1
|
Wondmagegn T, Birhan W, Derb E, Lemma M, Yohannes H, Anteneh DE, Bazezew A, Tadesse K, Alemu BB. Serum sPD-1 as a marker of T cell exhaustion in ART-naïve, ART-experienced, and intestinal parasite co-infected HIV-positive adults at the university of Gondar comprehensive specialized hospital, Northwest Ethiopia, 2024. BMC Infect Dis 2025; 25:765. [PMID: 40426096 DOI: 10.1186/s12879-025-11158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV) remains a significant global health challenge despite advancements in prevention and treatment. It impairs immune function and leads to T-cell exhaustion, driven by sustained expression of the immune checkpoint receptor PD-1, which exists in membrane-bound and soluble forms. While serum soluble programmed death protein 1 (sPD-1) may serve as a marker for immune exhaustion, its role in antiretroviral therapy (ART) and intestinal parasite (IP) co-infections remains underexplored, especially in developing countries like Ethiopia with high HIV and IP prevalence. Hence, this study investigates sPD-1 levels in ART-naïve, ART-experienced, and IP co-infected HIV-positive adults at the University of Gondar Comprehensive Specialized Hospital (UOGCSH), Northwest Ethiopia. METHODS An institution-based cross-sectional study was conducted among 89 HIV-positive patients from the 1st of May to the 30th of June, 2024, at the UOGCSH. Socio-demographic, clinical, and laboratory data were extracted from a previous project assessing intestinal parasite prevalence in the same population. Quantitative ELISA was used to measure the serum levels of the T cell exhaustion marker, sPD-1. The median serum sPD-1 levels were compared using Kruskal-Wallis and Mann-Whitney U tests. All statistical analyses were conducted using Stata 14 and R version 4.4.0 software. Finally, statistical significance was declared at a p-value of < 0.05. RESULTS Of 89 participants, 64 (71.9%) were ART-experienced, and 43 (48.3%) were IPco-infected. The median serum sPD-1 concentration was significantly higher in the ART-naive group (141.7 pg/mL) compared to ART-experienced counterparts (92.5 pg/mL), (p-value = 0.004). The median sPD-1 levels in the IP co-infected group (117.2 pg/mL) were also significantly higher compared to the IP HIV mono-infected group (77.2 pg/mL), (p-value = 0.0001). Moreover, the presence of IP co-infection significantly increased sPD-1 levels in the ART-experienced group based on a stratified analysis. CONCLUSION Patients who were ART-naïve, co-infected with intestinal parasites, and had high viral loads exhibited significantly higher levels of sPD-1, suggesting a possible association with increased immune exhaustion. These findings indicate that sPD-1 may have potential as a biomarker for monitoring immune status in HIV-positive individuals. However, further longitudinal and interventional studies are needed to determine its clinical utility in guiding therapeutic decisions. CLINICAL TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Tadelo Wondmagegn
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Wubet Birhan
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eseye Derb
- Department of Immunology and Molecular Biology, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Mulualem Lemma
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Hana Yohannes
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Degsew Ewunetie Anteneh
- Department of Midwifery, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia
| | - Alembante Bazezew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia
| | - Kebebe Tadesse
- Department of Medical Laboratory Sciences, Pawe Health Science College, Pawe, Ethiopia
| | - Bewuketu Belete Alemu
- Department of Medical Laboratory Science, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia.
| |
Collapse
|
2
|
Li Z, Si P, Meng T, Zhao X, Zhu C, Zhang D, Meng S, Li N, Liu R, Ni T, Yan J, Li H, Zhao N, Zhong C, Qin Y, Chen W, Chen ZJ, Jiao X. CCR8 + decidual regulatory T cells maintain maternal-fetal immune tolerance during early pregnancy. Sci Immunol 2025; 10:eado2463. [PMID: 40249828 DOI: 10.1126/sciimmunol.ado2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/13/2024] [Accepted: 02/18/2025] [Indexed: 04/20/2025]
Abstract
Regulatory T (Treg) cells play a vital role in maintaining maternal immune tolerance to the semiallogeneic fetus during pregnancy. Treg cell population heterogeneity and tissue-specific functions in the human decidua remain largely unknown. Here, using single-cell transcriptomic and T cell receptor sequencing of human CD4+ T cells from first-trimester deciduae and matched peripheral blood of pregnant women, we identified a highly activated, immunosuppressive CCR8+ Treg cell subset specifically enriched in the decidua (dTreg cells). CCR8+ dTreg cells were decreased in patients with recurrent pregnancy loss (RPL) and an abortion-prone mouse model. Depletion of CCR8+ dTreg cells increased susceptibility to fetal loss, with altered decidual immune profiles. Adoptive transfer of CCR8+ Treg cells rescued fetal loss in abortion-prone mice. The CCR8 ligand CCL1 was mainly produced by decidual CD49a+ natural killer cells and was significantly decreased in patients with RPL. Our data demonstrate that CCR8+ dTreg cells are required to maintain maternal-fetal tolerance and highlight potential avenues for RPL therapies.
Collapse
Affiliation(s)
- Zhuqing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Pinxin Si
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Tingting Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Xiaoran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Chendi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shutong Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Nianyu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Ran Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Tianxiang Ni
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Junhao Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Hongchang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| | - Ning Zhao
- Analytical Biosciences Limited, Beijing 100191, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing 100191, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Jiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Second Hospital, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Anufrieva KS, Shahriari N, Gao C, Castillo RL, Liu J, Prell S, Kazerounian S, Afshari K, Kazakova AN, Theisen E, Bowman T, LaChance A, Hashemi K, Korsunsky I, Rashighi M, Vleugels RA, Wei K. Spatial Transcriptomics Identifies Immune-Stromal Niches Associated with Cancer in Adult Dermatomyositis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644147. [PMID: 40166232 PMCID: PMC11957040 DOI: 10.1101/2025.03.19.644147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Adult-onset dermatomyositis (DM) is an autoimmune inflammatory myopathy with distinct cutaneous manifestations and a strong malignancy association. Through comparative analysis with cutaneous lupus erythematosus (CLE), our integrated spatial and single-cell transcriptomics analysis revealed unique immune and stromal niches associated with DM subtypes. Unexpectedly, we found an association between cancer-associated DM skin lesions and the presence of dispersed immune infiltrates enriched with macrophages, CD8+ T cells, plasma cells, and B cells with preserved vascular architecture. In contrast, non-cancer associated DM skin exhibited dense myeloid cell infiltrates, including neutrophils, monocytes, and macrophages, with elevated expression of IL1B and CXCL10 localized near injured vascular endothelia. Cytokines produced by these myeloid infiltrates together with local tissue hypoxia triggered dramatic stromal remodeling, leading to loss of vascular-associated fibroblasts. In addition to the CXCL10+ myeloid signature, non-cancer-associated DM skin with pDC presence showed the emergence of specific cellular pairs: PD-L1-expressing mregDCs and activated Tregs expressing NFKB2 and TNF receptors. While both DM and CLE showed strong interferon signatures, DM uniquely displayed IFN-β expression. Together, our study provides the first comprehensive spatial mapping of immune and stromal cells in adult-onset DM.
