1
|
Komorowska JA, Grammer C, Bălan M, Swann JB. Ndrg3 is a critical regulator of peripheral T cell maturation and homeostasis. SCIENCE ADVANCES 2025; 11:eads5143. [PMID: 40073135 PMCID: PMC11900881 DOI: 10.1126/sciadv.ads5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
To provide protection, anticipatory T cell-dependent immunity is reliant on the generation and maintenance of a naïve T cell repertoire, which is sufficiently diverse to ensure recognition of newly encountered antigens. Therefore, under steady-state conditions, a given individual needs to maintain a large pool of naïve T cells, ready to respond to potential threats. Here, we demonstrate that N-myc downstream-regulated gene 3 (Ndrg3) is essential for naïve T cell stability. Mice with T cell-specific Ndrg3 loss are lymphopenic, with reduced numbers of conventional T cells and natural killer T cells. We show that in the absence of Ndrg3, naïve CD8+ T cells exhibit high rates of both proliferation and apoptosis, phenotypes that could be partially rescued by transgenic expression of a high-avidity T cell receptor. Furthermore, Ndrg3-deficient cells were refractory to interleukin-4, resulting in reduced Eomes induction, and a decreased virtual memory population. Our study therefore identifies Ndrg3 as an unexpected, pleiotropic regulator of T cell homeostasis.
Collapse
Affiliation(s)
- Julia A. Komorowska
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, Albert Ludwig University, Freiburg, Germany
| | - Christiane Grammer
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mirela Bălan
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B. Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
2
|
Cai S, Xue B, Li S, Wang X, Zeng X, Zhu Z, Fan X, Zou Y, Yu H, Qiao S, Zeng X. Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion. Cell Rep 2025; 44:115291. [PMID: 39937648 DOI: 10.1016/j.celrep.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Yijin Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Bhatt B, Kumar K, Shi H, Ganesan D, Anazodo F, Rathakrishnan A, Zhu H, Wanna A, Jiang C, Jayavelu T, Lokeshwar VB, Pacholczyk R, Munn DH, Sheridan BS, Moskophidis D, Li H, Singh N. UFL1 promotes survival and function of virtual memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae042. [PMID: 40073095 PMCID: PMC11952874 DOI: 10.1093/jimmun/vkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/30/2024] [Indexed: 03/14/2025]
Abstract
In naïve mice, a fraction of CD8 T cells displaying high affinity for self-MHC peptide complexes develop into virtual memory T (TVM) cells. Due to self-reactivity, TVM cells are exposed to persistent antigenic stimulation, a condition known to induce T cell exhaustion. However, TVM cells do not exhibit characteristics similar to exhausted CD8 T (TEX) cells. Here, we tested the role of the UFL1, E3 ligase of the ufmylation pathway in TVM cells. We show that UFL1 prevents the acquisition of epigenetic, transcriptional, and phenotypic changes in TVM cells that are similar to TEX cells and thus promote their survival and function. UFL1-deficient TVM cells failed to protect mice against Listeria infection. Epigenetic analysis showed higher BATF activity in UFL1-deficient TVM cells. Deletion of BATF and not PD1 decreased inhibitory molecules expression and restored the survival and function of UFL1-deficient TVM cells. Our findings demonstrate a key role of UFL1 in inhibiting the exhaustion of TVM cells and promoting their survival and function.
Collapse
Affiliation(s)
- Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Kunal Kumar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dhasarathan Ganesan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Francis Anazodo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Aravind Rathakrishnan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Andrew Wanna
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Chen Jiang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Tamilselvan Jayavelu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Vinata Bal Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - David H Munn
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian S Sheridan
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Demetrius Moskophidis
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
4
|
Zhang JB, Chaurasia P, Nguyen A, Huang Z, Nguyen TT, Xu H, Tran MT, Reid HH, Jones CM, Schattgen SA, Thiele D, Thomas PG, Rientjes J, Good-Jacobson KL, Ruscher R, Littler DR, Rossjohn J, Zareie P, La Gruta NL. LCK-co-receptor association ensures T cell lineage fidelity and maximizes epitope-specific TCR diversity. Sci Immunol 2025; 10:eadp5016. [PMID: 39982976 DOI: 10.1126/sciimmunol.adp5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
The interaction between the CD4/CD8 co-receptors and LCK (an Src family tyrosine kinase) is thought to augment T cell activation upon recognition of peptide-loaded major histocompatibility complexes (pMHCs). How this interaction influences antigen-specific T cell development is unclear however, as is its impact on naïve and immune antigen-specific T cell repertoires. In mice expressing mutated endogenous LCK unable to bind co-receptors (LCKFREE mice), we show that influenza A virus (IAV)-derived pMHC-specific CD8 and CD4 T cell responses had a significantly narrowed T cell receptor (TCR) repertoire, favoring high-affinity TCRs. This narrowing was established during T cell development and was exacerbated after viral infection. The dissociation of LCK from co-receptors also resulted in the redirection of CD4-fated T cells to the CD8 lineage, with expanded pMHCII-specific cytotoxic CD8 T cells observed after IAV infection. Thus, LCK-co-receptor association is critical for ensuring T cell lineage fidelity and maximizing antigen-specific T cell repertoire diversity.
Collapse
Affiliation(s)
- Justin B Zhang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zijian Huang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Trang T Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mai T Tran
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hugh H Reid
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stefan A Schattgen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeanette Rientjes
- Genome Modification Platform, Monash University, Clayton, VIC, Australia
| | - Kim L Good-Jacobson
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Dene R Littler
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Pirooz Zareie
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Yang B, Piedfort O, Sanchez-Sanchez G, Lavergne A, Gong M, Peng G, Madrigal A, Petrellis G, Katsandegwaza B, Rodriguez LR, Balthazar A, Meyer SJ, Van Isterdael G, Van Duyse J, Andris F, Bai Q, Marichal T, Machiels B, Nitschke L, Najafabadi HS, King IL, Vermijlen D, Dewals BG. IL-4 induces CD22 expression to restrain the effector program of virtual memory T cells. Sci Immunol 2025; 10:eadk4841. [PMID: 39919198 DOI: 10.1126/sciimmunol.adk4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Parasitic helminths induce the production of interleukin-4 (IL-4), which causes the expansion of virtual memory CD8+ T cells (TVM cells), a cell subset that contributes to the control of coinfection with intracellular pathogens. However, the mechanisms regulating IL-4-dependent TVM cell activation and expansion remain ill defined. Here, we used single-cell RNA sequencing of CD8+ T cells to identify pathways that control IL-4-dependent TVM cell responses. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a selective surface marker of IL-4-induced TVM cells. CD22+ TVM cells were enriched for interferon-γ and granzyme A and retained a diverse TCR repertoire while enriched in self-reactive CDR3 sequences. CD22 intrinsically regulated the IL-4-induced CD8+ T cell effector program, resulting in reduced responsiveness of CD22+ TVM cells and regulatory functions to infection and inflammation. Thus, helminth-induced IL-4 drives the expansion and activation of TVM cells that is counterinhibited by CD22.
