1
|
Schütte JP, Markus N, Grein S, Kamuf-Schenk V, Stroh C, Rettel M, Stein F, Fischer J, Löwenthal Z, Leiner J, Wang BH, Kaye DM, Zylla MM, Frey N, Völkers M. Cell Type-Specific Secretome Analysis Reveals Liver-Heart Crosstalk in HFpEF. Circ Res 2025; 136:1516-1518. [PMID: 40351195 DOI: 10.1161/circresaha.125.326264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Jan Philipp Schütte
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Nicola Markus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Steve Grein
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Verena Kamuf-Schenk
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Claudia Stroh
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Mandy Rettel
- Proteomics Core Facility, EMBL Heidelberg, Germany (M.R., F.S.)
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Germany (M.R., F.S.)
| | - Johannes Fischer
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Zoe Löwenthal
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Johannes Leiner
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Germany (J.L.)
| | - Bing H Wang
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (B.H.W., D.M.K.)
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (B.H.W., D.M.K.)
| | - Maura M Zylla
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Norbert Frey
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| | - Mirko Völkers
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
- DZHK (German Centre for Cardiovascular Research) Heidelberg, Germany (J.P.S., N.M., S.G., V.K.-S., C.S., J.F., Z.L., M.M.Z., N.F., M.V.)
| |
Collapse
|
2
|
Capone F, Vacca A, Bidault G, Sarver D, Kaminska D, Strocchi S, Vidal-Puig A, Greco CM, Lusis AJ, Schiattarella GG. Decoding the Liver-Heart Axis in Cardiometabolic Diseases. Circ Res 2025; 136:1335-1362. [PMID: 40403112 DOI: 10.1161/circresaha.125.325492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The liver and heart are closely interconnected organs, and their bidirectional interaction plays a central role in cardiometabolic disease. In this review, we summarize current evidence linking liver dysfunction-particularly metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and cirrhosis-with an increased risk of heart failure and other cardiovascular diseases. We discuss how these liver conditions contribute to cardiac remodeling, systemic inflammation, and hemodynamic stress and how cardiac dysfunction in turn impairs liver perfusion and promotes hepatic injury. Particular attention is given to the molecular mediators of liver-heart communication, including hepatokines and cardiokines, as well as the emerging role of advanced research methodologies, including omics integration, proximity labeling, and organ-on-chip platforms, that are redefining our understanding of interorgan cross talk. By integrating mechanistic insights with translational tools, this review aims to support the development of multiorgan therapeutic strategies for cardiometabolic disease.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Department of Medicine, Unit of Internal Medicine III, Padua University Hospital, University of Padua, Padova, Italy (F.C.)
- Department of Biomedical Sciences, University of Padova, Italy (F.C.)
| | - Antonio Vacca
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Clinica Medica, Department of Medicine, University of Udine, Italy (A.V.)
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
| | - Dylan Sarver
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Dorota Kaminska
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
- Centro de Investigacion Principe Felipe, Valencia, Spain (A.V.-P.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy (C.M.G.)
- IRCCS Humanitas Research Hospital, Milan, Italy (C.M.G.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (G.G.S.)
- Friede Springer Cardiovascular Prevention Center at Charité-Universitätsmedizin Berlin, Germany (G.G.S.)
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| |
Collapse
|
3
|
Bahr J, Poschmann G, Jungmann A, Busch M, Ding Z, Vogt J, Zalfen R, Steinhausen J, Euan Martínez AA, Wachtmeister T, Rickert D, Lautwein T, Alter C, Amrute JM, Lavine KJ, Köhrer K, Levkau B, Most P, Stühler K, Hesse J, Schrader J. A secretome atlas of cardiac fibroblasts from healthy and infarcted mouse hearts. Commun Biol 2025; 8:675. [PMID: 40301568 PMCID: PMC12041564 DOI: 10.1038/s42003-025-08083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/12/2025] [Indexed: 05/01/2025] Open
Abstract
Cardiac fibroblasts (CF) are key players after myocardial infarction (MI), but their signaling is only incompletely understood. Here we report a first secretome atlas of CF in control (cCF) and post-MI mouse hearts (miCF), combining a rapid cell isolation technique with SILAC and click chemistry. In CF, numerous paracrine factors involved in immune homeostasis are identified. Comparing secretome, transcriptome (SLAMseq), and cellular proteome disclose protein turnover. In miCF at day 5 post-MI, significantly upregulated proteins include SLIT2, FN1, and CRLF1 in mouse and human samples. Comparing the miCF secretome at days 3 and 5 post-MI reveals the dynamic nature of protein secretion. Specific in-vivo labeling of miCF proteins via biotin ligase TurboID using the POSTN promotor mirrors the in-vitro data. In summary, we identify numerous paracrine factors specifically secreted from CF in mice and humans. This secretome atlas may lead to new biomarkers and/or therapeutic targets for the activated CF.
