1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Chulkina M, Tran H, Uribe G, McAninch SB, McAninch C, Seideneck A, He B, Lanza M, Khanipov K, Golovko G, Powell DW, Davenport ER, Pinchuk IV. MyD88-mediated signaling in intestinal fibroblasts regulates macrophage antimicrobial defense and prevents dysbiosis in the gut. Cell Rep 2025; 44:115553. [PMID: 40257864 DOI: 10.1016/j.celrep.2025.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Fibroblasts that reside in the gut mucosa are among the key regulators of innate immune cells, but their role in the regulation of the defense functions of macrophages remains unknown. MyD88 is suggested to shape fibroblast responses in the intestinal microenvironment. We found that mice lacking MyD88 in fibroblasts showed a decrease in the colonic antimicrobial defense, developing dysbiosis and aggravated dextran sulfate sodium (DSS)-induced colitis. These pathological changes were associated with the accumulation of Arginase 1+ macrophages with low antimicrobial defense capability. Mechanistically, the production of interleukin (IL)-6 and CCL2 downstream of MyD88 was critically involved in fibroblast-mediated support of macrophage antimicrobial function, and IL-6/CCL2 neutralization resulted in the generation of macrophages with decreased production of the antimicrobial peptide cathelicidin and impaired bacterial clearance. Collectively, these findings revealed a critical role of fibroblast-intrinsic MyD88 signaling in regulating macrophage antimicrobial defense under colonic homeostasis, and its disruption results in dysbiosis, predisposing the host to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Marina Chulkina
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Hanh Tran
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Gabriela Uribe
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Steven Bruce McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Christina McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Ashley Seideneck
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Bing He
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Matthew Lanza
- The Pennsylvania State University, College of Medicine, Department of Comparative Medicine, Hershey, PA, USA
| | - Kamil Khanipov
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Georgiy Golovko
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Don W Powell
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, USA
| | - Emily R Davenport
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Irina V Pinchuk
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Flores C, Millard S, Seekatz AM. Bridging Ecology and Microbiomes: Applying Ecological Theories in Host-associated Microbial Ecosystems. CURRENT CLINICAL MICROBIOLOGY REPORTS 2025; 12:9. [PMID: 40248762 PMCID: PMC12000275 DOI: 10.1007/s40588-025-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Purpose of Review This review explores the application of classical ecological theory to host-associated microbiomes during initial colonization, maintenance, and recovery. We discuss unique challenges of applying these theories to host-associated microbiomes and host factors to consider going forward. Recent Findings Recent studies applying community ecology principles to host microbiomes continue to demonstrate a role for both selective and stochastic processes in shaping host-associated microbiomes. However, ecological frameworks developed to describe dynamics during homeostasis do not necessarily apply during diseased or highly perturbed states, where large variations can potentially lead to alternate stable states. Summary Despite providing valuable insights, the application of ecological theories to host-associated microbiomes has some unique challenges. The integration of host-specific factors, such as genotype or immune dynamics in ecological models or frameworks is crucial for understanding host microbiome assembly and stability, which could improve our ability to predict microbiome outcomes and improve host health.
Collapse
Affiliation(s)
- Clara Flores
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Sophie Millard
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
4
|
Joja M, Grant ET, Desai MS. Living on the edge: Mucus-associated microbes in the colon. Mucosal Immunol 2025:S1933-0219(25)00041-8. [PMID: 40233878 DOI: 10.1016/j.mucimm.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The colonic mucus layer acts as a physicochemical barrier to pathogen invasion and as a habitat for mucus-associated microbes. This mucosal microbiome plays a crucial role in moderating mucus production, maintaining barrier integrity, and shaping the host immune response. However, unchecked mucin foraging may render the host vulnerable to disease. To better understand these dynamics in the mucus layer, it is essential to advance fundamental knowledge on how commensals bind to and utilize mucin as well as their interactions with both the host and their microbial neighbors. We present an overview of approaches for surveying mucus-associated bacteria and assessing their mucin-utilizing capacity, alongside a discussion of the limitations of existing methods. Additionally, we highlight how diet and host secretory immunoglobulin A interact with the mucosal bacterial community in the colon. Insights into this subset of the microbial community can guide therapeutic strategies to optimally support and modulate mucosal barrier integrity.