Collapse
Affiliation(s)
- Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Guillem Sanchez-Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, University of Liège, Liège, Belgium
| | - Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Garrie Peng
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Georgios Petrellis
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Lucia Rodriguez Rodriguez
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Alexis Balthazar
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fabienne Andris
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Qiang Bai
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- PhyMedExp, INSERM U1046, University of Montpellier, Montpellier, France
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Bénédicte Machiels
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Benjamin G Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
7
|
Li W, Jin D, Takai S, Inoue N, Yamanishi K, Tanaka Y, Okamura H. IL-18 primes T cells with an antigen-inexperienced memory phenotype for proliferation and differentiation into effector cells through Notch signaling. J Leukoc Biol 2024; 117:qiae172. [PMID: 39213165 DOI: 10.1093/jleuko/qiae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have revealed that a subset of CD8+ T cells exhibit innate features and can be activated by cytokines. However, the precise mechanisms underlying the proliferation and differentiation of these cells remain unclear. Here, we demonstrated that CD44highCD8+ T cells in the mouse spleen express functional interleukin-18 (IL-18) receptors, whereas CD44lowCD8+ T cells do not. In response to IL-18 stimulation, these cells activated various metabolic pathways, upregulated the expression of surface molecules, such as c-Kit (CD117), CD25, and PD-1, and induced progression through the G1/S phase in the cell cycle. IL-18-primed cells, expressing a high-affinity receptor for IL-2, exhibited robust proliferation in response to IL-2 and underwent differentiation into effector cells. The splenic CD44highCD8+ T cells exhibited high expression levels of CD122, CD62L, CCR7, and CXCR3, along with CD5, indicating their potential for migration to the lymph nodes, where they could undergo expansion and terminal differentiation into effector cells. Additionally, in a tumor model, administration of IL-18 increased the accumulation of CD8+ T cells in both the lymph nodes and tumors. It is noteworthy that stimulation of CD44highCD8+ T cells with IL-18 upregulated the Notch-1 receptor and c-Myc. Moreover, inclusion of γ-secretase inhibitors attenuated the effect of IL-18 on both proliferation and interferon-γ production in the cells. These results demonstrate that IL-18 primes CD44highCD122highCXCR3highCD62LhighCD8+ T cells for expansion and differentiation into effector cells in a Notch signaling-dependent manner.
Collapse
Affiliation(s)
- Wen Li
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Denan Jin
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Takai
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Natsuko Inoue
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
9
|
Choi SM, Jung KC, Lee JI. Developmental trajectory of unconventional T cells of the cynomolgus macaque thymus. Heliyon 2024; 10:e39736. [PMID: 39524802 PMCID: PMC11543906 DOI: 10.1016/j.heliyon.2024.e39736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
As nonhuman primates are immunologically the closest model to humans, a comprehensive understanding of T-cell development in these species is crucial. However, the differentiation pathways in which thymocytes participate, along with their heterogeneity, remain poorly characterized. Using single-cell RNA sequencing, we thoroughly profiled the development of various T-cell lineages in the juvenile cynomolgus monkey thymus, identifying and characterizing 12 distinct thymic cell states or types. Interestingly, we identified two unexpected cell types, an agonist-selected and a memory-like cell population. The agonist-selected cell population expressed genes associated with strong TCR signaling, such as PDCD1, CD5, NFKBID, NFATC1, BCL2L11, and NR4A1 but exhibiting significantly higher PDCD1 expression compared with cells following the conventional developmental pathway. Additionally, we identified a substantial number of memory-like cell populations characterized by high CXCR3 and EOMES expression. Notably, this population also highly expressed the effector-associated markers, GZMK, NKG7, and GNLY, as well as the innate cell-associated markers, ZBTB16, TYROBP, KLRB1, KLRC1, and NCR3. The EOMES + memory-like cell population expressed highly PDCD1, indicating the presence of an agonist-selection footprint. Our findings provide insights into the agonist-selection pathway that allows self-reactive thymocytes to survive thymic selections and differentiate into various unconventional T-cell lineages.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
10
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Ashby KM, Vobořil M, Salgado OC, Lee ST, Martinez RJ, O’Connor CH, Breed ER, Xuan S, Roll CR, Bachigari S, Heiland H, Stetson DB, Kotenko SV, Hogquist KA. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci Immunol 2024; 9:eadp1139. [PMID: 39058762 PMCID: PMC12052003 DOI: 10.1126/sciimmunol.adp1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.