Collapse
Affiliation(s)
- Jasmin Bahr
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Jungmann
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Busch
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Vogt
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ria Zalfen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Steinhausen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arlen Aurora Euan Martínez
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Rickert
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Junedh M Amrute
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Most
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
5
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Simonian TL, Meyer AS, Guo J, Sha J, Wohlschlegel JA, Droujinine IA, Perrimon N, McMahon AP. Sex and Depot Specific Adipocyte Proteome Profiling In Vivo via Intracellular Proximity Labeling. Compr Physiol 2025; 15:e70007. [PMID: 40181252 PMCID: PMC11969033 DOI: 10.1002/cph4.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Adipose tissue has varying distributions and metabolic properties between the sexes. Inherent sex-specific differences in adipocytes may heighten the risk of metabolic disease in males. Analysis of the adipocyte proteome can potentially provide important insight. To enable cell-type specific proteomic profiling in vivo, we genetically engineered a mouse line for cell-type specific production of a promiscuous biotin ligase (BirA*G3) facilitating the rapid isolation of biotinylated cell-type specific proteomes. Adipocyte-specific activation of cytoplasmic BirA*G3 led to robust biotinylation of adipocyte proteins across all major fat depots. Comparison of brown adipose tissue (BAT) and subcutaneous white adipose tissue (SAT) proteomes identified 229 brown adipose-enriched and 35 white adipose-enriched proteins. Regional comparison of white fat depots revealed additional differences across depots. Comparison of male and female depots identified sexually dimorphic adipose proteins: AHNAK predominating in the male and ACOT2 in the female. These findings validate the genetic model and highlight insights to be gained through targeted profiling of adipocytes. The genetic tool adds to existing approaches for in vivo proximity profiling of cell-type specific proteome programs.
Collapse
Affiliation(s)
- Taylor L. Simonian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amanda S. Meyer
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ilia A. Droujinine
- Department of Molecular MedicineScripps Research InstituteLa JollaCaliforniaUSA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik InstituteHarvard Medical SchoolCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Zhang Z, Wang Y, Lu W, Wang X, Guo H, Pan X, Liu Z, Wu Z, Qin W. Spatiotemporally resolved mapping of extracellular proteomes via in vivo-compatible TyroID. Nat Commun 2025; 16:2553. [PMID: 40089463 PMCID: PMC11910615 DOI: 10.1038/s41467-025-57767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Extracellular proteins play pivotal roles in both intracellular signaling and intercellular communications in health and disease. While recent advancements in proximity labeling (PL) methods, such as peroxidase- and photocatalyst-based approaches, have facilitated the resolution of extracellular proteomes, their in vivo compatibility remains limited. Here, we report TyroID, an in vivo-compatible PL method for the unbiased mapping of extracellular proteins with high spatiotemporal resolution. TyroID employs plant- and bacteria-derived tyrosinases to produce reactive o-quinone intermediates, enabling the labeling of multiple residues on endogenous proteins with bioorthogonal handles, thereby allowing for their identification via chemical proteomics. We validate TyroID's specificity by mapping extracellular proteomes and HER2-neighboring proteins using affibody-directed recombinant tyrosinases. Demonstrating its superiority over other PL methods, TyroID enables in vivo mapping of extracellular proteomes, including mapping HER2-proximal proteins in tumor xenografts, quantifying the turnover of plasma proteins and labeling hippocampal-specific proteomes in live mouse brains. TyroID emerges as a potent tool for investigating protein localization and molecular interactions within living organisms.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zeyu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Qiu J, Khedr MA, Pan M, Ferreira CR, Chen J, Snyder MM, Ajuwon KM, Yue F, Kuang S. Ablation of FAM210A in Brown Adipocytes of Mice Exacerbates High-Fat Diet-Induced Metabolic Dysfunction. Diabetes 2025; 74:282-294. [PMID: 39602358 PMCID: PMC11842609 DOI: 10.2337/db24-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Thermogenesis of brown adipose tissue (BAT) provides metabolic benefits against pathologic conditions, such as type 2 diabetes, obesity, cardiovascular disease, and cancer. The thermogenic function of BAT relies on mitochondria, but whether mitochondrial remodeling is required for the beneficial effects of BAT remains unclear. We recently identified FAM210A as a BAT-enriched mitochondrial protein essential for cold-induced thermogenesis through the modulation of OPA1-dependent cristae remodeling. Here, we report a key role of FAM210A in the systemic response to a high-fat diet (HFD). We discovered that an HFD suppressed FAM210A expression, associated with excessive OPA1 cleavage in BAT. Ucp1-Cre-driven BAT-specific Fam210a knockout (Fam210aUKO) similarly elevated OPA1 cleavage, accompanied by whitening of BAT. When subjected to an HFD, Fam210aUKO mice gained similar fat mass as sibling control mice but developed glucose intolerance, insulin resistance, and liver steatosis. The metabolic dysfunction was associated with overall increased lipid content in both the liver and BAT. Additionally, Fam210aUKO leads to inflammation in white adipose tissue. These data demonstrate that FAM210A in BAT is necessary