvannan K, Manicassamy B, Lingappa VR, Boushey H, Greenland JR, Pillai SK. A viral assembly inhibitor blocks SARS-CoV-2 replication in airway epithelial cells. Commun Biol 2024; 7:486. [PMID: 38649430 PMCID: PMC11035691 DOI: 10.1038/s42003-024-06130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.
Collapse
Affiliation(s)
- Li Du
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Fred Deiter
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | - Graham Simmons
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Prerna Dabral
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | | | - Maya Michon
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Shao Feng Yu
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Kumar Paulvannan
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | | | | | - Homer Boushey
- University of California, San Francisco, CA, 94143, USA
| | - John R Greenland
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Satish K Pillai
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA.
- University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
40
|
Corell-Sierra J, Marquez-Molins J, Marqués MC, Hernandez-Azurdia AG, Montagud-Martínez R, Cebriá-Mendoza M, Cuevas JM, Albert E, Navarro D, Rodrigo G, Gómez G. SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity. NPJ Syst Biol Appl 2024; 10:41. [PMID: 38632240 PMCID: PMC11024147 DOI: 10.1038/s41540-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | | | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010, Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| | - Gustavo Gómez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| |
Collapse
|
41
|
Cao H, Zhang M, Liao Z, Li D, He X, Ma H, Li P, Yu X, Peng G, Xie S, He Q, Li W. A porcine kidney-derived clonal cell line with clear genetic annotation is highly susceptible to African swine fever virus. Vet Res 2024; 55:42. [PMID: 38575961 PMCID: PMC10996120 DOI: 10.1186/s13567-024-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024] Open
Abstract
African Swine Fever virus (ASFV), the causative agent of African swine fever, is a highly lethal hemorrhagic virus affecting domestic pigs and wild boars. The primary target cells for ASFV infection are porcine alveolar macrophages (PAMs), which are difficult to obtain and maintain in vitro, and less subjective to genetic editing. To overcome these issues and facilitate ASFV research, we obtained a subclonal cell line PK1-C5 by subcloning LLC-PK1 cells that support stable ASFV proliferation. This consequential cell line exhibited high ASFV infection levels and similar viral growth characteristics to PAMs, while also allowing high-efficiency genomic editing through transfection or lentivirus transduction of Cas9. Taken together, our study provided a valuable tool for research aspects including ASFV-host interactions, pathogenicity, and vaccine development.
Collapse
Affiliation(s)
- Hua Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zheyu Liao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dongfan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinglin He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hailong Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pengfei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuexiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
42
|
Balint D, Brito IL. Human-gut bacterial protein-protein interactions: understudied but impactful to human health. Trends Microbiol 2024; 32:325-332. [PMID: 37805334 PMCID: PMC10990813 DOI: 10.1016/j.tim.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
The human gut microbiome is associated with a wide range of diseases; yet, the mechanisms these microbes use to influence human health are not fully understood. Protein-protein interactions (PPIs) are increasingly identified as a potential mechanism by which gut microbiota influence their human hosts. Similar to some PPIs observed in pathogens, many disease-relevant human-gut bacterial PPIs function by interacting with components of the immune system or the gut barrier. Here, we highlight recent advances in these two areas. It is our opinion that there is a vastly unexplored network of human-gut bacterial PPIs that contribute to the prevention or pathogenesis of various diseases and that future research is warranted to expand PPI discovery.
Collapse
Affiliation(s)
- Diana Balint
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
44
|
Yang Z, Johnson BA, Meliopoulos VA, Ju X, Zhang P, Hughes MP, Wu J, Koreski KP, Clary JE, Chang TC, Wu G, Hixon J, Duffner J, Wong K, Lemieux R, Lokugamage KG, Alvarado RE, Crocquet-Valdes PA, Walker DH, Plante KS, Plante JA, Weaver SC, Kim HJ, Meyers R, Schultz-Cherry S, Ding Q, Menachery VD, Taylor JP. Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity. Cell Rep 2024; 43:113965. [PMID: 38492217 PMCID: PMC11044841 DOI: 10.1016/j.celrep.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.