Collapse
Affiliation(s)
- K. Maude Ashby
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matouš Vobořil
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Oscar C. Salgado
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - S. Thera Lee
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan J. Martinez
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christine H. O’Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN 55455, USA
| | - Elise R. Breed
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Shuya Xuan
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles R. Roll
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Saumith Bachigari
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hattie Heiland
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel B. Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Tu HF, Kung YJ, Lim L, Tao J, Hu MH, Cheng M, Xing D, Wu TC, Hung CF. FLT3L-induced virtual memory CD8 T cells engage the immune system against tumors. J Biomed Sci 2024; 31:19. [PMID: 38287325 PMCID: PMC10826030 DOI: 10.1186/s12929-024-01006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Previous research in FMS-like tyrosine kinase 3 ligands (FLT3L) has primarily focused on their potential to generate dendritic cells (DCs) from bone marrow progenitors, with a limited understanding of how these cells affect CD8 T cell function. In this study, we further investigated the in vivo role of FLT3L for the immunomodulatory capabilities of CD8 T cells. METHODS Albumin-conjugated FLT3L (Alb-FLT3L) was generated and applied for translational medicine purposes; here it was used to treat naïve C57BL/6 and OT1 mice for CD8 T cell response analysis. Syngeneic B16ova and E.G7ova mouse models were employed for adoptive cell transfer to evaluate the effects of Alb-FLT3L preconditioning of CD8 T cells on tumor progression. To uncover the underlying mechanisms of Alb-FLT3L modulation, we conducted bulk RNA-seq analysis of the CD44high CD8 T cells. STAT1-deficient mice were used to elucidate the functional roles of Alb-FLT3L in the modulation of T cells. Finally, antibody blockade of type one interferon signaling and in vitro coculture of plasmacytoid DCs (pDCs) with naive CD8 T cells was performed to determine the role of pDCs in mediating regulation of CD44high CD8 T cells. RESULTS CD44high CD8 T cells were enhanced in C57BL/6 mice administrated with Alb-FLT3L. These CD8 T cells exhibited virtual memory features and had greater proliferative and effective functions. Notably, the adoptive transfer of CD44high naïve CD8 T cells into C57BL/6 mice with B16ova tumors led to significant tumor regression. RNA-seq analysis of the CD44high naïve CD8 T cells revealed FLT3L to induce CD44high CD8 T cells in a JAK-STAT1 signaling pathway-dependent manner, as supported by results indicating a decreased ability of FLT3L to enhance CD8 T cell proliferation in STAT1-deficient mice as compared to wild-type control mice. Moreover, antibody blockade of type one interferon signaling restricted the generation of FLT3L-induced CD44high CD8 T cells, while CD44 expression was able to be induced in naïve CD8 T cells cocultured with pDCs derived from FLT3L-treated mice. This suggests the crucial role of pDCs in mediating FLT3L regulation of CD44high CD8 T cells. CONCLUSIONS These findings provide critical insight and support the therapeutic potential of Alb-FLT3L as an immune modulator in preconditioning of naïve CD8 T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Yu-Jui Kung
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ling Lim
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Julia Tao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Mandal M, Maienschein-Cline M, Hu Y, Mohsin A, Veselits ML, Wright NE, Okoreeh MK, Yoon YM, Veselits J, Georgopoulos K, Clark MR. BRWD1 orchestrates small pre-B cell chromatin topology by converting static to dynamic cohesin. Nat Immunol 2024; 25:129-141. [PMID: 37985858 PMCID: PMC11542586 DOI: 10.1038/s41590-023-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/29/2023] [Indexed: 11/22/2023]
Abstract
Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| | | | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Azam Mohsin
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret L Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael K Okoreeh
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Young Me Yoon
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jacob Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Nagel S, Haake J, Pommerenke C, Meyer C, MacLeod RAF. Establishment of the Myeloid TBX-Code Reveals Aberrant Expression of T-Box Gene TBX1 in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 25:32. [PMID: 38203204 PMCID: PMC10778679 DOI: 10.3390/ijms25010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
T-box genes encode transcription factors, which control developmental processes and promote cancer if deregulated. Recently, we described the lymphoid TBX-code, which collates T-box gene activities in normal lymphopoiesis, enabling identification of members deregulated in lymphoid malignancies. Here, we have extended this analysis to cover myelopoiesis, compiling the myeloid TBX-code and, thus, highlighting which of these genes might be deregulated in myeloid tumor types. We analyzed public T-box gene expression datasets bioinformatically for normal and malignant cells. Candidate T-box-gene-expressing model cell lines were identified and examined by RQ-PCR, Western Blotting, genomic profiling, and siRNA-mediated knockdown combined with RNA-seq analysis and live-cell imaging. The established myeloid TBX-code comprised 10 T-box genes, including progenitor-cell-restricted TBX1. Accordingly, we detected aberrant expression of TBX1 in 10% of stem/progenitor-cell-derived chronic myeloid leukemia (CML) patients. The classic CML cell line K-562 expressed TBX1 at high levels and served as a model to identify TBX1 activators, including transcription factor GATA1 and genomic amplification of the TBX1 locus at 22q11; inhibitors, including BCR::ABL1 fusion and downregulated GNAI2, as well as BMP, FGF2, and WNT signaling; and the target genes CDKN1A, MIR17HG, NAV1, and TMEM38A. The establishment of the myeloid TBX-code permitted identification of aberrant TBX1 expression in subsets of CML patients and cell lines. TBX1 forms an integral part of an oncogenic regulatory network impacting proliferation, survival, and differentiation. Thus, the data spotlight novel diagnostic markers and potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
16
|
Li D, Quan Z, Ni J, Li H, Qing H. The many faces of the zinc finger protein 335 in brain development and immune system. Biomed Pharmacother 2023; 165:115257. [PMID: 37541176 DOI: 10.1016/j.biopha.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.
