1
|
Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials 2025; 317:123047. [PMID: 39742840 DOI: 10.1016/j.biomaterials.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Interleukin-15 (IL-15) emerges as a promising immunotherapeutic candidate, but the therapeutic utility remains concern due to the unexpected systematic stress. Here, we propose that the mRNA lipid nanoparticle (mRNA-LNP) system can balance the issue through targeted delivery to increase IL-15 concentration in the tumor area and reduce leakage into the circulation. In the established Structure-driven TARgeting (STAR) platform, the LNPLocal and LNPLung can effectively and selectively deliver optimized IL-15 superagonists mRNAs to local and lungs, respectively, in relevant tumor models. As a result, such superagonists exhibited well-balanced efficacy and side-effects, demonstrating the better anti-tumor activity, less systematic exposure, and less cytokine related risks. We finally verified the selective delivery and well tolerability of LNPLung in non-human primates (NHPs), confirming the potential for clinical application. This finding provides new potentials for cancers treatment on lung cancers or lung metastasis cancers.
Collapse
Affiliation(s)
- Juntao Yu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Qian Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qiu Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shenggen Luo
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Xiaona Wang
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Rongkuan Hu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China.
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Zhou P, Wang M, He T, Cai Y, Zhang Y, Wang G, Sun F, Song G, Li W. Amplifying the Antitumor Effect of STING Agonist MSA-2 by Phospholipid Nanoparticles Delivering STING mRNA and Copper-Modified MSA-2 Combination. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24820-24829. [PMID: 40238177 DOI: 10.1021/acsami.4c21183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
STING activation is a promising application therapeutic strategy for cancer immunotherapy. In particular, MSA-2 as an oral STING agonist is discovered to have antitumor activity. However, how to improve the antitumor effect of MSA-2 is a very valuable contribution to cancer immunotherapy. Here, we use two strategies to amplify the antitumor effect of MSA-2 by phospholipid nanoparticles delivering STING mRNA and copper-modified MSA-2. We synthesized a new series of ionizable phospholipid nanoparticles and optimized a phospholipid nanoparticle (1AP24) for delivering STING mRNA, increasing the expression of STING protein to bind more MSA-2. Second, we synthesized copper-modified MSA-2 (MSA-2-Cu), which induced cell death by Cu2+ toxicity. Combining 1AP24@STING mRNA and MSA-2-Cu can crucially decrease tumor growth and increase a mouse's survival. It is a new treatment strategy through amplifying the STING pathway.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Mo Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Tian He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Ya Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Yuhang Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, Jiangsu China
| | - Wenqing Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| |
Collapse
|
3
|
Zhang L, Chen P, Tian XL, Hu Y, Wang R, Zhang J. Cyclen-based lipidoids for mRNA delivery and immunotherapy. Biomater Sci 2025. [PMID: 40223782 DOI: 10.1039/d5bm00317b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
As mRNA vaccines continue to gain widespread attention, the development of lipid nanoparticles (LNPs), as the preferred platform for mRNA delivery, has become a key focus of research. 1,4,7,10-Tetraazacyclododecane (cyclen), with its excellent protonation capability and ease of modification, has emerged as a promising candidate for the ionizable head group of lipid materials. In this study, a series of cyclen-based lipidoids with different linkages and hydrophobic tails was designed and conveniently synthesized. Structure-activity relationship studies were performed to screen out the carriers capable of efficient mRNA delivery and with potential for tumor therapeutic applications. In vivo biodistribution experiments in mice revealed that the lipidoid OEs-K, containing both hydroxyl and ester groups in its linkage, exhibited high mRNA delivery efficiency and lymph node-targeting properties. Using a subcutaneous EG.7-OVA tumor model in mice, the delivery of tumor antigen OVA mRNA using the lipidoid material was evaluated for its antitumor immunotherapeutic potential. Results demonstrated that LNPs formulated with OEs-K promoted dendritic cell uptake in lymph nodes, effectively activated immune responses, and inhibited tumor growth. Hematological and histopathological evaluations indicated no significant toxicity to the body. This study provides insights into the design and development of carrier materials for mRNA vaccines.
