1
|
Lurje I, Uluk D, Tacke F, Lurje G. Letter: Comparing the Efficacy of Adjuvant PD-1 Inhibitor After Curative Resection for Metabolic Dysfunction-Associated Steatotic Liver Disease Related HCC Versus Other Aetiologies-Authors' Reply. Aliment Pharmacol Ther 2025. [PMID: 40184043 DOI: 10.1111/apt.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte and Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Deniz Uluk
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte and Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Luo X, Deng H, Li Q, Zhao M, Zhang Y, Guo J, Wen Y, Chen G, Li J. Bulk transcriptome and single-nucleus RNA sequencing analyses highlight the role of recombination activating 1 in non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 307:141919. [PMID: 40074128 DOI: 10.1016/j.ijbiomac.2025.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic condition with an incompletely understood pathogenesis. In this study, five candidate genes-RAG1, CKAP2, CENPK, TYMS, and BUB1-were identified as being associated with NAFLD progression through integrative bioinformatics analyses. A predictive model incorporating these genes demonstrated strong robustness and diagnostic accuracy. Single-nucleus RNA sequencing analysis further revealed that RAG1 plays a potential role in hepatocytes of NAFLD patients. Functional experiments using RNA interference to suppress RAG1 expression in HepG2 cells treated with oleic and palmitic acids showed reduced total glyceride and cholesterol levels, mitigated lipid accumulation, and alterations in pathways related to lipid metabolism, inflammation, and fibrosis. Furthermore, adeno-associated virus-specific knockdown of RAG1 in hepatocytes attenuated hepatic steatosis in high-fat diet-fed mice. These findings suggest that investigating the molecular mechanisms of hub genes like RAG1 may advance our understanding of NAFLD pathogenesis and inform therapeutic development.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Hongbo Deng
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Qiang Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, 410078 Changsha, China
| | - Yu Zhang
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junjie Guo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yifan Wen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Guangshun Chen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
3
|
Song Y, Li N, Jiang S, Wang K, Lv G, Fan Z, Du X, Gao W, Lei L, Wang Z, Liu G, Li X. Microbiota-derived H 2S induces c-kit + cDC1 autophagic cell death and liver inflammation in metabolic dysfunction-associated steatohepatitis. Nat Commun 2025; 16:2222. [PMID: 40044736 PMCID: PMC11882788 DOI: 10.1038/s41467-025-57574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Immune dysregulation-induced inflammation serves as a driving force in the progression of metabolic dysfunction-associated steatohepatitis (MASH), while the underlying cellular and molecular mechanisms remain largely uncharted. A Western diet (WD) is employed to construct mouse models of metabolic dysfunction associated steatotic liver disease (MASLD) or MASH. Mass cytometry identifies a c-kit+ cDC1 subset whose frequency is reduced in the livers of mice and patients with MASH compared with healthy controls. Adoptive cell transfer of c-kit+ cDC1 protects the progression of MASH. Moreover, analysis of gut microbe sequence shows that WD-fed mice and MASLD/MASH patients exhibit gut microbiota dysbiosis, with an elevated abundance of H2S-producing Desulfovibrio_sp. Transplanting of MASH-derived fecal flora, Desulfovibrio_sp., or injecting H2S intraperitoneally into MASLD mice decreases the c-kit+cDC1 population and exacerbates liver inflammation. Mechanistically, H2S induces autophagic cell death of cDC1 in a c-kit-dependent manner in cDC-specific c-kit-/- and Atg5-/- mice. We thus uncover that microbiota-derived H2S triggers the autophagic cell death of c-kit+ cDC1 and ignites the liver inflammatory cascade in MASH.
Collapse
Affiliation(s)
- Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kexin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Li Y, Lv X, Lin J, Li S, Lin G, Huang Z, Chen D, Han L, Zhan L, Lv X. Examination of the causal role of immune cells in non-alcoholic fatty liver disease by a bidirectional Mendelian randomization study. Open Med (Wars) 2025; 20:20251154. [PMID: 39989616 PMCID: PMC11843165 DOI: 10.1515/med-2025-1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a globally widespread disease. Recent investigations have highlighted a close association between immunity and NAFLD, but the causality between them has not been thoroughly examined. Methods A total of 731 immunological traits and NAFLD cohorts were derived from genome-wide association study summary data, and single nucleotide polymorphisms significantly associated with immune traits were identified as instrumental variables. Moreover, 731 phenotypes include absolute cell counts, median fluorescence intensity (MFI), morphological parameters, and relative cell counts. The bidirectional two-sample Mendelian randomization (MR) was performed primarily using the inverse-variance weighted methods, and sensitivity analysis was carried out simultaneously. Results Four immunophenotypes were identified to exert a protective effect against NAFLD, including HLA-DR+ CD4+ %lymphocytes, SSC-A on CD4+, CD24 MFI on IgD-CD38-, and CD8 MFI on CD28-CD8br. Seven immunophenotypes were identified to be hazardous, including CD28+ CD45RA+ CD8dim%CD8dim, CD127 MFI on CD28+ DN (CD4-CD8-), CD20 MFI on IgD+ CD38br, CD20 MFI on transitional, IgD MFI on transitional, CD3 MFI on central memory CD8br, and CD45 MFI on CD33brHLA-DR+ CD14-. However, reverse MR showed NAFLD had no causal effect on immunophenotypes. Conclusion The study demonstrated a potential causal link between several immunophenotypes and NAFLD, which contributes to advancing research and treatment of NAFLD based on immune-mediated mechanisms.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Deyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichun Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
5
|
Wang LQ, Wang XY, Ma YH, Zhou HJ. Conventional type 1 dendritic cells in the lymph nodes aggravate neuroinflammation after spinal cord injury by promoting CD8 + T cell expansion. Mol Med 2025; 31:37. [PMID: 39901071 PMCID: PMC11789313 DOI: 10.1186/s10020-024-01059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Adaptive immune response is at the core of the mechanism of secondary spinal cord injury (SCI). This study aims to explore the molecular mechanism by which classical dendritic cells (cDC1s) influence CD8+ T cell expansion in SCI. METHODS Peripheral blood samples from patients with SCI and spinal cord tissues from SCI mice were collected, and the population of cDC1 subset was analyzed by flow cytometry. In vivo, the fms-like tyrosine kinase 3 (Flt3) inhibitor quizartinib was administered to deplete cDC1s, while intraperitoneal injection of recombinant Flt3L and immunosuppressive drug FTY-720 was used to expand cDC1s and prevent T cell egress from lymph nodes (LNs), respectively. In vitro, the conditioned medium (CM) of isolated LN fibroblastic stromal cells (FSCs) and pre-DCs were co-cultured. Subsequently, FSC CM-induced DCs were stimulated and co-cultured with CD8+ T cells for proliferation assay. RESULTS The cDC1 subset was increased in the peripheral blood of SCI patients and in the injured spinal cord of SCI mice. Depletion of cDC1s decreased the proportion of infiltrating CD8+ T cells in the injured spinal cord of SCI mice and reduced the inflammatory response. The Basso Mouse Scale score of SCI mice was increased and the proportion of CD8+ T cells in blood and spinal cord tissue was decreased after FTY-720 injection. Both migratory cDC1s (CD103+) and resident cDC1s (CD8α+) were present in the LNs surrounding the injured spinal cord of SCI mice. Among them, CD103+ cells were derived from the migration of cDC1s in spinal cord tissues, and CD8α+ cDC1s were directionally differentiated from pre-DCs after co-culture with LN-FSCs. Interferon-γ promoted the secretion of Flt3L by LN-FSCs through the activation of JAK/STAT signaling pathway and enhanced the differentiation of pre-DCs into CD8α+ cells. CONCLUSION Migratory cDC1s and resident cDC1s promote the expansion of CD8+ T cells in LNs around the injured spinal cord and mediate the adaptive immune response to aggravate neuroinflammation in SCI.