Collapse
Affiliation(s)
- Danyang Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
17
|
Lin X, Li Z, Gong G, Wang H, Fang X, Mor G, Liao A. The immune checkpoint protein PD-1: Its emerging regulatory role in memory T cells. J Reprod Immunol 2023; 159:104130. [PMID: 37591180 DOI: 10.1016/j.jri.2023.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Immunological memory helps the body rapidly develop immune defense when it re-encounters a bacterial or viral strain or encounters a similar mutation in healthy cells. The immune checkpoint molecule programmed cell death 1 (PD-1) influences memory T cell differentiation. However, the mechanism by which PD-1 regulates the development and maintenance of memory T cells and its impact on memory T cells function remain unclear. In this review, we first discuss the structure and function of PD-1 and then summarize the roles of PD-1 as a marker of tumor memory T cells and in tumor immunotherapy. We also discuss the potential mechanisms through which PD-1 regulates memory T cells development and maintenance during immune diseases such as viral infection-mediated diseases, psoriasis, and rheumatoid arthritis, and list the effects of PD-1 on memory T cells in pregnancy and their function in maternal-fetal immune balance. A complete understanding of how PD-1 influences the development, maintenance, and function of memory T cells will provide new insights into the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xinxiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhijing Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Guangshun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xuhui Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
18
|
Choi SM, Park HJ, Choi EA, Jung KC, Lee JI. CD1b glycoprotein, a crucial marker of thymocyte development during T cell maturation in cynomolgus monkeys. Sci Rep 2023; 13:14388. [PMID: 37658106 PMCID: PMC10474046 DOI: 10.1038/s41598-023-41708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
Phenotypic markers that denote different developmental stages of thymocytes are important for understanding T cell development in the thymus. Here, we show that CD1b is a critical discriminator of thymocyte maturation stage in cynomolgus monkeys. CD1b was expressed by immature thymocytes prior to β-selection, and its expression decreased as cells became fully mature in the thymus. MHC-I expression was lowest at the CD3loCD1b+ immature double-positive (DP) stage, while the ratio of CD1d:MHC-I expression was significantly higher at this stage than at other developmental stages. PLZF was expressed by < 0.2% of thymocytes; most PLZF+ thymocytes were CD3-/loCD1b+ immature DP thymocytes with the potential to produce IL-4. EOMES+ thymocytes, which accounted for > 2% of total thymocytes, were mostly CD3+CD1b- mature thymocytes and predominantly of the CD8 single-positive (SP) lineage. An unconventional CD8+ T cell subset expressing the NKG2AC+CXCR3+ innate-like T cell marker was identified within the EOMES+ CD8 SP lineage; these cells exhibited a memory phenotype. Taken together, these findings show that CD1b is a valuable discriminatory marker of thymocyte development. The data presented herein can be used to characterize the features of PLZF- and EOMES-associated unconventional T cells in the thymus.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eun A Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
19
|
Seok J, Cho SD, Lee J, Choi Y, Kim SY, Lee SM, Kim SH, Jeong S, Jeon M, Lee H, Kim AR, Choi B, Ha SJ, Jung I, Yoon KJ, Park JE, Kim JH, Kim BJ, Shin EC, Park SH. A virtual memory CD8 + T cell-originated subset causes alopecia areata through innate-like cytotoxicity. Nat Immunol 2023; 24:1308-1317. [PMID: 37365384 DOI: 10.1038/s41590-023-01547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Virtual memory T (TVM) cells are a T cell subtype with a memory phenotype but no prior exposure to foreign antigen. Although TVM cells have antiviral and antibacterial functions, whether these cells can be pathogenic effectors of inflammatory disease is unclear. Here we identified a TVM cell-originated CD44super-high(s-hi)CD49dlo CD8+ T cell subset with features of tissue residency. These cells are transcriptionally, phenotypically and functionally distinct from conventional CD8+ TVM cells and can cause alopecia areata. Mechanistically, CD44s-hiCD49dlo CD8+ T cells could be induced from conventional TVM cells by interleukin (IL)-12, IL-15 and IL-18 stimulation. Pathogenic activity of CD44s-hiCD49dlo CD8+ T cells was mediated by NKG2D-dependent innate-like cytotoxicity, which was further augmented by IL-15 stimulation and triggered disease onset. Collectively, these data suggest an immunological mechanism through which TVM cells can cause chronic inflammatory disease by innate-like cytotoxicity.
Collapse
Affiliation(s)
- Joon Seok
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeongsoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunseo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Young Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - A Reum Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inkyung Jung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Kedl RM, Jameson SC. Virtual memory is a big hairy deal. Nat Immunol 2023; 24:1215-1216. [PMID: 37429991 DOI: 10.1038/s41590-023-01564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Ross M Kedl
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Abstract
Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.
Collapse
Affiliation(s)
- Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Lo WL, Kuhlmann M, Rizzuto G, Ekiz HA, Kolawole EM, Revelo MP, Andargachew R, Li Z, Tsai YL, Marson A, Evavold BD, Zehn D, Weiss A. A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function. Nat Immunol 2023; 24:676-689. [PMID: 36914891 PMCID: PMC10063449 DOI: 10.1038/s41590-023-01444-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023]
Abstract
Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gabrielle Rizzuto
- Human Oncology and Pathogenesis Program, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Turkey
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rakieb Andargachew
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zhongmei Li
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan-Li Tsai
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
25
|
Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr Opin Immunol 2023; 82:102299. [PMID: 36913776 DOI: 10.1016/j.coi.2023.102299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Antigen-induced memory T cells undergo counterintuitive activation in an antigen-independent manner, which is called bystander response. Although it is well documented that memory CD8+ T cells produce IFNγ and upregulate the cytotoxic program upon the stimulation with inflammatory cytokines, there is only rare evidence that this provides an actual protection against pathogens in immunocompetent individuals. One of the reasons might be numerous antigen-inexperienced memory-like T cells that are also capable of the bystander response. Little is known about the bystander protection of memory and memory-like T cells and their redundancies with innate-like lymphocytes in humans because of the interspecies differences and the lack of controlled experiments. However, it has been proposed that IL-15/NKG2D-driven bystander activation of memory T cells drives protection or immunopathology in particular human diseases.
Collapse
|
26
|
Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4 + T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol 2023; 24:487-500. [PMID: 36759711 PMCID: PMC9992328 DOI: 10.1038/s41590-023-01425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.
Collapse
Affiliation(s)
- Victoria Lee
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Donald M Rodriguez
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Nicole K Ganci
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Junting Ai
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jaime L Chao
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Matthew T Walker
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Christine H Miller
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - David E J Klawon
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Domenick E Kennedy
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Drug Discovery Science and Technology, AbbVie, North Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marcus R Clark
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Hussain T, Nguyen A, Daunt C, Thiele D, Pang ES, Li J, Zaini A, O'Keeffe M, Zaph C, Harris NL, Quinn KM, La Gruta NL. Helminth Infection-Induced Increase in Virtual Memory CD8 T Cells Is Transient, Driven by IL-15, and Absent in Aged Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:297-309. [PMID: 36524995 DOI: 10.4049/jimmunol.2200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Collapse
Affiliation(s)
- Tabinda Hussain
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmel Daunt
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ee Shan Pang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia; and
| | - Aidil Zaini
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
29
|
Wang G, Sun J, Zhang J, Zhu Q, Lu J, Gao S, Wang F, Yin Q, Wan Y, Li Q. Single-cell transcriptional profiling uncovers the association between EOMES +CD8 + T cells and acquired EGFR-TKI resistance. Drug Resist Updat 2023; 66:100910. [PMID: 36571924 PMCID: PMC9852091 DOI: 10.1016/j.drup.2022.100910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) is reportedly inevitable in lung cancers harboring epidermal growth factor receptor (EGFR) mutations, emphasizing the need for novel approaches to predict EGFR-TKI resistance for clinical monitoring and patient management. This study identified a significant increase in eomesodermin (EOMES)+CD8+ T cells in the TKI-resistant patients, which was correlated with poor survival. The increase in EOMES+CD8+ T cells was further confirmed in both tissue samples and peripheral blood of patients with TKIs resistance. The integrated analysis of pseudotime and Gene set variation showed that the increase in EOMES+CD8+ T cells may be attributed to TRM T cell conversion and metabolic reprogramming. Overall, this work suggested an association between the increased number of EOMES+CD8+ T cells and acquired TKI drug resistance, supporting the utility of EOMES+CD8+ T cells as a biomarker for TKI treatment response.
