1
|
Snelson M, Muralitharan RR, Liu CF, Markó L, Forslund SK, Marques FZ, Tang WHW. Gut-Heart Axis: The Role of Gut Microbiota and Metabolites in Heart Failure. Circ Res 2025; 136:1382-1406. [PMID: 40403109 PMCID: PMC12101525 DOI: 10.1161/circresaha.125.325516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/24/2025]
Abstract
Heart failure is a global health issue with significant mortality and morbidity. There is increasing evidence that alterations in the gastrointestinal microbiome, gut epithelial permeability, and gastrointestinal disorders contribute to heart failure progression through various pathways, including systemic inflammation, metabolic dysregulation, and modulation of cardiac function. Moreover, several medications used to treat heart failure directly impact the microbiome. The relationship between the gastrointestinal tract and the heart is bidirectional, termed the gut-heart axis. It is increasingly understood that diet-derived microbial metabolites are key mechanistic drivers of the gut-heart axis. This includes, for example, trimethylamine N-oxide and short-chain fatty acids. This review discusses current insights into the interplay between heart failure, its associated risk factors, and the gut microbiome, focusing on key metabolic pathways, the role of dietary interventions, and the potential for gut-targeted therapies. Understanding these complex interactions could pave the way for novel strategies to mitigate heart failure progression and improve patient outcomes.
Collapse
Affiliation(s)
- Matthew Snelson
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - Lajos Markó
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
| | - Sofia K. Forslund
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Francine Z. Marques
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
2
|
Wang S, Luo H, Zou ZH, Su ML, Pan ZH, Wang M, Zhang WJ. Trimethylamine N-Oxide and Smoking Are Associated With the Progression of Thromboangiitis Obliterans. J Surg Res 2025; 311:78-85. [PMID: 40409047 DOI: 10.1016/j.jss.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/30/2025] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
INTRODUCTION Thromboangiitis obliterans (TAO) is potentially associated with smoking, although its precise pathogenesis remains unclear. Trimethylamine N-oxide (TMAO) has been implicated in the induction of various cardiovascular and cerebrovascular diseases. However, the role of TMAO in TAO has not been reported. This study aimed to investigate the relationship between smoking, TMAO, and TAO. MATERIALS AND METHODS Thirty-three patients diagnosed with TAO and hospitalized for treatment between January 2018 and July 2024 were included in the study. Healthy smokers (n = 38) and nonsmokers (n = 35) were randomly recruited and matched for age, sex, and education level as controls. Subsequently, we analyzed their clinical characteristics, levels of TMAO, and immune and inflammatory markers. RESULTS Patients with TAO exhibited significantly higher levels of TMAO, Toll-like receptor 4 (TLR4), receptor for advanced glycation end products, interleukin (IL)-1β, IL-18, tumor necrosis factor-alpha, high mobility group box 1, nuclear factor-κB (NF-κB), and phosphorylated NF-κB (pNF-κB) than those in the smoking and nonsmoking control groups (all P < 0.05). The smoking control group also exhibited significantly higher levels of TMAO, TLR4, IL-1β, NF-κB, and pNF-κB (all P < 0.05) than the nonsmoking control group. TMAO, IL-1β, and tumor necrosis factor-alpha levels were significantly higher in the underage smoking group (all P < 0.05) than in the adult smoking group. The level of TMAO was significantly correlated with the Rutherford classification in patients with TAO, patients' smoking status (including total years of smoking and average daily cigarette consumption), and immune and inflammatory markers (all P < 0.05). CONCLUSIONS These findings indicate that gut microbiota plays a significant role in the pathogenesis of TAO. TMAO is likely involved in the pathogenesis and progression of TAO, with smoking acting as a contributing factor. The underlying mechanism may involve the activation of immune-inflammatory pathways, specifically the high mobility group box 1-receptor for advanced glycation end products/TLR4-NF-κB pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong Luo
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhong-Hui Zou
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Mei-Lan Su
- Department of Psychosomatic and Sleep Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhong-Hui Pan
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Wang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jing Zhang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
3
|
Yao F, Liu C, Luo D, Zhou Y, Li Q, Huang H, Xu H. Metabolites of Microbiota: A Novel Therapy for Heart Disease. FOOD REVIEWS INTERNATIONAL 2025; 41:1099-1115. [DOI: 10.1080/87559129.2024.2437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Fei Yao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University
| | | | - Duo Luo
- Guangzhou Medical University
| | | | | | | | | |
Collapse
|
4
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Jiang R, Kountz DJ, Zhang L, Krzycki JA. A cobalamin-dependent pathway of choline demethylation from the human gut acetogen Eubacterium limosum. J Biol Chem 2025:108524. [PMID: 40280423 DOI: 10.1016/j.jbc.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Elevated serum levels of trimethylamine N-oxide (TMAO) are reported to promote the development of atherosclerosis. TMAO is produced by hepatic oxidation of trimethylamine (TMA) produced by the gut microbiome from dietary quaternary amines such as choline. Net TMA production in the gut depends on microbial enzymes that either produce or consume TMA and its precursors. Here we report the elucidation of a novel microbial pathway consuming choline without TMA production. The human gut acetogen Eubacterium limosum grows by demethylating choline to N-N-dimethylaminoethanol. Quantitative mass spectral analysis of the proteome revealed a multi-protein choline to tetrahydrofolate (THF) methyltransferase system present only in choline-grown cells. The components are encoded in a gene cluster on the genome and include MthB, an MttB superfamily member; MthC, homologous to methylotrophic cobalamin-binding proteins; MthA, homologous to cobalamin:THF methyltransferases; and MthK, a protein related to serine kinases. Together, MthB, MthC, and MthA methylate THF with phosphocholine, but not choline or other quaternary amines. MthB specifically methylates Co(I)-MthC with phosphocholine. MthK acts as a bifunctional choline kinase which can utilize ATP or the MthB demethylation product, N,N-dimethylaminoethanol phosphate, to phosphorylate choline. Together, MthK, MthB, MthC, and MthA are proposed to carry out the methylation of THF with choline. These results outline a THF methylation pathway in which choline is first activated with ATP to phosphocholine prior to demethylation to form N,N-dimethylaminoethanol phosphate. The latter can be recycled by MthK to form more phosphocholine without expending additional ATP, thus minimizing energy utilization during choline-dependent acetogenesis.