Collapse
Affiliation(s)
- Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiao-Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China
| | - Yue-Hui Ma
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China
| | - Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
6
|
Gratacós-Ginès J, Ariño S, Sancho-Bru P, Bataller R, Pose E. MetALD: Clinical aspects, pathophysiology and treatment. JHEP Rep 2025; 7:101250. [PMID: 39897615 PMCID: PMC11782861 DOI: 10.1016/j.jhepr.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) are the most prevalent causes of chronic liver disease worldwide. Both conditions have many pathophysiological mechanisms in common, such as altered lipid and bile acid metabolism, and share some similar clinical features. Furthermore, metabolic risk factors and alcohol often co-exist in the same individuals and have recently been shown to act synergistically to markedly increase the risk of liver disease. Given the high prevalence and impact of this interaction, steatotic liver disease due to the combination of metabolic dysfunction and moderate-to-high alcohol intake has been termed MetALD in the new steatotic liver disease nomenclature, attracting the interest of the scientific community. Subsequent studies have investigated the prevalence of MetALD, which ranges from 1.7% to 17% in cohorts of patients with steatotic liver disease, depending on the population setting and study design. A few cohort studies have also assessed the prognosis of this patient population, with preliminary data suggesting that MetALD is associated with an intermediate risk of liver fibrosis, decompensation and mortality among steatotic liver disease subtypes. In this review article, we examine the clinical evidence and the experimental models of MetALD and discuss the clinical implications of the term for early detection and management. We provide insight into the pathophysiological mechanisms of the synergistic effect of alcohol and metabolic risk factors, possible screening strategies, the use of biomarkers and emerging models of care, as well as potential therapeutic interventions with a special focus on medications for MASLD, highlighting the most promising drugs for patients with MetALD.
Collapse
Affiliation(s)
- Jordi Gratacós-Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Cheng Z, Wang Y, Lin H, Chen Z, Qin R, Wang T, Xu H, Du Y, Yuan H, Pan Y, Jiang H, Jiang X, Jiang J, Wu F, Wang Y. Engineering Dual Active Sites and Defect Structure in Nanozymes to Reprogram Jawbone Microenvironment for Osteoradionecrosis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413215. [PMID: 39686746 PMCID: PMC11809426 DOI: 10.1002/advs.202413215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Four to eight percent of patients with head and neck cancer will develop osteoradionecrosis of the jaw (ORNJ) after radiotherapy. Various radiation-induced tissue injuries are associated with reactive oxygen and nitrogen species (RONS) overproduction. Herein, Fe doping is used in VOx (Fe-VOx) nanozymes with multienzyme activities for ORNJ treatment via RONS scavenging. Fe doping can induce structure reconstruction of nanozymes with abundant defect production, including Fe substitution and oxygen vacancies (OVs), which markedly increased multiple enzyme-mimicking activity. Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzyme-like performance of Fe-VOx can effectively reprogram jawbone microenvironment to restore mitochondrial dysfunction and enhance mitophagy. Moreover, the surface plasmon resonance (SPR) effect of Fe-VOx made it a good photothermal nanoagents for inhibiting jaw infection. Thus, this work demonstrated that Fe-VOx nanozymes can efficiently scavenge RONS, activate mitophagy, and inhibit bacteria, which is potential for ORNJ treatment.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Yuchen Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Haobo Lin
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Ran Qin
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Hang Xu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yifei Du
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Hua Yuan
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Yongchu Pan
- Department of OrthodonticThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Huijun Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Xinquan Jiang
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai Engineering Research Center of Advanced Dental Technology and MaterialsNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyNo. 639 Zhizaoju RoadShanghai200011China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Fan Wu
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Yuli Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationInternational Joint Laboratory for Drug Target of Critical IllnessesSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
8
|
Zhang Y, Li X, Peng P, Qiu Z, Di C, Chen X, Wang N, Chen F, He Y, Liu Z, Zhao F, Zhu D, Dong S, Hu S, Yang Z, Li Y, Guo Y, Yang T. RUNX2 Phase Separation Mediates Long-Range Regulation Between Osteoporosis-Susceptibility Variant and XCR1 to Promote Osteoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413561. [PMID: 39704037 PMCID: PMC11809430 DOI: 10.1002/advs.202413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 12/21/2024]
Abstract
GWASs have identified many loci associated with osteoporosis, but the underlying genetic regulatory mechanisms and the potential drug target need to be explored. Here, a new regulatory mechanism is found that a GWAS intergenic SNP (rs4683184) functions as an enhancer to influence the binding affinity of transcription factor RUNX2, whose phase separation can mediate the long-range chromatin interaction between enhancer and target gene XCR1 (a member of the GPCR family), leading to changes of XCR1 expression and osteoblast differentiation. Bone-targeting AAV of Xcr1 can improve bone formation in osteoporosis mice, suggesting that XCR1 can be a new susceptibility gene for osteoporosis. This study is the first to link non-coding SNP with phase separation, providing a new insight into long-range chromatin regulation mechanisms with susceptibility to complex diseases, and finding a potential target for the development of osteoporosis drugs and corresponding translational research.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xin‐Hao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Pai Peng