Collapse
Affiliation(s)
- Ksenia S. Anufrieva
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| | - Neda Shahriari
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ce Gao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| | - Rochelle L. Castillo
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Liu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| | - Sean Prell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| | - Shideh Kazerounian
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| | - Khashayar Afshari
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, USA
| | - Anastasia N. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa Bowman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Avery LaChance
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Hashemi
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ilya Korsunsky
- Division of Genetics, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Rashighi
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, USA
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital at Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Attias M, Alvarez F, Al-Aubodah TA, Istomine R, McCallum P, Huang F, Sleiman A, Nishimura T, Del Rincón SV, Riazalhosseini Y, Piccirillo CA. Anti-PD-1 amplifies costimulation in melanoma-infiltrating T h1-like Foxp3 + regulatory T cells to alleviate local immunosuppression. J Immunother Cancer 2025; 13:e009435. [PMID: 39762077 PMCID: PMC11748786 DOI: 10.1136/jitc-2024-009435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8+ T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment. As Foxp3+ regulatory T (Treg) cells play an important role in tumor-induced immunosuppression and express PD-1, we hypothesized that anti-PD-1 also increases the functions of melanoma-infiltrating Treg cells, which could be detrimental to treatment efficacy. METHODS The cellular and functional dynamics of Treg cells were evaluated in C57Bl/6 Foxp3-reporter mice bearing highly immunogenic and PD-1 blockade-sensitive Yale University Mouse Melanoma Exposed to Radiation 1.7 (YUMMER1.7) tumors. Treg cell responses in tumors and lymphoid compartments were examined throughout tumor growth or therapy and were assessed ex vivo by multiparametric flow cytometry analysis, with in vitro suppression assays using tumor-infiltrating lymphocytes isolated by fluorescence-activated cell sorting (FACS) and in situ through spatial proteomic and transcriptomic profiling. RESULTS In this highly immunogenic melanoma model, anti-PD-1 monotherapy yielded high responders (HRs) and low responders (LRs). We show that the potent CD8+ T cell responses characteristic of HR tumors paradoxically coincide with the expansion of highly-activated, Helios-expressing Treg cells. In both HRs and LRs, Treg cells co-localize with CD8+ T cells in immunogenic regions of the tumor and display potent suppressive capacity in vitro. Further characterization revealed that melanoma-infiltrating Treg cells progressively acquire T-bet and interferon gamma expression, exclusively in HRs, and induction of this T helper cell 1 (Th1)-like phenotype in vitro led to CD8+ T cell evasion from Treg cell-mediated suppression. Using spatial proteomic and transcriptomic profiling, we demonstrate that Treg cells display an increased activity of PI3K/Akt signaling in regions of HR tumors with an elevated CD8:Treg cell ratio. CONCLUSIONS PD-1 blockade promotes the expansion of a subset of highly-activated Treg cells coexpressing PD-1 and Helios. While these cells are potently suppressive outside tumor environments, costimulatory and inflammatory signals present in the tumor microenvironment lead to their local acquisition of Th1-like characteristics and loss of suppression of effector T cells.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Paige McCallum
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Fan Huang
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Abrahim Sleiman
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
| | - Tamiko Nishimura
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Yasser Riazalhosseini
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Centre for Translation Biology (CTB), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Zheng Y, Cai J, Ji Q, Liu L, Liao K, Dong L, Gao J, Huang Y. Tumor-Activated Neutrophils Promote Lung Cancer Progression through the IL-8/PD-L1 Pathway. Curr Cancer Drug Targets 2025; 25:294-305. [PMID: 39354766 PMCID: PMC11851149 DOI: 10.2174/0115680096337237240909101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Lung cancer remains a major global health threat due to its complex microenvironment, particularly the role of neutrophils, which are crucial for tumor development and immune evasion mechanisms. This study aimed to delve into the impact of lung cancer cell-conditioned media on neutrophil functions and their potential implications for lung cancer progression. METHODS Employing in vitro experimental models, this study has analyzed the effects of lung cancer cell-conditioned media on neutrophil IL-8 and IFN-γ secretion, apoptosis, PD-L1 expression, and T-cell proliferation by using techniques, such as ELISA, flow cytometry, immunofluorescence, and CFSE proliferation assay. The roles of IL-8/PD-L1 in regulating neutrophil functions were further explored using inhibitors for IL-8 and PD-L1. RESULTS Lung cancer cell lines were found to secrete higher levels of IL-8 compared to normal lung epithelial cells. The conditioned media from lung cancer cells significantly reduced apoptosis in neutrophils, increased PD-L1 expression, and suppressed T-cell proliferation and IFN-γ secretion. These effects were partially reversed in the presence of IL-8 inhibitors in Tumor Tissue Culture Supernatants (TTCS), while being further enhanced by IL-8. Both apoptosis and PD-L1 expression in neutrophils demonstrated dose-dependency to TTCS. Additionally, CFSE proliferation assay results further confirmed the inhibitory effect of lung cancer cell-conditioned media on T-- cell proliferation. CONCLUSION This study has revealed lung cancer cell-conditioned media to modulate neutrophil functions through regulating factors, such as IL-8, thereby affecting immune regulation and tumor progression in the lung cancer microenvironment.
Collapse
Affiliation(s)
- Yiping Zheng
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Jianfeng Cai
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Qiuhong Ji
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Luanmei Liu
- Department of Clinical Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Kaijun Liao
- Department of Clinical Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Lie Dong
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Jie Gao
- Department of Gastrointestinal Surgery, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Yinghui Huang
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| |
Collapse
|
6
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
7
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Ziegler LJ, Sansom DM, Gavin MA, Walker LSK, Campbell DJ. An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy. Cell Rep 2024; 43:114938. [PMID: 39488830 PMCID: PMC11602548 DOI: 10.1016/j.celrep.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Matthew Lawrance
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lauren J Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - David M Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Marc A Gavin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 981098, USA.