Collapse
Affiliation(s)
- Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiping Zhu
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shaoyong Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
30
|
Ning J, Wang J, Zheng H, Peng S, Mao T, Wang L, Yu G, Liu J, Liu S, Zhang T, Ding S, Lu F, Chen X. Solely HBsAg intrauterine exposure accelerates HBV clearance by promoting HBs-specific immune response in the mouse pups. Emerg Microbes Infect 2022; 11:1356-1370. [PMID: 35538876 PMCID: PMC9132461 DOI: 10.1080/22221751.2022.2071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic hepatitis B virus (HBV) infection due to perinatal mother-to-infant transmission (MTIT) remains a serious global public health problem. It has been shown that intrauterine exposure to HBV antigens might account for the MTIT-related chronic infection. However, whether hepatitis B surface antigen (HBsAg) intrauterine exposure affected the offspring’s immune response against HBV and MTIT of HBV has not been fully clarified. In this study, we investigated the effects and the potential mechanisms of the HBsAg intrauterine exposure on the persistence of HBV replication using a solely HBsAg intrauterine exposure mice model. Our results revealed that solely HBsAg intrauterine exposure significantly accelerated the clearance of HBV when these mice were hydrodynamically injected with pBB4.5-HBV1.2 plasmids after birth, which may be due to the increased number of HBs-specific CD8+ T cells and interferon-gamma secretion in the liver of mice. Mechanismly, HBsAg intrauterine exposure activated antigen-presenting dendritic cells, which led to the generation of antigen-specific cellular immunological memory. Our data provide an important experimental evidence for the activation of neonatal immune response by HBsAg intrauterine exposure.
Collapse
Affiliation(s)
- Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People's Republic of China.,Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jianwen Wang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Siwen Peng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Tianhao Mao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lu Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Guangxin Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shuang Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China.,Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
31
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
32
|
Dong C, Miao Y, Zhao R, Yang M, Guo A, Xue Z, Li T, Zhang Q, Bao Y, Shen C, Sun C, Yang Y, Gu X, Jin Y, Li R, Xu M, Guo J, Zong Z, Zhou W, He M, Wang D, Su J, Zhang X, Zeng X, Gao J, Gu Z. Single-Cell Transcriptomics Reveals Longevity Immune Remodeling Features Shared by Centenarians and Their Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204849. [PMID: 36354175 PMCID: PMC9799020 DOI: 10.1002/advs.202204849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Indexed: 05/02/2023]
Abstract
Centenarians, who show mild infections and low incidence of tumors, are the optimal model to investigate healthy aging. However, longevity related immune characteristics has not been fully revealed largely due to lack of appropriate controls. In this study, single-cell transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) derived from seven centenarians (CEN), six centenarians' offspring (CO), and nine offspring spouses or neighbors (Control, age-matched to CO) are performed to investigate the shared immune features between CEN and CO. The results indicate that among all 12 T cell clusters, the cytotoxic-phenotype-clusters (CPC) and the naïve-phenotype-clusters (NPC) significantly change between CEN and ontrol. Compared to Control, both CEN and CO are characterized by depleted NPC and increased CPC, which is dominated by CD8+ T cells. Furthermore, CPC from CEN and CO share enhanced signaling pathways and transcriptional factors associated with immune response, and possesse similar T-cell-receptor features, such as high clonal expansion. Interestingly, rather than a significant increase in GZMK+ CD8 cells during aging, centenarians show accumulation of GZMB+ and CMC1+ CD8 T cells. Collectively, this study unveils an immune remodeling pattern reflected by both quantitative increase and functional reinforcement of cytotoxic T cells which are essential for healthy aging.
Collapse
Affiliation(s)
- Chen Dong
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Ya‐ru Miao
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Rui Zhao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Mei Yang
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - An‐yuan Guo
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Zhong‐hui Xue
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Teng Li
- Key Laboratory of Molecular Virology & ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200025China
| | - Qiong Zhang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Yanfeng Bao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Chen Shen
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Chi Sun
- Department of GeriatricsAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Ying Yang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Xi‐xi Gu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Yi Jin
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Rong Li
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Min Xu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Jia‐xin Guo
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Zhi‐ying Zong
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Wei Zhou
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Mei He
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Dan‐ni Wang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Jian‐you Su
- Laboratory CenterAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Xiao‐ming Zhang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
- Key Laboratory of Molecular Virology & ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200025China
| | - Xu‐hui Zeng
- Institute of Reproductive MedicineMedical SchoolNantong UniversityNantong226001China
| | - Jian‐lin Gao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Zhi‐feng Gu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| |
Collapse
|
33
|
Savid-Frontera C, Viano ME, Baez NS, Lidon NL, Fontaine Q, Young HA, Vimeux L, Donnadieu E, Rodriguez-Galan MC. Exploring the immunomodulatory role of virtual memory CD8+ T cells: Role of IFN gamma in tumor growth control. Front Immunol 2022; 13:971001. [PMID: 36330506 PMCID: PMC9623162 DOI: 10.3389/fimmu.2022.971001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Virtual memory CD8+ T cells (TVM) have been described as cells with a memory-like phenotype but without previous antigen (Ag) exposure. TVM cells have the ability to respond better to innate stimuli rather than by TCR engagement, producing large amounts of interferon gamma (IFNγ) after stimulation with interleukin (IL)-12 plus IL-18. As a result of the phenotypic similarity, TVM cells have been erroneously included in the central memory T cell subset for many years. However, they can now be discriminated via the CD49d receptor, which is up-regulated only on conventional memory T cells (TMEM) and effector T cells (TEFF) after specific cognate Ag recognition by a TCR. In this work we show that systemic expression of IL-12 plus IL-18 induced an alteration in the normal TVM vs TMEM/TEFF distribution in secondary lymphoid organs and a preferential enrichment of TVM cells in the melanoma (B16) and the pancreatic ductal adenocarcinoma (KPC) tumor models. Using our KPC bearing OT-I mouse model, we observed a significant increase in CD8+ T cell infiltrating the tumor islets after IL-12+IL-18 stimulation with a lower average speed when compared to those from control mice. This finding indicates a stronger interaction of T cells with tumor cells after cytokine stimulation. These results correlate with a significant reduction in tumor size in both tumor models in IL-12+IL-18-treated OT-I mice compared to control OT-I mice. Interestingly, the absence of IFNγ completely abolished the high antitumor capacity induced by IL-12+IL-18 expression, indicating an important role for these cytokines in early tumor growth control. Thus, our studies provide significant new information that indicates an important role of TVM cells in the immune response against cancer.