Collapse
Affiliation(s)
- Mihovil Joja
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Gilbert JA, Azad MB, Bäckhed F, Blaser MJ, Byndloss M, Chiu CY, Chu H, Dugas LR, Elinav E, Gibbons SM, Gilbert KE, Henn MR, Ishaq SL, Ley RE, Lynch SV, Segal E, Spector TD, Strandwitz P, Suez J, Tropini C, Whiteson K, Knight R. Clinical translation of microbiome research. Nat Med 2025; 31:1099-1113. [PMID: 40217076 DOI: 10.1038/s41591-025-03615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
The landscape of clinical microbiome research has dramatically evolved over the past decade. By leveraging in vivo and in vitro experimentation, multiomic approaches and computational biology, we have uncovered mechanisms of action and microbial metrics of association and identified effective ways to modify the microbiome in many diseases and treatment modalities. This Review explores recent advances in the clinical application of microbiome research over the past 5 years, while acknowledging existing barriers and highlighting opportunities. We focus on the translation of microbiome research into clinical practice, spearheaded by Food and Drug Administration (FDA)-approved microbiome therapies for recurrent Clostridioides difficile infections and the emerging fields of microbiome-based diagnostics and therapeutics. We highlight key examples of studies demonstrating how microbiome mechanisms, metrics and modifiers can advance clinical practice. We also discuss forward-looking perspectives on key challenges and opportunities toward integrating microbiome data into routine clinical practice, precision medicine and personalized healthcare and nutrition.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin J Blaser
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Mariana Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Fransisco, San Francisco, CA, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Fransisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, La Jolla, CA, USA
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Katharine E Gilbert
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, USA
- Microbes and Social Equity working group, Orono, ME, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- ZOE Ltd, London, UK
| | | | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carolina Tropini
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
6
|
Sousa MGC, Brasino DSK, Krieger M, Dindar DA, Duhen R, Zhang Z, Franca CM, Bertassoni LE. Host-microbe-cancer interactions on-a-chip. Front Bioeng Biotechnol 2025; 13:1505963. [PMID: 40230461 PMCID: PMC11994592 DOI: 10.3389/fbioe.2025.1505963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The tumor microbiota has emerged as a pivotal contributor to a variety of cancers, impacting disease development, progression, and therapeutic resistance. Due to the complexity of the tumor microenvironment, reproducing the interactions between the microbes, tumor cells, and the immune system remains a great challenge for both in vitro and in vivo studies. To this end, significant progress has been made toward leveraging tumor-on-a-chip model systems to replicate critical hallmarks of the native disease in vitro. These microfluidic platforms offer the ability to mimic essential components of the tumor microenvironment, including controllable fluid flow conditions, manipulable extracellular matrix dynamics, and intricate 3D multi-cellular communication. The primary objective of this review is to discuss recent challenges and advances in engineering host-microbiota and tumor interactions on-a-chip. Ultimately, overcoming these obstacles will help us gain deeper insights into tumor-microbe interactions and enhance avenues for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Mauricio G. C. Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Danielle S. K. Brasino
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Duygu A. Dindar
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Rebekka Duhen
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Cristiane Miranda Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
7
|
Wu Y, Cheng R, Lin H, Li L, Jia Y, Philips A, Zuo T, Zhang H. Gut virome and its implications in the pathogenesis and therapeutics of inflammatory bowel disease. BMC Med 2025; 23:183. [PMID: 40140901 PMCID: PMC11948845 DOI: 10.1186/s12916-025-04016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic, recurrent inflammatory intestinal disorders, primarily including Crohn's disease (CD) and Ulcerative colitis (UC). Numerous studies have elucidated the importance of the gut microbiome in IBD. Recently, numerous studies have focused on the gut virome, an intriguing and enigmatic aspect of the gut microbiome. Alterations in the composition of phages, eukaryotic viruses, and human endogenous retroviruses that occur in IBD suggest potential involvement of the gut virome in IBD. Nevertheless, the mechanisms by which it maintains intestinal homeostasis and interacts with diseases are only beginning to be understood. Here, we thoroughly reviewed the composition of the gut virome in both healthy individuals and IBD patients, emphasizing the key viruses implicated in the onset and progression of IBD. Furthermore, the complex connections between the gut virome and the intestinal barrier, immunity, and gut microbiome were dissected to advance the interpretation of IBD pathogenesis. The updated discussion of the evidence regarding the gut virome will advance our knowledge in gut virome and chronic gastrointestinal diseases. Targeting the gut virome is a promising avenue for IBD treatment in future.
