1
|
Yang QC, Wang YY, Wang S, Song A, Wang WD, Zhang L, Sun ZJ. Engineered bacterial membrane biomimetic covalent organic framework as nano-immunopotentiator for cancer immunotherapy. Bioact Mater 2025; 47:283-294. [PMID: 39925708 PMCID: PMC11803166 DOI: 10.1016/j.bioactmat.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
The cellular uptake and tissue dispersion efficiency of nanomedicines are crucial for realizing their biological functionality. As a cutting-edge category of nanomedicine, covalent organic frameworks (COFs)-based photosensitizers, have been extensively employed in cancer phototherapy in recent years. However, the inherent aggregation tendency of COFs hinders their uptake by tumor cells and dispersion within tumor tissues, thereby limiting their therapeutic efficacy. In this study, we employed Fusobacterium nucleatum (F.n.), a prevalent intratumoral bacterium, to construct a bacterium membrane-wrapped COF, COF-306@FM, which is readily taken up by cancer cells and uniformly dispersed within tumor tissues. Meanwhile, the F.n. membrane can also serve as an immune adjuvant to warm up the "cold" tumor immune microenvironment by enhancing the CD8+ T and B cells infiltration, and inducing the formation of tumor-located tertiary lymphoid structures. Consequently, the response rate of αPD-L1 immunotherapy was drastically promoted to efficiently prevent tumor metastasis and recurrence, causing 84.6 % distant tumor inhibition and complete suppression of tumor metastasis. In summary, this innovative approach not only enhances the therapeutic potential of COFs but also opens up new avenues for integrating microbial and nanotechnological strategies in cancer treatment.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yuan-Yuan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Shuo Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - An Song
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wen-Da Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Liang Zhang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
2
|
Gao J, Tang L, Fu C, Cao Y, Liu H, Yin Y, Li Z, Zhu Y, Shu W, Zhang Y, Ru X, Wang W. A Nano-Strategy for Advanced Triple-Negative Breast Cancer Therapy by Regulating Intratumoral Microbiota. NANO LETTERS 2025; 25:6134-6144. [PMID: 40177896 DOI: 10.1021/acs.nanolett.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Intratumoral microbiota have been identified as a component of the tumor microenvironment that regulates the metastatic behavior of tumors. They serve not only as indicators of tumor pathology but also as potential drug targets in cancer therapy. Herein, a multifunctional nanoplatform (DD@FEL) is prepared by combining antibiotic doxycycline (DOXY) that can combat intratumoral microbiota and the chemotherapeutic drug doxorubicin (DOX) in ergosterol-originated liposome. Specially, ergosterol is utilized as a substitute for cholesterol in liposomes to exert pharmacological activity. Mechanistically, DD@FEL leveraged DOXY to inhibit cancer metastasis based on the regulation of intratumoral microbiota, which synergizes with the chemotherapeutic effect of DOX, eventually inhibiting the progression of triple-negative breast cancer (TNBC). Verified both in vitro and in vivo, DD@FEL effectively exerts a cytotoxic effect on TNBC cells, delays the growth of primary TNBC, and attenuates the development of its lung metastasis, providing a promising therapeutic strategy to control both orthotopic and metastatic TNBC.
Collapse
Affiliation(s)
- Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn 53127, Germany
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xinrong Ru
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Li F, Zheng B, Chen J, Yan Q, Lu Z, Fang C, Fu Y, Li X. Regulating the Tumor Microbiome through Near-Infrared-III Light-Excited Photosynthesis. ACS NANO 2025; 19:14107-14120. [PMID: 40165013 DOI: 10.1021/acsnano.4c18954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tumor microbiomes are increasingly associated with the growth and metastasis of tumors. Exploring the regulation of the tumor microbiome through therapeutics is an area of interest in cancer therapy. In this study, the authors have investigated a biohybrid with 1550 nm light-excited photosynthetic ability to regulate the tumor microbiome. This system utilizes Er-based core-shell upconversion nanoparticles to arm microalga Chlorella, enabling the rapid evolution of Chlorella to perform oxygenic photosynthesis under 1550 nm light excitation. This biohybrid may alleviate hypoxia within the tumor microenvironment and induce significant changes in the tumor microbiome, ultimately resulting in marked inhibition of tumor growth. Benefiting from the strong tissue penetration ability of 1550 nm light, this biohybrid also exhibits clear inhibition of deep-seated tumors. The therapeutic efficacy of microbiome regulation is directly mediated by immune activation, converting "cold" tumors into "hot" tumors, which also leads to a long-lasting immune memory effect.
Collapse
Affiliation(s)
- Feiyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bingzhu Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafei Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qilong Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zijie Lu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Chao Fang
- iBioMat PharmTeck (Hangzhou) Co. Ltd., Building C 3F, 2959 Yuhangtang Road, Hangzhou 311100, China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
5
|
Lu J, Wei W, Zheng D. Fusobacterium nucleatum in Colorectal Cancer: Ally Mechanism and Targeted Therapy Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0640. [PMID: 40207017 PMCID: PMC11979337 DOI: 10.34133/research.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Fusobacterium nucleatum (Fn), an oral anaerobic commensal, has recently been identified as a crucial oncogenic contributor to colorectal cancer pathogenesis through its ectopic colonization in the gastrointestinal tract. Accumulating evidence reveals its multifaceted involvement in colorectal cancer initiation, progression, metastasis, and therapeutic resistance to conventional treatments, including chemotherapy, radiotherapy, and immunotherapy. This perspective highlights recent advances in anti-Fn strategies, including small-molecule inhibitors, nanomedicines, and biopharmaceuticals, while critically analyzing the translational barriers in developing targeted antimicrobial interventions. We further propose potential strategies to overcome current challenges in Fn modulation, aiming to pave the way for more effective therapeutic interventions and better clinical outcomes.