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Zi‐Han Qiu
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chen‐Xi Di
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiao‐Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Nai‐Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Fei Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Yin‐Wei He
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Zhong‐Bo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Fan Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Dong‐Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Shan‐Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Shou‐Ye Hu
- Department of Joint SurgeryHonghui HospitalXi'an Jiaotong UniversityXi'anShaanxi710054China
| | - Zhi Yang
- Department of Joint SurgeryHonghui HospitalXi'an Jiaotong UniversityXi'anShaanxi710054China
| | - Yi‐Ping Li
- Division in Cellular and Molecular MedicineDepartment of Pathology and Laboratory MedicineTulane University School of MedicineTulane UniversityNew OrleansLA70112USA
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Tie‐Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
9
|
Kantheti U, Forward TS, Lucas ED, Schafer JB, Tamburini PJ, Burchill MA, Tamburini BAJ. PD-L1-CD80 interactions are required for intracellular signaling necessary for dendritic cell migration. SCIENCE ADVANCES 2025; 11:eadt3044. [PMID: 39879305 PMCID: PMC11777207 DOI: 10.1126/sciadv.adt3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration. We show that cis interactions between PD-L1 and CD80 are critical for promoting migration and define specific regions within these proteins necessary for migration. Furthermore, we demonstrate that αPD-L1 significantly impedes DC migration in a B16 melanoma tumor model. Last, we outline how blocking cis PD-L1:CD80 interactions or mutation of the intracellular domain of PD-L1, in an imiquimod-induced murine model of psoriasis, limits DC migration to the lymph node, decreases interleukin-17 production by CD4+ T cells in the lymph node, and reduces epidermal thickening. Therefore, PD-L1 and CD80 interactions are important regulators of DC migration to the draining lymph node.
Collapse
Affiliation(s)
- Uma Kantheti
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D. Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B. Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pierce J. Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew A. Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth Ann Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
10
|
Zhang Q, Su J, Chen J, Wu S, Qi X, Chu M, Jiang S, He K. Diurnal rhythm-modulated transcriptome analysis of meibomian gland in hyperlipidemic mice using RNA sequencing. Int Ophthalmol 2025; 45:57. [PMID: 39890715 DOI: 10.1007/s10792-025-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
AIM To explore the regulatory mechanism of meibomian gland (MG) in hyperlipidemic mice under a diurnal rhythm by transcriptomic analysis based on high-throughput sequencing. METHODS The mouse model of hyperlipidemia induced by four months of high-fat diet (HFD) feeding to a regular light-dark (LD) cycle for 2 weeks was used in this study. Phenotypic observation and RNA sequencing (RNA-seq) of MGs of the experimental mice were then performed to investigate transcriptional changes due to hyperlipidemia and the diurnal rhythm and their effects on meibomian gland dysfunction (MGD). RESULTS The expression levels of the identified dysregulated genes were then validated by qRT-PCR. Several significantly regulated genes and enriched pathways were identified as associated with MGD in hyperlipidemic mice under a diurnal rhythm; these genes included some core diurnal clock genes, e.g., Clock, Per2 and Per3. Phenotypic and histological analysis reveals abnormal morphology concomitantly with a modification of the transcriptional landscape of MG caused by HFD. CONCLUSION Our findings provide us with a deeper understanding of the diurnal rhythm regulation of MG in hyperlipidemic mice altered by daily nutritional challenge.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Jing Chen
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Sainan Wu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaoxuan Qi
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Ling L, Li R, Xu M, Zhou J, Hu M, Zhang X, Zhang XJ. Species differences of fatty liver diseases: comparisons between human and feline. Am J Physiol Endocrinol Metab 2025; 328:E46-E61. [PMID: 39636211 DOI: 10.1152/ajpendo.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most widespread chronic liver disease that poses significant threats to public health due to changes in dietary habits and lifestyle patterns. The transition from simple steatosis to nonalcoholic steatohepatitis (NASH) markedly increases the risk of developing cirrhosis, hepatocellular carcinoma, and liver failure in patients. However, there is only one Food and Drug Administration-approved therapeutic drug in the world, and the clinical demand is huge. There is significant clinical heterogeneity among patients with NAFLD, and it is challenging to fully understand human NAFLD using only a single animal model. Interestingly, felines, like humans, are particularly prone to spontaneous fatty liver disease. This review summarized and compared the etiology, clinical features, pathological characteristics, and molecular pathogenesis between human fatty liver and feline hepatic lipidosis (FHL). We analyzed the key similarities and differences between those two species, aiming to provide theoretical foundations for developing effective strategies for the treatment of NAFLD in clinics.