Collapse
Affiliation(s)
| | | | - Liwen Zhang
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility
| | - Joseph A Krzycki
- Department of Microbiology; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
6
|
Khan I, Khan I, Xie P, Xiaohui Y, Lei S, Song T, Li Z, Xie X. Insights into the blood, gut, and oral microbiomes in Chinese patients with myocardial infarction: a case-control study. BMC Microbiol 2025; 25:226. [PMID: 40253360 PMCID: PMC12008866 DOI: 10.1186/s12866-025-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/10/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that changes in the blood microbes might be associated with cardiovascular disease, especially myocardial infarction (MI). However, some researchers are questioning whether a true "blood microbiome" actually exists. They hypothesized that these microbes may translocate into the bloodstream from the gut or oral cavities. To test this hypothesis, we analyzed the microbial composition, diversity, and potential role in disease progression by comparing blood, gut, and oral microbiota profiles in a cohort of MI patients and healthy controls. METHODS In this study, 144 samples, including blood, fecal, and saliva, were collected from twenty-four myocardial infarction patients and twenty-four healthy controls. These samples were analyzed using 16 S rRNA sequencing to characterize the microbial profiles across the three distinct microbial compartments. Differential analyses were conducted to find key differential microbiota for MI. Spearman's rank correlation analysis was used to study the association between microbiota and clinical indicators. RESULTS Our findings revealed striking microbial shifts across blood, gut, and oral compartments in MI patients compared to healthy controls. In the blood, we observed significant enrichment of the phyla Armatimonadota and Caldatribacteriota, alongside the genera Bacillus, Pedobacter, and Odoribacter. The gut microbiota of MI patients showed a notable increase in the phyla Proteobacteria, Verrucomicrobiota, Cyanobacteria, Synergistota, and Crenarchaeota, as well as the genera Eubacterium_coprostanoligenes_group, Rothia, Akkermansia, Lachnospiraceae_ NK4A136_ group, and Eubacterium_ruminantium_group. Meanwhile, the oral microbiota of MI patients was uniquely enriched with the phylum Elusimicrobiota and the genera Streptococcus, Rothia, and Granulicatella. These distinct microbial signatures highlight compartment-specific alterations that may play a role in the pathophysiology of MI. Additionally, LEfSe analysis identified 64 distinct taxa that differed across the three compartments. Of these, eight taxa were unique to blood, eighteen to the gut, and thirty-eight to the oral microbiota, all of which demonstrated significant associations with clinical markers of MI. Functional pathways were predicted and analyzed via KEGG annotation, but no statistically significant differences were found between MI patients and healthy controls in any of the microbiome compartments. CONCLUSION This study demonstrates significant alterations in the blood, gut, and oral microbiome profiles of MI patients, identifying specific bacterial taxa strongly associated with key markers of myocardial infarction. The unique microbial patterns detected in the blood provide compelling evidence for the existence of a stable core blood microbiome, highlighting its importance as a key contributor to cardiovascular health and disease progression.
Collapse
Affiliation(s)
- Ikram Khan
- Department of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Imran Khan
- Department of Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Xie
- Department of Cardiology, Gansu Province People's Hospital, Lanzhou, Gansu, China
| | - Yu Xiaohui
- Department of Gastroenterology, The 940 Hospital Joint Logistic Support Force of PLA, Lanzhou, Gansu, China
| | - Shengnan Lei
- School of Stomatology, Key Laboratory of Oral Disease, Northwest Minzu University, Lanzhou, Gansu, China
| | - Tianzhu Song
- School of Stomatology, Key Laboratory of Oral Disease, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zhiqiang Li
- School of Stomatology, Key Laboratory of Oral Disease, Northwest Minzu University, Lanzhou, Gansu, China.
| | - Xiaodong Xie
- Department of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
7
|
Tsai TY, Aldujeli A, Haq A, Murphy P, Unikas R, Sharif F, Garg S, Brilakis ES, Onuma Y, Serruys PW. Trimethylamine N-Oxide as a Biomarker for Left Ventricular Diastolic Dysfunction and Functional Remodeling After STEMI. Int J Mol Sci 2025; 26:3400. [PMID: 40244252 PMCID: PMC11989463 DOI: 10.3390/ijms26073400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Despite successful primary percutaneous coronary intervention (PPCI), the incidence of heart failure (HF) following ST-elevation myocardial infarction (STEMI) remains high. We investigated using Trimethylamine N-oxide (TMAO), a gut microbiota-derived biomarker, to predict adverse functional left ventricular (LV) remodeling (FLVR) and/or diastolic dysfunction (DD), which are precursors of HF post-STEMI. This prospective, observational study enrolled 204 STEMI patients with multivessel coronary artery disease after PPCI. TMAO level was collected at the baseline and 3 months. An echocardiography was performed at the baseline and at 12 months. The primary endpoints were the number of patients developing Group 4 FLVR or ≥Grade II DD at 12 months. The median age was 65 [57.00, 76.00] and 39.7% were women. The primary endpoints occurred in 47 (23.0%) patients. Three months of TMAO can discriminate patients with/without ≥Grade II LV DD and FLVR Grade 4 with areas under the curve (AUC) of the ROC of 0.72 (95% CI: 0.63-0.81; p < 0.001) and 0.77 (95% CI: 0.63-0.91), respectively. Similar results were shown in the validation cohort of 31 patients. The addition of 3 months of TMAO to traditional risk factors significantly improved the AUCs from 0.675 to 0.736 for ≥Grade II DD and from 0.793 to 0.873 for FLVR Grade 4. In multivariable logistic regression, 3 months of TMAO was independently associated with ≥Grade II DD (OR: 1.29 (1.13-1.50), p < 0.001) and FLVR Grade 4 (OR: 1.28 (1.12-1.47), p < 0.001). Three months of TMAO is strongly associated with LV DD and adverse remodeling after STEMI and may help identifying such patients for early treatment.
Collapse
Affiliation(s)
- Tsung-Ying Tsai
- CORRIB Research Centre for Advanced Imaging and Core Lab, University of Galway, H91 TK33 Galway, Ireland
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ali Aldujeli
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (R.U.)
| | - Ayman Haq
- Abbott Northwestern Hospital/Minneapolis Heart Institute Foundation, Minneapolis, MN 55407, USA; (A.H.); (E.S.B.)
| | - Paddy Murphy
- CORRIB Research Centre for Advanced Imaging and Core Lab, University of Galway, H91 TK33 Galway, Ireland
| | - Ramunas Unikas
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (R.U.)
| | - Faisal Sharif
- Department of Cardiology, University Hospital Galway, University of Galway, H91 YR71 Galway, Ireland
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn BB2 3HH, UK
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Emmanouil S. Brilakis
- Abbott Northwestern Hospital/Minneapolis Heart Institute Foundation, Minneapolis, MN 55407, USA; (A.H.); (E.S.B.)
| | - Yoshinobu Onuma
- CORRIB Research Centre for Advanced Imaging and Core Lab, University of Galway, H91 TK33 Galway, Ireland
| | - Patrick W. Serruys
- CORRIB Research Centre for Advanced Imaging and Core Lab, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
8
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Wen L, Lin X, Hu D, Li J, Xie K, Li S, Su S, Duan X, Zhong G, Lin Y, Chen Y, Xu T, Zeng Q. Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway. Atherosclerosis 2025; 402:119109. [PMID: 39952076 DOI: 10.1016/j.atherosclerosis.2025.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/24/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization. METHODS In vitro, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. In vivo, the influence of IRAK-M on CAVD development was verified using Irak-m-/- mice. RESULT Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. In vitro, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). In vivo experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD). CONCLUSION TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.