| |
Collapse
|
8
|
Liu Y, Zhao S, Du S, Zhang Y, Yu Y, Zhan B, Hao J, Jia Z, Huang J, Guo Y, Zhang L, Zhu X, Cheng Y. PD-1 deficiency impairs eosinophil recruitment to tissue during Trichinella spiralis infection. Cell Rep 2024; 43:114861. [PMID: 39418164 DOI: 10.1016/j.celrep.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Blockade of programmed cell death 1 (PD-1) is considered a promising strategy for controlling pathogen infection by enhancing host immune cell function. Eosinophils, which play a crucial role in type 2 immune responses, are essential components of the host defense against helminth infection. Here, we investigate the role of PD-1 in eosinophilia during Trichinella spiralis infection in mice. PD-1-deficient (PD-1-/-) mice exhibit delayed expulsion of adult worms and increased muscle larva burdens compared to wild-type mice following infection. Additionally, PD-1-/- mice display impaired recruitment of eosinophils to parasite-invaded tissues, attributed to decreased upregulation of adhesion molecules on both eosinophils and vascular endothelium after infection. The compromised Th2 cytokine response further contributes to impaired adhesion interactions, affecting eosinophil migration and cytotoxicity against larvae in vitro within T. spiralis-infected PD-1-/- mice. Our findings demonstrate a positive role for PD-1 in the recruitment of eosinophils, suggesting its involvement in host defense against helminth infection.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Simeng Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Suqin Du
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yao Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Yu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Zhihui Jia
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuteng Guo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lishuang Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
10
|
Tang P, Shen X, Gao J, Zhang J, Feng Y, Zhang J, Huang Z, Wang X. Distinct characteristics of BTLA/HVEM axis expression on Tregs and its impact on the expansion and attributes of Tregs in patients with active pulmonary tuberculosis. Front Cell Infect Microbiol 2024; 14:1437207. [PMID: 39386167 PMCID: PMC11461443 DOI: 10.3389/fcimb.2024.1437207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Pulmonary tuberculosis (PTB) remains one of the deadliest infectious diseases. Understanding PTB immunity is of potential value for exploring immunotherapy for treating chemotherapy-resistant PTB. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are key players that impair immune responses to Mycobacteria tuberculosis (MTB). Currently, the intrinsic factors governing Treg expansion and influencing the immunosuppressive attributes of Tregs in PTB patients are far from clear. Methods Here, we employed flow cytometry to determine the frequency of Tregs and the expression of B and T lymphocyte attenuator (BTLA) and its ligand, herpesvirus entry mediator (HVEM), on Tregs in patients with active PTB. Furthermore, the expression of conventional T cells and of programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) on Tregs in patients with active PTB was determined. We then examined the characteristics of BTLA/HVEM expression and its correlation with Treg frequency and PD-L1 and PD-1 expression on Tregs in PTB patients. Results The frequency of Tregs was increased in PTB patients and it had a relevance to PTB progression. Intriguingly, the axis of cosignal molecules, BTLA and HVEM, were both downregulated on the Tregs of PTB patients compared with healthy controls (HCs), which was the opposite of their upregulation on conventional T cells. Unexpectedly, their expression levels were positively correlated with the frequency of Tregs, respectively. These seemingly contradictory results may be interpreted as follows: the downregulation of BTLA and HVEM may alleviate BTLA/HVEM cis-interaction-mediated coinhibitory signals pressing on naïve Tregs, helping their activation, while the BTLA/HVEM axis on effector Tregs induces a costimulatory signal, promoting their expansion. Certainly, the mechanism underlying such complex effects remains to be explored. Additionally, PD-L1 and PD-1, regarded as two of the markers characterizing the immunosuppressive attributes and differentiation potential of Tregs, were upregulated on the Tregs of PTB patients. Further analysis revealed that the expression levels of BTLA and HVEM were positively correlated with the frequency of PD-1+Tregs and PD-L1+Tregs, respectively. Conclusion Our study illuminated distinct characteristics of BTLA/HVEM axis expression on Tregs and uncovered its impact on the expansion and attributes of Tregs in patients with active PTB. Therefore, blockade of the BTLA/HVEM axis may be a promising potential pathway to reduce Treg expansion for the improvement of anti-MTB immune responses.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Xinghua Shen
- Department of Critical Care Medicine, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Zhang
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Yanjun Feng
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuefeng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
García-López LL, Vargas-Montes M, Osorio-Méndez JF, Cardona N, Hernández De Los Ríos A, Toro-Acevedo CA, Arenas-García JC, Mantilla-Muriel LE, Torres E, Valencia-Hernández JD, Acosta-Dávila A, de-la-Torre A, Celis-Giraldo D, Mejía Oquendo M, Sepúlveda-Arias JC, Gómez-Marín JE. CD8+ T-cell Exhaustion Phenotype in Human Asymptomatic and Ocular Toxoplasmosis. Ocul Immunol Inflamm 2024; 32:1218-1227. [PMID: 37315178 DOI: 10.1080/09273948.2023.2217906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
This work analyzed exhaustion markers in CD8+ T-cell subpopulations in 21 samples of peripheral blood mononuclear cells (PBMCs) from individuals with ocular toxoplasmosis (n = 9), chronic asymptomatic toxoplasmosis (n = 7), and non-infected people (n = 5) by using RT-qPCR and flow cytometry techniques. The study found that gene expression of PD-1 and CD244, but not LAG-3, was higher in individuals with ocular toxoplasmosis versus individuals with asymptomatic infection or uninfected. Expression of PD1 in CD8+ central memory (CM) cells was higher in nine individuals with toxoplasmosis versus five uninfected individuals (p = .003). After ex vivo stimulation, an inverse correlation was found between the exhaustion markers and quantitative clinical characteristics (lesion size, recurrence index, and number of lesions). A total exhaustion phenotype was found in 55.5% (5/9) of individuals with ocular toxoplasmosis. Our results suggest that the CD8+ exhaustion phenotype is involved in the pathogenesis of ocular toxoplasmosis.
Collapse
Affiliation(s)
| | - Mónica Vargas-Montes
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | | | - Néstor Cardona
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
- Faculty of Dentistry, Universidad Antonio Nariño, Armenia, Quindío, Colombia
| | | | - Carlos Andrés Toro-Acevedo
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | | - Luz Eliana Mantilla-Muriel
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Elizabeth Torres
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | | | | | - Alejandra de-la-Torre
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
- NeURos Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Celis-Giraldo
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | - Manuela Mejía Oquendo
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | |
Collapse
|
12
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Huang X, Rudensky AY. Regulatory T cells in the context: deciphering the dynamic interplay with the tissue environment. Curr Opin Immunol 2024; 89:102453. [PMID: 39173413 PMCID: PMC11428145 DOI: 10.1016/j.coi.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The delicate balance between protective immunity against pathogens and the prevention of autoimmunity requires finely tuned generation and function of regulatory CD4+ T (Treg) cells. Here, we review recent progress in the understanding of a complex set of cues, which converge on Treg cells in lymphoid and nonlymphoid organs and in tumors and how these cues modulate Treg functions. We highlight the versatility of Treg cells underlying their ability to dynamically adapt to local microenvironments and perform a wide range of functions that extend beyond the archetypal role of Treg cells in moderating adverse effects of immune response-associated inflammation and in suppressing autoimmunity.
Collapse
Affiliation(s)
- Xiao Huang
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Geels SN, Moshensky A, Sousa RS, Murat C, Bustos MA, Walker BL, Singh R, Harbour SN, Gutierrez G, Hwang M, Mempel TR, Weaver CT, Nie Q, Hoon DSB, Ganesan AK, Othy S, Marangoni F. Interruption of the intratumor CD8 + T cell:Treg crosstalk improves the efficacy of PD-1 immunotherapy. Cancer Cell 2024; 42:1051-1066.e7. [PMID: 38861924 PMCID: PMC11285091 DOI: 10.1016/j.ccell.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.
Collapse
Affiliation(s)
- Shannon N Geels
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Alexander Moshensky
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Rachel S Sousa
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Claire Murat
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, CA, USA
| | - Benjamin L Walker
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Rima Singh
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Giselle Gutierrez
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA
| | - Michael Hwang
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Thorsten R Mempel
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, CA, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Zhang C, Bockman A, DuPage M. Breaking up the CD8 + T cell: Treg pas de deux. Cancer Cell 2024; 42:941-942. [PMID: 38861931 DOI: 10.1016/j.ccell.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Checkpoint blockade immunotherapies, such as anti-programmed death-1 (PD-1), unleash anti-tumor CD8+ T cell responses but may also induce immunosuppressive regulatory T cells (Tregs). In this issue of Cancer Cell, Geels et al. uncover that anti-PD-1 leads to Treg expansion via interleukin-2 (IL-2)-producing CD8+ T cells. Combining anti-PD-1 with anti-ICOSL interrupts this crosstalk, thereby enhancing tumor control.