Collapse
Affiliation(s)
- Lan Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ping Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Hu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Rong Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
5
|
Zhu P, Li Y, Zhang D. One-Component Ionizable Amphiphilic Janus Dendrimers for Targeted mRNA Delivery. Angew Chem Int Ed Engl 2025:e202505304. [PMID: 40192525 DOI: 10.1002/anie.202505304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
mRNA nanomedicine represents a new generation of therapeutics. However, how to deliver mRNA to the desired organs and cells effectively remains challenging. Common mRNA delivery vectors include viral and nonviral types such as four-component lipid nanoparticles (LNPs), polymer-based nanoparticles, lipid-polymer hybrid nanoparticles, and so on. One-component ionizable amphiphilic Janus dendrimers (IAJDs), are an emerging type of mRNA delivery vehicle displaying good stability and high delivery efficiency. In this review, we comprehensively present the design, synthesis, and mRNA delivery properties of IAJDs, with particular focus on the relationship between their molecular structures and organ targeted delivery properties. Other representative types of dendrimers for RNA delivery are also reviewed. Overall, this review summarizes the recent research progress on IAJDs systematically, aiming to guide the development of more efficient mRNA delivery platforms and next-generation mRNA nanomedicines.
Collapse
Affiliation(s)
- Pengyu Zhu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Hou X, Wang C, Zhong Y, Wang L, Kang DD, Lubitz G, Xue Y, Liu Z, Wang S, Li H, Tian M, Cao D, Guo K, Deng B, McComb DW, Marron TU, Brown BD, Merad M, Brody JD, Dong Y. Enhancing antitumor immunity through chemotherapeutic-derived lipid nanoparticle-induced immunogenic cell death and CD40L/Flt3L mRNA-mediated dendritic cell activation. J Control Release 2025; 382:113684. [PMID: 40185331 DOI: 10.1016/j.jconrel.2025.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Dendritic cells (DCs) are essential for inducing effective antitumor T cell responses. However, the immunosuppressive tumor microenvironment (TME) hinders DC recruitment and maturation, facilitating tumor progression and spread. This study investigates the synergistic potential of immunogenic cell death (ICD), triggered by chemotherapeutic-derived lipid nanoparticles (LNPs), in combination with Flt3L and CD40L mRNA delivery to enhance DC mobilization and activation, reprogram the TME, and ultimately promote robust antitumor T cell responses. The optimized LNP formulation, GEM5Q7, efficiently delivered mRNA and induced ICD in melanoma cells. Intratumoral administration of GEM5Q7, encapsulating Flt3L and CD40L mRNAs, elevated pro-inflammatory cytokine and chemokine secretion, driving the infiltration and activation of cross-presenting DCs, which are critical for priming T cells. In a subcutaneous melanoma model, this approach led to significant tumor suppression and a 40 % complete response rate. This strategy holds promise for enhancing cancer immunotherapies by reprogramming the TME and inducing durable antitumor T cell immunity.
Collapse
Affiliation(s)
- Xucheng Hou
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chang Wang
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yichen Zhong
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leiming Wang
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana D Kang
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Gabrielle Lubitz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengwei Liu
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siyu Wang
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haoyuan Li
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meng Tian
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dinglingge Cao
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaiyuan Guo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua D Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yizhou Dong
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Ruan G, Ye L, Ke J, Lin H, Wu M, Liu Z, Fang Y, Zhang S, Wang H, Liu Y, Song H. All-In-One Gadolinium-Doxorubicin Nanoassemblies for Spatial Delivery and Chemoresistance Reversal in Tumor Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19348-19366. [PMID: 40117447 DOI: 10.1021/acsami.4c21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Efficiently overcoming chemoresistance in tumor microenvironments remains a critical hurdle in cancer therapy due to tumor heterogeneity, limited drug penetration, and adaptive resistance mechanisms. Herein, we report the design and application of all-in-one gadolinium-doxorubicin nanoassemblies (GDNAs) for spatially targeted delivery and chemoresistance reversal. These multifunctional nanoassemblies integrate a lanthanide-based component for real-time imaging and doxorubicin for chemotherapy, coupled with bioinformatics-guided small interfering RNAs (siRNAs) to silence key resistance-associated genes such as BCL2 and BIRC5. The GDNAs demonstrate enhanced tumor penetration and specificity for chemoresistant cells, achieving deep tissue delivery and synergistic effects in human-derived organoids and xenograft breast cancer models. Remarkably, GDNAs significantly reduce tumor viability and growth while attenuating invasive potential, showcasing superior therapeutic efficacy compared to conventional treatments. Comprehensive preclinical evaluations confirm their biocompatibility and low systemic toxicity, underscoring the translational potential of this platform. This work introduces a paradigm-shifting strategy by integrating imaging, targeted therapy, and gene silencing to address chemoresistance, offering a versatile approach for personalized cancer treatment.