Collapse
Affiliation(s)
- Yushan Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cheng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Lin
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongbin Jia
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Rad SK, Yeo KKL, Wu F, Li R, Nourmohammadi S, Tomita Y, Price TJ, Ingman WV, Townsend AR, Smith E. A Systematic Review and Meta-Analysis of 16S rRNA and Cancer Microbiome Atlas Datasets to Characterize Microbiota Signatures in Normal Breast, Mastitis, and Breast Cancer. Microorganisms 2025; 13:467. [PMID: 40005832 PMCID: PMC11858161 DOI: 10.3390/microorganisms13020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues. Studies published until 31 December 2023 were included if they analyzed human breast tissue using Illumina short-read 16S rRNA sequencing with sufficient metadata, while non-human samples, non-breast tissues, non-English articles, and those lacking metadata or using alternative sequencing methods were excluded. We also incorporated microbiome data from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort to enhance our analyses. Our meta-analysis identified Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota as the dominant phyla in breast tissue, with Staphylococcus and Corynebacterium frequently detected across studies. While microbial diversity was similar between cancer and cancer-adjacent tissues, they both exhibited a lower diversity compared to normal and mastitis-affected tissues. Variability in bacterial genera was observed across primer sets and studies, emphasizing the need for standardized methodologies in microbiome research. An analysis of TCGA-BRCA data confirmed the dominance of Staphylococcus and Corynebacterium, which was associated with breast cancer proliferation-related gene expression programs. Notably, high Staphylococcus abundance was associated with a 4.1-fold increased mortality risk. These findings underscore the potential clinical relevance of the breast microbiome in tumor progression and emphasize the importance of methodological consistency. Future studies to establish causal relationships, elucidate underlying mechanisms, and assess microbiome-targeted interventions are warranted.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Saeed Nourmohammadi
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Wendy V. Ingman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Richardson M, Zhao S, Lin L, Sheth RU, Qu Y, Lee J, Moody T, Ricaurte D, Huang Y, Velez-Cortes F, Urtecho G, Wang HH. SAMPL-seq reveals micron-scale spatial hubs in the human gut microbiome. Nat Microbiol 2025; 10:527-540. [PMID: 39901058 DOI: 10.1038/s41564-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/12/2024] [Indexed: 02/05/2025]
Abstract
The local arrangement of microbes can profoundly impact community assembly, function and stability. However, our understanding of the spatial organization of the human gut microbiome at the micron scale is limited. Here we describe a high-throughput and streamlined method called Split-And-pool Metagenomic Plot-sampling sequencing (SAMPL-seq) to capture spatial co-localization in a complex microbial consortium. The method obtains microbial composition of micron-scale subcommunities through split-and-pool barcoding. SAMPL-seq analysis of the healthy human gut microbiome identified bacterial taxa pairs that consistently co-occurred both over time and across multiple individuals. These co-localized microbes organize into spatially distinct groups or 'spatial hubs' dominated by Bacteroidaceae, Ruminococcaceae and Lachnospiraceae families. Using inulin as a dietary perturbation, we observed reversible spatial rearrangement of the gut microbiome where specific taxa form new local partnerships. Spatial metagenomics using SAMPL-seq can unlock insights into microbiomes at the micron scale.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Shijie Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Liyuan Lin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
- Kingdom Supercultures, Brooklyn, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jeongchan Lee
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Florencia Velez-Cortes
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Nkosi D, Glickman J, Delgado-Gonzalez A, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat Commun 2025; 16:1230. [PMID: 39890778 PMCID: PMC11785740 DOI: 10.1038/s41467-025-56237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Biological and Medical Informatics Program, UCSF, San Francisco, CA, USA
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dingani Nkosi
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | - Jonathan Glickman
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | | | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Pentimalli TM, Karaiskos N, Rajewsky N. Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:405-432. [PMID: 39476415 DOI: 10.1146/annurev-pathmechdis-111523-023417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- National Center for Tumor Diseases, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
12
|
Čolić M, Kraljević Pavelić S, Peršurić Ž, Agaj A, Bulog A, Pavelić K. Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles. Redox Rep 2024; 29:2333619. [PMID: 38577911 PMCID: PMC11000614 DOI: 10.1080/13510002.2024.2333619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
KEY POLICY HIGHLIGHTSNanobubbles and nanoparticles may enhance the polyphenols' bioavailabilityNanobubbles may stimulate the activation of Nrf2 and detox enzymesArmoured oxygen nanobubbles may enhance radiotherapy or chemotherapy effects.