Collapse
Affiliation(s)
- Chenyu Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alissa Bockman
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Gupta T, Antanaviciute A, Hyun-Jung Lee C, Ottakandathil Babu R, Aulicino A, Christoforidou Z, Siejka-Zielinska P, O'Brien-Ball C, Chen H, Fawkner-Corbett D, Geros AS, Bridges E, McGregor C, Cianci N, Fryer E, Alham NK, Jagielowicz M, Santos AM, Fellermeyer M, Davis SJ, Parikh K, Cheung V, Al-Hillawi L, Sasson S, Slevin S, Brain O, Fernandes RA, Koohy H, Simmons A. Tracking in situ checkpoint inhibitor-bound target T cells in patients with checkpoint-induced colitis. Cancer Cell 2024; 42:797-814.e15. [PMID: 38744246 DOI: 10.1016/j.ccell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.
Collapse
Affiliation(s)
- Tarun Gupta
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Chloe Hyun-Jung Lee
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rosana Ottakandathil Babu
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Anna Aulicino
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Zoe Christoforidou
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Paulina Siejka-Zielinska
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Caitlin O'Brien-Ball
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Hannah Chen
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - David Fawkner-Corbett
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ana Sousa Geros
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Esther Bridges
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Colleen McGregor
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Nicole Cianci
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Eve Fryer
- Pathology, Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Nasullah Khalid Alham
- Nuffield Department of Surgical Sciences and Oxford NIHR Biomedical Research Centre (BRC), University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Mafalda Santos
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Martin Fellermeyer
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Simon J Davis
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Vincent Cheung
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Lulia Al-Hillawi
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Sasson
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stephanie Slevin
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Oliver Brain
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
18
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
19
|
Lv Q, Yang H, Wang D, Zhou H, Wang J, Zhang Y, Wu D, Xie Y, Lv Y, Hu L, Wang J. Discovery of a Novel CSF-1R Inhibitor with Highly Improved Pharmacokinetic Profiles and Superior Efficacy in Colorectal Cancer Immunotherapy. J Med Chem 2024; 67:6854-6879. [PMID: 38593344 DOI: 10.1021/acs.jmedchem.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Haikun Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dapeng Wu
- Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P. R. China
| | - Ying Xie
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yingshan Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
20
|
Wu X, Cao Z, Chen Z, Wang Y, He H, Xiao P, Hu S, Lu J, Li B. Infectious complications in pediatric patients undergoing CD19+CD22+ chimeric antigen receptor T-cell therapy for relapsed/refractory B-lymphoblastic leukemia. Clin Exp Med 2024; 24:87. [PMID: 38662121 PMCID: PMC11045589 DOI: 10.1007/s10238-024-01339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is effective in the treatment of relapsed/refractory acute B-lymphoblastic leukemia (R/R B-ALL); however, patients who receive CAR-T therapy are predisposed to infections, with considerable detrimental effects on long-term survival rates and the quality of life of patients. This study retrospectively analyzed infectious complications in 79 pediatric patients with R/R B-ALL treated with CAR-T cells at our institution. Overall, 53 patients developed 88 infections. Nine patients experienced nine infections during lymphodepletion chemotherapy, 35 experienced 41 infections during the early phase (days 0-+ 30 after infusion), and 29 experienced 38 infections during the late phase (day + 31-+ 90 after infusion). Pathogens were identified in 31 infections, including 23 bacteria, seven viruses, and one fungus. Four patients were admitted to the intensive care unit for infection and one died. In a univariate analysis, there were ten factors associated with infection, including tumor load, lymphodepleting chemotherapy, neutrophil deficiency and lymphocyte reduction, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), etc. In a multivariate analysis, CRS ≥ grade 3 was identified as a risk factor for infection (hazard ratio = 2.41, 95% confidence interval: 1.08-5.36, P = 0.031). Therefore, actively reducing the CRS grade may decrease the risk of infection and improve the long-term quality of life of these patients.
Collapse
Affiliation(s)
- Xiaochen Wu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Zhanmeng Cao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Zihan Chen
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Hailong He
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China.
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology, Department of Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
21
|
Wang R, Tan G, Lei D, Li Y, Gong J, Tang Y, Pang H, Luo H, Qin B. Risk of HBV reactivation in HCC patients undergoing combination therapy of PD-1 inhibitors and angiogenesis inhibitors in the antiviral era. J Cancer Res Clin Oncol 2024; 150:158. [PMID: 38530426 PMCID: PMC10965597 DOI: 10.1007/s00432-024-05677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although routine antiviral therapy has been implemented in HCC patients, the risk of HBV reactivation (HBVr) remains with the use of programmed cell death-1(PD-1) blockade-based combination immunotherapy and the relevant risk factors are also unclear. Therefore, we aimed to identify the incidence and risk factors of HBVr in HCC patients undergoing combination therapy of PD-1 inhibitors and angiogenesis inhibitors and concurrent first-line antivirals. METHODS We included a total of 218 HBV-related HCC patients with first-line antivirals who received PD-1 inhibitors alone or together with angiogenesis inhibitors. According to the anti-tumor therapy modalities, patients were divided into PD-1 inhibitors monotherapy group (anti-PD-1 group) and combination therapy group (anti-PD-1 plus angiogenesis inhibitors group). The primary study endpoint was the incidence of HBVr. RESULTS HBVr occurred in 16 (7.3%) of the 218 patients, 2 cases were found in the anti-PD-1 group and the remaining 14 cases were in the combination group. The Cox proportional hazard model identified 2 independent risk factors for HBVr: combination therapy (hazard ratio [HR], 4.608, 95%CI 1.010-21.016, P = 0.048) and hepatitis B e antigen (HBeAg) positive (HR, 3.695, 95%CI 1.246-10.957, P = 0.018). Based on the above results, we developed a simple risk-scoring system and found that the high-risk group (score = 2) developed HBVr more frequently than the low-risk group (score = 0) (Odds ratio [OR], 17.000, 95%CI 1.946-148.526, P = 0.01). The area under the ROC curve (AUC-ROC) was 7.06 (95%CI 0.581-0.831, P = 0.006). CONCLUSION HBeAg-positive patients receiving combination therapy have a 17-fold higher risk of HBVr than HBeAg-negative patients with PD-1 inhibitors monotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dingjia Lei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yadi Li