for counteracting HFD-induced metabolic dysfunction but not obesity. ARTICLE HIGHLIGHTS FAM210A regulates cold-induced mitochondrial remodeling through control of OPA1 cleavage, but whether it also plays a role in high-fat diet (HFD)-induced cristae remodeling is unknown. We asked if an HFD would alter the FAM210A level and OPA1 cleavage in brown adipose tissue (BAT) and how FAM210A loss of function would affect diet-induced obesity in mice. We found that an HFD diminished FAM210A expression and accelerated OPA1 cleavage in BAT, and Fam210a knockout exacerbated HFD-induced whitening of BAT, cold intolerance, liver steatosis, white adipose tissue inflammation, and metabolic dysfunction. Our work reveals a physiologic role of FAM210A-mediated BAT mitochondrial remodeling in systemic adaptation to an HFD and suggests that BAT mitochondria may be targeted to treat diet-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Mennatallah A. Khedr
- Department of Animal Sciences, Purdue University, West Lafayette, IN
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC
| | - Meijin Pan
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | | | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC
| | - Madigan M. Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Kolapo M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC
- Institute for Cancer Research, Purdue University, West Lafayette, IN
| |
Collapse
|
9
|
Ramelow CC, Dammer EB, Xiao H, Cheng L, Kumar P, Espinosa-Garcia C, Sampson MM, Nelson RS, Malepati S, Kour D, Kumari R, Guo Q, Bagchi P, Duong DM, Seyfried NT, Sloan SA, Rangaraju S. Simultaneous profiling of native-state proteomes and transcriptomes of neural cell types using proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635500. [PMID: 39974879 PMCID: PMC11838394 DOI: 10.1101/2025.01.29.635500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Deep molecular phenotyping of cells at transcriptomic and proteomic levels is an essential first step to understanding cellular contributions to development, aging, injury, and disease. Since proteome and transcriptome level abundances only modestly correlate with each other, complementary profiling of both is needed. We report a novel method called simultaneous protein and RNA -omics (SPARO) to capture the cell type-specific transcriptome and proteome simultaneously from both in vitro and in vivo experimental model systems. This method leverages the ability of biotin ligase, TurboID, to biotinylate cytosolic proteins including ribosomal and RNA-binding proteins, which allows enrichment of biotinylated proteins for proteomics as well as protein-associated RNA for transcriptomics. We validated this approach first using well-controlled in vitro systems to verify that the proteomes and transcriptomes obtained reflect the ground truth, bulk proteomes and transcriptomes. We also show that the effect of a biological stimulus (e.g., neuroinflammatory activation by lipopolysaccharide) can be faithfully captured. We also applied this approach to obtain native-state proteomes and transcriptomes from two key neural cell types, astrocytes and neurons, thereby validating the in vivo application of SPARO. Next, we used these data to interrogate protein-mRNA concordance and discordance across these cell types, providing insights into groups of molecular processes that exhibit uniform or cell type-specific patterns of mRNA-protein discordance.
Collapse
Affiliation(s)
- Christina C Ramelow
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
- Department of Human Genetics, Emory University
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
| | - Lihong Cheng
- Center for Neurodegenerative Disease, Emory University
- Department of Pharmacology and Chemical Biology, Emory University
| | - Prateek Kumar
- Department of Neurology, Yale University, New Haven, CT
| | | | | | - Ruth S Nelson
- Department of Neurology, Yale University, New Haven, CT
| | | | - Dilpreet Kour
- Department of Neurology, Yale University, New Haven, CT
| | - Rashmi Kumari
- Department of Neurology, Yale University, New Haven, CT
| | - Qi Guo
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
| | | | - Duc M Duong
- Department of Biochemistry, Emory University
- Emory Integrated Proteomics Core, Emory University
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
- Emory Integrated Proteomics Core, Emory University
| | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA
- Department of Neurology, Yale University, New Haven, CT
| |
Collapse
|
10
|
Moresco P, Kastan JP, Yang JI, Prabakar R, Minicozzi F, Adams DW, Cifani P, Tuveson DA, Fearon DT. Signal peptide-independent secretion of keratin-19 by pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633717. [PMID: 39896665 PMCID: PMC11785074 DOI: 10.1101/2025.01.18.633717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The exclusion of T cells causes immune escape of pancreatic ductal adenocarcinoma (PDA). T cell exclusion is mediated by the interaction between CXCR4 on T cells and its ligand, CXCL12, which is complexed to keratin-19 (KRT19) on the surface of PDA cells. KRT19 secretion by PDA cells is essential to this process but is unusual because KRT19 lacks an endoplasmic reticulum (ER)-directing signal peptide (SP). By using biotinylation by an ER-restricted TurboID system and a split-GFP assay in PDA cells, we demonstrate that KRT19 enters the ER via its "head" domain. Additionally, KRT19 is shown to interact with the signal recognition particle and its secretion is sensitive to canonical protein secretion inhibitors. In vivo, mouse tumors formed with ER-TurboID-expressing PDA cells contain biotinylated KRT19. In contrast, keratin-8 (KRT8), which colocalizes with KRT19 on the surface of PDA cells, does not enter the ER. Rather, KRT8 is externalized via secretory autophagy possibly in a complex with KRT19. Thus, despite lacking a classical SP, PDA cells secrete KRT19 to capture CXCL12 and protect against immune attack.