Collapse
Affiliation(s)
| | | | - Željka Peršurić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
13
|
Mu P, Li W, Tran LSP, Li X. SmT/SHM-seq: simultaneously capturing spatial transcriptome and microbiome information in plants. TRENDS IN PLANT SCIENCE 2024; 29:1277-1278. [PMID: 39395879 DOI: 10.1016/j.tplants.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Affiliation(s)
- Peng Mu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiangnan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
14
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
15
|
Richardson M, Zhao S, Sheth RU, Lin L, Qu Y, Lee J, Moody T, Ricaurte D, Huang Y, Velez-Cortes F, Urtecho G, Wang HH. SAMPL-seq reveals micron-scale spatial hubs in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617108. [PMID: 39416120 PMCID: PMC11482894 DOI: 10.1101/2024.10.08.617108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The local arrangement of microbes can profoundly impact community assembly, function, and stability. To date, little is known about the spatial organization of the human gut microbiome. Here, we describe a high-throughput and streamlined method, dubbed SAMPL-seq, that samples microbial composition of micron-scale sub-communities with split-and-pool barcoding to capture spatial colocalization in a complex consortium. SAMPL-seq analysis of the gut microbiome of healthy humans identified bacterial taxa pairs that consistently co-occurred both over time and across multiple individuals. These colocalized microbes organize into spatially distinct groups or "spatial hubs" dominated by Bacteroideceae, Ruminococceae, and Lachnospiraceae families. From a dietary perturbation using inulin, we observed reversible spatial rearrangement of the gut microbiome, where specific taxa form new local partnerships. Spatial metagenomics using SAMPL-seq can unlock new insights to improve the study of microbial communities.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Shijie Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ravi U. Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Liyuan Lin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jeongchan Lee
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Florencia Velez-Cortes
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Pi Z, Liu W, Song C, Zhu C, Liu J, Wang L, He Z, Yang C, Wu L, Liu T, Geng Z, Tebbutt SJ, Liu N, Wan Y, Zhang F, Mao W. Multi-level insights into the immuno-oncology-microbiome axis: From biotechnology to novel therapies. IMETA 2024; 3:e240. [PMID: 39429874 PMCID: PMC11487608 DOI: 10.1002/imt2.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
The multifaceted interactions among the immune system, cancer cells and microbial components have established a novel concept of the immuno-oncology-microbiome (IOM) axis. Microbiome sequencing technologies have played a pivotal role in not only analyzing how gut microbiota affect local and distant tumors, but also providing unprecedented insights into the intratumor host-microbe interactions. Herein, we discuss the emerging trends of transiting from bulk-level to single cell- and spatial-level analyses. Moving forward with advances in biotechnology, microbial therapies, including microbiota-based therapies and bioengineering-inspired microbes, will add diversity to the current oncotherapy paradigm.