Collapse
Affiliation(s)
- Guanyu Ruan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Fujian Maternity and Child Health Hospital College of Clinical Medical College for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Lixiang Ye
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Jianxi Ke
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hongyu Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Minxia Wu
- Electron Microscopy Laboratory of Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, Fujian 350025, P. R. China
| | - Yu Fang
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Shuihua Zhang
- Fujian Center for Safety Evaluation of New Drugs, Fujian Medical University, Fuzhou, Fujian 351004, P. R. China
| | - Hongmei Wang
- Fujian Maternity and Child Health Hospital College of Clinical Medical College for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, Fujian 350025, P. R. China
| |
Collapse
|
8
|
Wang L, Su F, Huang H, Jiang Q, Kong H, Pei Z. Application of mRNA technology in neuronal protection of human mature brain-derived neurotrophic factor. Tissue Cell 2025; 93:102788. [PMID: 39933411 DOI: 10.1016/j.tice.2025.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Although human mature brain-derived neurotrophic factor (hmBDNF) offers potential neuronal protection, its clinical translation remains challenging. Messenger RNA (mRNA) technology is promising in selectively upregulating protein cleavage products. This proof-of-concept study aims to evaluate the neuronal protective effects of hmBDNF mRNA in vitro. METHODS We optimized and synthesized hmBDNF mRNA and conducted dose-response and time-response analyses in SH-SY5Y cells. mRNA expression was assessed via qPCR, while protein expression was evaluated through immunostaining and ELISA. Cell survival rate was measured using cell counting kit-8. We examined cell survival rates in both differentiated and non-differentiated SH-SY5Y cells exposed to H2O2 or serum deprivation following hmBDNF mRNA incubation. Additionally, we assessed the expression of synapse-relevant genes (MAP2, synaptophysin) and the mBDNF receptor (TrkB) in both cell types. RESULTS The optimized hmBDNF mRNA effectively upregulated hmBDNF expression in SH-SY5Y cells with minimal impact on endogenous proBDNF expression. Dose-response and time-response analyses identified the optimal dose and time point for maximum hmBDNF expression. hmBDNF mRNA significantly increased cell survival in differentiated SH-SY5Y cells expressing MAP2, synaptophysin and TrkB after exposure to oxidative stress or serum deprivation. However, hmBDNF mRNA did not enhance cell survival in non-differentiated SH-SY5Y cells. CONCLUSION The optimized hmBDNF mRNA demonstrated a capacity for neuronal protection in vitro. Further in-vivo studies are required to assess its potential for clinical translation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Heng Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Haifang Kong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
9
|
Sun Y, Tan W, Gu Z, He R, Chen S, Pang M, Yan B. A data-efficient strategy for building high-performing medical foundation models. Nat Biomed Eng 2025; 9:539-551. [PMID: 40044818 DOI: 10.1038/s41551-025-01365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Foundation models are pretrained on massive datasets. However, collecting medical datasets is expensive and time-consuming, and raises privacy concerns. Here we show that synthetic data generated via conditioning with disease labels can be leveraged for building high-performing medical foundation models. We pretrained a retinal foundation model, first with approximately one million synthetic retinal images with physiological structures and feature distribution consistent with real counterparts, and then with only 16.7% of the 904,170 real-world colour fundus photography images required in a recently reported retinal foundation model (RETFound). The data-efficient model performed as well or better than RETFound across nine public datasets and four diagnostic tasks; and for diabetic-retinopathy grading, it used only 40% of the expert-annotated training data used by RETFound. We also support the generalizability of the data-efficient strategy by building a classifier for the detection of tuberculosis on chest X-ray images. The text-conditioned generation of synthetic data may enhance the performance and generalization of medical foundation models.