Collapse
Affiliation(s)
- Like Ling
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ruilin Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Mengqiong Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Junjie Zhou
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Manli Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xin Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
13
|
Perry AS, Hadad N, Chatterjee E, Jimenez-Ramos M, Farber-Eger E, Roshani R, Stolze LK, Betti MJ, Zhao S, Huang S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Vaitinadin NS, Freedman JE, Tanriverdi K, Alsop E, Van Keuren-Jensen K, Sauld JFK, Mahajan G, Khan SS, Colangelo L, Nayor M, Fisher-Hoch S, McCormick JB, North KE, Below JE, Wells QS, Abel ED, Kalhan R, Scott C, Guilliams M, Gamazon ER, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. Cell Rep Med 2024; 5:101871. [PMID: 39657669 PMCID: PMC11722105 DOI: 10.1016/j.xcrm.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Hepatic steatosis is a central phenotype in multi-system metabolic dysfunction and is increasing in parallel with the obesity pandemic. We use a translational approach integrating clinical phenotyping and outcomes, circulating proteomics, and tissue transcriptomics to identify dynamic, functional biomarkers of hepatic steatosis. Using multi-modality imaging and broad proteomic profiling, we identify proteins implicated in the progression of hepatic steatosis that are largely encoded by genes enriched at the transcriptional level in the human liver. These transcripts are differentially expressed across areas of steatosis in spatial transcriptomics, and several are dynamic during stages of steatosis. Circulating multi-protein signatures of steatosis strongly associate with fatty liver disease and multi-system metabolic outcomes. Using a humanized "liver-on-a-chip" model, we induce hepatic steatosis, confirming cell-specific expression of prioritized targets. These results underscore the utility of this approach to identify a prognostic, functional, dynamic "liquid biopsy" of human liver, relevant to biomarker discovery and mechanistic research applications.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niran Hadad
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Jimenez-Ramos
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Rashedeh Roshani
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael J Betti
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shi Huang
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Tinne Thone
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Samuel Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L Gabriel
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Jeffrey Carr
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Jane E Freedman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Eric Alsop
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Kari E North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charlotte Scott
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eric R Gamazon
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Ravi Shah
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
15
|
Zhang W, Cai Z, Ma D, Liu M, Wang J, Sun L, Lew AM, Xu Y. Local adaptive immunity in atherosclerosis with T cell activation by aortic dendritic cells accelerates pathogenesis. iScience 2024; 27:111144. [PMID: 39502289 PMCID: PMC11536043 DOI: 10.1016/j.isci.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Atherosclerosis represents a chronic inflammatory condition in arterial walls, where local immune cells significantly contribute to disease progression. This study employed various in situ immunological techniques to investigate the specific roles of aortic dendritic cell (DC) subsets in atherosclerotic animal models, distinguishing between normal and diseased immune contexts. Our findings revealed that aortic DCs, particularly the cDC1 subset, played a critical role in facilitating CD8+ T cell activation through antigen presentation. Additionally, atherosclerosis-induced increases in GM-CSF levels enhanced CCR7 expression on aortic monocyte-derived DCs, promoting their recruitment and IL-12 production for Th1 differentiation. Notably, immunizing pre-atherosclerotic mice with DC-presented antigens or transferring aortic DCs from atherosclerotic mice resulted in accelerated disease onset. This research elucidates the adaptive immune functions of aortic DCs, offering insights into the cellular mechanisms driving aortic inflammation and potential therapeutic targets for atherosclerosis management.
Collapse
Affiliation(s)
- Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Andrew M. Lew
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
16
|
Zhang Z, Zhang P, Xie J, Cui Y, Shuo Wang, Yue D. Five-gene prognostic model based on autophagy-dependent cell death for predicting prognosis in lung adenocarcinoma. Sci Rep 2024; 14:26449. [PMID: 39488588 PMCID: PMC11531468 DOI: 10.1038/s41598-024-76186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Non-small cell lung adenocarcinoma (LUAD) is the predominant form of lung cancer originating from lung epithelial cells, making it the most prevalent pathological type. Currently, reliable indicators for predicting treatment efficacy and disease prognosis are lacking. Despite extensive validation of autophagy-dependent cell death (ADCD) in solid tumor studies and its correlation with immunotherapy effectiveness and cancer prognosis, systematic research on ADCD-related genes in LUAD is limited. We utilized AddModuleScore, ssGSEA, and WGCNA to identify genes associated with ADCD across single-cell and bulk transcriptome datasets. The TCGA dataset, comprising 598 cases, was randomly divided into training and validation sets to develop an ADCD-related LUAD prediction model. Internal validation was performed using the TCGA validation set. For external validation, datasets GSE13213 (119 LUAD samples), GSE26939 (115 LUAD samples), GSE29016 (39 LUAD samples), and GSE30219 (86 LUAD samples) were employed. We evaluated the model's accuracy and effectiveness in predicting prognostic risk. Additionally, CIBERSORT, ESTIMATE, and ssGSEA techniques were used to explore immunological characteristics, drug response, and gene expression in LUAD. Real-time RT-PCR was conducted to assess variations in mRNA expression levels of the gene XCR1 between cancerous and normal tissues in 10 lung cancer patients. We identified 249 genes associated with autophagy-dependent cell death (ADCD) at both single-cell and bulk transcriptome levels. Univariate COX regression analysis revealed that 18 genes were significantly associated with overall survival (OS). Using LASSO-Cox analysis, we developed an ADCD signature based on five genes (BIRC3, TAP1, SLAMF1, XCR1, and HLA-DMB) and created the ADCD-related risk scoring system (ADCDRS). Validation of this model demonstrated its ability to predict disease prognosis and its correlation with clinical characteristics, immune cell infiltration, and the tumor microenvironment. To enhance clinical applicability, we integrated an ADCDRS nomogram. Furthermore, we identified potential drugs targeting specific risk subgroups. We successfully identified a model based on five ADCD genes to predict disease prognosis and treatment efficacy in LUAD, as well as to assess the tumor immune microenvironment. An efficient and practical ADCDRS nomogram was designed.
Collapse
Affiliation(s)
- Zhanshuo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiping Xie
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuechen Cui
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shuo Wang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dongsheng Yue
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
17
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Jin C, Jiang P, Zhang Z, Han Y, Wen X, Zheng L, Kuang W, Lian J, Yu G, Qian X, Ren Y, Lu M, Xu L, Chen W, Chen J, Zhou Y, Xin J, Wang B, Jin X, Qian P, Yang Y. Single-cell RNA sequencing reveals the pro-inflammatory roles of liver-resident Th1-like cells in primary biliary cholangitis. Nat Commun 2024; 15:8690. [PMID: 39375367 PMCID: PMC11458754 DOI: 10.1038/s41467-024-53104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by multilineage immune dysregulation, which subsequently causes inflammation, fibrosis, and even cirrhosis of liver. Due to the limitation of traditional assays, the local hepatic immunopathogenesis of PBC has not been fully characterized. Here, we utilize single-cell RNA sequencing technology to depict the immune cell landscape and decipher the molecular mechanisms of PBC patients. We reveal that cholangiocytes and hepatic stellate cells are involved in liver inflammation and fibrosis. Moreover, Kupffer cells show increased levels of inflammatory factors and decreased scavenger function related genes, while T cells exhibit enhanced levels of inflammatory factors and reduced cytotoxicity related genes. Interestingly, we identify a liver-resident Th1-like population with JAK-STAT activation in the livers of both PBC patients and murine PBC model. Finally, blocking the JAK-STAT pathway alleviates the liver inflammation and eliminates the liver-resident Th1-like cells in the murine PBC model. In conclusion, our comprehensive single-cell transcriptome profiling expands the understanding of pathological mechanisms of PBC and provides potential targets for the treatment of PBC in patients.