Collapse
Affiliation(s)
- Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiangjie Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaolin Duan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Tianyu Xu
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
10
|
Shen S, Tian B, Zhang H, Wang YC, Li T, Cao Y. Heart Failure and Gut Microbiota: What Is Cause and Effect? RESEARCH (WASHINGTON, D.C.) 2025; 8:0610. [PMID: 39981296 PMCID: PMC11839986 DOI: 10.34133/research.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Emerging evidence highlights the central role of gut microbiota in maintaining physiological homeostasis within the host. Disruptions in gut microbiota can destabilize systemic metabolism and inflammation, driving the onset and progression of cardiometabolic diseases. In heart failure (HF), intestinal dysfunction may induce the release of endotoxins and metabolites, leading to dysbiosis and exacerbating HF through the gut-heart axis. Understanding the relationship between gut microbiota and HF offers critical insights into disease mechanisms and therapeutic opportunities. Current research highlights promising potential to improve patient outcomes by restoring microbiota balance. In this review, we summarize the current studies in understanding the gut microbiota-HF connection and discuss avenues for future investigation.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Beiduo Tian
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Haizhu Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics,
University of California, Los Angeles, CA, USA
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics,
West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
11
|
Sun T, Song B, Li B. Gut microbiota and atrial cardiomyopathy. Front Cardiovasc Med 2025; 12:1541278. [PMID: 39968343 PMCID: PMC11832500 DOI: 10.3389/fcvm.2025.1541278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Atrial cardiomyopathy is a multifaceted heart disease characterized by structural and functional abnormalities of the atria and is closely associated with atrial fibrillation and its complications. Its etiology involves a number of factors, including genetic, infectious, immunologic, and metabolic factors. Recent research has highlighted the critical role of the gut microbiota in the pathogenesis of atrial cardiomyopathy, and this is consistent with the gut-heart axis having major implications for cardiac health. The aim of this work is to bridge the knowledge gap regarding the interactions between the gut microbiota and atrial cardiomyopathy, with a particular focus on elucidating the mechanisms by which gut dysbiosis may induce atrial remodeling and dysfunction. This article provides an overview of the role of the gut microbiota in the pathogenesis of atrial cardiomyopathy, including changes in the composition of the gut microbiota and the effects of its metabolites. We also discuss how diet and exercise affect atrial cardiomyopathy by influencing the gut microbiota, as well as possible future therapeutic approaches targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but ecological dysbiosis can lead to a variety of symptoms, including the induction of heart disease. We focus on the pathophysiological aspects of atrial cardiomyopathy, the impact of gut microbiota dysbiosis on atrial structure and function, and therapeutic strategies exploring modulation of the microbiota for the treatment of atrial cardiomyopathy. Finally, we discuss the role of gut microbiota in the treatment of atrial cardiomyopathy, including fecal microbiota transplantation and oral probiotics or prebiotics. Our study highlights the importance of gut microbiota homeostasis for cardiovascular health and suggests that targeted interventions on the gut microbiota may pave the way for innovative preventive and therapeutic strategies targeting atrial cardiomyopathy.
Collapse
Affiliation(s)
- Tingting Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Beibei Song
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
12
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
13
|
Zhu S, Liu L, Zhao Y, Ye B, He J, Li W, Xu Y, Zhu J, Xia M, Liu Y. Microbiota-derived 3-Methyl-L-histidine mediates the proatherogenic effect of high chicken protein diet. MedComm (Beijing) 2025; 6:e70090. [PMID: 39949981 PMCID: PMC11822454 DOI: 10.1002/mco2.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Diet rich in chicken protein has gained a widespread popularity for its profound effect on weight loss and glycemic control; however, its long-term effect on cardiovascular health and the underlying mechanisms remains obscure. Here, we demonstrated that higher intake of chicken protein was an independent risk factor for sub-clinical atherosclerosis. Adherence to high chicken protein diet (HCD) alleviated excessive weight gain and glycemic control regardless of the presence of gut microbiota in apolipoprotein E-deficient mice. In contrast, long-term HCD administration enhanced intestinal cholesterol absorption and accelerated atherosclerotic plaque formation in a gut microbiota-dependent manner. Integrative analysis of 16S rDNA sequencing and metabolomics profiling identified 3-Methyl-L-histidine (3-MH), resulting from an enrichment of Lachnospiraceae, as the key microbial effector to the atherogenic effect of HCD. Mechanistically, 3-MH facilitated the binding of hepatocyte nuclear factor 1A (HNF1A) to the promoter of NPC1-like intracellular cholesterol transporter 1 (NPC1L1), whereas inhibition of HNF1A-NPC1L1 axis abolished the atherogenic effect of 3-MH. Our findings uncovered a novel link between microbiota-derived 3-MH and disturbed cholesterol homeostasis, which ultimately accelerated atherosclerosis, and argued against the recommendation of HCD as weight loss regimens considering its adverse role in vascular health.
Collapse
Affiliation(s)
- Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Ludi Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Bingqi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Jialin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Wenkang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Yingxi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Jiangyuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouP. R. China
| |
Collapse
|
14
|
Khuu MP, Paeslack N, Dremova O, Benakis C, Kiouptsi K, Reinhardt C. The gut microbiota in thrombosis. Nat Rev Cardiol 2025; 22:121-137. [PMID: 39289543 DOI: 10.1038/s41569-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.