Collapse
Affiliation(s)
- Zheshun Pi
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
- Department of Microbiota MedicineMedical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Weici Liu
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Chenghu Song
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Chuandong Zhu
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical EngineeringBinghamton UniversityBinghamtonNew YorkUSA
- Department of RadiotherapyThe Second Hospital of Nanjing, Nanjing University of Chinese MedicineNanjingChina
| | - Jiwei Liu
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Lu Wang
- State Key Laboratory of Systems Medicine for CancerCenter for Single‐Cell Omics, School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhao He
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Chengliang Yang
- Centre for Heart Lung Innovation and PROOF Centre of Excellence, Providence Research, St Paul's HospitalVancouverBritish ColumbiaCanada
- Division of Respiratory Medicine, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lei Wu
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Tianshuo Liu
- National Key Laboratory for Novel Software TechnologyChina & School of Artificial Intelligence, Nanjing UniversityNanjingChina
| | - Zijie Geng
- School of Information Science and Technology, University of Science and Technology of ChinaHefeiChina
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation and PROOF Centre of Excellence, Providence Research, St Paul's HospitalVancouverBritish ColumbiaCanada
- Division of Respiratory Medicine, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for CancerCenter for Single‐Cell Omics, School of Public Health, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical EngineeringBinghamton UniversityBinghamtonNew YorkUSA
| | - Faming Zhang
- Department of Microbiota MedicineMedical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenjun Mao
- Department of Thoracic SurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| |
Collapse
|
17
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
18
|
Lindemann-Perez E, Rodríguez DL, Pérez JC. An approach to analyze spatiotemporal patterns of gene expression at single-cell resolution in Candida albicans-infected mouse tongues. mSphere 2024; 9:e0028224. [PMID: 39171917 PMCID: PMC11423565 DOI: 10.1128/msphere.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Microbial gene expression measurements derived from infected organs are invaluable to understand pathogenesis. However, current methods are limited to "bulk" analyses that neglect microbial cell heterogeneity and the lesion's spatial architecture. Here, we report the use of hybridization chain reaction RNA fluorescence in situ hybridization (HCR RNA-FISH) to visualize and quantify Candida albicans transcripts at single-cell resolution in tongues of infected mice. The method is compatible with fixed-frozen and formalin-fixed paraffin-embedded tissues. We document cell-to-cell variation and intriguing spatiotemporal expression patterns for C. albicans mRNAs that encode products implicated in oral candidiasis. The approach provides a spatial dimension to gene expression analyses of host-Candida interactions. IMPORTANCE Candida albicans is a fungal pathobiont inhabiting multiple mucosal surfaces of the human body. Immunosuppression, antibiotic-induced microbial dysbiosis, or implanted medical devices can impair mucosal integrity enabling C. albicans to overgrow and disseminate, causing either mucosal diseases such as oropharyngeal candidiasis or life-threatening systemic infections. Profiling fungal genes that are expressed in the infected mucosa or in any other infected organ is paramount to understand pathogenesis. Ideally, these transcript profiling measurements should reveal the expression of any gene at the single-cell level. The resolution typically achieved with current approaches, however, limits most gene expression measurements to cell population averages. The approach described in this report provides a means to dissect fungal gene expression in infected tissues at single-cell resolution.
Collapse
Affiliation(s)
- Elena Lindemann-Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Diana L. Rodríguez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Grodner B, Shi H, Farchione O, Vill AC, Ntekas I, Diebold PJ, Wu DT, Chen CY, Kim DM, Zipfel WR, Brito IL, De Vlaminck I. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat Microbiol 2024; 9:2262-2277. [PMID: 38918467 PMCID: PMC11371653 DOI: 10.1038/s41564-024-01735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
The exchange of mobile genetic elements (MGEs) facilitates the spread of functional traits including antimicrobial resistance within bacterial communities. Tools to spatially map MGEs and identify their bacterial hosts in complex microbial communities are currently lacking, limiting our understanding of this process. Here we combined single-molecule DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal RNA-FISH to enable simultaneous visualization of both MGEs and bacterial taxa. We spatially mapped bacteriophage and antimicrobial resistance (AMR) plasmids and identified their host taxa in human oral biofilms. This revealed distinct clusters of AMR plasmids and prophage, coinciding with densely packed regions of host bacteria. Our data suggest spatial heterogeneity in bacterial taxa results in heterogeneous MGE distribution within the community, with MGE clusters resulting from horizontal gene transfer hotspots or expansion of MGE-carrying strains. Our approach can help advance the study of AMR and phage ecology in biofilms.