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - JiaoJiao Gong
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Tang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Li Y, Zhang C, Jiang A, Lin A, Liu Z, Cheng X, Wang W, Cheng Q, Zhang J, Wei T, Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J Transl Med 2024; 22:293. [PMID: 38509593 PMCID: PMC10953261 DOI: 10.1186/s12967-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
Collapse
Affiliation(s)
- Yu Li
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, China
| | - Wanting Wang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ting Wei
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Santamaria JC, Vuillier S, Galindo-Albarrán AO, Castan S, Detraves C, Joffre OP, Romagnoli P, van Meerwijk JPM. The type 1 diabetes susceptibility locus Idd5 favours robust neonatal development of highly autoreactive regulatory T cells in the NOD mouse. Front Immunol 2024; 15:1358459. [PMID: 38404576 PMCID: PMC10884962 DOI: 10.3389/fimmu.2024.1358459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Regulatory T lymphocytes expressing the transcription factor Foxp3 (Tregs) play an important role in the prevention of autoimmune diseases and other immunopathologies. Aberrations in Treg-mediated immunosuppression are therefore thought to be involved in the development of autoimmune pathologies, but few have been documented. Recent reports indicated a central role for Tregs developing during the neonatal period in the prevention of autoimmune pathology. We therefore investigated the development of Tregs in neonatal NOD mice, an important animal model for autoimmune type 1 diabetes. Surprisingly, we found that, as compared with seven other commonly studied inbred mouse strains, in neonatal NOD mice, exceptionally large proportions of developing Tregs express high levels of GITR and PD-1. The latter phenotype was previously associated with high Treg autoreactivity in C57BL/6 mice, which we here confirm for NOD animals. The proportions of newly developing GITRhighPD-1+ Tregs rapidly drop during the first week of age. A genome-wide genetic screen indicated the involvement of several diabetes susceptibility loci in this trait. Analysis of a congenic mouse strain confirmed that Idd5 contributes to the genetic control of GITRhighPD-1+ Treg development in neonates. Our data thus demonstrate an intriguing and paradoxical correlation between an idiosyncrasy in Treg development in NOD mice and their susceptibility to type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joost P. M. van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Institut National de la santé et de la recherche médicale (Inserm) UMR1291 – Centre national de la recherche scientifique (CNRS) UMR5051 – University Toulouse III, Toulouse, France
| |
Collapse
|
25
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
26
|
Chambers CD, Song J, da Silva Antunes R, Sette A, Franco A. T Cell Responses in Pregnant Women Who Received mRNA-Based Vaccination to Prevent COVID-19 Revealed Unknown Exposure to the Natural Infection and Numerous SARS-CoV-2-Specific CD4- CD8- Double Negative T Cells and Regulatory T Cells. Int J Mol Sci 2024; 25:2031. [PMID: 38396707 PMCID: PMC10889590 DOI: 10.3390/ijms25042031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
We studied T-cell responses to SARS-CoV-2 in 19 pregnant subjects at different gestational weeks who received three doses of mRNA-based vaccination to prevent COVID-19. SARS-CoV-2 peptide pools were used for T-cell recognition studies: peptides were 15 amino acids long and had previously been defined in COVID-19-convalescent subjects. T-cell activation was evaluated with the AIM assay. Most subjects showed coordinated, spike-specific CD4+ and CD8+ T-cell responses and the development of T cell memory. Non-spike-specific T cells in subjects who were not aware of previous COVID-19 infection suggested a prior undetected, asymptomatic infection. CD4- CD8- double negative (DN) T cells were numerous, of which a percentage was specific for SARS-CoV-2 spike peptides. Regulatory T cells (Treg), both spike- and non-spike-specific, were also greatly expanded. Two Treg populations were defined: a population differentiated from naïve T cells, and pTreg, reverting from pro-inflammatory T cells. The Treg cells expressed CCR6, suggesting homing to the endometrium and vaginal epithelial cells. The pregnant women responded to SARS-CoV-2 vaccination. Asymptomatic COVID-19 was revealed by the T cell response to the non-spike peptides. The numerous DN T cells and Treg pointed our attention to new aspects of the adaptive immune response in vaccine recipients.
Collapse
Affiliation(s)
- Christina D. Chambers
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| | - Jaeyoon Song
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| | - Ricardo da Silva Antunes
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| |
Collapse
|
27
|
Zhang H, Han K, Li H, Zhang J, Zhao Y, Wu Y, Wang B, Ma J, Luan X. hPMSCs Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation 2024; 47:244-263. [PMID: 37833615 DOI: 10.1007/s10753-023-01907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.
Collapse
Affiliation(s)
- Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, 264100, Shandong Province, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
28
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
29
|
Huang A, Liu K, Yin Z, Liu J, Wei H, Xing S, Qu Y, Huang L, Li L, Li C, Zhang L, Li X, Zheng C, Liu Q, Jiang K. IL-35 Stabilizes Treg Phenotype to Protect Cardiac Allografts in Mice. Transplantation 2024; 108:161-174. [PMID: 37464473 PMCID: PMC10718222 DOI: 10.1097/tp.0000000000004707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Interleukin-35 (IL-35), secreted by regulatory T cells (Treg) and B cells, is immunosuppressive under both physiological and pathological conditions. However, the role of IL-35 in all responses has yet to be investigated. Here, we demonstrate that IL-35 protects allografts by stabilizing the Treg phenotype and suppressing CD8 + T-cell activation in a mouse heart transplantation model. METHODS The effect of IL-35 on immune cell infiltration in grafts and secondary lymphoid organs was examined using mass cytometry, flow cytometry, and immunofluorescence. Moreover, using quantitative real-time polymerase chain reaction, flow cytometry, and phospho-flow assays, we demonstrated that IL-35 maintains Treg phenotypes to restrain CD8 + T cells via the gp130/signal transducer and activator of transcription 1 pathway. RESULTS Mass cytometry analysis of intragraft immune cells showed that IL-35 decreased CD8 + T-cell infiltration and increased Foxp3 and IL-35 expressions in Treg. In vitro, we demonstrated that IL-35 directly promoted Treg phenotypic and functional stability and its IL-35 secretion, generating a positive feedback loop. However, Treg are required for IL-35 to exert its suppressive effect on CD8 + T cells in vitro. After depleting Treg in the recipient, IL-35 did not prolong graft survival or decrease CD8 + T-cell infiltration. Mechanistically, we found that IL-35 sustained Treg stability via the gp130/signal transducer and activator of transcription 1 signaling pathway. CONCLUSIONS Our findings highlight that IL-35 stabilizes the Treg phenotype to ameliorate CD8 + T-cell infiltration in the allograft, which has never been described in the transplanted immunological milieu.