Collapse
Affiliation(s)
- My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
15
|
Richards-Corke K, Jiang Y, Yeliseyev V, Zhang Y, Franzosa EA, Wang ZA, Yapa Abeywardana M, Cole PA, Huttenhower C, Bry L, Balskus EP. A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury. ACS Chem Biol 2025; 20:48-55. [PMID: 39778875 PMCID: PMC11744669 DOI: 10.1021/acschembio.3c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels. Here, we demonstrate use of benurestat, a clinical candidate used against ureolytic organisms in encrusted uropathy, to inhibit urease activity in gut bacteria. Benurestat inhibits ammonia production by urease-encoding gut bacteria and is effective against individual microbes and complex gut microbiota. When administered to conventional mice with liver injury induced by thioacetamide exposure, benurestat reduced gut and serum ammonia levels and rescued 100% of mice from lethal acute liver injury. Overall, this study provides an important proof-of-concept for modulating host ammonia levels and microbiota-driven risks for hyperammonemia with gut microbiota-targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Khyle
C. Richards-Corke
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Yindi Jiang
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Vladimir Yeliseyev
- Brigham
and Women’s Hospital, Massachusetts Host-Microbiome Center, Department of Pathology, Boston, Massachusetts 02115, United States
| | - Yancong Zhang
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Eric A. Franzosa
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zhipeng A. Wang
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Desai
Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Maheeshi Yapa Abeywardana
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Phillip A. Cole
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Curtis Huttenhower
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Lynn Bry
- Brigham
and Women’s Hospital, Massachusetts Host-Microbiome Center, Department of Pathology, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Department of Pathology, Boston, Massachusetts 02115, United States
| | - Emily P. Balskus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Leng X, Wei X, Wang J, Yao X, Zhang M, Sun D, Liang J, Chi L, Cheng Y. Impacts of intestinal microbiota metabolite trimethylamine N-oxide on cardiovascular disease: a bibliometric analysis. Front Microbiol 2025; 15:1491731. [PMID: 39834376 PMCID: PMC11743947 DOI: 10.3389/fmicb.2024.1491731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Trimethylamine N-oxide (TMAO), a metabolite dependent on intestinal microbiota, is closely related to the emergence, progression, and prognosis of cardiovascular disease (CVD), and has received increasing attention in recent years. Objective The current research hotspots and future development trends in TMAO and CVD field are found through bibliometrics analysis, which provides reference for further study. Methods The bibliometrics tools VOSviewer and CiteSpace were used to analyze the publications from the Web of Science Core Collection (WOSCC) database. The articles published from 2004 to 2024 about the relationship between TMAO and CVD were retrieved. Bibliometric analysis includes annual publications, countries/regions, institutions, authors and co-cited authors, journals and cited-journals, references and keywords. Results After searching and screening, 1,466 publications were included for subsequent bibliometric analysis. Since 2014, the number of publications exposing the relationship between TMAO and CVD has increased rapidly, as has the frequency of citations. China, USA and Italy are the countries that publish the most relevant research. Cleveland Clinic is the leading institution in this field. Stanley L Hazen, Zeneng Wang and W H Wilson Tang are the most prolific authors in this field, and the latter two have the closest academic cooperation. American Journal of Clinical Nutrition and Journal of the American Heart Association are influential journals that publish research in this field. "Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk" is the most frequently cited article. Keyword analysis shows that gut microbiota, metabolism, phosphatidylcholine and atherosclerosis (AS) are the hotspots in this field. Conclusion This study summarizes the research situation of TMAO and CVD in the past 20 years, focusing on the effect of TMAO on pathogenesis of AS, predictive value of TMAO on CVD risk, and dietary and drug intervention for TMAO. Probiotics and natural products may be the research focus of preventing and treating CVD by intervening TMAO in the future.
Collapse
Affiliation(s)
- Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Yantai Yuhuangding Hospital, Yantai, China
| | - Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Qu J, Meng F, Wang Z, Xu W. Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. J Microbiol Biotechnol 2024; 34:2413-2424. [PMID: 39467697 PMCID: PMC11729380 DOI: 10.4014/jmb.2405.05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 10/30/2024]
Abstract
The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.
Collapse
Affiliation(s)
- Jun Qu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Fantao Meng
- Department of Internal Medicine-Cardiovascular, LinYi Central Hospital, LinYi, Shandong, P.R. China
| | - Zhen Wang
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| | - Wenhao Xu
- Department of Internal Medicine-Cardiovascular, YanTai YuHuangDing Hospital, Yantai, Shandong, P.R. China
| |
Collapse
|
18
|
Demarquoy J. Revisiting the Role of Carnitine in Heart Disease Through the Lens of the Gut Microbiota. Nutrients 2024; 16:4244. [PMID: 39683637 PMCID: PMC11644639 DOI: 10.3390/nu16234244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
L-Carnitine, sourced from red meat, dairy, and endogenous synthesis, plays a vital role in fatty acid metabolism and energy production. While beneficial for cardiovascular, muscular, and neural health, its interaction with the gut microbiota and conversion into trimethylamine (TMA) and trimethylamine N-oxide (TMAO) raise concerns about heart health. TMAO, produced through the gut-microbial metabolism of L-carnitine and subsequent liver oxidation, is associated with cardiovascular risks, including atherosclerosis, heart attacks, and stroke. It contributes to cholesterol deposition, vascular dysfunction, and platelet aggregation. Omnivorous diets, rich in L-carnitine, are associated with higher TMAO levels compared to plant-based diets, which are linked to lower cardiovascular disease risks. Dietary interventions, such as increasing fiber, polyphenols, and probiotics, can modulate the gut microbiota to reduce TMAO production. These strategies seek to balance L-carnitine's benefits with its potential risks related to TMAO production. Future research should focus on personalized approaches to optimize L-carnitine use while mitigating its cardiovascular impacts, exploring microbial modulation and dietary strategies to minimize the TMAO levels and associated risks.
Collapse
Affiliation(s)
- Jean Demarquoy
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Institut Agro, Institut National de Recherche Pour L'agriculture, L'alimentation et L'environnement (INRAE), Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
19
|
Sidoti A, D’Angelo R, Castagnetti A, Viciani E, Scimone C, Alibrandi S, Giannini G. Exploring Trimethylaminuria: Genetics and Molecular Mechanisms, Epidemiology, and Emerging Therapeutic Strategies. BIOLOGY 2024; 13:961. [PMID: 39765628 PMCID: PMC11726875 DOI: 10.3390/biology13120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
Trimethylaminuria (TMAU) is a rare metabolic syndrome caused by the accumulation of trimethylamine in the body, causing odor emissions similar to rotten fish in affected patients. This condition is determined by both genetic and environmental factors, especially gut dysbiosis. The multifactorial nature of this syndrome makes for a complex and multi-level diagnosis. To date, many aspects of this disease are still unclear. Recent research revealed the FMO3 haplotypes' role on the enzyme's catalytic activity. This could explain why patients showing only combined polymorphisms or heterozygous causative variants also manifest the TMAU phenotype. In addition, another research hypothesized that the behavioral disturbances showed by patients may be linked to gut microbiota alterations. Our review considers current knowledge about TMAU, clarifying its molecular aspects, the therapeutic approaches used to limit this condition, and the new therapies that are under study.
Collapse
Affiliation(s)
- Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Andrea Castagnetti
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Elisa Viciani
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | | |
Collapse
|
20
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
21
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
22
|
Li YL, Chen BY, Feng ZH, Zhou LJ, Liu T, Lin WZ, Zhu H, Xu S, Bai XB, Meng XQ, Zhang J, Liu Y, Pu J, Jiang M, Duan SZ. Roles of oral and gut microbiota in acute myocardial infarction. J Adv Res 2024:S2090-1232(24)00463-6. [PMID: 39447641 DOI: 10.1016/j.jare.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION The significance of oral/gut microbiota in acute myocardial infarction (AMI) has been increasingly appreciated. However, correlations between oral/gut microbiota and AMI parameter, as well as the key microbiota that may have a crucial function in this process, remain unclear. OBJECTIVES To investigate the composition and structure of oral and gut microbiota associated with AMI and explore the roles of specific bacterial species in the progression of AMI. METHODS We conducted a case-control study with 37 AMI patients and 36 controls. Oral and gut sample were collected and sequenced. Using correlation analysis, we combined bioinformatics data with AMI clinical parameters and obtained heatmaps of correlation coefficients. Additionally, we used antibiotics to eliminate the gut microbiota of C57BL/6J mice, followed by the transplantation of selected bacteria to verify the gut colonization of oral bacteria and their impact on AMI. RESULTS The component of oral and gut microbiota of AMI group showed significant alterations when compared to the control group. 17 salivary genera, 21 subgingival genera, and 8 gut genera in AMI group substantially differed from those in control group. Additionally, 19 genera from saliva, 19 genera from subgingival plaque, and 11 genera from feces substantially correlated with AMI clinical parameters. Orally administrated S.o (Streptococcus oralis subsp. dentisani), S.p (Streptococcus parasanguinis), and S.s (Streptococcus salivarius) were able to colonize in the gut and exacerbate myocardial infarction. CONCLUSION There is a strong correlation between oral/gut microbiota and AMI. Streptococcus spp. is capable to transmit from oral to gut and exacerbate myocardial infarction in mice. Monitoring and control of specific oral microbiota may be an effective new strategy for improving the therapy of AMI.