Collapse
Affiliation(s)
- Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Jung-in Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | - Dexter W. Adams
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
11
|
Kim SS, Park I, Kim J, Ka NL, Lim GY, Park MY, Hwang S, Kim JE, Park SY, Kim JS, Rhee HW, Lee MO. Secreted LGALS3BP facilitates distant metastasis of breast cancer. Breast Cancer Res 2025; 27:4. [PMID: 39789641 PMCID: PMC11715970 DOI: 10.1186/s13058-024-01958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets. METHODS We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC. The increased expression of LGALS3BP was validated using western blotting, qPCR, ELISA, and IF. Chromatin immunoprecipitation was applied to analyze estrogen-dependent regulation of LGALS3BP transcription. The adhesive and angiogenic functions of LGALS3BP were evaluated by abrogating LGALS3BP expression using either shRNA-mediated knockdown or a neutralizing antibody. Xenograft mouse experiments were employed to assess the in vivo metastatic potential of TAMR cells and the LGALS3BP protein. Clinical evaluation of LGALS3BP risk was carried out with refractory clinical specimens from tamoxifen-treated ER-positive BC patients and publicly available databases. RESULTS TAMR secretome analysis revealed that 176 proteins were secreted at least 2-fold more from MCF7/TAMR cells than from sensitive cells, and biological processes such as cell adhesion and angiogenesis were associated with the TAMR secretome. Galectin-3 binding protein (LGALS3BP) was one of the top 10 most highly secreted proteins in the TAMR secretome. The expression level of LGALS3BP was suppressed by estrogen signaling, which involves direct ERα binding to its promoter region. Secreted LGALS3BP in the TAMR secretome helped BC cells adhere to the extracellular matrix and promoted the tube formation of human umbilical vein endothelial cells. Compared with sensitive cells, xenograft animal experiments with MCF7/TAMR cells showed increased pulmonary metastasis, which completely disappeared in LGALS3BP-knockdown TAMR cells. Finally, higher levels of LGALS3BP were associated with poor prognosis in ER-positive BC patients treated with adjuvant tamoxifen in the clinic. CONCLUSION TAMR secretome analysis identified secretory proteins, such as LGALS3BP, that are involved in biological processes closely related to metastasis. Secreted LGALS3BP from the TAMR cells promoted adhesion of the cells to the extracellular matrix and vasculature formation, which may support metastasis of TAMR cells.
Collapse
Affiliation(s)
- Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Issac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ye Park
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Eun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Tokizane K, Imai SI. Inter-organ communication is a critical machinery to regulate metabolism and aging. Trends Endocrinol Metab 2024:S1043-2760(24)00320-5. [PMID: 39694728 DOI: 10.1016/j.tem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| |
Collapse
|
13
|
Wang Z, Lau JW, Liu S, Ren Z, Gong Z, Liu X, Xing B. A Nitroreductase-Activatable Metabolic Reporter for Covalent Labeling of Pathological Hypoxic Cells in Tumorigenesis. Angew Chem Int Ed Engl 2024; 63:e202411636. [PMID: 39152515 DOI: 10.1002/anie.202411636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Aberrant hypoxic stress will initiate a cascade of pathological consequence observed prominently in tumorigenesis. Understanding of hypoxia's role in tumorigenesis is highly essential for developing effective therapeutics, which necessitates reliable tools to specifically distinguish hypoxic tumor cells (or tissues) and correlate their dynamics with the status of disease in complex living settings for precise theranostics. So far, disparate hypoxia-responsive probe molecules and prodrugs were designed via chemical or enzymatic reactions, yet their capability in real-time reporting pathogenesis development is often compromised due to unrestricted diffusion and less selectivity towards the environmental responsiveness. Herein we present an oxygen-insensitive nitroreductase (NTR)-activatable glycan metabolic reporter (pNB-ManNAz) capable of covalently labeling hypoxic tumor cells and tissues. Under pathophysiological hypoxic environments, the caged non-metabolizable precursor pNB-ManNAz exhibited unique responsiveness to cellular NTR, culminating in structural self-immolation and the resultant ManNAz could incorporate onto cell surface glycoproteins, thereby facilitating fluorescence labeling via bioorthogonal chemistry. This NTR-responsive metabolic reporter demonstrated broad applicability for multicellular hypoxia labeling, particularly in the dynamic monitoring of orthotopic tumorigenesis and targeted tumor phototherapy in vivo. We anticipate that this approach holds promise for investigating hypoxia-related pathological progression, offering valuable insights for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Kim HB, Kim KE. Precision proteomics with TurboID: mapping the suborganelle landscape. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:495-501. [PMID: 39467713 PMCID: PMC11519719 DOI: 10.4196/kjpp.2024.28.6.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 10/30/2024]
Abstract
Recent research underscores the pivotal role of cellular organelles, such as mitochondria, the endoplasmic reticulum, and lysosomes, in maintaining cellular homeostasis. Their dynamic interactions are critical for metabolic regulation and stress response. Analysis of organelle proteomes offers valuable insights into their functions in both physiology and disease. Traditional proteomic approaches to studying isolated organelles are now complemented by innovative methodologies focusing on inter-organelle interactions. This review examines the integration of advanced proximity labeling technologies, including TurboID and split-TurboID, which address the inherent limitations of traditional techniques and enable precision proteomics of suborganelle compartments and inter-organellar contact sites. These innovations have led to discoveries regarding organelle interconnections, revealing mechanisms underlying metabolic processes such as cholesterol metabolism, glucose metabolism, and lysosomal repair. In addition to highlighting the advancements in TurboID applications, this review delineates the evolving trends in organelle research, underscoring the transformative potential of these techniques to significantly enhance organelle-specific proteomic investigations.