Collapse
Affiliation(s)
- Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Kuang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yue Ren
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Chen
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Zhou
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xi Jin
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
20
|
Alisi A, McCaughan G, Grønbæk H. Role of gut microbiota and immune cells in metabolic-associated fatty liver disease: clinical impact. Hepatol Int 2024; 18:861-872. [PMID: 38995341 DOI: 10.1007/s12072-024-10674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 07/13/2024]
Abstract
In 2020, a revised definition of fatty liver disease associated with metabolic dysfunction (MAFLD) was proposed to replace non-alcoholic fatty liver (NAFLD). Liver steatosis and at least one of the three metabolic risk factors, including type 2 diabetes, obesity, or signs of metabolic dysregulation, are used to diagnose MAFLD. MAFLD, similarly to NAFLD, is characterized by a spectrum of disease ranging from simple steatosis to advanced metabolic steatohepatitis with or without fibrosis, and may progress to cirrhosis and liver cancer, including increased risk of other critical extrahepatic diseases. Even though the pathophysiology of MAFLD and potential therapeutic targets have been explored in great detail, there is yet no Food and Drug Administration approved treatment. Recently, gut microbiome-derived products (e.g., endotoxins and metabolites) involved in intestinal barrier disruption, systemic inflammation, and modification of intrahepatic immunity have been associated with MAFLD development and progression. Therefore, different strategies could be adopted to modify the gut microbiome to improve outcomes in early and progressive MAFLD. Here, we provide an overview of mechanisms that may link the gut microbiome and immune response during the onset of liver steatosis and progression to steatohepatitis and fibrosis in patients with MAFLD. Finally, gut microbiota-based approaches are discussed as potential personalized treatments against MAFLD.
Collapse
Affiliation(s)
- Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesu' Children Hospital, IRCCS, Rome, Italy.
| | - Geoffrey McCaughan
- A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, University of Sydney, Sydney, Australia
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Reuveni D, Assi S, Gore Y, Brazowski E, Leung PSC, Shalit T, Gershwin ME, Zigmond E. Conventional type 1 dendritic cells are essential for the development of primary biliary cholangitis. Liver Int 2024; 44:2063-2074. [PMID: 38700427 DOI: 10.1111/liv.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is a progressive-cholestatic autoimmune liver disease. Dendritic cells (DC) are professional antigen-presenting cells and their prominent presence around damaged bile ducts of PBC patients are documented. cDC1 is a rare subset of DC known for its cross-presentation abilities and interleukin 12 production. Our aim was to assess the role of cDC1 in the pathogenesis of PBC. METHODS We utilized an inducible murine model of PBC and took advantage of the DC reporter mice Zbtb46gfp and the Batf3-/- mice that specifically lack the cDC1 subset. cDC1 cells were sorted from blood of PBC patients and healthy individuals and subjected to Bulk-MARS-seq transcriptome analysis. RESULTS Histopathology assessment demonstrated peri-portal inflammation in wild type (WT) mice, whereas only minor abnormalities were observed in Batf3-/- mice. Flow cytometry analysis revealed a two-fold reduction in hepatic CD8/CD4 T cells ratio in Batf3-/- mice, suggesting reduced intrahepatic CD8 T cells expansion. Histological evidence of portal fibrosis was detected only in the WT but not in Batf3-/- mice. This finding was supported by decreased expression levels of pro-fibrotic genes in the livers of Batf3-/- mice. Transcriptome analysis of human cDC1, revealed 78 differentially expressed genes between PBC patients and controls. Genes related to antigen presentation, TNF and IFN signalling and mitochondrial dysfunction were significantly increased in cDC1 isolated from PBC patients. CONCLUSION Our data illustrated the contribution the cDC1 subset in the pathogenesis of PBC and provides a novel direction for immune based cell-specific targeted therapeutic approach in PBC.
Collapse
Affiliation(s)
- Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Siwar Assi
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Gore
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Patrick S C Leung
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Merrill E Gershwin
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
23
|
Wang B, Yang L, Yuan X, Zhang Y. Roles and therapeutic targeting of dendritic cells in liver fibrosis. J Drug Target 2024; 32:647-654. [PMID: 38682473 DOI: 10.1080/1061186x.2024.2347365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Bingyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
24
|
Miao Y, Li Z, Feng J, Lei X, Shan J, Qian C, Li J. The Role of CD4 +T Cells in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:6895. [PMID: 39000005 PMCID: PMC11240980 DOI: 10.3390/ijms25136895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become the fourth leading cause of cancer-related deaths worldwide; annually, approximately 830,000 deaths related to liver cancer are diagnosed globally. Since early-stage HCC is clinically asymptomatic, traditional treatment modalities, including surgical ablation, are usually not applicable or result in recurrence. Immunotherapy, particularly immune checkpoint blockade (ICB), provides new hope for cancer therapy; however, immune evasion mechanisms counteract its efficiency. In addition to viral exposure and alcohol addiction, nonalcoholic steatohepatitis (NASH) has become a major cause of HCC. Owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance, NASH-associated HCC patients respond much less efficiently to ICB treatment than do patients with other etiologies. In addition, abnormal inflammation contributes to NASH progression and NASH-HCC transition, as well as to HCC immune evasion. Therefore, uncovering the detailed mechanism governing how NASH-associated immune cells contribute to NASH progression would benefit HCC prevention and improve HCC immunotherapy efficiency. In the following review, we focused our attention on summarizing the current knowledge of the role of CD4+T cells in NASH and HCC progression, and discuss potential therapeutic strategies involving the targeting of CD4+T cells for the treatment of NASH and HCC.