Collapse
Affiliation(s)
- Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ze-Hao Feng
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China; Department of Cardiology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Periodontology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| | - Meng Jiang
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| | - Sheng-Zhong Duan
- Stomatology Hospital, School of Stomatology, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Mitrică M, Lorusso L, Badea AA, Sîrbu CA, Pleșa A, Stănescu AMA, Pleșa FC, Sîrbu OM, Munteanu AE. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1699. [PMID: 39459486 PMCID: PMC11509537 DOI: 10.3390/medicina60101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Stroke-heart syndrome (SHS), a critical yet underrecognized condition, encompasses a range of cardiac complications that arise following an ischemic stroke. This narrative review explores the pathophysiology, clinical manifestations, and implications of SHS, focusing on the complex interplay between the brain and the heart. Acute ischemic stroke (AIS) triggers autonomic dysfunction, leading to a surge in catecholamines and subsequent myocardial injury. Our review highlights the five cardinal manifestations of SHS: elevated cardiac troponin (cTn) levels, acute myocardial infarction, left ventricular dysfunction, arrhythmias, and sudden cardiac death. Despite the significant impact of these complications on patient outcomes, there is a notable absence of specific guidelines for their management. Through a comprehensive literature search, we synthesized findings from recent studies to elucidate the mechanisms underlying SHS and identified gaps in the current understanding. Our findings underscore the importance of early detection and multidisciplinary management of cardiac complications post-stroke. Future research should focus on establishing evidence-based protocols to improve clinical outcomes for stroke patients with SHS. Addressing this unmet need will enhance the care of stroke survivors and reduce mortality rates associated with cardiac complications.
Collapse
Affiliation(s)
- Marian Mitrică
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Lorenzo Lorusso
- Neurology Unit, Neuroscience Department A.S.S.T. Lecco, Merate Hospital, 23807 Merate, Italy;
| | - Alexandru-Andrei Badea
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
| | - Carmen-Adella Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Andreea Pleșa
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Florentina Cristina Pleșa
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Octavian Mihai Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alice Elena Munteanu
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| |
Collapse
|
24
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
28
|
Sun H, Sun K, Tian H, Chen X, Su S, Tu Y, Chen S, Wang J, Peng M, Zeng M, Li X, Luo Y, Xie Y, Feng X, Li Z, Zhang X, Li X, Liu Y, Ye W, Chen Z, Zhu Z, Li Y, Xia F, Zhou H, Duan C. Integrated metagenomic and metabolomic analysis reveals distinctive stage-specific gut-microbiome-derived metabolites in intracranial aneurysms. Gut 2024; 73:1662-1674. [PMID: 38960582 DOI: 10.1136/gutjnl-2024-332245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome. DESIGN We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified. RESULTS Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion. CONCLUSION Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.
Collapse
Affiliation(s)
- Haitao Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaijian Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Tian
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiheng Chen
- Beijing Neurosurgical Institute, Beijing Engineering Research Center for Interventional Neuroradiology, Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Shixing Su
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Tu
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shilan Chen
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxuan Wang
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meichang Peng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiqin Zeng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Luo
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yugu Xie
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Feng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Li
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Zhang
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xifeng Li
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanchao Liu
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengrui Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Beijing Engineering Research Center for Interventional Neuroradiology, Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Fangbo Xia
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanzhi Duan
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Orgaz C, Sánchez-Ruiz A, Colmenarejo G. Identifying and Filling the Chemobiological Gaps of Gut Microbial Metabolites. J Chem Inf Model 2024; 64:6778-6798. [PMID: 39165172 DOI: 10.1021/acs.jcim.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Human gut microbial metabolites are currently undergoing much research due to their involvement in multiple biological processes that are important for health, including immunity, metabolism, nutrition, and the nervous system. Metabolites exert their effect through interaction with host and bacterial proteins, suggesting the use of "metabolite-mimetic" molecules as drugs and nutraceutics. In the present work, we retrieve and analyze the full set of published interactions of these compounds with human and microbiome-relevant proteins and find patterns in their structure, chemical class, target class, and biological origins. In addition, we use virtual screening to expand (more than 4-fold) the interactions, validate them with retrospective analyses, and use bioinformatic tools to prioritize them based on biological relevance. In this way, we fill many of the chemobiological gaps observed in the published data. By providing these interactions, we expect to speed up the full clarification of the chemobiological space of these compounds by suggesting many reliable predictions for fast, focused experimental testing.
Collapse
Affiliation(s)
- Cristian Orgaz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
30
|
Li Y, Han S. Metabolomic Applications in Gut Microbiota-Host Interactions in Human Diseases. Gastroenterol Clin North Am 2024; 53:383-397. [PMID: 39068001 DOI: 10.1016/j.gtc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human gut microbiota, consisting of trillions of microorganisms, encodes diverse metabolic pathways that impact numerous aspects of host physiology. One key way in which gut bacteria interact with the host is through the production of small metabolites. Several of these microbiota-dependent metabolites, such as short-chain fatty acids, have been shown to modulate host diseases. In this review, we examine how disease-associated metabolic signatures are identified using metabolomic platforms, and where metabolomics is applied in gut microbiota-disease interactions. We further explore how integration of metagenomic and metabolomic data in human studies can facilitate biomarkers discoveries in precision medicine.
Collapse
Affiliation(s)
- Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA.