Collapse
Affiliation(s)
- Benjamin Grodner
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Inc, Monmouth Junction, NJ, USA
| | - Owen Farchione
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Albert C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David T Wu
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Dimitrov D, Schäfer PSL, Farr E, Rodriguez-Mier P, Lobentanzer S, Badia-I-Mompel P, Dugourd A, Tanevski J, Ramirez Flores RO, Saez-Rodriguez J. LIANA+ provides an all-in-one framework for cell-cell communication inference. Nat Cell Biol 2024; 26:1613-1622. [PMID: 39223377 PMCID: PMC11392821 DOI: 10.1038/s41556-024-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
The growing availability of single-cell and spatially resolved transcriptomics has led to the development of many approaches to infer cell-cell communication, each capturing only a partial view of the complex landscape of intercellular signalling. Here we present LIANA+, a scalable framework built around a rich knowledge base to decode coordinated inter- and intracellular signalling events from single- and multi-condition datasets in both single-cell and spatially resolved data. By extending and unifying established methodologies, LIANA+ provides a comprehensive set of synergistic components to study cell-cell communication via diverse molecular mediators, including those measured in multi-omics data. LIANA+ is accessible at https://github.com/saezlab/liana-py with extensive vignettes ( https://liana-py.readthedocs.io/ ) and provides an all-in-one solution to intercellular communication inference.
Collapse
Affiliation(s)
- Daniel Dimitrov
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Elias Farr
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pablo Rodriguez-Mier
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Lobentanzer
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Aurelien Dugourd
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Jovan Tanevski
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Ricardo Omar Ramirez Flores
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
| |
Collapse
|
21
|
Ntekas I, De Vlaminck I. Spatial methods for microbiome-host interactions. Nat Biotechnol 2024; 42:1359-1360. [PMID: 37985877 DOI: 10.1038/s41587-023-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Affiliation(s)
- Ioannis Ntekas
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
22
|
Dörr AK, Welling J, Dörr A, Gosch J, Möhlen H, Schmithausen R, Kehrmann J, Meyer F, Kraiselburd I. RiboSnake - a user-friendly, robust, reproducible, multipurpose and documentation-extensive pipeline for 16S rRNA gene microbiome analysis. GIGABYTE 2024; 2024:gigabyte132. [PMID: 39364224 PMCID: PMC11448241 DOI: 10.46471/gigabyte.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024] Open
Abstract
Background Next-generation sequencing for microbial communities has become a standard technique. However, the computational analysis remains resource-intensive. With declining costs and growing adoption of sequencing-based methods in many fields, validated, fully automated, reproducible and flexible pipelines are increasingly essential in various scientific fields. Results We present RiboSnake, a validated, automated, reproducible QIIME2-based pipeline implemented in Snakemake for analysing 16S rRNA gene amplicon sequencing data. RiboSnake includes pre-packaged validated parameter sets optimized for different sample types, from environmental samples to patient data. The configuration packages can be easily adapted and shared, requiring minimal user input. Conclusion RiboSnake is a new alternative for researchers employing 16S rRNA gene amplicon sequencing and looking for a customizable and user-friendly pipeline for microbiome analyses with in vitro validated settings. By automating the analysis with validated parameters for diverse sample types, RiboSnake enhances existing methods significantly. The workflow repository can be found on GitHub (https://github.com/IKIM-Essen/RiboSnake).
Collapse
Affiliation(s)
- Ann-Kathrin Dörr
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Josefa Welling
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Adrian Dörr
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Hannah Möhlen
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Ricarda Schmithausen
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127, Bonn, Germany
| | - Jan Kehrmann
- Institute for Medical Microbiology, University Hospital Essen, 45147, Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| |
Collapse
|
23
|
Xia R, Jiang Z, Zhou Y, Pan L, Wang Y, Ma Y, Fan L, Yuan L, Cheng X. Oral microbiota and gastric cancer: recent highlights and knowledge gaps. J Oral Microbiol 2024; 16:2391640. [PMID: 39161727 PMCID: PMC11332296 DOI: 10.1080/20002297.2024.2391640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.
Collapse
Affiliation(s)
- Ruihong Xia
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanan Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yubo Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Fan
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
24
|
Baas FS, Brusselaers N, Nagtegaal ID, Engstrand L, Boleij A. Navigating beyond associations: Opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 2024; 32:1235-1247. [PMID: 39146796 DOI: 10.1016/j.chom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
The gut microbiota has been recognized as an important determinant in the initiation and progression of colorectal cancer (CRC), with recent studies shining light on the molecular mechanisms that may contribute to the interactions between microbes and the CRC microenvironment. Despite the increasing wealth of associations being established in the field, proving causality remains challenging. Obstacles include the high variability of the microbiome and its context, both across individuals and across time. Additionally, there is a lack of large and representative cohort studies with long-term follow-up and/or appropriate sampling methods for studying the mucosal microbiome. Finally, most studies focus on CRC, whereas interactions between host and bacteria in early events in carcinogenesis remain elusive, reinforced by the heterogeneity of CRC development. Here, we discuss these current most prominent obstacles, the recent developments, and research needs.