Collapse
Affiliation(s)
- Yadi Miao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ziyong Li
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juan Feng
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xia Lei
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juanjuan Shan
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Cheng Qian
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jiatao Li
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
25
|
Ding X, Pang Y, Liu Q, Zhang H, Wu J, Lei J, Zhang T. GO-PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306483. [PMID: 38229561 DOI: 10.1002/smll.202306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/03/2024] [Indexed: 01/18/2024]
Abstract
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaomeng Ding
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanting Pang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haopeng Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jialin Lei
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
26
|
Popov J, Despot T, Avelar Rodriguez D, Khan I, Mech E, Khan M, Bojadzija M, Pai N. Implications of Microbiota and Immune System in Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1668. [PMID: 38892602 PMCID: PMC11175128 DOI: 10.3390/nu16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.
Collapse
Affiliation(s)
- Jelena Popov
- Boston Combined Residency Program, Boston Children’s Hospital & Boston Medical Center, Boston, MA 02115, USA;
| | - Tijana Despot
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada;
| | - Irfan Khan
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - Eugene Mech
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Mahrukh Khan
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Milan Bojadzija
- Department of Internal Medicine, Subotica General Hospital, 24000 Subotica, Serbia;
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Xie Y, Huang Y, Li ZY, Jiang W, Shi NX, Lu Y, Cao G, Yin Z, Lin XJ. Interleukin-21 receptor signaling promotes metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma by inducing immunosuppressive IgA + B cells. Mol Cancer 2024; 23:95. [PMID: 38720319 PMCID: PMC11077880 DOI: 10.1186/s12943-024-02001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Dysregulation of immune surveillance is tightly linked to the development of metabolic dysfunction-associated steatohepatitis (MASH)-driven hepatocellular carcinoma (HCC); however, its underlying mechanisms remain unclear. Herein, we aimed to determine the role of interleukin-21 receptor (IL-21R) in MASH-driven HCC. METHODS The clinical significance of IL-21R was assessed in human HCC specimens using immunohistochemistry staining. Furthermore, the expression of IL-21R in mice was assessed in the STAM model. Thereafter, two different MASH-driven HCC mouse models were applied between IL-21R-deficient mice and wild type controls to explore the role of IL-21R in MASH-driven HCC. To further elucidate the potential mechanisms by which IL-21R affected MASH-driven HCC, whole transcriptome sequencing, flow cytometry and adoptive lymphocyte transfer were performed. Finally, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescent staining, chromatin immunoprecipitation assay and western blotting were conducted to explore the mechanism by which IL-21R induced IgA+ B cells. RESULTS HCC patients with high IL-21R expression exhibited poor relapse-free survival, advanced TNM stage and severe steatosis. Additionally, IL-21R was demonstrated to be upregulated in mouse liver tumors. Particularly, ablation of IL-21R impeded MASH-driven hepatocarcinogenesis with dramatically reduction of lipid accumulation. Moreover, cytotoxic CD8+ T lymphocyte activation was enhanced in the absence of IL-21R due to the reduction of immunosuppressive IgA+ B cells. Mechanistically, the IL-21R-STAT1-c-Jun/c-Fos regulatory axis was activated in MASH-driven HCC and thus promoted the transcription of Igha, resulting in the induction of IgA+ B cells. CONCLUSIONS IL-21R plays a cancer-promoting role by inducing IgA+ B cells in MASH-driven hepatocarcinogenesis. Targeting IL-21R signaling represents a potential therapeutic strategy for cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/etiology
- Gene Expression Regulation, Neoplastic
- Immunoglobulin A/metabolism
- Interleukin-21 Receptor alpha Subunit/metabolism
- Interleukin-21 Receptor alpha Subunit/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Receptors, Interleukin-21/metabolism
- Receptors, Interleukin-21/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Ying Xie
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Yu Huang
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhi-Yong Li
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Weihua Jiang
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Nan-Xi Shi
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Yuanzhi Lu
- Department of Pathology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Xue-Jia Lin
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
28
|
Papadopoulos G, Giannousi E, Avdi AP, Velliou RI, Nikolakopoulou P, Chatzigeorgiou A. Τ cell-mediated adaptive immunity in the transition from metabolic dysfunction-associated steatohepatitis to hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1343806. [PMID: 38774646 PMCID: PMC11106433 DOI: 10.3389/fcell.2024.1343806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressed version of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by inflammation and fibrosis, but also a pathophysiological "hub" that favors the emergence of liver malignancies. Current research efforts aim to identify risk factors, discover disease biomarkers, and aid patient stratification in the context of MASH-induced hepatocellular carcinoma (HCC), the most prevalent cancer among MASLD patients. To investigate the tumorigenic transition in MASH-induced HCC, researchers predominantly exploit preclinical animal-based MASH models and studies based on archived human biopsies and clinical trials. Recapitulating the immune response during tumor development and progression is vital to obtain mechanistic insights into MASH-induced HCC. Notably, the advanced complexity behind MASLD and MASH pathogenesis shifted the research focus towards innate immunity, a fundamental element of the hepatic immune niche that is usually altered robustly in the course of liver disease. During the last few years, however, there has been an increasing interest for deciphering the role of adaptive immunity in MASH-induced HCC, particularly regarding the functions of the various T cell populations. To effectively understand the specific role of T cells in MASH-induced HCC development, scientists should urgently fill the current knowledge gaps in this field. Pinpointing the metabolic signature, sketching the immune landscape, and characterizing the cellular interactions and dynamics of the specific T cells within the MASH-HCC liver are essential to unravel the mechanisms that adaptive immunity exploits to enable the emergence and progression of this cancer. To this end, our review aims to summarize the current state of research regarding the T cell functions linked to MASH-induced HCC.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini P. Avdi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
30
|
Zhang W, Yu L, Yang Q, Zhang J, Wang W, Hu X, Li J, Zheng G. Smilax China L. polysaccharide prevents HFD induced-NAFLD by regulating hepatic fat metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155478. [PMID: 38452696 DOI: 10.1016/j.phymed.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.