Collapse
Affiliation(s)
- Han Byeol Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Kwang-eun Kim
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
15
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
16
|
Rondón-Ortiz AN, Zhang L, Ash PEA, Basu A, Puri S, van der Spek SJF, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. J Biol Chem 2024; 300:107621. [PMID: 39098523 PMCID: PMC11401034 DOI: 10.1016/j.jbc.2024.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates the degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA, and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and the relationship between the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N Rondón-Ortiz
- Department of Biology, Boston University, Boston, Massachusetts, USA; Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Peter E A Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA.
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA; Center for Neurophotonics, Boston University, Boston, Massachusetts, USA; Department of Neurology, Boston University, Boston, Massachusetts, USA; Department of Pharmacology, Physiology and Biophysics, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Zafar A, Sridhar S, Bineva-Todd G, Cioce A, Abdulla N, Chang V, Malaker SA, Hewings DS, Schumann B. Expanding the repertoire of GalNAc analogues for cell-specific bioorthogonal tagging of glycoproteins. RSC Chem Biol 2024; 5:d4cb00093e. [PMID: 39238612 PMCID: PMC11369666 DOI: 10.1039/d4cb00093e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Glycosylation is a ubiquitous modification of proteins, necessitating approaches for its visualization and characterization. Bioorthogonally tagged monosaccharides have been instrumental to this end, offering a chemical view into the cell biology of glycans. Understanding the use of such monosaccharides by cellular biosynthetic pathways has expanded their applicability in cell biology, for instance through the strategy named Bio-Orthogonal Cell-specific TAgging of Glycoproteins (BOCTAG). Here, we show that the cellular use of two azide-tagged analogues of the monosaccharide N-acetylgalactosamine (GalNAzMe and GalNPrAz) can be promoted through expression of two biosynthetic enzymes. More precisely, cellular expression of the bacterial kinase NahK and the engineered human pyrophosphorylase AGX1F383A led to biosynthesis of the corresponding activated nucleotide-sugars and subsequent bioorthogonal tagging of the cellular glycoproteome. We explore the use of both sugars for BOCTAG, demonstrating the visualization of cell surface glycosylation tagged with GalNPrAz in a specific cell line in a co-culture system. Our work adds to the toolbox of glycoprotein analysis in biomedicine.
Collapse
Affiliation(s)
- Abdul Zafar
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
- Department of Chemistry, Imperial College London W12 0BZ London UK
| | - Sandhya Sridhar
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
- Department of Chemistry, Imperial College London W12 0BZ London UK
- Tumour-Host Interaction Laboratory, The Francis Crick Institute NW1 1AT London UK
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
| | - Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
- Department of Chemistry, Imperial College London W12 0BZ London UK
| | - Nadia Abdulla
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
- Department of Chemistry, Imperial College London W12 0BZ London UK
| | - Vincent Chang
- Department of Chemistry, Yale University CT 06511 New Haven USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University CT 06511 New Haven USA
| | - David S Hewings
- Vertex Pharmaceuticals (Europe) Ltd., 86-88 Jubilee Avenue, Milton Park Abingdon OX14 4RW Oxfordshire UK
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute NW1 1AT London UK
- Department of Chemistry, Imperial College London W12 0BZ London UK
| |
Collapse
|
18
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Ortiz ANR, Zhang L, Ash PE, Basu A, Puri S, van der Spek SJ, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571324. [PMID: 38168279 PMCID: PMC10760047 DOI: 10.1101/2023.12.12.571324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and of the relationship of the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N. Rondón Ortiz
- Department of Biology, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Peter E.A. Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
- Department of Pharmacology, Physiology and Biophysics
| |
Collapse
|
20
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
21
|
Deng J, Labarta-Bajo L, Brandebura AN, Kahn SB, Pinto AFM, Diedrich JK, Allen NJ. Suppression of astrocyte BMP signaling improves fragile X syndrome molecular signatures and functional deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599752. [PMID: 38979341 PMCID: PMC11230279 DOI: 10.1101/2024.06.19.599752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Fragile X syndrome (FXS) is a monogenic neurodevelopmental disorder with manifestations spanning molecular, neuroanatomical, and behavioral changes. Astrocytes contribute to FXS pathogenesis and show hundreds of dysregulated genes and proteins; targeting upstream pathways mediating astrocyte changes in FXS could therefore be a point of intervention. To address this, we focused on the bone morphogenetic protein (BMP) pathway, which is upregulated in FXS astrocytes. We generated a conditional KO (cKO) of Smad4 in astrocytes to suppress BMP signaling, and found this lessens audiogenic seizure severity in FXS mice. To ask how this occurs on a molecular level, we performed in vivo transcriptomic and proteomic profiling of cortical astrocytes, finding upregulation of metabolic pathways, and downregulation of secretory machinery and secreted proteins in FXS astrocytes, with these alterations no longer present when BMP signaling is suppressed. Functionally, astrocyte Smad4 cKO restores deficits in inhibitory synapses present in FXS auditory cortex. Thus, astrocytes contribute to FXS molecular and functional phenotypes, and targeting astrocytes can mitigate FXS symptoms.