Collapse
Affiliation(s)
- Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
7
|
Patra D, Dev G, Hand TW, Overacre-Delgoffe A. Friends close, enemies closer: the complex role of the microbiome in antitumor immunity. Curr Opin Immunol 2025; 93:102537. [PMID: 40015179 DOI: 10.1016/j.coi.2025.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Immunotherapy has achieved remarkable advances in cancer treatment by harnessing the immune system to combat tumors, yet its effectiveness remains inconsistent across patients and tumor types. The microbiota, a diverse assemblage of microorganisms residing at host barrier surfaces, is pivotal in shaping immune responses. This review explores the direct and indirect mechanisms via which the microbiota modulates antitumor immune responses both locally within the tumor microenvironment and systemically by affecting distant tumors. We discuss recent findings linking microbiota-derived metabolites and microbiota-derived antigens with antitumor immunity and immunotherapy response. Additionally, we discuss recent advances in microbiome-based therapies, including fecal microbiota transplantation. We propose the use and development of new analytical techniques to further characterize the complex functions and interactions between the microbiome and immune system. To conclude, we outline recommendations for future research and therapeutic approaches to leverage the microbiome to improve current immunotherapies.
Collapse
Affiliation(s)
- Dipyaman Patra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA
| | - Gagan Dev
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Timothy W Hand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, USA.
| |
Collapse
|
8
|
Alves Costa Silva C, Almonte AA, Zitvogel L. Oncobiomics: Leveraging Microbiome Translational Research in Immuno-Oncology for Clinical-Practice Changes. Biomolecules 2025; 15:504. [PMID: 40305219 PMCID: PMC12024955 DOI: 10.3390/biom15040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Growing evidence suggests that cancer should not be viewed solely as a genetic disease but also as the result of functional defects in the metaorganism, including disturbances in the gut microbiota (i.e., gut dysbiosis). The human microbiota plays a critical role in regulating epithelial barrier function in the gut, airways, and skin, along with host metabolism and systemic immune responses against microbes and cancer. Collaborative international networks, such as ONCOBIOME, are essential in advancing research equity and building microbiome resources to identify and validate microbiota-related biomarkers and therapies. In this review, we explore the intricate relationship between the microbiome, metabolism, and cancer immunity, and we propose microbiota-based strategies to improve outcomes for individuals at risk of developing cancer or living with the disease.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Andrew A. Almonte
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, 94805 Villejuif, France
| |
Collapse
|
9
|
Zhang X, Chen Y, Xia Y, Lin S, Zhou X, Pang X, Yu J, Sun L. Oral microbiota in colorectal cancer: Unraveling mechanisms and application potential. Life Sci 2025; 365:123462. [PMID: 39947314 DOI: 10.1016/j.lfs.2025.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Colorectal cancer (CRC), with a rising prevalence, is the third most commonly diagnosed cancer and the third leading cause of cancer-related death. Studies have shown that a complex interplay between the development of CRC and alterations in the oral microbiome. Recent advancements in genomics and metagenomics have highlighted the significant roles of certain oral microbes, particularly Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), in the progression of CRC. However, the detailed mechanisms by which the oral microbiota influence CRC development remain unclear. This review aims to elucidate the role of oral microbiota in CRC progression, evaluate their potential as biomarkers, and explore therapeutic strategies targeting these microbes. This review offers insights into the mechanisms underlying the interaction between oral microbiota and CRC, underscoring the potential of oral microbes as diagnostic and prognostic biomarkers, as well as therapeutic targets. Future research should focus on clarifying the exact pathways and developing innovative therapeutic strategies to enhance the diagnosis and treatment.
Collapse
Affiliation(s)
- Xinran Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yixin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Shenghao Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinlei Zhou
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Pang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Kang Z, Chen L, Li P, Zheng Z, Shen J, Xiao Z, Miao Y, Yang Y, Chen Q. A polyvalent vaccine for selectively killing tumor-associated bacteria to prevent cancer metastasis. SCIENCE ADVANCES 2025; 11:eadt0341. [PMID: 40085697 PMCID: PMC11908479 DOI: 10.1126/sciadv.adt0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Specific bacteria, including Fusobacterium nucleatum, Streptococcus sanguis, Enterococcus faecalis, and Staphylococcus xylosus, have been identified as contributors to breast cancer metastasis. Due to limitations such as lack of selectivity, traditional antibiotic therapies face obstacles in eliminating intratumoral bacteria. Herein, this work proposes the use of therapeutic vaccines to selectively target and eliminate harmful bacteria within tumors. A multivalent vaccine encapsulating both insoluble and soluble bacterial antigens was developed, addressing the shortcomings of traditional antibacterial vaccines by balancing broad antigen coverage with effective immune activation. This vaccine induces robust downstream immune responses to eliminate F. nucleatum, S. sanguis, E. faecalis, and S. xylosus, demonstrating notable therapeutic and preventive efficacy in bacteria-induced cancer metastasis models. Unexpectedly, vaccinated infected mice showed even slower tumor metastasis than uninfected mice. Overall, this study validates the potential of nanovaccines in modulating the intratumoral microbiome for tumor therapy and highlights tumor-associated bacterial infections as potential promising antitumor targets.
Collapse
Affiliation(s)
- Zheyu Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Pengxing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhisheng Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zhao Y, Zhu M, Ling Y, Zhao Y, Lu X, Chu B, He Y, Wang H. A DNA Nanopatch-Bacteriophage System Targeting Streptococcus Gallolyticus for Inflammatory Bowel Disease Treatment and Colorectal Cancer Prevention. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417334. [PMID: 39924920 DOI: 10.1002/adma.202417334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Persistent inflammation in inflammatory bowel disease (IBD) increases Streptococcus gallolyticus (Sg) colonization, increasing the risk of colorectal cancer progression via the Sg-activated cyclooxygenase-2 (COX-2) pathway and β-catenin upregulation. This study presents Sg-specific bacteriophages modified with DNA nanopatches (DNPs@P) designed to treat IBD and prevent Sg-induced malignancy. The DNPs are composed of DNA origami nanosheets and phage capture strands. The DNPs scavenge reactive oxygen species, enhancing the therapeutic efficacy of the phages while targeting and lysing pathogenic bacteria. Coating with an enteric polymer, DNPs@P ensures effective delivery in the gastrointestinal tract. These findings demonstrate significant restoration of colonic length, reduced inflammation, and improved gut microbiota diversity compared with current clinical treatments. Additionally, DNPs@P effectively prevents colonic tumourigenesis in mouse models. This approach presents a promising strategy for treating gastrointestinal diseases by remodeling the gut microenvironment, addressing a critical gap in current therapies.