| |
Collapse
|
31
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
32
|
Elantary R, Othman S. Role of L-carnitine in Cardiovascular Health: Literature Review. Cureus 2024; 16:e70279. [PMID: 39329040 PMCID: PMC11427024 DOI: 10.7759/cureus.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Secondary preventive measures, like anti-platelet medications, B-blockers, and angiotensin-converting enzyme (ACE) inhibitors, have been found to dramatically lower the risk of cardiovascular disease. However, prolonged usage of these drugs has been linked to multiple adverse impacts. Hence, finding more efficient treatments, especially dietary strategies for long-term use in daily life, is advantageous for primary prevention and treatment. L-carnitine, a naturally occurring amino acid derivative normally synthesized in the liver and kidney, is believed to have a considerable influence on cardiovascular health. L-carnitine can enhance both contractile performance and structural integrity of the cardiac muscle by maintaining efficient energy production and reducing oxidative stress. This literature review aims to address several pressing questions regarding the role of L-carnitine in cardiovascular health: what are the physiological functions of L-carnitine, particularly in relation to cardiovascular health; how effective and safe is L-carnitine supplementation in the management of various cardiovascular diseases, primarily ischemic heart disease, heart failure, and peripheral vascular disease; what are the underlying mechanisms through which L-carnitine exerts its cardioprotective effects; what controversies exist in the current research; and finally, what should be the future directions? Through this comprehensive analysis, the review aims to enrich our understanding of L-carnitine's role in cardiovascular health, providing a robust foundation for future academic and clinical endeavors. PubMed, Embase, and Google Scholar have been used to search the following keywords: L-carnitine, cardiovascular health, mitochondrial function, and L-carnitine side effects. Then, using the existing search engine formats, some keyword combinations were used to find the related articles included and every possibility, including using every first keyword combination with another keyword, using every keyword in every place at each given box, etc. Around 308 articles were reviewed using this process, including systemic reviews, meta-analysis studies, randomized controlled trials, and literature review articles. In the end, after leaving the pure articles related to the topic as 35 articles, which are attached below with direct citation, the majority of them were very fresh articles, as recent as 2010, and back words, except just one paper related to the impact of L-carnitine post-myocardial infarction, as its data provided us with a positive and promising impact of L-carnitine in this field. L‑carnitine seems to have a pivotal role in cardiovascular health due to its energy metabolism, anti-oxidative stress, and endothelial role. The safety and effectiveness of L-carnitine administration remain an issue for scientific investigation. One of the major concerns is that the intestinal metabolism of L-carnitine generates trimethylamine-N-oxide (TMAO), a compound that has been linked with faster atherosclerosis progression.
Collapse
Affiliation(s)
- Ramy Elantary
- Department of Acute Medicine, Royal Liverpool University Hospital, Liverpool, GBR
| | - Samar Othman
- Department of Diabetes and Endocrinology, Countess of Chester Hospital, Chester, GBR
| |
Collapse
|
33
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
34
|
Fechtner S, Allen BE, Chriswell ME, Jubair WK, Robertson CE, Kofonow JN, Frank DN, Holers VM, Kuhn KA. 3,3-Dimethyl-1-Butanol and its Metabolite 3,3-Dimethylbutyrate Ameliorate Collagen-induced Arthritis Independent of Choline Trimethylamine Lyase Activity. Inflammation 2024:10.1007/s10753-024-02126-y. [PMID: 39153148 PMCID: PMC11830829 DOI: 10.1007/s10753-024-02126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Conflicting data exist in rheumatoid arthritis and the collagen-induced arthritis (CIA) murine model of autoimmune arthritis regarding the role of bacterial carnitine and choline metabolism into the inflammatory product trimethylamine (TMA), which is oxidized in the liver to trimethylamine-N-oxide (TMAO). Using two published inhibitors of bacterial TMA lyase, 3,3-dimethyl-1-butanol (DMB) and fluoromethylcholine (FMC), we tested if TMA/TMAO were relevant to inflammation in the development of CIA. Surprisingly, DMB-treated mice demonstrated > 50% reduction in arthritis severity compared to FMC and vehicle-treated mice, but amelioration of disease was independent of TMA/TMAO production. Given the apparent contradiction that DMB did not inhibit TMA, we then investigated the mechanism of protection by DMB. After verifying that DMB acted independently of the intestinal microbiome, we traced the metabolism of DMB within the host and identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut). In vivo studies of mice treated with DMB or DMBut demonstrated efficacy of both molecules in significantly reducing disease and proinflammatory cytokines in CIA, while in vitro studies suggest these molecules may act by modulating secretion of proinflammatory cytokines from macrophages. Altogether, our study suggests that DMB and/or its metabolites are protective in CIA through direct immunomodulatory effects rather than inhibition of bacterial TMA lyases.
Collapse
Affiliation(s)
- Sabrina Fechtner
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan E Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Meagan E Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Widian K Jubair
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer N Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Zhang W, Qin X, Zhang K, Ma J, Li M, Jin G, Liu X, Wang S, Wang B, Wu J, Liu T, Zhong W, Cao H. Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling. Cell Oncol (Dordr) 2024; 47:1183-1199. [PMID: 38315283 DOI: 10.1007/s13402-024-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression. METHODS Apcmin/+ mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC. RESULTS TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation. CONCLUSION The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
36
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
38
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Wu G, Liao J, Zhu X, Zhang Y, Lin Y, Zeng Y, Zhao J, Zhang J, Yao T, Shen X, Li H, Hu L, Zhang W. Shexiang Baoxin Pill enriches Lactobacillus to regulate purine metabolism in patients with stable coronary artery disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155727. [PMID: 38781732 DOI: 10.1016/j.phymed.2024.155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It has been clinically confirmed that the Shexiang Baoxin Pill (SBP) dramatically reduces the frequency of angina in patients with stable coronary artery disease (SCAD). However, potential therapeutic mechanism of SBP has not been fully explored. PURPOSE The study explored the therapeutic mechanism of SBP in the treatment of SCAD patients. METHODS We examined the serum metabolic profiles of patients with SCAD following SBP treatment. A rat model of acute myocardial infarction (AMI) was established, and the potential therapeutic mechanism of SBP was explored using metabolomics, transcriptomics, and 16S rRNA sequencing. RESULTS SBP decreased inosine production and improved purine metabolic disorders in patients with SCAD and in animal models of AMI. Inosine was implicated as a potential biomarker for SBP efficacy. Furthermore, SBP inhibited the expression of genes involved in purine metabolism, which are closely associated with thrombosis, inflammation, and platelet function. The regulation of purine metabolism by SBP was associated with the enrichment of Lactobacillus. Finally, the effects of SBP on inosine production and vascular function could be transmitted through the transplantation of fecal microbiota. CONCLUSION Our study reveals a novel mechanism by which SBP regulates purine metabolism by enriching Lactobacillus to exert cardioprotective effects in patients with SCAD. The data also provide previously undocumented evidence indicating that inosine is a potential biomarker for evaluating the efficacy of SBP in the treatment of SCAD.
Collapse
Affiliation(s)
- Gaosong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Lin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
40
|
Ardalani O, Phaneuf PV, Mohite OS, Nielsen LK, Palsson BO. Pangenome reconstruction of Lactobacillaceae metabolism predicts species-specific metabolic traits. mSystems 2024; 9:e0015624. [PMID: 38920366 PMCID: PMC11265412 DOI: 10.1128/msystems.00156-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Strains across the Lactobacillaceae family form the basis for a trillion-dollar industry. Our understanding of the genomic basis for their key traits is fragmented, however, including the metabolism that is foundational to their industrial uses. Pangenome analysis of publicly available Lactobacillaceae genomes allowed us to generate genome-scale metabolic network reconstructions for 26 species of industrial importance. Their manual curation led to more than 75,000 gene-protein-reaction associations that were deployed to generate 2,446 genome-scale metabolic models. Cross-referencing genomes and known metabolic traits allowed for manual metabolic network curation and validation of the metabolic models. As a result, we provide the first pangenomic basis for metabolism in the Lactobacillaceae family and a collection of predictive computational metabolic models that enable a variety of practical uses.IMPORTANCELactobacillaceae, a bacterial family foundational to a trillion-dollar industry, is increasingly relevant to biosustainability initiatives. Our study, leveraging approximately 2,400 genome sequences, provides a pangenomic analysis of Lactobacillaceae metabolism, creating over 2,400 curated and validated genome-scale models (GEMs). These GEMs successfully predict (i) unique, species-specific metabolic reactions; (ii) niche-enriched reactions that increase organism fitness; (iii) essential media components, offering insights into the global amino acid essentiality of Lactobacillaceae; and (iv) fermentation capabilities across the family, shedding light on the metabolic basis of Lactobacillaceae-based commercial products. This quantitative understanding of Lactobacillaceae metabolic properties and their genomic basis will have profound implications for the food industry and biosustainability, offering new insights and tools for strain selection and manipulation.