Collapse
Affiliation(s)
- James Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lara Labarta-Bajo
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel B Kahn
- Department of Biology, University of California, San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
22
|
Enström A, Carlsson R, Buizza C, Lewi M, Paul G. Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular in Vitro Spheroid Model. Mol Cell Proteomics 2024; 23:100782. [PMID: 38705386 PMCID: PMC11176767 DOI: 10.1016/j.mcpro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Marvel Lewi
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
24
|
Smith DM, Liu BY, Wolfgang MJ. Rab30 facilitates lipid homeostasis during fasting. Nat Commun 2024; 15:4469. [PMID: 38796472 PMCID: PMC11127972 DOI: 10.1038/s41467-024-48959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
To facilitate inter-tissue communication and the exchange of proteins, lipoproteins, and metabolites with the circulation, hepatocytes have an intricate and efficient intracellular trafficking system regulated by small Rab GTPases. Here, we show that Rab30 is induced in the mouse liver by fasting, which is amplified in liver-specific carnitine palmitoyltransferase 2 knockout mice (Cpt2L-/-) lacking the ability to oxidize fatty acids, in a Pparα-dependent manner. Live-cell super-resolution imaging and in vivo proximity labeling demonstrates that Rab30-marked vesicles are highly dynamic and interact with proteins throughout the secretory pathway. Rab30 whole-body, liver-specific, and Rab30; Cpt2 liver-specific double knockout (DKO) mice are viable with intact Golgi ultrastructure, although Rab30 deficiency in DKO mice suppresses the serum dyslipidemia observed in Cpt2L-/- mice. Corresponding with decreased serum triglyceride and cholesterol levels, DKO mice exhibit decreased circulating but not hepatic ApoA4 protein, indicative of a trafficking defect. Together, these data suggest a role for Rab30 in the selective sorting of lipoproteins to influence hepatocyte and circulating triglyceride levels, particularly during times of excessive lipid burden.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian Y Liu
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
27
|
Bareja A, Lee DE, Ho T, Waitt G, McKay LH, Hannou SA, Orenduff MC, McGreevy KM, Binder A, Ryan CP, Soderblom EJ, Belsky DW, Ferrucci L, Das JK, Banskota N, Kraus VB, Huebner JL, Kraus WE, Huffman KM, Baht GS, Horvath S, Parmer RJ, Miles LA, White JP. Liver-derived plasminogen mediates muscle stem cell expansion during caloric restriction through the plasminogen receptor Plg-R KT. Cell Rep 2024; 43:113881. [PMID: 38442019 PMCID: PMC11075744 DOI: 10.1016/j.celrep.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Tricia Ho
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Greg Waitt
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Lauren H McKay
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Hannou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kristen M McGreevy
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Alexandra Binder
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA; Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Calen P Ryan
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Daniel W Belsky
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Luigi Ferrucci
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jayanta Kumar Das
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nirad Banskota
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Virginia B Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kim M Huffman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27701, USA
| | - Steve Horvath
- Computational Biology and Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Altos Labs, San Diego, CA, USA
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lindsey A Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
28
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
29
|
Shi Y, Bashian EE, Hou Y, Wu P. Chemical immunology: Recent advances in tool development and applications. Cell Chem Biol 2024; 31:S2451-9456(24)00080-1. [PMID: 38508196 PMCID: PMC11393185 DOI: 10.1016/j.chembiol.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Immunology was one of the first biological fields to embrace chemical approaches. The development of new chemical approaches and techniques has provided immunologists with an impressive arsenal of tools to address challenges once considered insurmountable. This review focuses on advances at the interface of chemistry and immunobiology over the past two decades that have not only opened new avenues in basic immunological research, but also revolutionized drug development for the treatment of cancer and autoimmune diseases. These include chemical approaches to understand and manipulate antigen presentation and the T cell priming process, to facilitate immune cell trafficking and regulate immune cell functions, and therapeutic applications of chemical approaches to disease control and treatment.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eleanor E Bashian
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yingqin Hou
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Wei W, Raun SH, Long JZ. Molecular Insights From Multiomics Studies of Physical Activity. Diabetes 2024; 73:162-168. [PMID: 38241506 PMCID: PMC10796296 DOI: 10.2337/dbi23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/04/2023] [Indexed: 01/21/2024]
Abstract
Physical activity confers systemic health benefits and provides powerful protection against disease. There has been tremendous interest in understanding the molecular effectors of exercise that mediate these physiologic effects. The modern growth of multiomics technologies-including metabolomics, proteomics, phosphoproteomics, lipidomics, single-cell RNA sequencing, and epigenomics-has provided unparalleled opportunities to systematically investigate the molecular changes associated with physical activity on an organism-wide scale. Here, we discuss how multiomics technologies provide new insights into the systemic effects of physical activity, including the integrative responses across organs as well as the molecules and mechanisms mediating tissue communication during exercise. We also highlight critical unanswered questions that can now be addressed using these high-dimensional tools and provide perspectives on fertile future research directions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
| | - Steffen H. Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA
| |
Collapse
|
33
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
34
|
Kim JE, Park S, Kwak C, Lee Y, Song D, Jung JW, Lee H, Shin E, Pinanga Y, Pyo K, Lee EH, Kim W, Kim S, Jun C, Yun J, Choi S, Rhee H, Liu K, Lee JW. Glucose-mediated mitochondrial reprogramming by cholesterol export at TM4SF5-enriched mitochondria-lysosome contact sites. Cancer Commun (Lond) 2024; 44:47-75. [PMID: 38133457 PMCID: PMC10794009 DOI: 10.1002/cac2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and β-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - So‐Young Park
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Chulhwan Kwak
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST)Gangneung‐siGangwon‐doRepublic of Korea
| | - Jae Woo Jung
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Haesong Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun‐Ae Shin
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Yangie Pinanga
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Kyung‐hee Pyo
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun Hae Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Wonsik Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Soyeon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Chang‐Duck Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Jeanho Yun
- Department of BiochemistryCollege of Medicine, Dong‐A UniversityBusanRepublic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun‐Woo Rhee
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Kwang‐Hyeon Liu
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Jung Weon Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
35
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
36
|
Reghupaty SC, Dall NR, Svensson KJ. Hallmarks of the metabolic secretome. Trends Endocrinol Metab 2024; 35:49-61. [PMID: 37845120 PMCID: PMC10841501 DOI: 10.1016/j.tem.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules. This Review aims to synthesize the rapidly expanding field of the metabolic secretome, encompassing the five major types of secreted factors: proteins, peptides, metabolites, lipids, and extracellular vesicles. By systematically defining the functions and detection of the components within the metabolic secretome, this Review provides a primer into the advances of the field, and how integration of the techniques discussed can provide a deeper understanding of the mechanisms underlying metabolic homeostasis and its disorders.