Collapse
Affiliation(s)
- Constanza Savid-Frontera
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia S. Baez
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas L. Lidon
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Quentin Fontaine
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Lene Vimeux
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Maria Cecilia Rodriguez-Galan
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Maria Cecilia Rodriguez-Galan,
| |
Collapse
|
34
|
Paprckova D, Niederlova V, Moudra A, Drobek A, Pribikova M, Janusova S, Schober K, Neuwirth A, Michalik J, Huranova M, Horkova V, Cesnekova M, Simova M, Prochazka J, Balounova J, Busch DH, Sedlacek R, Schwarzer M, Stepanek O. Self-reactivity of CD8 T-cell clones determines their differentiation status rather than their responsiveness in infections. Front Immunol 2022; 13:1009198. [PMID: 36275704 PMCID: PMC9582129 DOI: 10.3389/fimmu.2022.1009198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.
Collapse
Affiliation(s)
- Darina Paprckova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czechia
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Sarka Janusova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Juraj Michalik
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Cesnekova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czechia
| | - Michaela Simova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Stepanek,
| |
Collapse
|
35
|
Zhang G, Liu A, Yang Y, Xia Y, Li W, Liu Y, Zhang J, Cui Q, Wang D, Liu X, Guo Y, Chen H, Yu J. Clinical predictive value of naïve and memory T cells in advanced NSCLC. Front Immunol 2022; 13:996348. [PMID: 36119064 PMCID: PMC9478592 DOI: 10.3389/fimmu.2022.996348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, there is no sensitive prognostic biomarker to screen out benefit patients from the non-benefit population in advanced non-small cell lung cancer patients (aNSCLCs). The 435 aNSCLCs and 278 normal controls (NCs) were recruited. The percentages and absolute counts (AC) of circulating naïve and memory T lymphocytes of CD4+ and CD8+ T cells (Tn/Tm) were measured by flow cytometry. The percentage of CD4+ naïve T (Tn), CD8+ Tn, CD8+ T memory stem cell (Tscm), and CD8+ terminal effector T cell decreased obviously. Still, all AC of Tn/Tm of aNSCLCs was significantly lower compared to NCs. Higher AC and percentage of CD4+ Tn, CD8+ Tn, and CD4+ Tscm showed markedly longer median PFS in aNSCLCs. Statistics demonstrated the AC of CD4+ Tn (≥ 3.7 cells/μL) was an independent protective factor for PFS. The analysis of the prognosis of immunotherapy showed the higher AC and percentage of CD4+ Tn and CD4+ Tscm and higher AC of CD8+ Tscm had significantly longer median PFS and the AC of CD4+ Tn (≥ 5.5 cells/μL) was an independent protective factor for PFS. Moreover, higher AC and percentages of Tn/Tm suggested higher disease control rate and lower progressive disease rate. The AC of Tn/Tm showed more regular patterns of impairment and was more relative with the disease progression than percentages in aNSCLCs. AC had a better predictive value than percentages in Tn/Tm for PFS. Notably, the AC of CD4+ Tn was a potential prognostic biomarker for the PFS and efficacy of immunotherapy.
Collapse
Affiliation(s)
- Guan Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Aqing Liu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Xia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wentao Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunhe Liu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Cui
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dong Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xu Liu
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongtie Guo
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayu Chen
- Clinic Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianchun Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Jianchun Yu,
| |
Collapse
|
36
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
37
|
Liu CH, Lin BS, Wu MY, Song YC, Ke TW, Chou YL, Liu CT, Lin CH, Radojcic V, Drake C, Yen HR. Adoptive transfer of IL-4 reprogrammed Tc17 cells elicits anti-tumour immunity through functional plasticity. Immunology 2022; 166:310-326. [PMID: 35322421 PMCID: PMC11558351 DOI: 10.1111/imm.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Ability of IL-17-producing CD8+ T cells (Tc17) to transform into cytotoxic anti-tumour effectors makes them a promising candidate for immune effector cell (IEC) therapy. However, key factors regulating Tc17 reprogramming remain poorly defined, hindering translation of Tc17-based IEC use from bench to bedside. We probed the effects of multiple cytokines and underlying signalling pathways on Tc17 cells and identified pivotal role for IL-4 and PI3K/AKT in promoting Tc17 transformation into cytotoxic IFN-γ-producing IECs, an effect dependent on Eomes expression. IL-4 not only triggered Tc17 cytotoxicity, but also induced cell expansion, which significantly improved the antitumour potential of Tc17 cells compared to that of IFN-γ-producing CD8+ T cells (Tc1) in a murine model. Furthermore, IL-4/AKT signalling drove the upregulation of the T-cell receptor-associated transmembrane adaptor 1 (Trat1) in Tc17 cells to promote IL-4-induced T-cell receptor stabilization and Tc17 cytotoxicity. Finally, we proposed a possible procedure to expand human Tc17 from peripheral blood of cancer patients, and confirmed the function of IL-4 in Tc17 reprogramming. Collectively, these results document a novel IL-4/AKT/Eomes/Trat1 axis that promotes expansion and transformation of Tc17 cells into cytotoxic effectors with a therapeutic potential. IL-4 priming of Tc17 cells should be further explored as a cell therapy engineering strategy to generate IECs to augment anti-tumour responses.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bo-Shiou Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chyi Song
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Lun Chou
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsin Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Vedran Radojcic
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Charles Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Hematology Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
38
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
40
|