Collapse
Affiliation(s)
- Zemin Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinjun Wu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin P Koreski
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jemma E Clary
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - R Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
45
|
Singh MS, Pyati A, Rubi RD, Subramanian R, Muley VY, Ansari MA, Yellaboina S. Systems-wide view of host-pathogen interactions across COVID-19 severities using integrated omics analysis. iScience 2024; 27:109087. [PMID: 38384846 PMCID: PMC10879696 DOI: 10.1016/j.isci.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanisms explaining the variability in COVID-19 clinical manifestations (mild, moderate, and severe) are not fully understood. To identify key gene expression markers linked to disease severity, we employed an integrated approach, combining host-pathogen protein-protein interaction data and viral-induced host gene expression data. We analyzed an RNA-seq dataset from peripheral blood mononuclear cells across 12 projects representing the spectrum of disease severity. We identified genes showing differential expression across mild, moderate, and severe conditions. Enrichment analysis of the pathways in host proteins targeted by each of the SARS-CoV-2 proteins revealed a strong association with processes related to ribosomal biogenesis, translation, and translocation. Interestingly, most of these pathways and associated cellular machinery, including ribosomal biogenesis, ribosomal proteins, and translation, were upregulated in mild conditions but downregulated in severe cases. This suggests that COVID-19 exhibits a paradoxical host response, boosting host/viral translation in mild cases but slowing it in severe cases.
Collapse
Affiliation(s)
- Mairembam Stelin Singh
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
- Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| | - Anand Pyati
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| | - R. Devika Rubi
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | - Rajasekaran Subramanian
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | | | - Mairaj Ahmed Ansari
- Department of Biotechnology, SCLS, Jamia Hamdard, New Delhi, India
- Centre for Virology, SIST, Jamia Hamdard, New Delhi, India
| | - Sailu Yellaboina
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| |
Collapse
|
46
|
Muneer A, Xie L, Xie X, Zhang F, Wrobel JA, Xiong Y, Yu X, Wang C, Gheorghe C, Wu P, Song J, Ming GL, Jin J, Song H, Shi PY, Chen X. Targeting G9a translational mechanism of SARS-CoV-2 pathogenesis for multifaceted therapeutics of COVID-19 and its sequalae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583415. [PMID: 38496599 PMCID: PMC10942352 DOI: 10.1101/2024.03.04.583415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
By largely unknown mechanism(s), SARS-CoV-2 hijacks the host translation apparatus to promote COVID-19 pathogenesis. We report that the histone methyltransferase G9a noncanonically regulates viral hijacking of the translation machinery to bring about COVID-19 symptoms of hyperinflammation, lymphopenia, and blood coagulation. Chemoproteomic analysis of COVID-19 patient peripheral mononuclear blood cells (PBMC) identified enhanced interactions between SARS-CoV-2-upregulated G9a and distinct translation regulators, particularly the N 6 -methyladenosine (m 6 A) RNA methylase METTL3. These interactions with translation regulators implicated G9a in translational regulation of COVID-19. Inhibition of G9a activity suppressed SARS-CoV-2 replication in human alveolar epithelial cells. Accordingly, multi-omics analysis of the same alveolar cells identified SARS-CoV-2-induced changes at the transcriptional, m 6 A-epitranscriptional, translational, and post-translational (phosphorylation or secretion) levels that were reversed by inhibitor treatment. As suggested by the aforesaid chemoproteomic analysis, these multi-omics-correlated changes revealed a G9a-regulated translational mechanism of COVID-19 pathogenesis in which G9a directs translation of viral and host proteins associated with SARS-CoV-2 replication and with dysregulation of host response. Comparison of proteomic analyses of G9a inhibitor-treated, SARS-CoV-2 infected cells, or ex vivo culture of patient PBMCs, with COVID-19 patient data revealed that G9a inhibition reversed the patient proteomic landscape that correlated with COVID-19 pathology/symptoms. These data also indicated that the G9a-regulated, inhibitor-reversed, translational mechanism outperformed G9a-transcriptional suppression to ultimately determine COVID-19 pathogenesis and to define the inhibitor action, from which biomarkers of serve symptom vulnerability were mechanistically derived. This cell line-to-patient conservation of G9a-translated, COVID-19 proteome suggests that G9a inhibitors can be used to treat patients with COVID-19, particularly patients with long-lasting COVID-19 sequelae.