Collapse
Affiliation(s)
- Saranya C Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Nicholas R Dall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
37
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
38
|
Challa K, Paysan D, Leiser D, Sauder N, Weber DC, Shivashankar GV. Imaging and AI based chromatin biomarkers for diagnosis and therapy evaluation from liquid biopsies. NPJ Precis Oncol 2023; 7:135. [PMID: 38092866 PMCID: PMC10719365 DOI: 10.1038/s41698-023-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple genomic and proteomic studies have suggested that peripheral blood mononuclear cells (PBMCs) respond to tumor secretomes and thus could provide possible avenues for tumor prognosis and treatment evaluation. We hypothesized that the chromatin organization of PBMCs obtained from liquid biopsies, which integrates secretome signals with gene expression programs, provides efficient biomarkers to characterize tumor signals and the efficacy of proton therapy in tumor patients. Here, we show that chromatin imaging of PBMCs combined with machine learning methods provides such robust and predictive chromatin biomarkers. We show that such chromatin biomarkers enable the classification of 10 healthy and 10 pan-tumor patients. Furthermore, we extended our pipeline to assess the tumor types and states of 30 tumor patients undergoing (proton) radiation therapy. We show that our pipeline can thereby accurately distinguish between three tumor groups with up to 89% accuracy and enables the monitoring of the treatment effects. Collectively, we show the potential of chromatin biomarkers for cancer diagnostics and therapy evaluation.
Collapse
Affiliation(s)
- Kiran Challa
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Nadia Sauder
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Radio-Oncology, University Hospital Zurich, Zurich, Switzerland.
- Department of Radio-Oncology, University of Bern, Bern, Switzerland.
| | - G V Shivashankar
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Abstract
Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
40
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
41
|
Smith JG, Molendijk J, Blazev R, Chen WH, Zhang Q, Litwin C, Zinna VM, Welz PS, Benitah SA, Greco CM, Sassone-Corsi P, Muñoz-Cánoves P, Parker BL, Koronowski KB. Impact of Bmal1 Rescue and Time-Restricted Feeding on Liver and Muscle Proteomes During the Active Phase in Mice. Mol Cell Proteomics 2023; 22:100655. [PMID: 37793502 PMCID: PMC10651687 DOI: 10.1016/j.mcpro.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA
| | - Qing Zhang
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Hospital del Mar Research Institute Barcelona, Cancer Research Program, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, California, USA
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Inc, San Diego Institute of Science, San Diego, California, USA
| | - Benjamin L Parker
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kevin B Koronowski
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA; Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
42
|
Knecht S, Eberl HC, Kreisz N, Ugwu UJ, Starikova T, Kuster B, Wilhelm S. An Introduction to Analytical Challenges, Approaches, and Applications in Mass Spectrometry-Based Secretomics. Mol Cell Proteomics 2023; 22:100636. [PMID: 37597723 PMCID: PMC10518356 DOI: 10.1016/j.mcpro.2023.100636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The active release of proteins into the extracellular space and the proteolytic cleavage of cell surface proteins are key processes that coordinate and fine-tune a multitude of physiological functions. The entirety of proteins that fulfill these extracellular tasks are referred to as the secretome and are of special interest for the investigation of biomarkers of disease states and physiological processes related to cell-cell communication. LC-MS-based proteomics approaches are a valuable tool for the comprehensive and unbiased characterization of this important subproteome. This review discusses procedures, opportunities, and limitations of mass spectrometry-based secretomics to better understand and navigate the complex analytical landscape for studying protein secretion in biomedical science.