Panda AK, Kim YH, Shevach EM. Control of Memory Phenotype T Lymphocyte Homeostasis: Role of Costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:851-860. [PMID: 35039334 DOI: 10.4049/jimmunol.2100653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Foxp3+ T regulatory cells (Tregs), CD4+Foxp3- T cells, and CD8+ T cells are composed of naive phenotype (NP) and memory phenotype (MP) subsets. Ten to 20% of each MP T cell population are cycling (Ki-67+) in vivo. We investigated the contribution of costimulatory (CD28) and coinhibitory (CTLA-4, PD-1) receptors on MP T cell homeostatic proliferation in vivo in the mouse. Blockade of CD28-CD80/CD86 signaling completely abolished MP Tregs and profoundly inhibited MP CD4+Foxp3- T cell proliferation, but it did not affect MP CD8+ T cell proliferation. Marked enhancement of homeostatic proliferation of MP Tregs and MP CD4+Foxp3- T cells was seen after blocking CTLA4-CD80/CD86 interactions and PD-1-PD-L1/2 interactions, and greater enhancement was seen with blockade of both pathways. The CD28 pathway also played an important role in the expansion of Tregs and MP T cells after treatment of mice with agonistic Abs to members of the TNF receptor superfamily, which can act directly (anti-GITR, anti-OX40, anti-4-1BB) or indirectly (anti-CD40) on T cells. Induction of a cytokine storm by blocking the interaction of NK inhibitory receptors with MHC class I had no effect on Treg homeostasis, enhanced MP CD4+ proliferation, and expansion in a CD28-dependent manner, but it enhanced MP CD8+ T cell proliferation in a CD28-independent manner. Because MP T cells exert potent biologic effects primarily before the induction of adaptive immune responses, these findings have important implications for the use of biologic agents designed to suppress autoimmune disease or enhance T effector function in cancer that may have negative effects on MP T cells.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yong-Hee Kim
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Nagel S, Meyer C. Establishment of the TBX-code reveals aberrantly activated T-box gene TBX3 in Hodgkin lymphoma. PLoS One 2021; 16:e0259674. [PMID: 34807923 PMCID: PMC8608327 DOI: 10.1371/journal.pone.0259674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
T-box genes encode transcription factors which control basic processes in development of several tissues including cell differentiation in the hematopoietic system. Here, we analyzed the physiological activities of all 17 human T-box genes in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells. The resultant expression pattern comprised six genes, namely EOMES, MGA, TBX1, TBX10, TBX19 and TBX21. We termed this gene signature TBX-code which enables discrimination of normal and aberrant activities of T-box genes in lymphoid malignancies. Accordingly, expression analysis of T-box genes in Hodgkin lymphoma (HL) patients using a public profiling dataset revealed overexpression of EOMES, TBX1, TBX2, TBX3, TBX10, TBX19, TBX21 and TBXT while MGA showed aberrant downregulation. Analysis of T-cell acute lymphoid leukemia patients indicated aberrant overexpression of six T-box genes while no deregulated T-box genes were detected in anaplastic large cell lymphoma patients. As a paradigm we focused on TBX3 which was ectopically activated in about 6% of HL patients analyzed. Normally, TBX3 is expressed in tissues like lung, adrenal gland and retina but not in hematopoiesis. HL cell line KM-H2 expressed enhanced TBX3 levels and was used as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line showed focal amplification of the TBX3 locus at 12q24 which may underlie its aberrant expression. In addition, promoter analysis and comparative expression profiling of HL cell lines followed by knockdown experiments revealed overexpressed transcription factors E2F4 and FOXC1 and chromatin modulator KDM2B as functional activators. Furthermore, we identified repressed target genes of TBX3 in HL including CDKN2A, NFKBIB and CD19, indicating its respective oncogenic function in proliferation, NFkB-signaling and B-cell differentiation. Taken together, we have revealed a lymphoid TBX-code and used it to identify an aberrant network around deregulated T-box gene TBX3 in HL which promotes hallmark aberrations of this disease. These findings provide a framework for future studies to evaluate deregulated T-box genes in lymphoid malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
42
|
Fang F, Cao W, Zhu W, Lam N, Li L, Gaddam S, Wang Y, Kim C, Lambert S, Zhang H, Hu B, Farber DL, Weyand CM, Goronzy JJ. The cell-surface 5'-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Rep 2021; 37:109981. [PMID: 34758299 PMCID: PMC8612175 DOI: 10.1016/j.celrep.2021.109981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Weikang Zhu
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Simon Lambert
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US.
| |
Collapse
|
43
|
Eggert J, Au-Yeung BB. Functional heterogeneity and adaptation of naive T cells in response to tonic TCR signals. Curr Opin Immunol 2021; 73:43-49. [PMID: 34653787 DOI: 10.1016/j.coi.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Mature CD4+ and CD8+ T cells constitutively experience weak T cell receptor (TCR) stimulation in response to self-antigens, termed tonic (or basal) signaling. How tonic TCR signal strength impacts T cell responses to foreign antigens is an active area of investigation. Such studies rely on surrogate markers of tonic signal strength, including CD5, Ly6C, and transgenic reporters of Nr4a genes. Recent research indicates that strong tonic TCR signal strength influences basal T cell metabolism, effector differentiation, and TCR signal transduction. T cells that experience the strongest tonic TCR signaling exhibit features of T cell activation and negative regulation. These data suggest a model whereby adaptation to tonic signaling has lasting effects that alter T cell activation and differentiation.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States.
| |
Collapse
|
44
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Chao JL, Korzinkin M, Zhavoronkov A, Ozerov IV, Walker MT, Higgins K, Lingen MW, Izumchenko E, Savage PA. Effector T cell responses unleashed by regulatory T cell ablation exacerbate oral squamous cell carcinoma. Cell Rep Med 2021; 2:100399. [PMID: 34622236 PMCID: PMC8484691 DOI: 10.1016/j.xcrm.2021.100399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Immune suppression by CD4+FOXP3+ regulatory T (Treg) cells and tumor infiltration by CD8+ effector T cells represent two major factors impacting response to cancer immunotherapy. Using deconvolution-based transcriptional profiling of human papilloma virus (HPV)-negative oral squamous cell carcinomas (OSCCs) and other solid cancers, we demonstrate that the density of Treg cells does not correlate with that of CD8+ T cells in many tumors, revealing polarized clusters enriched for either CD8+ T cells or CD4+ Treg and conventional T cells. In a mouse model of carcinogen-induced OSCC characterized by CD4+ T cell enrichment, late-stage Treg cell ablation triggers increased densities of both CD4+ and CD8+ effector T cells within oral lesions. Notably, this intervention does not induce tumor regression but instead induces rapid emergence of invasive OSCCs via an effector T cell-dependent process. Thus, induction of a T cell-inflamed phenotype via therapeutic manipulation of Treg cells may trigger unexpected tumor-promoting effects in OSCC.