Collapse
Affiliation(s)
- Yuqi Sun
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Weimin Tan
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Zhuoyao Gu
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Ruian He
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Siyuan Chen
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Miao Pang
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
| | - Bo Yan
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Lv J, Fan Q, Zhang Y, Zhou X, Yu P, Yu X, Xin C, Hong J, Cheng Y. A Serum Resistant Polymer with Exceptional Endosomal Escape and mRNA Delivery Efficacy for CRISPR Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413006. [PMID: 39921871 PMCID: PMC11967772 DOI: 10.1002/advs.202413006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Indexed: 02/10/2025]
Abstract
Nanoparticle-based mRNA delivery offers a versatile platform for innovative therapies. However, most of the current delivery systems are limited by poor serum tolerance, suboptimal endosomal escape and mRNA delivery efficacy. Herein, a highly efficient mRNA-delivering material is identified from a library of fluoropolymers. The lead material FD17 shows exceptional serum stability and endosomal escape, enabling efficient mRNA delivery into various cell types, surpassing commercial mRNA delivery reagents such as Lipofectamine 3000. The formed mRNA nanoparticles adsorb abundant serum albumin on the surface, which facilitates cellular uptake via scavenger receptor-mediated endocytosis. FD17 enables the delivery of mRNAs encoding CRE, Cas9, and base editor hyCBE for efficient genome editing. The material mediates CRISPR/Cas9 gene therapy via intraocular injection effectively down-regulates vascular endothelial growth factor A in retinal pigment epithelial cells of mice, yielding promising therapeutic responses against laser-induced choroidal neovascularization. The discovered material in this study shows great promise for the development of mRNA therapeutics to combat a wide range of diseases.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Qianqian Fan
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
- Department of General SurgeryCenter for Metabolism ResearchThe Fourth Affiliated Hospital of Zhejiang University School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Yirou Zhang
- Department of Ophthalmology and Vision ScienceEye, Ear, Nose, and Throat HospitalFudan UniversityShanghai200030China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision ScienceEye, Ear, Nose, and Throat HospitalFudan UniversityShanghai200030China
| | - Panting Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xin Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Changchang Xin
- Department of Ophthalmology and Vision ScienceEye, Ear, Nose, and Throat HospitalFudan UniversityShanghai200030China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision ScienceEye, Ear, Nose, and Throat HospitalFudan UniversityShanghai200030China
- Department of OphthalmologyEye & ENT HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200031China
- NHC Key laboratory of Myopia and Related Eye DiseasesShanghai200031China
- Shanghai Engineering Research Center of Synthetic ImmunologyShanghai200032China
- Department of OphthalmologyChildren's Hospital of Fudan UniversityNational Pediatric Medical Center of ChinaShanghai200031China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| |
Collapse
|
11
|
Zhang T, Tang D, Wu P, Jiang S, Zhang Y, Naeem A, Li Y, Li C, Hu B, Guo S, Sun C, Xiao H, Yan R, Weng Y, Huang Y. NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death. Bioact Mater 2025; 46:285-300. [PMID: 39811466 PMCID: PMC11732249 DOI: 10.1016/j.bioactmat.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues. To address these issues, we proposed an all-in-one drug system with NIR-II photo-accelerated PDT effects, efficient immune checkpoint gene silencing, and a facile manufacturing process. The so-called all-in-one drug system comprises a multi-modal designed polymer PPNP and siRNA. PPNP is an amphipathic polymer that includes the near infrared-II (NIR-II) photosensitizer Aza-boron-dipyrromethene (Aza-BODIPY), a glutathione (GSH)-cleavable linker, and a cationic monomer derived from cholesterol. PPNP can self-assemble and efficiently load siRNA. Under laser irradiation, PPNP triggers a potent ICD cascade, causing the on-demand release of siPD-L1, reshaping the tumor's immunosuppressive microenvironment, effectively inhibiting the growth of various tumors, and stimulating the immune memory. This study represents a generalized platform for PDT and gene silencing, designed to modulate immune-related signaling pathways for improved anticancer therapy.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| |