Collapse
Affiliation(s)
- Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinru Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenjing Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinru Hu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
31
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
34
|
Pinto AT, Lukacs-Kornek V. The role of dendritic cells in MASH: friends or foes? Front Immunol 2024; 15:1379225. [PMID: 38650949 PMCID: PMC11033439 DOI: 10.3389/fimmu.2024.1379225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and adaptive immunity. Hepatic DCs are less activated and contribute to maintain the tolerogenic environment of the liver under steady state. Several studies indicated DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a substantial burden on healthcare systems due to its association with liver-related morbidity and mortality. Studies highlighted the potential disease-promoting role of liver DCs in the development of MASH while other experimental systems suggested their protective role. This review discusses this controversy and the current understanding of how DCs affect the pathogenesis of MASH.
Collapse
Affiliation(s)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
35
|
Boccatonda A, Del Cane L, Marola L, D’Ardes D, Lessiani G, di Gregorio N, Ferri C, Cipollone F, Serra C, Santilli F, Piscaglia F. Platelet, Antiplatelet Therapy and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review. Life (Basel) 2024; 14:473. [PMID: 38672744 PMCID: PMC11051088 DOI: 10.3390/life14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is not only related to traditional cardiovascular risk factors like type 2 diabetes mellitus and obesity, but it is also an independent risk factor for the development of cardiovascular disease. MASLD has been shown to be independently related to endothelial dysfunction and atherosclerosis. MASLD is characterized by a chronic proinflammatory response that, in turn, may induce a prothrombotic state. Several mechanisms such as endothelial and platelet dysfunction, changes in the coagulative factors, lower fibrinolytic activity can contribute to induce the prothrombotic state. Platelets are players and addresses of metabolic dysregulation; obesity and insulin resistance are related to platelet hyperactivation. Furthermore, platelets can exert a direct effect on liver cells, particularly through the release of mediators from granules. Growing data in literature support the use of antiplatelet agent as a treatment for MASLD. The use of antiplatelets drugs seems to exert beneficial effects on hepatocellular carcinoma prevention in patients with MASLD, since platelets contribute to fibrosis progression and cancer development. This review aims to summarize the main data on the role of platelets in the pathogenesis of MASLD and its main complications such as cardiovascular events and the development of liver fibrosis. Furthermore, we will examine the role of antiplatelet therapy not only in the prevention and treatment of cardiovascular events but also as a possible anti-fibrotic and anti-tumor agent.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, 40010 Bentivoglio, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Lorenza Del Cane
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Lara Marola
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Damiano D’Ardes
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | | | - Nicoletta di Gregorio
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Claudio Ferri
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Francesco Cipollone
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | - Carla Serra
- Interventional, Diagnostic and Therapeutic Ultrasound Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
36
|
Herrera-Marcos LV, Martínez-Beamonte R, Arnal C, Barranquero C, Puente-Lanzarote JJ, Lou-Bonafonte JM, Gonzalo-Romeo G, Mocciaro G, Jenkins B, Surra JC, Rodríguez-Yoldi MJ, Alastrué-Vera V, Letosa J, García-Gil A, Güemes A, Koulman A, Osada J. Lipidomic signatures discriminate subtle hepatic changes in the progression of porcine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G411-G425. [PMID: 38375587 DOI: 10.1152/ajpgi.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Recently, the development of nonalcoholic steatohepatitis (NASH) in common strains of pigs has been achieved using a diet high in saturated fat, fructose, cholesterol, and cholate and deficient in choline and methionine. The aim of the present work was to characterize the hepatic and plasma lipidomic changes that accompany the progression of NASH and its reversal by switching pigs back to a chow diet. One month of this extreme steatotic diet was sufficient to induce porcine NASH. The lipidomic platform using liquid chromatography-mass spectrometry analyzed 467 lipid species. Seven hepatic phospholipids [PC(30:0), PC(32:0), PC(33:0), PC(33:1), PC(34:0), PC(34:3) and PC(36:2)] significantly discriminated the time of dietary exposure, and PC(30:0), PC(33:0), PC(33:1) and PC(34:0) showed rapid adaptation in the reversion period. Three transcripts (CS, MAT1A, and SPP1) showed significant changes associated with hepatic triglycerides and PC(33:0). Plasma lipidomics revealed that these species [FA 16:0, FA 18:0, LPC(17:1), PA(40:5), PC(37:1), TG(45:0), TG(47:2) and TG(51:0)] were able to discriminate the time of dietary exposure. Among them, FA 16:0, FA 18:0, LPC(17:1) and PA(40:5) changed the trend in the reversion phase. Plasma LDL-cholesterol and IL12P40 were good parameters to study the progression of NASH, but their capacity was surpassed by hepatic [PC(33:0), PC(33:1), and PC(34:0)] or plasma lipid [FA 16:0, FA 18:0, and LPC(17:1)] species. Taken together, these lipid species can be used as biomarkers of metabolic changes in the progression and regression of NASH in this model. The lipid changes suggest that the development of NASH also affects peripheral lipid metabolism.NEW & NOTEWORTHY A NASH stage was obtained in crossbred pigs. Hepatic [PC(33:0), PC(33:1) and PC(34:0)] or plasma [FA 16:0, FA 18:0 and LPC(17:1)] species were sensitive parameters to detect subtle changes in development and regression of nonalcoholic steatohepatitis (NASH). These findings may delineate the liquid biopsy to detect subtle changes in progression or in treatments. Furthermore, phospholipid changes according to the insult-inducing NASH may play an important role in accepting or rejecting fatty livers in transplantation.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Puente-Lanzarote
- Servicio de Bioquímica Clínica, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Gonzalo-Romeo
- Servicio General de Apoyo a la Investigación, División de Experimentación Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriele Mocciaro
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Letosa
- Industrial Zootécnica Aragonesa S.L. (INZAR, S.L.), Zaragoza, Spain
| | - Agustín García-Gil
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Güemes
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
38
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
39
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, Gao M, Han L, Chan AKN, Li W, Leung K, Wang K, Pokharel SP, Qing Y, Liu W, Wang X, Ren L, Bi H, Yang L, Shen C, Chen Z, Melstrom L, Li H, Timchenko N, Deng X, Huang W, Rosen ST, Tian J, Xu L, Diao J, Chen CW, Chen J, Shen B, Chen H, Su R. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J Hematol Oncol 2024; 17:7. [PMID: 38302992 PMCID: PMC10835888 DOI: 10.1186/s13045-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.