Collapse
Affiliation(s)
- Jaime L. Chao
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Ivan V. Ozerov
- Insilico Medicine Hong Kong, Ltd., Pak Shek Kok, Hong Kong
| | - Matthew T. Walker
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Kathleen Higgins
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Mark W. Lingen
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Mishra S, Srinivasan S, Ma C, Zhang N. CD8 + Regulatory T Cell - A Mystery to Be Revealed. Front Immunol 2021; 12:708874. [PMID: 34484208 PMCID: PMC8416339 DOI: 10.3389/fimmu.2021.708874] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) are essential to maintain immune homeostasis and prevent autoimmune disorders. While the function and molecular regulation of Foxp3+CD4+ Tregs are well established, much of CD8+ Treg biology remains to be revealed. Here, we will review the heterogenous subsets of CD8+ T cells have been named "CD8+ Treg" and mainly focus on CD122hiLy49+CD8+ Tregs present in naïve mice. CD122hiLy49+CD8+ Tregs, which depends on transcription factor Helios and homeostatic cytokine IL-15, have been established as a non-redundant regulator of germinal center (GC) reaction. Recently, we have demonstrated that TGF-β (Transforming growth factor-β) and transcription factor Eomes (Eomesodermin) are essential for the function and homeostasis of CD8+ Tregs. In addition, we will discuss several open questions regarding the differentiation, function and true identity of CD8+ Tregs as well as a brief comparison between two regulatory T cell subsets critical to control GC reaction, namely CD4+ TFR (follicular regulatory T cells) and CD8+ Tregs.
Collapse
Affiliation(s)
| | | | | | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
47
|
Boulet S, Odagiu L, Dong M, Lebel MÈ, Daudelin JF, Melichar HJ, Labrecque N. NR4A3 Mediates Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1055-1064. [PMID: 34312259 DOI: 10.4049/jimmunol.1901228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Central tolerance aims to limit the production of T lymphocytes bearing TCR with high affinity for self-peptide presented by MHC molecules. The accumulation of thymocytes with such receptors is limited by negative selection or by diversion into alternative differentiation, including T regulatory cell commitment. A role for the orphan nuclear receptor NR4A3 in negative selection has been suggested, but its function in this process has never been investigated. We find that Nr4a3 transcription is upregulated in postselection double-positive thymocytes, particularly those that have received a strong selecting signal and are destined for negative selection. Indeed, we found an accumulation of cells bearing a negative selection phenotype in NR4A3-deficient mice as compared with wild-type controls, suggesting that Nr4a3 transcriptional induction is necessary to limit accumulation of self-reactive thymocytes. This is consistent with a decrease of cleaved caspase-3+-signaled thymocytes and more T regulatory and CD4+Foxp3-HELIOS+ cells in the NR4A3-deficient thymus. We further tested the role for NR4A3 in negative selection by reconstituting transgenic mice expressing the OVA Ag under the control of the insulin promoter with bone marrow cells from OT-I Nr4a3 +/+ or OT-I Nr4a3 -/- mice. Accumulation of autoreactive CD8 thymocytes and autoimmune diabetes developed only in the absence of NR4A3. Overall, our results demonstrate an important role for NR4A3 in T cell development.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Marie-Ève Lebel
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | | | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Dong M, Mallet Gauthier È, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2021; 289:4416-4429. [PMID: 34077615 DOI: 10.1111/febs.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
T cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time. Many differences in early life versus adult T-cell phenotypes can be attributed to the cell-intrinsic properties of the distinct progenitors that seed the thymus throughout development. It is becoming clear that Lin28, an evolutionarily conserved, heterochronic RNA-binding protein that is differentially expressed among early life and adult hematopoietic progenitor cells, plays a substantial role in influencing early T-cell development and function. Here, we discuss the mechanisms by which Lin28 shapes the T-cell landscape to protect the developing fetus and newborn. Manipulation of the Lin28 gene regulatory network is being considered as one means of improving hematopoietic stem cell transplant outcomes; as such, understanding the impact of Lin28 on T-cell function is of clinical relevance.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
49
|
Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nat Commun 2021; 12:2715. [PMID: 33976157 PMCID: PMC8113513 DOI: 10.1038/s41467-021-22954-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing. Asymmetrical cell division helps to maintain cellular heterogeneity in the T cell compartment. Here the authors examine the differential immune responses built by naive and virtual memory T cells from young and aged individuals, and explore the effect of mTOR inhibition on asymmetrical cell division and memory formation.
Collapse
|
50
|
Turner SJ, Bennett TJ, Gruta NLL. CD8 + T-Cell Memory: The Why, the When, and the How. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038661. [PMID: 33648987 PMCID: PMC8091951 DOI: 10.1101/cshperspect.a038661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of effective adaptive T-cell memory is a cardinal feature of the adaptive immune system. The establishment of protective T-cell immunity requires the differentiation of CD8+ T cells from a naive state to one where pathogen-specific memory CD8+ T cells are capable of responding to a secondary infection more rapidly and robustly without the need for further differentiation. The study of factors that determine the fate of activated CD8+ T cells into either effector or memory subsets has a long history. The advent of new technologies is now providing new insights into how epigenetic regulation not only impacts acquisition and maintenance of effector function, but also the maintenance of the quiescent yet primed memory state. There is growing appreciation that rather than distinct subsets, memory T-cell populations may reflect different points on a spectrum between the starting naive T-cell population and a terminally differentiated effector CD8+ T-cell population. Interestingly, there is growing evidence that the molecular mechanisms that underpin the rapid effector function of memory T cells are also observed in innate immune cells such as macrophages and natural killer (NK) cells. This raises an interesting hypothesis that the memory/effector T-cell state represents a default innate-like response to antigen recognition, and that it is the naive state that is the defining feature of adaptive immunity. These issues are discussed.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|