Collapse
Affiliation(s)
- Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Mengna Zhu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yingying Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Lv B, Zhao Y, Li G, Jiang H, Zhang M, Li Z, Cao J. Tumor-Resident Intracellular Bacteria Scavenger Activated In Situ Vaccines for Potent Cancer Photoimmunotherapy. Adv Healthc Mater 2025; 14:e2404271. [PMID: 39806831 DOI: 10.1002/adhm.202404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Indexed: 01/16/2025]
Abstract
In situ tumor vaccines, which utilize antigens generated during tumor treatment to stimulate a cancer patient's immune system, has become a potential field in cancer immunotherapy. However, due to the immunosuppressive tumor microenvironment (ITME), the generation of tumor antigens is always mild and not sufficient. Tumor-resident intracellular bacteria have been identified as a complete tumor microenvironment component to contribute to creating ITME. Herein, a tumor-resident intracellular bacteria scavenger is designed to induce enhanced antitumor photoimmunotherapy-driven in situ vaccines for treating hypoxic tumors. This scavenger is developed by integrating photosensitizer CyI and antibiotics Doxycycline (Doxy) into thermal-sensitive tumor-derived exosomes fused liposomes (ECDL). In vitro and in vivo results showed that ECDL could homologous target to cancer cells and restrict the respiration of mitochondrial to reduce tumor hypoxia, thus providing continuous oxygen to eliminate both tumor cells and tumor-resident intracellular bacteria, which could induce in situ vaccines for ablating the primary tumor and inhibiting the tumor metastasis and recurrence. Moreover, eliminating tumor-resident intracellular bacteria neutralizes the ITME and triggers the production of bacterial-related neoantigens, which could further strength the immunotherapy. This study provided versatile and effective in situ vaccines that are promising for local, abscopal, and metastatic tumor treatment.
Collapse
Affiliation(s)
- Bai Lv
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Gang Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Huimei Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
13
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
15
|
Zang J, Yin F, Liu Z, Li F, Zhang Y. Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy. Nanomedicine (Lond) 2025; 20:305-318. [PMID: 39889806 PMCID: PMC11792809 DOI: 10.1080/17435889.2024.2443388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025] Open
Abstract
Colorectal cancer (CRC) is a significant threat to human health. The dynamic equilibrium between probiotics and pathogenic bacteria within the gut microbiota is crucial in mitigating the risk of CRC. An overgrowth of harmful microorganisms in the gastrointestinal tract can result in an excessive accumulation of bacterial toxins and carcinogenic metabolites, thereby disrupting the delicate balance of the microbiota. This disruption may lead to alterations in microbial composition, impairment of mucosal barrier function, potential promotion of abnormal cell proliferation, and ultimately contribute to the progression of CRC. Recently, research has indicated that intestinal presence of Fusobacterium nucleatum (Fn) significantly influences the onset, progression, and metastasis of CRC. Consequently, disrupting the interaction between CRC cells and Fn presents a promising strategy against CRC. Nanomaterials have been extensively utilized in cancer therapy and bacterial infection control, demonstrating substantial potential in treating bacteria-associated tumors. This review begins by elucidating the mechanisms of gut microbiota and the occurrence and progression of CRC, with a particular emphasis on clarifying the intricate relationship between Fn and CRC. Subsequently, we highlight strategies that utilize nanomaterials to disrupt the association between Fn and CRC. Overall, this review offers valuable insight and guidance for leveraging nanomaterials in CRC therapy.
Collapse
Affiliation(s)
- Jing Zang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fengqian Li
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Hou T, Huang X, Lai J, Zhou D. Intra-tumoral bacteria in breast cancer and intervention strategies. Adv Drug Deliv Rev 2025; 217:115516. [PMID: 39828126 DOI: 10.1016/j.addr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The microbiome, consisting of a wide range of both beneficial and harmful microorganisms, is vital to various physiological and pathological processes in the human body, including cancer pathogenesis. Tumor progression is often accompanied by the destruction of the vascular system, allowing bacteria to circulate into the tumor area and flourish in an immunosuppressive environment. Microbes are recognized as significant components of the tumor microenvironment. Recent research has increasingly focused on the role of intra-tumoral bacteria in the onset, progression, and treatment of breast cancer-the most prevalent cancer among women. This review elucidates the potential mechanisms by which intra-tumoral bacteria impact breast cancer and discusses different therapeutic approaches aimed at targeting these bacteria. It provides essential insights for enhancing existing treatment paradigms while paving the way for novel anticancer interventions. As our understanding of the microbiome's intricate relationship with cancer deepens, it opens avenues for groundbreaking strategies that could redefine oncology.
Collapse
Affiliation(s)
- Ting Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Castillo JG, Fernandez S, Campbell T, Gonzalez-Ventura D, Williams J, Ybarra J, Hernandez NF, Wells E, Portnoy DA, DuPage M. Cellular mechanisms underlying beneficial versus detrimental effects of bacterial antitumor immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580555. [PMID: 39975413 PMCID: PMC11838217 DOI: 10.1101/2024.02.15.580555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacteria engineered to express tumor antigens as a cancer vaccine have yielded mixed results. Here, we utilized an attenuated strain of Listeria monocytogenes ( ΔactA, Lm ) that does not express tumor antigen to explore the immunological response to Listeria itself in the context of intravenous (IV), intratumoral (IT), or a combination of IV+IT administration into tumor-bearing mice. Unexpectedly, we found that Lm persisted in tumors of immune competent mice, regardless of the administration route. While IT Lm alone led to the recruitment of immunosuppressive immune cells that promoted tumor growth, IV Lm followed by IT Lm controlled tumor growth. IV Lm vaccination generated a pool of anti- Lm cytotoxic CD8 T cells that killed Lm -infected non-tumor cells to control tumor growth both indirectly, by limiting cancer cell proliferation, and directly, by enhancing tumor-specific T cell responses. Our findings reveal a differential impact of IT Lm administration on tumor progression that depends on the presence of anti- Lm CD8 T cells, which alone are sufficient to promote therapeutic efficacy.