Collapse
Affiliation(s)
- Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kewei Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Hongyan Wei
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Shijie Xing
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liancheng Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoshi Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Cunni Zheng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Sansom DM, Gavin MA, Walker LS, Campbell DJ. An IL-2 mutein increases IL-10 and CTLA-4-dependent suppression of dendritic cells by regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569613. [PMID: 38106196 PMCID: PMC10723345 DOI: 10.1101/2023.12.01.569613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and TCR-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface MHC class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 costimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - David M. Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - Lucy S.K. Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Proschinger S, Schenk A, Weßels I, Donath L, Rappelt L, Metcalfe AJ, Zimmer P. Intensity- and time-matched acute interval and continuous endurance exercise similarly induce an anti-inflammatory environment in recreationally active runners: focus on PD-1 expression in T regs and the IL-6/IL-10 axis. Eur J Appl Physiol 2023; 123:2575-2584. [PMID: 37336816 PMCID: PMC10615943 DOI: 10.1007/s00421-023-05251-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Acute exercise elicits a transient anti-inflammatory state during the early recovery period. Since recent studies reported on regimen-specific effects on immune-related humoral factors and cellular subsets, this study compared the effects of intensity- and time-matched acute interval and continuous exercise on peripheral anti-inflammatory cellular and humoral immune parameters with a particular focus on the PD-1 expression in CD4+ regulatory T cells (Tregs). METHODS Twenty-four recreationally active runners (age: 29.7 ± 4.3 years, BMI: 22.2 ± 2.4, VO2peak: 56.6 ± 6.4 ml × kg-1 × min-1) participated in this crossover RCT. Each subject conducted a moderate continuous (MCE) and a high-intensity interval exercise (HIIE) session in a counterbalanced design. Blood was drawn before, immediately after, and 1 h after exercise. Treg subsets and levels of PD-1 and Foxp3 were assessed by flow cytometry. Serum levels of IL-10 and IL-6 were quantified by ELISA. RESULTS PD-1 levels on Tregs increased within the recovery period after HIIE (p < .001) and MCE (p < 0.001). Total counts of Tregs (HIIE: p = 0.044; MCE: p = .021), naïve Tregs (HIIE: p < 0.001; MCE: p < 0.001), and PD-1+ effector Tregs (eTregs) (HIIE: p = .002) decreased 1 h after exercise. IL-10 increased 1 h after HIIE (p < 0.001) and MCE (p = 0.018), while IL-6 increased immediately after both HIIE (p = 0.031) and MCE (p = 0.021). Correlations between changes in IL-6 and IL-10 (p = 0.017, r = 0.379) and baseline VO2peak and Treg frequency (p = 0.002, r = 0.660) were identified. CONCLUSION This is the first study that investigates PD-1 expression in circulating Tregs after acute exercise, revealing an increase in PD-1 levels on eTregs during the early recovery period after intensity- and time-matched HIIE and MCE. Future studies are needed to investigate the PD-1 signalosome in eTregs, together with the expression of key effector molecules (i.e., IL-10, TGF-β, IL-35, CTLA-4) to elucidate PD-1-dependent changes in cellular function. Based on changes in serum cytokines, this study further reveals a regimen-independent establishment of an anti-inflammatory milieu and underpins the role of the IL-6/IL-10 axis.
Collapse
Affiliation(s)
- Sebastian Proschinger
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, 44227, Dortmund, Germany
| | - Alexander Schenk
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, 44227, Dortmund, Germany
| | - Inga Weßels
- Faculty of Medicine, RWTH Aachen University, Institute of Immunology, 52074, Aachen, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Alan J Metcalfe
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, 44227, Dortmund, Germany.
| |
Collapse
|
32
|
Dong J, Huth WJ, Marcel N, Zhang Z, Lin LL, Lu LF. miR-15/16 clusters restrict effector Treg cell differentiation and function. J Exp Med 2023; 220:e20230321. [PMID: 37516921 PMCID: PMC10374942 DOI: 10.1084/jem.20230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Effector regulatory T cells (eTregs) exhibit distinct homeostatic properties and superior suppressor capacities pivotal for controlling immune responses mediated by their conventional T cell counterpart. While the role of microRNAs (miRNAs) in Tregs has been well-established, how miRNAs regulate eTregs remains poorly understood. Here, we demonstrate that miR-15/16 clusters act as key regulators in limiting eTreg responses. Loss of miR-15/16 clusters leads to increased eTreg frequencies with enhanced suppressor function. Consequently, mice with Treg-specific ablation of miR-15/16 clusters display attenuated immune responses during neuroinflammation and upon both infectious and non-infectious challenges. Mechanistically, miR-15/16 clusters exert their regulatory effect in part through repressing IRF4, a transcription factor essential for eTreg differentiation and function. Moreover, miR-15/16 clusters also directly target neuritin, an IRF4-dependent molecule, known for its role in Treg-mediated regulation of plasma cell responses. Together, we identify an miRNA family that controls an important Treg subset and further demonstrate that eTreg responses are tightly regulated at both transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Jiayi Dong
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J. Huth
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
34
|
Tripathi S, Tsang JS, Park K. Systems immunology of regulatory T cells: can one circuit explain it all? Trends Immunol 2023; 44:766-781. [PMID: 37690962 PMCID: PMC10543564 DOI: 10.1016/j.it.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.
Collapse
Affiliation(s)
- Shubham Tripathi
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Kyemyung Park
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; Graduate School of Health Science and Technology and Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
35
|
Hor JL, Germain RN. Spatiotemporal and cell-state control of antigen presentation during tolerance and immunity. Curr Opin Immunol 2023; 84:102357. [PMID: 37331219 DOI: 10.1016/j.coi.2023.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Effective adaptive immunity is rendered possible by highly organized tissue architecture and coordinated cellular crosstalk. While detailed spatiotemporal analyses of antigen presentation and adaptive immune activation in secondary lymphoid tissues have been a major focus of study, it is clear that antigen presentation in other tissues also plays a critical role in shaping the immune response. In this article, we concentrate on two opposing aspects of adaptive immunity: tolerance and antitumor immunity, to illustrate how a complex set of antigen presentation mechanisms contributes to maintaining a delicate balance between robust immunity and avoidance of autoimmune pathology. We emphasize the importance of how immune cell identity, state, and location collectively determine the nature of adaptive immune responses.
Collapse
Affiliation(s)
- Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
36
|
Fattori S, Le Roy A, Houacine J, Robert L, Abes R, Gorvel L, Granjeaud S, Rouvière MS, Ben Amara A, Boucherit N, Tarpin C, Pakradouni J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Rochigneux P, Gonçalves A, Foussat A, Chrétien AS, Olive D. CD25high Effector Regulatory T Cells Hamper Responses to PD-1 Blockade in Triple-Negative Breast Cancer. Cancer Res 2023; 83:3026-3044. [PMID: 37379438 PMCID: PMC10502453 DOI: 10.1158/0008-5472.can-23-0613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Regulatory T cells (Treg) impede effective antitumor immunity. However, the role of Tregs in the clinical outcomes of patients with triple-negative breast cancer (TNBC) remains controversial. Here, we found that an immunosuppressive TNBC microenvironment is marked by an imbalance between effector αβCD8+ T cells and Tregs harboring hallmarks of highly suppressive effector Tregs (eTreg). Intratumoral eTregs strongly expressed PD-1 and persisted in patients with TNBC resistant to PD-1 blockade. Importantly, CD25 was the most selective surface marker of eTregs in primary TNBC and metastases compared with other candidate targets for eTreg depletion currently being evaluated in trials for patients with advanced TNBC. In a syngeneic TNBC model, the use of Fc-optimized, IL2 sparing, anti-CD25 antibodies synergized with PD-1 blockade to promote systemic antitumor immunity and durable tumor growth control by increasing effector αβCD8+ T-cell/Treg ratios in tumors and in the periphery. Together, this study provides the rationale for the clinical translation of anti-CD25 therapy to improve PD-1 blockade responses in patients with TNBC. SIGNIFICANCE An imbalance between effector CD8+ T cells and CD25high effector Tregs marks immunosuppressive microenvironments in αPD-1-resistant TNBC and can be reversed through effector Treg depletion to increase αPD-1 efficacy.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | | | | | - Lucie Robert
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Riad Abes
- Alderaan Biotechnology, Paris, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Gilles Houvenaeghel