Collapse
Affiliation(s)
- Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Honghai Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- School of Pharmacy, China Medical University, Shenyang, 110001, Liaoning, China
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Xueer Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Hongjie Bi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, 91016, USA
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Graduate School of Biological Science, City of Hope, Duarte, CA, 91010, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
41
|
Meng Z, Zhou L, Hong S, Qiu X, Chen Z, Liu T, Inoki K, Lin JD. Myeloid-specific ablation of Basp1 ameliorates diet-induced NASH in mice by attenuating pro-inflammatory signaling. Hepatology 2024; 79:409-424. [PMID: 37505219 PMCID: PMC10808272 DOI: 10.1097/hep.0000000000000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.
Collapse
Affiliation(s)
- Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Sungki Hong
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ken Inoki
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
42
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
43
|
Guo Z, Wu Q, Xie P, Wang J, Lv W. Immunomodulation in non-alcoholic fatty liver disease: exploring mechanisms and applications. Front Immunol 2024; 15:1336493. [PMID: 38352880 PMCID: PMC10861763 DOI: 10.3389/fimmu.2024.1336493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) exhibits increased lipid enrichment in hepatocytes. The spectrum of this disease includes stages such as nonalcoholic simple fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), and liver fibrosis. Changes in lifestyle behaviors have been a major factor contributing to the increased cases of NAFLD patients globally. Therefore, it is imperative to explore the pathogenesis of NAFLD, identify therapeutic targets, and develop new strategies to improve the clinical management of the disease. Immunoregulation is a strategy through which the organism recognizes and eliminates antigenic foreign bodies to maintain physiological homeostasis. In this process, multiple factors, including immune cells, signaling molecules, and cytokines, play a role in governing the evolution of NAFLD. This review seeks to encapsulate the advancements in research regarding immune regulation in NAFLD, spanning from underlying mechanisms to practical applications.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengfei Xie
- Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiuchong Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Perry AS, Hadad N, Chatterjee E, Ramos MJ, Farber-Eger E, Roshani R, Stolze LK, Zhao S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Freedman J, Tanriverdi K, Alsop E, Keuren-Jensen KV, Sauld JFK, Mahajan G, Khan S, Colangelo L, Nayor M, Fisher-Hoch S, McCormick J, North KE, Below J, Wells Q, Abel D, Kalhan R, Scott C, Guilliams M, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301828. [PMID: 38352394 PMCID: PMC10863022 DOI: 10.1101/2024.01.26.24301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.
Collapse
|
45
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
46
|
Hildreth AD, Padilla ET, Gupta M, Wong YY, Sun R, Legala AR, O'Sullivan TE. Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production. Nat Metab 2023; 5:2237-2252. [PMID: 37996702 DOI: 10.1038/s42255-023-00934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meha Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yung Yu Wong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Sun
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:764-783. [PMID: 37582985 DOI: 10.1038/s41575-023-00822-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM INFINITE 1286, Lille, France
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
48
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
49
|
Barrow F, Wang H, Fredrickson G, Florczak K, Ciske E, Khanal S, Parthiban P, Nguyen H, Rios E, Kostallari E, Revelo XS. Pyruvate Oxidation Sustains B Cell Antigen-Specific Activation to Exacerbate MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566832. [PMID: 38014163 PMCID: PMC10680643 DOI: 10.1101/2023.11.13.566832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
B cells play a crucial role in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH), a severe form of steatotic liver disease that if persistent can lead to cirrhosis, liver failure, and cancer. Chronic inflammation and fibrosis are key features of MASH that determine disease progression and outcomes. Recent advances have revealed that pathogenic B cell-derived cytokines and antibodies promote the development of MASH. However, the mechanisms through which B cells promote fibrosis and the metabolic adaptations underlying their pathogenic responses remain unclear. Here, we report that a subset of mature B cells with heightened cytokine responses accumulate in the liver and promote inflammation in MASH. To meet the increased energetic demand of effector responses, B cells increase their ATP production via oxidative phosphorylation (OXPHOS) fueled by pyruvate oxidation in a B cell receptor (BCR)-specific manner. Blocking pyruvate oxidation completely abrogated the inflammatory capacity of MASH B cells. Accordingly, the restriction of the BCR led to MASH attenuation, including reductions in steatosis, hepatic inflammation, and fibrosis. Mechanistically, BCR restriction decreased B cell maturation, activation, and effector responses in the liver, accompanied by decreased T cell- and macrophage-mediated inflammation. Notably, attenuated liver fibrosis in BCR-restricted mice was associated with lower IgG production and decreased expression of Fc-gamma receptors on hepatic stellate cells. Together, these findings indicate a key role for B cell antigen-specific responses in promoting steatosis, inflammation, and fibrosis during MASH.
Collapse
Affiliation(s)
- Fanta Barrow
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Haiguang Wang
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Gavin Fredrickson
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Kira Florczak
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Erin Ciske
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Preethy Parthiban
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Huy Nguyen
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Enrique Rios
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xavier S. Revelo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
50
|
Iqbal W, Wang Y, Sun P, Zhou X. Modeling Liver Development and Disease in a Dish. Int J Mol Sci 2023; 24:15921. [PMID: 37958904 PMCID: PMC10650907 DOI: 10.3390/ijms242115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Historically, biological research has relied primarily on animal models. While this led to the understanding of numerous human biological processes, inherent species-specific differences make it difficult to answer certain liver-related developmental and disease-specific questions. The advent of 3D organoid models that are either derived from pluripotent stem cells or generated from healthy or diseased tissue-derived stem cells have made it possible to recapitulate the biological aspects of human organs. Organoid technology has been instrumental in understanding the disease mechanism and complements animal models. This review underscores the advances in organoid technology and specifically how liver organoids are used to better understand human-specific biological processes in development and disease. We also discuss advances made in the application of organoid models in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yaru Wang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|