Collapse
|
47
|
Zhang TY, Chen YQ, Tan JC, Zhou JA, Chen WN, Jiang T, Zha JY, Zeng XK, Li BW, Wei LQ, Zou Y, Zhang LY, Hong YM, Wang XL, Zhu RZ, Xu WX, Xi J, Wang QQ, Pan L, Zhang J, Luan Y, Zhu RX, Wang H, Chen C, Liu NN. Global fungal-host interactome mapping identifies host targets of candidalysin. Nat Commun 2024; 15:1757. [PMID: 38413612 PMCID: PMC10899660 DOI: 10.1038/s41467-024-46141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Candidalysin, a cytolytic peptide toxin secreted by the human fungal pathogen Candida albicans, is critical for fungal pathogenesis. Yet, its intracellular targets have not been extensively mapped. Here, we performed a high-throughput enhanced yeast two-hybrid (HT-eY2H) screen to map the interactome of all eight Ece1 peptides with their direct human protein targets and identified a list of potential interacting proteins, some of which were shared between the peptides. CCNH, a regulatory subunit of the CDK-activating kinase (CAK) complex involved in DNA damage repair, was identified as one of the host targets of candidalysin. Mechanistic studies revealed that candidalysin triggers a significantly increased double-strand DNA breaks (DSBs), as evidenced by the formation of γ-H2AX foci and colocalization of CCNH and γ-H2AX. Importantly, candidalysin binds directly to CCNH to activate CAK to inhibit DNA damage repair pathway. Loss of CCNH alleviates DSBs formation under candidalysin treatment. Depletion of candidalysin-encoding gene fails to induce DSBs and stimulates CCNH upregulation in a murine model of oropharyngeal candidiasis. Collectively, our study reveals that a secreted fungal toxin acts to hijack the canonical DNA damage repair pathway by targeting CCNH and to promote fungal infection.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao-Qi Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wan-Ning Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Yin Zha
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Xiang-Kang Zeng
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Bo-Wen Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu-Yao Zhang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Run-Ze Zhu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xi
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin-Qin Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Pan
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Yang Luan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui-Xin Zhu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
48
|
Cheng F, Wang F, Tang J, Zhou Y, Fu Z, Zhang P, Haines JL, Leverenz JB, Gan L, Hu J, Rosen-Zvi M, Pieper AA, Cummings J. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer's disease. Cell Rep Med 2024; 5:101379. [PMID: 38382465 PMCID: PMC10897520 DOI: 10.1016/j.xcrm.2023.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The high failure rate of clinical trials in Alzheimer's disease (AD) and AD-related dementia (ADRD) is due to a lack of understanding of the pathophysiology of disease, and this deficit may be addressed by applying artificial intelligence (AI) to "big data" to rapidly and effectively expand therapeutic development efforts. Recent accelerations in computing power and availability of big data, including electronic health records and multi-omics profiles, have converged to provide opportunities for scientific discovery and treatment development. Here, we review the potential utility of applying AI approaches to big data for discovery of disease-modifying medicines for AD/ADRD. We illustrate how AI tools can be applied to the AD/ADRD drug development pipeline through collaborative efforts among neurologists, gerontologists, geneticists, pharmacologists, medicinal chemists, and computational scientists. AI and open data science expedite drug discovery and development of disease-modifying therapeutics for AD/ADRD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC H3T 2A7, Canada
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhimin Fu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46037, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, and Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianying Hu
- IBM Research, Yorktown Heights, New York, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research Labs, Haifa 3498825, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| |
Collapse
|
49
|
Kole A, Bag AK, Pal AJ, De D. Generic model to unravel the deeper insights of viral infections: an empirical application of evolutionary graph coloring in computational network biology. BMC Bioinformatics 2024; 25:74. [PMID: 38365632 PMCID: PMC10874019 DOI: 10.1186/s12859-024-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations. METHODS To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins. RESULTS We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences. CONCLUSION Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.
Collapse
Affiliation(s)
- Arnab Kole
- Department of Computer Application, The Heritage Academy, Kolkata, W.B., 700107, India.
| | - Arup Kumar Bag
- Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Nadia, W.B., 741249, India
| |
Collapse
|
50
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. NAR MOLECULAR MEDICINE 2024; 1:ugad001. [PMID: 38994440 PMCID: PMC11233254 DOI: 10.1093/narmme/ugad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| |
Collapse
|