Collapse
|
18
|
Xie Y, Wang J, Li L, Wang M, Sun J, Chang J, Lin J, Li C. A Metal Chelation Therapy to Effectively Eliminate Breast Cancer and Intratumor Bacteria While Suppressing Tumor Metastasis by Copper Depletion and Zinc Ions Surge. Angew Chem Int Ed Engl 2025; 64:e202417592. [PMID: 39394640 DOI: 10.1002/anie.202417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
The intratumor microbiota results in the immunosuppressive microenvironment and facilitates tumor growth and metastasis. However, developing a synergistic therapy with antitumor, antibacterial, and antimetastatic effects faces enormous challenges. Here, we propose an innovative metal chelation therapy to effectively eliminate tumor and intratumor bacteria and suppress tumor metastasis. Different from traditional chelation therapy that only consumes metal elements, this therapy not only eliminates the crucial metal elements for tumor metabolism but also releases new metal ions with antitumor and antibacterial properties. Based on the high demand for copper in breast cancer, we prepare a fibrous therapeutic nanoagent (Zn-PEN) by chelating the copper chelator D-Penicillamine (D-PEN) with Zn2+. Firstly, Zn-PEN achieves dual inhibition of oxidative phosphorylation (OXPHOS) and glycolysis metabolism in breast cancer through copper depletion and Zn2+ activated cGAS-STING pathway, thus inducing tumor cell death. Secondly, Zn-PEN has the capability to eradicate Fusobacterium nucleatum (F. nucleatum) in breast cancer, thereby mitigating its immunosuppressive impact on the tumor microenvironment. Finally, Zn-PEN effectively inhibits tumor metastasis through multiple routes, including the inhibition of epithelial-mesenchymal transition (EMT) process, activation of cGAS-STING pathway, and elimination with F. nucleatum. Therefore, we verify the feasibility of Zn-PEN mediated metal chelation therapy in a 4T1 model infected with F. nucleatum, providing a new therapeutic strategy for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jikai Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jiaying Chang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
19
|
Becker AS, Oehmcke-Hecht S, Dargel E, Kaps P, Freitag T, Kreikemeyer B, Junghanss C, Maletzki C. Preclinical in vitro models of HNSCC and their role in drug discovery - an emphasis on the cancer microenvironment and microbiota. Expert Opin Drug Discov 2025; 20:81-101. [PMID: 39676285 DOI: 10.1080/17460441.2024.2439456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Treatment options and patient outcomes have not improved significantly over the past decades, increasing the need for better preclinical models. Holistic approaches that include an intact and functional immune compartment along with the patient's individual tumor microbiome will help improve the predictive value of novel drug efficacy. AREAS COVERED In this review, we describe the challenges of modeling the complex and heterogeneous tumor landscape in HNSCC and the importance of sophisticated patient-specific 3D in vitro models to pave the way for clinical trials with novel immunomodulatory drugs. We also discuss the impact of the tumor microbiome and the potential implications for prospective drug screening and validation trials. EXPERT OPINION The repertoire of well-characterized preclinical 3D in vitro models continues to grow. With the increasing attention to the complex cellular, immunological, molecular, and spatio-temporal characteristics of tumors, well-designed proof-of-concept studies to test novel drug efficacy are on the verge of providing valuable, practice-changing insights for clinical trials. Bringing together expertise and improving collaboration between clinicians, academics, and regulatory agencies will facilitate the translation of preclinical findings into clinically meaningful outcomes.
Collapse
Affiliation(s)
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Erik Dargel
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Thomas Freitag
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Silva CAC, Fidelle M, Almonte AA, Derosa L, Zitvogel L. Gut Microbiota-Related Biomarkers in Immuno-Oncology. Annu Rev Pharmacol Toxicol 2025; 65:333-354. [PMID: 39259979 DOI: 10.1146/annurev-pharmtox-061124-102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carcinogenesis is associated with the emergence of protracted intestinal dysbiosis and metabolic changes. Increasing evidence shows that gut microbiota-related biomarkers and microbiota-centered interventions are promising strategies to overcome resistance to immunotherapy. However, current standard methods for evaluating gut microbiota composition are cost- and time-consuming. The development of routine diagnostic tools for intestinal barrier alterations and dysbiosis constitutes a critical unmet medical need that can guide routine treatment and microbiota-centered intervention decisions in patients with cancer. In this review, we explore the influence of gut microbiota on cancer immunotherapy and highlight gut-associated biomarkers that have the potential to be transformed into simple diagnostic tools, thus guiding standard treatment decisions in the field of immuno-oncology. Mechanistic insights toward leveraging the complex relationship between cancer immunosurveillance, gut microbiota, and metabolism open exciting opportunities for developing novel biomarkers in immuno-oncology.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Marine Fidelle
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Andrew A Almonte
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Lisa Derosa
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Laurence Zitvogel
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| |
Collapse
|
21
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
22
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
23
|
Wang Y, Jiang Z, Zhang K, Tang H, Wang G, Gao J, He G, Liang B, Li L, Yang C, Deng X. Whole-Tumor Clearing and Imaging of Intratumor Microbiota in Three Dimensions with miCDaL Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400694. [PMID: 39378003 PMCID: PMC11600245 DOI: 10.1002/advs.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/16/2024] [Indexed: 11/28/2024]
Abstract
Acquiring detailed spatial information about intratumor microbiota in situ is challenging, which leaves 3D distributions of microbiota within entire tumors largely unexplored. Here, a modified iDISCO-CUBIC tissue clearing and D-amino acid microbiome labeling-based (miCDaL) strategy are proposed, that integrates microbiota in situ labeling, tissue clearing, and whole-mount tissue imaging to enable 3D visualization of indigenous intratumor microbiota. Leveraging whole-mount spatial resolution and centimeter-scale imaging depth, the 3D biogeography of microbiota is successfully charted across various tumors at different developmental stages, providing quantitative spatial insights in relation to host tumors. By incorporating an immunostaining protocol, 3D imaging of the immunologic microenvironment is achieved in both murine and human mammary tumors that is previously assumed to be bacteria-free. Notably, immune infiltrates, including T cells and NK cells, and tertiary lymphoid structures are conspicuously absent in bacteria-colonized regions. This 3D imaging strategy for mapping Indigenous intratumor microbiota offers valuable insights into host-microbiota interactions.