Collapse
Affiliation(s)
- Floor S Baas
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden; Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
King WL, Hayward RJ, Goebel M, Fleishman SM, Bauerle TL, Bell TH. Getting to the root of root-microbe interactions. Sci Prog 2024; 107:368504241278783. [PMID: 39234658 PMCID: PMC11378194 DOI: 10.1177/00368504241278783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Microbial relationships with roots influence many ecosystem functions and nutrient fluxes, including their sometimes-profound effects on plant health and productivity. Fine roots were often classified with a diameter less than 2 mm, but fine roots under that size perform distinct functional roles in the environment. Importantly, two broad functional categories of fine roots are absorptive and transportive, with absorptive fine roots acting as metabolic hotspots for root activity. In two of our recent studies, we have shown that several microbial community characteristics differ between absorptive and transportive fine roots, including composition, abundance, and function, as well as the root metabolome. This highlights a growing recognition within microbial ecology that we must consider fine-scale environmental variability, such as root physiology and morphology, when interpreting microbial patterns. In this commentary, we summarize the findings of our latest article, further speculate on some of these patterns, and suggest future studies for examining decomposition and applying cutting-edge single-cell sequencing techniques.
Collapse
Affiliation(s)
- William L King
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Regan J Hayward
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Marc Goebel
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Suzanne M Fleishman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Terrence H Bell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
26
|
Deek RA, Ma S, Lewis J, Li H. Statistical and computational methods for integrating microbiome, host genomics, and metabolomics data. eLife 2024; 13:e88956. [PMID: 38832759 PMCID: PMC11149933 DOI: 10.7554/elife.88956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.
Collapse
Affiliation(s)
- Rebecca A Deek
- Department of Biostatistics, University of PittsburghPittsburghUnited States
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt School of MedicineNashvilleUnited States
| | - James Lewis
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
27
|
Herren R, Geva-Zatorsky N. Spatial features of skip lesions in Crohn's disease. Trends Immunol 2024; 45:470-481. [PMID: 38782626 DOI: 10.1016/j.it.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Skip lesions are an enigmatic spatial feature characterizing Crohn's disease (CD). They comprise inflamed and adjacent non-inflamed tissue sections with a clear demarcation. Currently, spatial features of the human gastrointestinal (GI) system lack clarity regarding the organization of microbes, mucus, tissue, and host cells during inflammation. New technologies with multiplexing abilities and innovative approaches provide ways of examining the spatial organization of inflamed and non-inflamed tissues in CD, which may open new avenues for diagnosis, prognosis, and treatment. In this review, we present evidence of the relevance of spatial context in patients with CD and the methods and ideas recently published in studies of spatiality during inflammation. With this review, we aim to provide inspiration for further research to address existing gaps.
Collapse
Affiliation(s)
- Rachel Herren
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel; CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
28
|
Shi W, Zhang J, Huang S, Fan Q, Cao J, Zeng J, Wu L, Yang C. Next-Generation Sequencing-Based Spatial Transcriptomics: A Perspective from Barcoding Chemistry. JACS AU 2024; 4:1723-1743. [PMID: 38818076 PMCID: PMC11134576 DOI: 10.1021/jacsau.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
Gene expression profiling of tissue cells with spatial context is in high demand to reveal cell types, locations, and intercellular or molecular interactions for physiological and pathological studies. With rapid advances in barcoding chemistry and sequencing chemistry, spatially resolved transcriptome (SRT) techniques have emerged to quantify spatial gene expression in tissue samples by correlating transcripts with their spatial locations using diverse strategies. These techniques provide both physical tissue structure and molecular characteristics and are poised to revolutionize many fields, such as developmental biology, neuroscience, oncology, and histopathology. In this context, this Perspective focuses on next-generation sequencing-based SRT methods, particularly highlighting spatial barcoding chemistry. It delves into optically manipulated spatial indexing methods and DNA array-barcoded spatial indexing methods by exploring current advances, challenges, and future development directions in this nascent field.