Collapse
Affiliation(s)
- O. Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - P. V. Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - O. S. Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - L. K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - B. O. Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
41
|
Brittain EL, Lindsey A, Burke K, Agrawal V, Robbins I, Pugh M, Calcutt MW, Mallugari R, West J, Nian H, Hemnes AR. Carnitine consumption and effect of oral supplementation in human pulmonary arterial hypertension: A pilot study. Pulm Circ 2024; 14:e12425. [PMID: 39157054 PMCID: PMC11327271 DOI: 10.1002/pul2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Carnitine is required to transport fatty acid across the mitochondrial membrane to undergo beta oxidation. In addition to disorders of fatty acid metabolism, a relative carnitine deficiency has been reported in pulmonary arterial hypertension (PAH). Here we performed an observational study in which food and supplement consumption were collected in an observation period followed by open label administration of a carnitine supplement to determine feasibility of increasing plasma carnitine levels in humans PAH. We confirmed that relative carnitine deficiency in PAH is not due to reduced dietary consumption and that plasma levels of carnitine can be increased in PAH patients with supplementation that is well tolerated.
Collapse
Affiliation(s)
- Evan L. Brittain
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alisha Lindsey
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kelly Burke
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vineet Agrawal
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ivan Robbins
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Meredith Pugh
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - M. Wade Calcutt
- Department of BiochemistryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ravi Mallugari
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James West
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Hui Nian
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
42
|
Zhou Y, Han W, Feng Y, Wang Y, Sun T, Xu J. Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review). Int J Oncol 2024; 65:73. [PMID: 38847233 PMCID: PMC11173369 DOI: 10.3892/ijo.2024.5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Several studies have indicated that the gut microbiome and tumor microbiota may affect tumors. Emerging metabolomics research illustrates the need to examine the variations in microbial metabolite composition between patients with cancer and healthy individuals. Microbial metabolites can impact the progression of tumors and the immune response by influencing a number of mechanisms, including modulation of the immune system, cancer or immune‑related signaling pathways, epigenetic modification of proteins and DNA damage. Microbial metabolites can also alleviate side effects and drug resistance during chemotherapy and immunotherapy, while effectively activating the immune system to exert tumor immunotherapy. Nevertheless, the impact of microbial metabolites on tumor immunity can be both beneficial and harmful, potentially influenced by the concentration of the metabolites or the specific cancer type. The present review summarizes the roles of various microbial metabolites in different solid tumors, alongside their influence on tumor immunity and treatment. Additionally, clinical trials evaluating the therapeutic effects of microbial metabolites or related microbes on patients with cancer have been listed. In summary, studying microbial metabolites, which play a crucial role in the interaction between the microbiota and tumors, could lead to the identification of new supplementary treatments for cancer. This has the potential to improve the effectiveness of cancer treatment and enhance patient prognosis.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yun Feng
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
43
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Zha A, Li W, Wang J, Bai P, Qi M, Liao P, Tan B, Yin Y. Trimethylamine oxide supplementation differentially regulates fat deposition in liver, longissimus dorsi muscle and adipose tissue of growing-finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:25-35. [PMID: 38464952 PMCID: PMC10920132 DOI: 10.1016/j.aninu.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/12/2024]
Abstract
Trimethylamine oxide (TMAO) is a microbiota-derived metabolite, and numerous studies have shown that it could regulate fat metabolism in humans and mice. However, few studies have focused on the effects of TMAO on fat deposition in growing-finishing pigs. This study aimed to investigate the effect of TMAO on fat deposition and intestinal microbiota in growing-finishing pigs. Sixteen growing pigs were randomly divided into 2 groups and fed with a basal diet with 0 or 1 g/kg TMAO for 149 d. The intestinal microbial profiles, fat deposition indexes, and fatty acid profiles were measured. These results showed that TMAO supplementation had a tendency to decrease lean body mass (P < 0.1) and significantly increased backfat thickness (P < 0.05), but it did not affect growth performance. TMAO significantly increased total protein (TP) concentration, and reduced alkaline phosphatase (ALP) concentration in serum (P < 0.05). TMAO increased the α diversity of the ileal microbiota community (P < 0.05), and it did not affect the colonic microbial community. TMAO supplementation significantly increased acetate content in the ileum, and Proteobacteria and Escherichia-Shigella were significantly enriched in the TMAO group (P < 0.05). In addition, TMAO decreased fat content, as well as the ratio of linoleic acid, n-6 polyunsaturated fatty acids (PUFA), and PUFA in the liver (P < 0.05). On the contrary, TMAO increased intramuscular fat content of the longissimus dorsi muscle, whereas the C18:2n6c ratio was increased, and the n-6 PUFA:PUFA ratio was decreased (P < 0.05). In vitro, 1 mM TMAO treatment significantly upregulated the expression of FASN and SREBP1 in C2C12 cells (P < 0.05). Nevertheless, TMAO also increased adipocyte area and decreased the CPT-1B expression in subcutaneous fat (P < 0.05). Taken together, TMAO supplementation regulated ileal microbial composition and acetate production, and regulated fat distribution and fatty acid composition in growing-finishing pigs. These results provide new insights for understanding the role of TMAO in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Wanquan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ping Bai
- Yunnan Southwest Agriculture and Animal Husbandry Group Co., Ltd, Kunming 650224, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- University of Chinese Academy of Sciences, Beijing 100008, China
- Yunnan Southwest Agriculture and Animal Husbandry Group Co., Ltd, Kunming 650224, China
| |
Collapse
|
45
|