Collapse
Affiliation(s)
- Yuezhou Wang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zile Jiang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Kai Zhang
- Department of Infectious Diseases and HepatologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Huimin Tang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Guimei Wang
- Department of PathologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Jinshan Gao
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Guanghui He
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Baoyue Liang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Li Li
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentationthe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujian361005China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
- Department of HematologyThe First Affiliated Hospital of Xiamen UniversityXiamen UniversityXiamenFujian361003China
| |
Collapse
|
24
|
Chen B, He Y, Bai L, Pan S, Wang Y, Mu M, Fan R, Han B, Huber PE, Zou B, Guo G. Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate antitumor immunity in combined radioimmunotherapy and photothermal therapy. J Mater Chem B 2024. [PMID: 39420720 DOI: 10.1039/d4tb01831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Reactive oxygen species (ROS)-mediated immunogenic cell death (ICD) is crucial in radioimmunotherapy by boosting innate antitumor immunity. However, the hypoxic tumor microenvironment (TME) often impedes ROS production, limiting the efficacy of radiotherapy. To tackle this challenge, a combination therapy involving radiotherapy and immune checkpoint blockade (ICB) with anti-programmed death-ligand 1 (PD-L1) has been explored to enhance antitumor effects and reprogram the immunosuppressive TME. Here, we introduce a novel PD-L1 aptamer-functionalized nanoradiosensitizer designed to augment radiotherapy by increasing X-ray deposition specifically at the tumor site. This innovative X-ray-activated nanoradiosensitizer, comprising gold-MnO2 nanoflowers, efficiently enhances ROS generation under single low-dose radiation and repolarizes M2-like macrophages, thereby boosting antitumor immunity. Additionally, the ICB inhibitor BMS-202 synergizes with the PD-L1 aptamer-assisted nanoradiosensitizer to block the PD-L1 receptor, promoting T cell activation. Furthermore, this nanoradiosensitizer exhibits exceptional photothermal conversion efficiency, amplifying the ICD effect. The PD-L1-targeted nanoradiosensitizer effectively inhibits primary tumor growth and eliminates distant tumors, underscoring the potential of this strategy in optimizing both radioimmunotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yinbo He
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Bai
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yinggang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Min Mu
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832002, China
| | - Peter Ernst Huber
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bingwen Zou
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Guo C, An Q, Zhang L, Wei X, Xu J, Yu J, Wu G, Ma J. Intratumoral microbiota as cancer therapeutic target. Aging Med (Milton) 2024; 7:636-644. [PMID: 39507228 PMCID: PMC11535161 DOI: 10.1002/agm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Intratumoral microbiota, which affects the physiological and pathological processes of the host, has attracted increasing attention from researchers. Microbials have been found in normal as well as tumor tissues that were originally thought to be sterile. Intratumoral microbiota is considered to play a significant role in the development of tumors and the reduction of clinical benefits. In addition, intratumoral microbiota are heterogeneous, which have different distribution in various types of tumors, and can influence tumor development through different mechanisms, including genome mutations, inflammatory responses, activated cancer pathways, and immunosuppressive microenvironments. Therefore, eliminating the intratumoral microbiota is considered one of the most promising ways to slow down the tumor progression and improve therapeutic outcomes. In this review, we systematically categorized the intratumoral microbiota and elucidated its role in the pathogenesis and therapeutic response of cancer. We have also described the novel strategies to mitigate the impact of tumor progression. We hope this review will provide new insights for the anti-tumor treatment, particularly for the elderly population, where such insights could significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi An
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Lu‐yao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xun‐dong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jiang‐yong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Guo‐ju Wu
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
26
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
27
|
Bai L, Yang M, Wu J, You R, Chen Q, Cheng Y, Qian Z, Yang X, Wang Y, Liu Y. An injectable adhesive hydrogel for photothermal ablation and antitumor immune activation against bacteria-associated oral squamous cell carcinoma. Acta Biomater 2024; 186:229-245. [PMID: 39038749 DOI: 10.1016/j.actbio.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Pathogenic bacteria are closely associated with the occurrence, development and metastasis of oral squamous cell carcinoma (OSCC). Antibacterial therapy has been considered an enhancement strategy to suppress bacteria-associated tumors and promote anti-tumor immune responses. Herein, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for the in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis (Pg), one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, composed of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820, was prepared using a simple dissolve-dry-swell solvent exchange method. Upon 808 nm laser irradiation, PNIPAM/DL@TIR exerted photothermal effects to ablate Pg-colonized OSCC and generate dual tumor and bacterial antigens. Owing to its large number of catechol groups, PNIPAM/DL@TIR efficiently captured these antigens to form an in situ antigen repository, thereby eliciting robust and durable antitumor immune responses. Proteomic analysis revealed that the captured antigens comprised both tumor neoantigens and bacterial antigens. The catechol groups endowed PNIPAM/DL@TIR with antioxidant activity, which was also conducive to stimulating antitumor immunity. Altogether, this study develops an injectable adhesive hydrogel and provides a combination strategy for treating bacteria-associated OSCC. STATEMENT OF SIGNIFICANCE: In this study, we developed an injectable adhesive hydrogel, PNIPAM/DL@TIR, for in situ photothermal ablation and robust stimulation of antitumor immunity against OSCC colonized by Porphyromonas gingivalis, one of the major oral pathogenic bacteria. PNIPAM/DL@TIR, which consists of poly(N-isopropylacrylamide), demethylated lignin, and TAT peptide-conjugated IR820 exhibited outstanding photothermal performance. Owing to the presence of catechol groups, PNIPAM/DL@TIR has good bioadhesive properties and can capture protein antigens to form in situ antigen repository, thus initiating robust and long-term antitumor immune responses. In addition, PNIPAM/DL@TIR exhibited strong antioxidant activity that is favorable for promoting antitumor immunity. In the mouse model of OSCC with bacterial infection, PNIPAM/DL@TIR not only ablated the primary tumors upon NIR laser irradiation, but also induced tumor and bacterial vaccination in situ to suppress distant tumors and lung metastasis.