Collapse
Affiliation(s)
- Sascha Knecht
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - H Christian Eberl
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany
| | - Norbert Kreisz
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Ukamaka Juliet Ugwu
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Tatiana Starikova
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
43
|
Delaveris CS, Wang CL, Riley NM, Li S, Kulkarni RU, Bertozzi CR. Microglia mediate contact-independent neuronal pruning via secreted Neuraminidase-3 associated with extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554214. [PMID: 37662421 PMCID: PMC10473657 DOI: 10.1101/2023.08.21.554214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, can prune these synapses through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of pruning. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete Neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show Neu3 mediates contact-independent pruning of neurons and subsequent disruption of neuronal networks through neuronal glycocalyx remodeling. We observe that NEU3 is transcriptionally upregulated upon exposure to inflammatory stimuli, and that a genetic knock-out of NEU3 abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is both necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Corleone S. Delaveris
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Catherine L. Wang
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Nicholas M. Riley
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Sherry Li
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Rishikesh U. Kulkarni
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Carolyn R. Bertozzi
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305 USA
| |
Collapse
|
44
|
Qin W, Cheah JS, Xu C, Messing J, Freibaum BD, Boeynaems S, Taylor JP, Udeshi ND, Carr SA, Ting AY. Dynamic mapping of proteome trafficking within and between living cells by TransitID. Cell 2023; 186:3307-3324.e30. [PMID: 37385249 PMCID: PMC10527209 DOI: 10.1016/j.cell.2023.05.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
Collapse
Affiliation(s)
- Wei Qin
- Departments of Biology, Genetics, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Joleen S Cheah
- Departments of Biology, Genetics, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Charles Xu
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Boeynaems
- Department of Molecular and Human Genetics, Therapeutic Innovation Center, Center for Alzheimer's and Neurodegenerative Diseases, and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Departments of Biology, Genetics, and Chemistry, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Yamakawa T, Zhang G, Najjar LB, Li C, Itakura K. The uncharacterized transcript KIAA0930 confers a cachexic phenotype on cancer cells. Oncotarget 2023; 14:723-737. [PMID: 37477523 PMCID: PMC10360925 DOI: 10.18632/oncotarget.28476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Patients with cancer cachexia have a poor prognosis and impaired quality of life. Numerous studies using preclinical models have shown that inflammatory cytokines play an important role in the development of cancer cachexia; however, no clinical trial targeting cytokines has been successful. Therefore, it is essential to identify molecular mechanisms to develop anti-cachexia therapies. Here we identified the uncharacterized transcript KIAA0930 as a candidate cachexic factor based on analyses of microarray datasets and an in vitro muscle atrophy assay. While conditioned media from pancreatic, colorectal, gastric, and tongue cancer cells caused muscle atrophy in vitro, conditioned medium from KIAA0930 knockdown cells did not. The PANC-1 orthotopic xenograft study showed that the tibialis anterior muscle weight and cross-sectional area were increased in mice bearing KIAA0930 knockdown cells compared to control mice. Interestingly, KIAA0930 knockdown did not cause consistent changes in the secretion of inflammatory cytokines/chemokines from a variety of cancer cell lines. An initial characterization experiment showed that KIAA0930 is localized in the cytosol and not secreted from cells. These data suggest that the action of KIAA0930 is independent of the expression of cytokines/chemokines and that KIAA0930 could be a novel therapeutic target for cachexia.
Collapse
Affiliation(s)
- Takahiro Yamakawa
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoxiang Zhang
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Liza Bengrine Najjar
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun Li
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
46
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Zheng F, Yu C, Zhou X, Zou P. Genetically encoded photocatalytic protein labeling enables spatially-resolved profiling of intracellular proteome. Nat Commun 2023; 14:2978. [PMID: 37221179 PMCID: PMC10205723 DOI: 10.1038/s41467-023-38565-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Mapping the subcellular organization of proteins is crucial for understanding their biological functions. Herein, we report a reactive oxygen species induced protein labeling and identification (RinID) method for profiling subcellular proteome in the context of living cells. Our method capitalizes on a genetically encoded photocatalyst, miniSOG, to locally generate singlet oxygen that reacts with proximal proteins. Labeled proteins are conjugated in situ with an exogenously supplied nucleophilic probe, which serves as a functional handle for subsequent affinity enrichment and mass spectrometry-based protein identification. From a panel of nucleophilic compounds, we identify biotin-conjugated aniline and propargyl amine as highly reactive probes. As a demonstration of the spatial specificity and depth of coverage in mammalian cells, we apply RinID in the mitochondrial matrix, capturing 477 mitochondrial proteins with 94% specificity. We further demonstrate the broad applicability of RinID in various subcellular compartments, including the nucleus and the endoplasmic reticulum (ER). The temporal control of RinID enables pulse-chase labeling of ER proteome in HeLa cells, which reveals substantially higher clearance rate for secreted proteins than ER resident proteins.
Collapse
Affiliation(s)
- Fu Zheng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Chenxin Yu
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinyue Zhou
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
48
|
Swietlik JJ, Bärthel S, Falcomatà C, Fink D, Sinha A, Cheng J, Ebner S, Landgraf P, Dieterich DC, Daub H, Saur D, Meissner F. Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation. Nat Commun 2023; 14:2642. [PMID: 37156840 PMCID: PMC10167354 DOI: 10.1038/s41467-023-38171-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jonathan J Swietlik
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Fink
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Martinsried, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
49
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
50
|
Xu WQ, Cheah JS, Xu C, Messing J, Freibaum BD, Boeynaems S, Taylor JP, Udeshi ND, Carr SA, Ting AY. Dynamic mapping of proteome trafficking within and between living cells by TransitID. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527548. [PMID: 36798302 PMCID: PMC9934598 DOI: 10.1101/2023.02.07.527548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules, uncovering a role for stress granules in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID introduces a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
Collapse
|