Wang M, Tang WW, Li XS, de Oliveira Otto MC, Lee Y, Lemaitre RN, Fretts A, Nemet I, Sotoodehnia N, Sitlani CM, Budoff M, DiDonato JA, Wang Z, Bansal N, Shlipak MG, Psaty BM, Siscovick DS, Sarnak MJ, Mozaffarian D, Hazen SL. The Gut Microbial Metabolite Trimethylamine N -oxide, Incident CKD, and Kidney Function Decline. J Am Soc Nephrol 2024; 35:749-760. [PMID: 38593157 PMCID: PMC11164118 DOI: 10.1681/asn.0000000000000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Key Points In community-based US adults, higher plasma trimethylamine N -oxide levels associated with higher risk of incident CKD and greater rate of kidney function decline. Findings from our study support future clinical trials to examine whether lowering plasma trimethylamine N -oxide levels may prevent CKD development and progression. Background Trimethylamine N -oxide (TMAO) is a gut microbiota–derived metabolite of dietary phosphatidylcholine and carnitine. Experimentally, TMAO causes kidney injury and tubulointerstitial fibrosis. Little is known about prospective associations between TMAO and kidney outcomes, especially incident CKD. We hypothesized that higher plasma TMAO levels would be associated with higher risk of incident CKD and greater rate of kidney function decline. Methods We included 10,564 participants from two community-based, prospective cohorts with eGFR ≥60 ml/min per 1.73 m2 to assess incident CKD. TMAO was measured using targeted mass spectrometry at baseline and one follow-up visit. Creatinine and cystatin C were measured up to four times during follow-up and used to compute eGFR. Incident CKD was defined as an eGFR decline ≥30% from baseline and a resulting eGFR <60 ml/min per 1.73 m2. Time-varying Cox models assessed the association of serial TMAO measures with incident CKD, adjusting for sociodemographic, lifestyle, diet, and cardiovascular disease risk factors. Linear mixed models assessed the association with annualized eGFR change in 10,009 participants with at least one follow-up eGFR measure without exclusions for baseline eGFR levels. Results During a median follow-up of 9.4 years (interquartile range, 9.1–11.6 years), 979 incident CKD events occurred. Higher TMAO levels were associated with higher risk of incident CKD (second to fifth versus first quintile hazard ratio [95% confidence interval]=1.65 [1.22 to 2.23], 1.68 [1.26 to 2.25], 2.28 [1.72 to 3.02], and 2.24 [1.68 to 2.98], respectively) and greater annualized eGFR decline (second to fifth versus first quintile annualized eGFR change=−0.21 [−0.32 to −0.09], −0.17 [−0.29 to −0.05], −0.35 [−0.47 to −0.22], and −0.43 [−0.56 to −0.30] ml/min per 1.73 m2, respectively) with monotonic dose–response relationships. These associations were consistent across different racial/ethnic groups examined. The association with eGFR decline was similar to or larger than that seen for established CKD risk factors, including diabetes, per 10 mm Hg of higher systolic BP, per 10 years of older age, and Black race. Conclusions In community-based US adults, higher serial measures of plasma TMAO were associated with higher risk of incident CKD and greater annualized kidney function decline.
Collapse
Affiliation(s)
- Meng Wang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xinmin S. Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
| | - Marcia C. de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, Texas
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, South Korea
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Amanda Fretts
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Matthew Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Joseph A. DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
| | - Nisha Bansal
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Michael G. Shlipak
- Kidney Health Research Collaborative and Department of Medicine, San Francisco Veterans Administration Medical Center and University of California–San Francisco, San Francisco, California
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Health Systems and Population Health, University of Washington, Seattle, Washington
| | | | - Mark J. Sarnak
- Department of Medicine (Nephrology), Tufts University School of Medicine, Boston, Massachusetts
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
46
|
Bao M, Li H, Li J. Circulating trimethylamine N-oxide is correlated with high coronary artery atherosclerotic burden in individuals with newly diagnosed coronary heart disease. BMC Cardiovasc Disord 2024; 24:265. [PMID: 38773380 PMCID: PMC11106919 DOI: 10.1186/s12872-024-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite derived from the gut microbiota and has been reported to be correlated with cardiovascular diseases. Although TMAO is associated with the severity of coronary artery disease in subjects with coronary heart disease (CHD) history. However, the correlation between TMAO and the atherosclerotic burden in newly diagnosed cases of CHD is unknown. METHODS In this hospital-based study, we enrolled 429 individuals newly diagnosed with CHD undergoing coronary angiography. Plasma TMAO was assessed before coronary angiography. SYNTAX score was computed during coronary angiography to estimate the coronary artery atherosclerotic burden. Both linear and logistic regression analyses were conducted to explore the correlation between plasma TMAO levels and SYNTAX score in newly diagnosed CHD population. RESULTS The TMAO in patients with SYNTAX ≥ 33 and subjects with SYNTAX < 23 were 6.10 (interquartile range [IQR]: 3.53 to 9.15) µmol/L and 4.90 [IQR: 3.25 to 7.68] µmol/L, respectively. Linear regression adjusting for traditional risk factors showed TMAO level was positively correlated with SYNTAX score (β = 0.179; p = 0.006) in CHD population. When TMAO was added to models with traditional risk factors, the predictive value improved significantly, with the receiver operating characteristic curve (AUC) increased from 0.7312 to 0.7502 (p = 0.003). Stratified analysis showed that the correlations did not hold true for subjects who were non-smoker or with histories of diabetes. None of the stratifying factors significantly altered the correlation (all p for interaction < 0.05). CONCLUSIONS We found a positive linear correlation between plasma TMAO and SYNTAX score among newly diagnosed CHD individuals in Chinese population.
Collapse
Affiliation(s)
- Minghui Bao
- Department of Cardiology, Peking University First Hospital, Peking University, Xi Shiku Street No. 8, Xicheng District, Beijing, 100034, China.
| | - Haotong Li
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Peking University, Xi Shiku Street No. 8, Xicheng District, Beijing, 100034, China
| |
Collapse
|
47
|
Tang WHW, Hazen SL. Unraveling the Complex Relationship Between Gut Microbiome and Cardiovascular Diseases. Circulation 2024; 149:1543-1545. [PMID: 38739698 PMCID: PMC11095831 DOI: 10.1161/circulationaha.123.067547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- W. H. Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
| | - Stanley L. Hazen
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
| |
Collapse
|
48
|
Bijla M, Saini SK, Pathak AK, Bharadwaj KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C, Kumar P. Microbiome interactions with different risk factors in development of myocardial infarction. Exp Gerontol 2024; 189:112409. [PMID: 38522483 DOI: 10.1016/j.exger.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.
Collapse
Affiliation(s)
- Manisha Bijla
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sunil Kumar Saini
- Department of Zoology, Swami Shraddhanand College, Delhi University, India
| | - Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital & Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Ayurshi Patil
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Diksha Saini
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rakesh Yadav
- Department of Cardiology, AIIMS, New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | | | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
49
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
50
|
Abrignani V, Salvo A, Pacinella G, Tuttolomondo A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int J Mol Sci 2024; 25:4942. [PMID: 38732161 PMCID: PMC11084172 DOI: 10.3390/ijms25094942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsaturated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets for cardiovascular health. It has been shown, from both observational and randomized controlled trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in the methodology of studies and meta-analyses have raised some concerns over its potential cardiovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota, mediated through its constituents. These include increased growth of species producing short-chain fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes are known to be favorably associated with inflammation, oxidative status, and overall metabolic health. This review will focus on the effects of MD on cardiovascular health through its action on gut microbiota.
Collapse
Affiliation(s)
- Vincenzo Abrignani
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Andrea Salvo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|