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Eric Lambaudie
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | | | - Anne-Sophie Chrétien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Alderaan Biotechnology, Paris, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| |
Collapse
|
37
|
Linnerbauer M, Beyer T, Nirschl L, Farrenkopf D, Lößlein L, Vandrey O, Peter A, Tsaktanis T, Kebir H, Laplaud D, Oellinger R, Engleitner T, Alvarez JI, Rad R, Korn T, Hemmer B, Quintana FJ, Rothhammer V. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat Commun 2023; 14:5555. [PMID: 37689786 PMCID: PMC10492803 DOI: 10.1038/s41467-023-40982-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/11/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS). Current therapies mainly target inflammatory processes during acute stages, but effective treatments for progressive MS are limited. In this context, astrocytes have gained increasing attention as they have the capacity to drive, but also suppress tissue-degeneration. Here we show that astrocytes upregulate the immunomodulatory checkpoint molecule PD-L1 during acute autoimmune CNS inflammation in response to aryl hydrocarbon receptor and interferon signaling. Using CRISPR-Cas9 genetic perturbation in combination with small-molecule and antibody-mediated inhibition of PD-L1 and PD-1 both in vivo and in vitro, we demonstrate that astrocytic PD-L1 and its interaction with microglial PD-1 is required for the attenuation of autoimmune CNS inflammation in acute and progressive stages in a mouse model of MS. Our findings suggest the glial PD-L1/PD-1 axis as a potential therapeutic target for both acute and progressive MS stages.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Laplaud
- Nantes Université, INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064, Nantes, France
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Ivan Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
38
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
39
|
Zhao P, Sun L, Zhao C, Malik S. PD1 is transcriptionally regulated by LEF1 in mature T cells. Immunobiology 2023; 228:152708. [PMID: 37523793 DOI: 10.1016/j.imbio.2023.152708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
The role of programmed cell death 1 (PD1) in cancer immune evasion is of considerable importance, prompting the development of monoclonal antibodies that specifically target PD-1 to enhance the immune system for cancer therapy. Nevertheless, the efficacy of PD1/programmed cell death-Ligand 1 (PD-L1) blocking antibodies is limited to certain patients or tumor types. Although researchers have demonstrated the influence of PD-1 on the positive selection of T cells, its effect on the T-cell repertoire remains uncertain. Lymphoid enhancer binding factor 1 (LEF1) has been known to play a critical role as a transcription factor in the development and maturation of T cells. Despite the greater focus on the study of its homologous protein, T cell factor 1 (TCF1), we discovered that LEF1 had a positive regulatory effect on the transcription of PD1 in mature T cells, including CD4+ T cells, CD8+ T cells, and Treg cells. This finding was observed in LEF1 knockout and LEF1-stimulated mice models. Additionally, we confirmed the direct regulation of PD1 by LEF1 in tumor-infiltrating lymphocytes through tumor-implantation experiments. The direct regulation of PD1 by LEF1 was further validated in the LEF1 knockout cell line. The results of our study provide novel perspectives on the regulation of PD1 in immune responses and investigate potential approaches for clinical anti-PD1 therapy.
Collapse
Affiliation(s)
- Pin Zhao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518055, China
| |
Collapse
|
40
|
Ramanathan G, Chen JH, Mehrotra N, Trieu T, Huang A, Mas E, Monterrosa Mena JE, Bliss B, Herman DA, Kleinman MT, Fleischman AG. Cigarette smoke stimulates clonal expansion of Jak2 V617F and Tet2 -/- cells. Front Oncol 2023; 13:1210528. [PMID: 37546389 PMCID: PMC10401270 DOI: 10.3389/fonc.2023.1210528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Somatic mutations in myeloid growth factor pathway genes, such as JAK2, and genes involved in epigenetic regulation, such as TET2, in hematopoietic stem cells (HSCs) leads to clonal hematopoiesis of indeterminate potential (CHIP) which presents a risk factor for hematologic malignancy and cardiovascular disease. Smoking behavior has been repeatedly associated with the occurrence of CHIP but whether smoking is an environmental inflammatory stressor in promoting clonal expansion has not been investigated. Methods We performed in vivo smoke exposures in both wildtype (WT) mice and transplanted mice carrying Jak2V617F mutant and Tet2 knockout (Tet-/-) cells to determine the impact of cigarette smoke (CS) in the HSC compartment as well as favoring mutant cell expansion. Results WT mice exposed to smoke displayed increased oxidative stress in long-term HSCs and suppression of the hematopoietic stem and progenitor compartment but smoke exposure did not translate to impaired hematopoietic reconstitution in primary bone marrow transplants. Gene expression analysis of hematopoietic cells in the bone marrow identified an imbalance between Th17 and Treg immune cells suggesting a local inflammatory environment. We also observed enhanced survival of Jak2V617F cells exposed to CS in vivo and cigarette smoke extract (CSE) in vitro. WT bone marrow hematopoietic cells from WT/Jak2V617F chimeric mice exposed to CS demonstrated an increase in neutrophil abundance and distinct overexpression of bone marrow stromal antigen 2 (Bst2) and retinoic acid early transcript 1 (Raet1) targets. Bst2 and Raet1 are indicative of increased interferon signaling and cellular stress including oxidative stress and DNA damage, respectively. In chimeric mice containing both WT and Tet2-/- cells, we observed an increased percentage of circulating mutant cells in peripheral blood post-cigarette smoke exposure when compared to pre-exposure levels while this difference was absent in air-exposed controls. Conclusion Altogether, these findings demonstrate that CS results in an inflamed bone marrow environment that provides a selection pressure for existing CHIP mutations such as Jak2V617F and Tet2 loss-of-function.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Jane H. Chen
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Nitya Mehrotra
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Tiffany Trieu
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Aaron Huang
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Eduard Mas
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
| | - Jessica E. Monterrosa Mena
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, Irvine, Irvine, CA, United States
| | - Bishop Bliss
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, Irvine, Irvine, CA, United States
| | - David A. Herman
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, Irvine, Irvine, CA, United States
| | - Michael T. Kleinman
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, Irvine, Irvine, CA, United States
| | - Angela G. Fleischman
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
41
|
van Gulijk M, van Krimpen A, Schetters S, Eterman M, van Elsas M, Mankor J, Klaase L, de Bruijn M, van Nimwegen M, van Tienhoven T, van Ijcken W, Boon L, van der Schoot J, Verdoes M, Scheeren F, van der Burg SH, Lambrecht BN, Stadhouders R, Dammeijer F, Aerts J, van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci Immunol 2023; 8:eabn6173. [PMID: 37205768 DOI: 10.1126/sciimmunol.abn6173] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mike Eterman
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marit van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Joanne Mankor
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein de Bruijn
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tim van Tienhoven
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Department of Biomics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Johan van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
42
|
Geels SN, Moshensky A, Sousa RS, Walker BL, Singh R, Gutierrez G, Hwang M, Mempel TR, Nie Q, Othy S, Marangoni F. Interruption of the Intratumor CD8:Treg Crosstalk Improves the Efficacy of PD-1 Immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540889. [PMID: 37292782 PMCID: PMC10245792 DOI: 10.1101/2023.05.15.540889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PD-1 blockade unleashes the potent antitumor activity of CD8 cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen response to immunotherapy. Tumor Treg inhibition is a promising strategy to overcome therapeutic resistance; however, the mechanisms supporting tumor Tregs during PD-1 immunotherapy are largely unexplored. Here, we report that PD-1 blockade increases tumor Tregs in mouse models of immunogenic tumors, including melanoma, and metastatic melanoma patients. Unexpectedly, Treg accumulation was not caused by Treg-intrinsic inhibition of PD-1 signaling but instead depended on an indirect effect of activated CD8 cells. CD8 cells colocalized with Tregs within tumors and produced IL-2, especially after PD-1 immunotherapy. IL-2 upregulated the anti-apoptotic protein ICOS on tumor Tregs, causing their accumulation. ICOS signaling inhibition before PD-1 immunotherapy resulted in increased control of immunogenic melanoma. Thus, interrupting the intratumor CD8:Treg crosstalk is a novel strategy that may enhance the efficacy of immunotherapy in patients.