Collapse
Affiliation(s)
- Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiaxin Wu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran You
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoying Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
28
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
29
|
Cern A, Skoczen SL, Snapp KS, Hod A, Zilbersheid D, Bavli Y, Alon-Maimon T, Bachrach G, Wei X, Berman B, Yassour M, Cedrone E, Neun BW, Dobrovolskaia MA, Clogston JD, Stern ST, Barenholz Y. Nano-mupirocin as tumor-targeted antibiotic: Physicochemical, immunotoxicological and pharmacokinetic characterization, and effect on gut microbiome. J Control Release 2024; 373:713-726. [PMID: 39038544 PMCID: PMC11638845 DOI: 10.1016/j.jconrel.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Nano-mupirocin is a PEGylated nano-liposomal formulation of the antibiotic mupirocin, undergoing evaluation for treating infectious diseases and intratumor bacteria. Intratumoral microbiota play an important role in the regulation of tumor progression and therapeutic efficacy. However, antibiotic use to target intratumoral bacteria should be performed in a way that will not affect the gut microbiota, found to enable the efficacy of cancer treatments. Nano-mupirocin may offer such a selective treatment. Herein, we demonstrate the ability of Nano-mupirocin to successfully target tumor-residing Fusobacterium nucleatum without an immediate effect on the gut microbiome. In-depth characterization of this novel formulation was performed, and the main findings include: (i). the pharmacokinetic analysis of mupirocin administered as Nano-mupirocin vs mupirocin lithium (free drug) demonstrated that most of the Nano-mupirocin in plasma is liposome associated; (ii). microbiome analysis of rat feces showed no significant short-term difference between Nano-mupirocin, mupirocin lithium and controls; (iii). Nano-mupirocin was active against intratumoral F. nucleatum, a tumor promoting bacteria that accumulates in tumors of the AT3 mice model of breast cancer. These data suggest the ability of Nano-mupirocin to target tumor residing and promoting bacteria.
Collapse
Affiliation(s)
- Ahuva Cern
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University of Jerusalem, Israel.
| | - Sarah L Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Kelsie S Snapp
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Atara Hod
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University of Jerusalem, Israel
| | - Daniel Zilbersheid
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University of Jerusalem, Israel
| | - Yaelle Bavli
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University of Jerusalem, Israel
| | - Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Bella Berman
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
30
|
Liang J, Tian X, Zhou M, Yan F, Fan J, Qin Y, Chen B, Huo X, Yu Z, Tian Y, Deng S, Peng Y, Wang Y, Liu B, Ma X. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials 2024; 309:122608. [PMID: 38744189 DOI: 10.1016/j.biomaterials.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.
Collapse
Affiliation(s)
- Jiahao Liang
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fei Yan
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, China
| | - Binlong Chen
- College of Biology, Hunan University, Changsha, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yan Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
31
|
Sheng D, Jin C, Yue K, Yue M, Liang Y, Xue X, Li P, Zhao G, Zhang L. Pan-cancer atlas of tumor-resident microbiome, immunity and prognosis. Cancer Lett 2024; 598:217077. [PMID: 38908541 DOI: 10.1016/j.canlet.2024.217077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The existence of microbiome in human tumors has been determined widely, but evaluating the contribution of intratumoral bacteria and fungi to tumor immunity and prognosis from a pan-cancer perspective remains absent. We designed an improved microbial analysis pipeline to reduce interference from host sequences, complemented with integration analysis of intratumoral microbiota at species level with clinical indicators, tumor microenvironment, and prognosis across cancer types. We found that intratumoral microbiota is associated with immunophenotyping, with high-immunity subtypes showing greater bacterial and fungal richness compared to low-immunity groups. We also noted that the combination of fungi and bacteria demonstrated promising prognostic value across cancer types. We, thus, present The Cancer Microbiota (TCMbio), an interactive platform that provides the intratumoral bacteria and fungi data, and a comprehensive analysis module for 33 types of cancers. This led to the discovery of clinical and prognostic significance of intratumoral microbes.
Collapse
Affiliation(s)
- Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandi Jin
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Liang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pingfu Li
- Shandong Huxley Medical Technology Co.,Ltd., Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
32
|
Luo M, Li Q, Gu Q, Zhang C. Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer. Am J Cancer Res 2024; 14:3962-3975. [PMID: 39267665 PMCID: PMC11387864 DOI: 10.62347/myza2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various cancers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer (CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open conundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to enhance the intratumoral immune response and render the tumor "immune-reactive". Intestinal microbes, such as the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, inhibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to enhance the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Mengjie Luo
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qi Li
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qingdan Gu
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Chunlei Zhang
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| |
Collapse
|
33
|
Fan S, Zhang W, Zhou L, Wang D, Tang D. Potential role of the intratumoral microbiota in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 137:112537. [PMID: 38909493 DOI: 10.1016/j.intimp.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Colorectal cancer (CRC) has been one of the most common malignancies worldwide. Despite the advances in current therapies, the mortality rate of CRC remains high. Among them, immunotherapy has achieved satisfactory results in some CRC patients, however, how to expand the use of immunotherapy in CRC patients remains an urgent challenge. Surprisingly, the intratumoral microbiota has been found in multiple tumor tissues, including CRC. It has been demonstrated that the intratumoral microbiota is associated with the progression and treatment of CRC, and is able to enhance or decrease anti-tumor immune responses via different mechanisms as well as influence the immunotherapy efficacy, providing new potential therapeutic targets for CRC immunotherapy. In this review, we focus on the characteristics of the intratumoral microbiota, its roles in the genesis and development of CRC, its modulation of anti-tumor immune responses and immunotherapy, and propose potential applications of the intratumoral microbiota in CRC immunotherapy. Additionally, we propose possible directions for future research on the intratumoral microbiota related to CRC immunotherapy.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, PR China.