Collapse
Affiliation(s)
- Weixiong Shi
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
- The
MOE Key Laboratory of Spectrochemical Analysis & Instrumentation,
Discipline of Intelligent Instrument and Equipment, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Zhang
- State
Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen
University, Xiamen 361102, China
| | - Shanqing Huang
- The
MOE Key Laboratory of Spectrochemical Analysis & Instrumentation,
Discipline of Intelligent Instrument and Equipment, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian Fan
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiao Cao
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jun Zeng
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lingling Wu
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- Institute
of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry
and Nanomedicine, Renji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200127, China
- The
MOE Key Laboratory of Spectrochemical Analysis & Instrumentation,
Discipline of Intelligent Instrument and Equipment, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State
Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen
University, Xiamen 361102, China
| |
Collapse
|
29
|
Blow MJ. Mapping the microbiome milieu. Nat Rev Microbiol 2024; 22:190. [PMID: 38355762 DOI: 10.1038/s41579-024-01019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Affiliation(s)
- Matthew J Blow
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
30
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
31
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A Spatial Multi-Modal Dissection of Host-Microbiome Interactions within the Colitis Tissue Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583400. [PMID: 38496402 PMCID: PMC10942342 DOI: 10.1101/2024.03.04.583400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The intricate and dynamic interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host features and its microbiome across multiple spatial modalities. We demonstrate MicroCart by comprehensively investigating the alterations in both gut host and microbiome components in a murine model of colitis by coupling MicroCart with spatial proteomics, transcriptomics, and glycomics platforms. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, and bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multiomics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, United States
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Biological and Medical Informatics program, UCSF, San Francisco, CA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Schäfer PSL, Dimitrov D, Villablanca EJ, Saez-Rodriguez J. Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system. Nat Immunol 2024; 25:405-417. [PMID: 38413722 DOI: 10.1038/s41590-024-01768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The immune system comprises diverse specialized cell types that cooperate to defend the host against a wide range of pathogenic threats. Recent advancements in single-cell and spatial multi-omics technologies provide rich information about the molecular state of immune cells. Here, we review how the integration of single-cell and spatial multi-omics data with prior knowledge-gathered from decades of detailed biochemical studies-allows us to obtain functional insights, focusing on gene regulatory processes and cell-cell interactions. We present diverse applications in immunology and critically assess underlying assumptions and limitations. Finally, we offer a perspective on the ongoing technological and algorithmic developments that promise to get us closer to a systemic mechanistic understanding of the immune system.
Collapse
Affiliation(s)
- Philipp Sven Lars Schäfer
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Daniel Dimitrov
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
33
|
Liao Y. Emerging tools for uncovering genetic and transcriptomic heterogeneities in bacteria. Biophys Rev 2024; 16:109-124. [PMID: 38495445 PMCID: PMC10937887 DOI: 10.1007/s12551-023-01178-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/11/2023] [Indexed: 03/19/2024] Open
Abstract
Bacterial communities display an astonishing degree of heterogeneities among their constituent cells across both the genomic and transcriptomic levels, giving rise to diverse social interactions and stress-adaptation strategies indispensable for proliferating in the natural environment (Ackermann in Nat Rev Microbiol 13:497-508, 2015). Our knowledge about bacterial heterogeneities and their physiological ramifications critically depends on our ability to unambiguously resolve the genetic and phenotypic states of the individual cells that make up the population. In this short review, I highlight several recently developed methods for studying bacterial heterogeneities, primarily focusing on single-cell techniques based on advanced sequencing and microscopy technologies. I will discuss the working principle of each technique as well as the types of problems each technique is best positioned to address. With significant improvements in resolution and throughput, these emerging tools together offer unprecedented and complementary views of various types of heterogeneities found within bacterial populations, paving the way for mechanistic dissections and systematic interventions in laboratory and clinical settings.
Collapse
Affiliation(s)
- Yi Liao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
34
|
Minton K. Spatial resolution of host-microbiome interactions. Nat Rev Genet 2024; 25:79. [PMID: 38102339 DOI: 10.1038/s41576-023-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
35
|
Minton K. Spatial resolution of host-microbiome interactions. Nat Rev Immunol 2024; 24:87. [PMID: 38114795 DOI: 10.1038/s41577-023-00984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
|