Collapse
|
43
|
Zhu W, Li Y, Han M, Jiang J. Regulatory Mechanisms and Reversal of CD8+T Cell Exhaustion: A Literature Review. BIOLOGY 2023; 12:biology12040541. [PMID: 37106742 PMCID: PMC10135681 DOI: 10.3390/biology12040541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
CD8+T cell exhaustion is a state of T cell dysfunction during chronic infection and tumor progression. Exhausted CD8+T cells are characterized by low effector function, high expression of inhibitory receptors, unique metabolic patterns, and altered transcriptional profiles. Recently, advances in understanding and interfering with the regulatory mechanisms associated with T cell exhaustion in tumor immunotherapy have brought greater attention to the field. Therefore, we emphasize the typical features and related mechanisms of CD8+T cell exhaustion and particularly the potential for its reversal, which has clinical implications for immunotherapy.
Collapse
Affiliation(s)
- Wanwan Zhu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Yiming Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Mingwei Han
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Jianli Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| |
Collapse
|
44
|
Gonçalves‐Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Andrade MVM, Vieira MS, de Fátima Souza de Oliveira F, Carobin NV, Li G, de Paula Sabino A, Nobre V, da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023; 168:684-696. [PMID: 36349514 PMCID: PMC9877711 DOI: 10.1111/imm.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.
Collapse
Affiliation(s)
- Marcela Helena Gonçalves‐Pereira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Luciana Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Cecilia Gómez Ravetti
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Frizera Vassallo
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marcus Vinicius Melo de Andrade
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mariana Sousa Vieira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | - Natália Virtude Carobin
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Guangzhao Li
- Department of MicrobiologyImmunology and Tropical Medicine, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Vandack Nobre
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
45
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 226] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
46
|
Pereira JA, Lanzar Z, Clark JT, Hart AP, Douglas BB, Shallberg L, O’Dea K, Christian DA, Hunter CA. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front Immunol 2023; 14:997376. [PMID: 36960049 PMCID: PMC10028286 DOI: 10.3389/fimmu.2023.997376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
At homeostasis, a substantial proportion of Foxp3+ T regulatory cells (Tregs) have an activated phenotype associated with enhanced TCR signals and these effector Treg cells (eTregs) co-express elevated levels of PD-1 and CTLA-4. Short term in vivo blockade of the PD-1 or CTLA-4 pathways results in increased eTreg populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eTreg cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II. Thus, at homeostasis, PD-1 and CTLA-4 function additively to regulate eTreg function and the ability to target these pathways in Treg cells may be useful to modulate inflammation.
Collapse
Affiliation(s)
- Joseph A. Pereira
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew P. Hart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bonnie B. Douglas
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lindsey Shallberg
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keenan O’Dea
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Li Y, Duan Z, Pan D, Ren L, Gu L, Li X, Xu G, Zhu H, Zhang H, Gu Z, Chen R, Gong Q, Wu Y, Luo K. Attenuating Metabolic Competition of Tumor Cells for Favoring the Nutritional Demand of Immune Cells by a Branched Polymeric Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210161. [PMID: 36504170 DOI: 10.1002/adma.202210161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Tumor cells are dominant in the nutritional competition in the tumor microenvironment, and their metabolic abnormalities often lead to microenvironmental acidosis and nutrient deprivation, thereby impairing the function of immune cells and diminishing the antitumor therapeutic effect. Herein, a branched polymeric conjugate and its efficacy in attenuating the metabolic competition of tumor cells are reported. Compared with the control nanoparticles prepared from its linear counterpart, the branched-conjugate-based nanoparticles can more efficiently accumulate in the tumor tissue and interfere with the metabolic processes of tumor cells to increase the concentration of essential nutrients and reduce the level of immunosuppressive metabolites in the TME, thus creating a favorable environment for infiltrated immune cells. Its combined treatment with an immune checkpoint inhibitor (ICI) achieves an enhanced antitumor effect. The work presents a promising approach for targeting metabolic competition in the TME to enhance the chemo-immunotherapeutic effect against cancers.
Collapse
Affiliation(s)
- Yinggang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Yao Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
48
|
Sugiyama D, Hinohara K, Nishikawa H. Significance of regulatory T cells in cancer immunology and immunotherapy. Exp Dermatol 2023; 32:256-263. [PMID: 36458459 DOI: 10.1111/exd.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Immunosuppression in the tumour microenvironment (TME) attenuates antitumor immunity, consequently hindering protective immunosurveillance and preventing effective antitumor immunity induced by cancer immunotherapy. Multiple mechanisms including immune checkpoint molecules, such as CTLA-4, PD-1, and LAG-3, and immunosuppressive cells are involved in the immunosuppression in the TME. Regulatory T (Treg) cells, a population of immunosuppressive cells, play an important role in inhibiting antitumor immunity. Therefore, Treg cells in the TME correlate with an unfavourable prognosis in various cancer types. Thus, Treg cell is considered to become a promising target for cancer immunotherapy. Elucidating Treg cell functions in cancer patients is therefore crucial for developing optimal Treg cell-targeted immunotherapy. Here, we describe Treg cell functions and phenotypes in the TME from the perspective of Treg cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chuo-ku, Japan
| |
Collapse
|
49
|
Fu Y, Huang Y, Li P, Wang L, Tang Z, Liu X, Bian X, Wu S, Wang X, Zhu B, Yu Y, Jiang J, Li C. Physical- and Chemical-Dually ROS-Responsive Nano-in-Gel Platforms with Sequential Release of OX40 Agonist and PD-1 Inhibitor for Augmented Combination Immunotherapy. NANO LETTERS 2023; 23:1424-1434. [PMID: 36779813 DOI: 10.1021/acs.nanolett.2c04767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combination immunotherapy synergizing the PD-1 blockade with OX40 agonism has become a research hotspot, due to its enormous potential to overcome the restricted clinical objective response suffered by monotherapy. Questions of timing and sequence have been important aspects of immunotherapies when considering immunologic mechanisms; however, most of the time the straightforward additive approach was taken. Herein, our work is the first to investigate an alternative timing of aOX40 and aPD-1 treatment in melanoma-bearing mice, and it demonstrates that sequential administration (aOX40 first, then aPD-1 following) provided superior antitumor benefits than concurrent treatment. Based on that, to further avoid the limits suffered by solution forms, we adopted pharmaceutical technologies to construct an in situ-formed physical- and chemical-dually ROS-responsive nano-in-gel platform to implement sequential and prolonged release of aPD-1 and aOX40. Equipped with these advantages, the as-prepared (aPD-1NCs&aOX40)@Gels elicited augmented combination immunity and achieved great eradication of both primary and distant melanoma tumors in vivo.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Luyao Wang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, U.K
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard University, Charlestown, Massachusetts 02138, United States
| | - Yang Yu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing 400038, P.R. China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
50
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|