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
34
|
Qiu J, Jiang Y, Ye N, Jin G, Shi H, Qian D. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy? J Transl Med 2024; 22:728. [PMID: 39103887 DOI: 10.1186/s12967-024-05531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Gan Jin
- Department of Vascular Hernia Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Hao Shi
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, Jiangsu Province, 215500, China
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People ' s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| |
Collapse
|
35
|
Wei Y, Shen F, Song H, Zhao R, Feng W, Pan Y, Li X, Yu H, Familiari G, Relucenti M, Aschner M, Shi H, Chen R, Nie G, Chen H. The challenge and opportunity of gut microbiota-targeted nanomedicine for colorectal cancer therapy. IMETA 2024; 3:e213. [PMID: 39135695 PMCID: PMC11316922 DOI: 10.1002/imt2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota is an integral component of the colorectal cancer (CRC) microenvironment and is intimately associated with CRC initiation, progression, and therapeutic outcomes. We reviewed recent advancements in utilizing nanotechnology for modulating gut microbiota, discussing strategies and the mechanisms underlying their design. For future nanomedicine design, we propose a 5I principle for individualized nanomedicine in CRC management.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Feng Shen
- Department of Gastroenterology and Endoscopy, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huidong Song
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaobo Li
- Department of Occupational and Environmental Health, School of Public HealthCapital Medical UniversityBeijingChina
| | - Huanling Yu
- Department of Nutrition & Food Hygiene, School of Public HealthCapital Medical UniversityBeijingChina
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic ScienceSapienza University of RomeRomaItalia
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic ScienceSapienza University of RomeRomaItalia
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew York StateUSA
| | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Rui Chen
- School of Public HealthCapital Medical UniversityBeijingChina
- Beijing Laboratory of Allergic DiseasesBeijing Municipal Education CommissionBeijingChina
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Hanqing Chen
- Department of Nutrition & Food Hygiene, School of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
36
|
Han K, Cho YS, Moon JJ. Antibiotic nanoparticles boost antitumor immunity. Nat Biotechnol 2024; 42:1187-1188. [PMID: 37974012 PMCID: PMC11096259 DOI: 10.1038/s41587-023-02046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Liposomes loaded with antibiotics eliminate intracellular bacteria in a colorectal cancer model, unleashing antitumor T cell immunity.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Wang Y, Fu X, Zhu Y, Lin M, Cai R, Zhu Y, Wu T. An intratumor bacteria-targeted DNA nanocarrier for multifaceted tumor microenvironment intervention. Mater Today Bio 2024; 27:101144. [PMID: 39070095 PMCID: PMC11279327 DOI: 10.1016/j.mtbio.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Intratumor bacteria, which are involved with complex tumor development mechanisms, can compromise the therapeutic efficiencies of cancer chemotherapeutics. Therefore, the development of anti-tumor agents targeting intratumor bacteria is crucial in overcoming the drug inactivation induced by bacteria colonization. In this study, a double-bundle DNA tetrahedron-based nanocarrier is developed for intratumor bacteria-targeted berberine (Ber) delivery. The combination of aptamer modification and high drug loading efficacy endow the DNA nanocarrier TA@B with enhanced delivery performance in anti-tumor therapy without obvious systemic toxicity. The loaded natural isoquinoline alkaloid Ber exhibits enhanced antimicrobial, anticancer, and immune microenvironment regulation effects, ultimately leading to efficient inhibition of tumor proliferation. This intratumor bacteria-targeted DNA nanoplatform provides a promising strategy in intervening the bacteria-related microenvironment and facilitating tumor therapy.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery/Department of Pediatrics/Department of Neonatal, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570311, China
| | - Xiaomei Fu
- Department of Neurosurgery/Department of Pediatrics/Department of Neonatal, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570311, China
| | - Yang Zhu
- Department of Neurosurgery/Department of Pediatrics/Department of Neonatal, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570311, China
| | - Mingjing Lin
- Department of Neurosurgery/Department of Pediatrics/Department of Neonatal, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570311, China
| | - Renduan Cai
- Department of Neurosurgery/Department of Pediatrics/Department of Neonatal, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570311, China
| | - Yang Zhu
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences/Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
38
|
Zhang T, Zhang X, Chen J, Zhang X, Zhang Y. Harnessing microbial antigens as cancer antigens: a promising avenue for cancer immunotherapy. Front Immunol 2024; 15:1411490. [PMID: 39139570 PMCID: PMC11319170 DOI: 10.3389/fimmu.2024.1411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
40
|
Stevens P, Benidovskaya E, Llorens-Rico V, Raes J, Van Den Eynde M. Bacteria in metastatic sites: Unveiling hidden players in cancer progression. Cancer Cell 2024; 42:1142-1146. [PMID: 38876104 DOI: 10.1016/j.ccell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Bacteria exhibit key features of cancer metastasis, such as motility, invasion, and modulation of the tumor microenvironment. They migrate through lymphatic and blood systems, invade metastatic tissues, and alter local microenvironments to support metastatic growth. Bacteria also shape the tumor microenvironment, affecting immune responses and inflammation, which influence tumor progression and therapy response. While they hold therapeutic potential, challenges like contamination and complex characterization persist, necessitating advanced sequencing and research for clinical application.
Collapse
Affiliation(s)
- Philippe Stevens
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Elena Benidovskaya
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Veronica Llorens-Rico
- Systems Biology of Host-Microbiome Interactions Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Jeroen Raes
- Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium
| | - Marc Van Den Eynde
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Medical Oncology and Hepato-gastroenterology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
41
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions. Adv Drug Deliv Rev 2024; 209:115319. [PMID: 38643839 PMCID: PMC11459907 DOI: 10.1016/j.addr.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The microbiome has emerged as a significant biomarker and modulator in cancer development and treatment response. Recent research highlights the notable role of Fusobacterium nucleatum (F. nucleatum) in various tumor types, including breast, colorectal, esophageal, gastric, pancreatic, and lung cancers. Accumulating evidence suggests that the local microbial community forms an integral component of the tumor microenvironment, with bacterial communities within tumors displaying specificity to tumor types. Mechanistic investigations indicate that tumor-associated microbiota can directly influence tumor initiation, progression, and responses to chemotherapy or immunotherapy. This article presents a comprehensive review of microbial communities especially F. nucleatum in tumor tissue, exploring their roles and underlying mechanisms in tumor development, treatment, and prevention. When the tumor-associated F. nucleatum is killed, the host immune response is activated to recognize tumor cells. Bacteria epitopes restricted by the host antigens, can be identified for future anti-bacteria/tumor vaccine development.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States
| | - Leaf Huang
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
44
|
ShanTian, Guo Y, Lan Q, Li J, Hu J, Qiu M, Guo C, Dong W. Association between ascites Gustave Roussy immune score and the intratumoural microbiome in malignant ascites secondary to hepatocellular carcinoma. Int Immunopharmacol 2024; 133:112097. [PMID: 38677092 DOI: 10.1016/j.intimp.2024.112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUNDS The Gustave Roussy Immune (GRIm) score predicts survival outcomes in several cancers. However, the prognostic significance of the GRIm score in patients with malignant ascites has not yet been investigated. METHODS Clinical samples were collected from a cohort of patients with malignant ascites secondary to hepatocellular carcinoma (HCC). We calculated serum GRIm (sGRIm) and ascites GRIm (aGRIm) scores and divided the samples into low and high GRIm score groups. Survival analysis was used to compare the prognostic significance of the sGRIm and aGRIm scores. 16S rRNA sequencing was performed to determine the profiles of the intratumoral microbiota in the groups. A fluorescent multiplex immunohistochemistry (mIHC) assay was used to detect the expression of different immune cells by labeling seven markers of malignant ascites. RESULTS 155 patients with HCC and malignant ascites were enrolled in this study. Survival analysis revealed that the aGRIm score showed a superior prognostic significance compared to the sGRIm score. Microbial analysis demonstrated that the bacterial richness and diversity were higher in the low aGRIm score group than in the high aGRIm score group. LefSe analysis revealed that certain bacteria were correlated with high aGRIm scores. Fluorescent mIHC displayed the tumor microenvironment of malignant ascites and found that the density of CD8 + T cells was significantly higher in the low aGRIm score group than in the high aGRIm score group. CONCLUSIONS Our present study identified a novel scoring system (aGRIm score) that can predict the survival outcome of patients with malignant ascites secondary to HCC.
Collapse
Affiliation(s)
- ShanTian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qingzhi Lan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Meiqi Qiu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chunxia Guo
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
45
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Zhang J, Wang P, Wang J, Wei X, Wang M. Unveiling intratumoral microbiota: An emerging force for colorectal cancer diagnosis and therapy. Pharmacol Res 2024; 203:107185. [PMID: 38615875 DOI: 10.1016/j.phrs.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microbes, including bacteria, viruses, fungi, and other eukaryotic organisms, are commonly present in multiple organs of the human body and contribute significantly to both physiological and pathological processes. Nowadays, the development of sequencing technology has revealed the presence and composition of the intratumoral microbiota, which includes Fusobacterium, Bifidobacteria, and Bacteroides, and has shed light on the significant involvement in the progression of colorectal cancer (CRC). Here, we summarized the current understanding of the intratumoral microbiota in CRC and outline the potential translational and clinical applications in the diagnosis, prevention, and treatment of CRC. We focused on reviewing the development of microbial therapies targeting the intratumoral microbiota to improve the efficacy and safety of chemotherapy and immunotherapy for CRC and to identify biomarkers for the diagnosis and prognosis of CRC. Finally, we emphasized the obstacles and potential solutions to translating the knowledge of the intratumoral microbiota into clinical practice.
Collapse
Affiliation(s)
- Jinjing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Penghui Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jiafeng Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaojie Wei
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| | - Mengchuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
47
|
Zhang F, Wang S, Yang S, Ma F, Gao H. Recent progress in nanomaterials for bacteria-related tumor therapy. Biomater Sci 2024; 12:1965-1980. [PMID: 38454904 DOI: 10.1039/d3bm01952g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Many studies suggest that tumor microbiome closely relates to the oncogenesis and anti-tumor responses in multiple cancer types (e.g., colorectal cancer (CRC), breast cancer, lung cancer and pancreatic cancer), thereby raising an emerging research area of bacteria-related tumor therapy. Nanomaterials have long been used for both cancer and bacterial infection treatment, holding great potential for bacteria-related tumor therapy. In this review, we summarized recent progress in nanomaterials for bacteria-related tumor therapy. We focus on the types and mechanisms of pathogenic bacteria in the development and promotion of cancers and emphasize how nanomaterials work. We also briefly discuss the design principles and challenges of nanomaterials for bacteria-related tumor therapy. We hope this review can provide some insights into this emerging and rapidly growing research area.
Collapse
Affiliation(s)
- Fuping Zhang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shuyu Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shuo Yang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Feihe Ma
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Hui Gao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
48
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
49
|
Zhang J, Wan S, Zhou H, Du J, Li Y, Zhu H, Weng L, Ding X, Wang L. Programmed Nanocloak of Commensal Bacteria-Derived Nanovesicles Amplify Strong Immunoreactivity against Tumor Growth and Metastatic Progression. ACS NANO 2024; 18:9613-9626. [PMID: 38502546 DOI: 10.1021/acsnano.3c13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Recent discoveries in commensal microbiota demonstrate the great promise of intratumoral bacteria as attractive molecular targets of tumors in improving cancer treatment. However, direct leveraging of in vivo antibacterial strategies such as antibiotics to potentiate cancer therapy often leads to uncertain effectiveness, mainly due to poor selectivity and potential adverse effects. Here, building from the clinical discovery that patients with breast cancer featured rich commensal bacteria, we developed an activatable biointerface by encapsulating commensal bacteria-derived extracellular vesicles (BEV) with a responsive nanocloak to potentiate immunoreactivity against intratumoral bacteria and breast cancer. We show that the interfacially cloaked BEV (cBEV) not only overcame serious systemic side responses but also demonstrated heightened immunogenicity by intercellular responsive immunogenicity, facilitating dendritic cell maturation through activating the cGAS-STING pathway. As a preventive measure, vaccination with nanocloaked cBEVs achieved strong protection against bacterial infection, largely providing prophylactic efficiency against tumor challenges. When treated in conjunction with immune checkpoint inhibitor anti-PD-L1 antibodies, the combined approach elicited a potent tumor-specific immune response, synergistically inhibiting tumor progression and mitigating lung metastases.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxin Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Houjuan Zhu
- A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
50
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|