Collapse
|
12
|
Du X, Nakanishi H, Yamada T, Sin Y, Minegishi K, Motohashi N, Aoki Y, Itaka K. Polyplex Nanomicelle-Mediated Pgc-1α4 mRNA Delivery Via Hydrodynamic Limb Vein Injection Enhances Damage Resistance in Duchenne Muscular Dystrophy Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409065. [PMID: 40051178 PMCID: PMC12021044 DOI: 10.1002/advs.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Indexed: 04/26/2025]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, leading to the absence of dystrophin and progressive muscle degeneration. Current therapeutic strategies, such as exon-skipping and gene therapy, face limitations including truncated dystrophin production and safety concerns. To address these issues, a novel mRNA-based therapy is explored using polyplex nanomicelles to deliver mRNA encoding peroxisome proliferator-activated receptor gamma coactivator 1 alpha isoform 4 (PGC-1α4) via hydrodynamic limb vein (HLV) administration. Using an in vivo muscle torque measurement technique, it is observed that nanomicelle-delivered Pgc-1α4 mRNA significantly improved muscle damage resistance and mitochondrial activity in mdx mice. Specifically, HLV administration of Pgc-1α4 mRNA in dystrophic muscles significantly relieved the torque reduction and myofiber injury induced by eccentric contraction (ECC), boosted metabolic gene expression, and enhanced muscle oxidative capacity. In comparison, lipid nanoparticles (LNPs), a widely used mRNA delivery system, does not achieve similar protective effects, likely due to their intrinsic immunogenicity. This foundational proof-of-concept study highlights the potential of mRNA-based therapeutics for the treatment of neuromuscular diseases such as DMD and demonstrates the capability of polyplex nanomicelles as a safe and efficient mRNA delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Xuan Du
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
| | - Hideyuki Nakanishi
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Takashi Yamada
- Department of Physical TherapySapporo Medical UniversitySapporo060‐8556Japan
| | - Yooksil Sin
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Katsura Minegishi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Norio Motohashi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Keiji Itaka
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| |
Collapse
|
13
|
Guo X, Yang Z, Guo Z, Lai H, Meng H, Meng M, Li T, Li Z, Chen J, Feng Y, Pang X, Tian H, Chen X. A Polymeric mRNA Vaccine Featuring Enhanced Site-Specific mRNA Delivery and Inherent STING-Stimulating Performance for Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410998. [PMID: 40095378 DOI: 10.1002/adma.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Indexed: 03/19/2025]
Abstract
The development of mRNA delivery carriers with innate immune stimulation functions has emerged as a focal point in the field of mRNA vaccines. Nonetheless, the expression of mRNA in specific sites and innate immune stimulation at specific sites are prerequisites for ensuring the safety of mRNA vaccines. Based on the synthetic PEIRs carriers library, this study identifies an innovative mRNA delivery carrier named POctS with the following characteristics: 1) simultaneously possessing high mRNA delivery efficiency and stimulator of interferon genes (STING) stimulation function. 2) Leveraging the distinctive site-specific delivery capabilities of POctS, the expression of mRNA at specific sites and the activation of innate immune responses at designated sites are achieved, minimizing formulation toxicity and maximizing the vaccine performance. 3) Tailoring two types of mRNA vaccines based on POctS according to the immune infiltration status of different types of tumors. Briefly, POctS-loading ovalbumin (OVA) mRNA as a tumor antigen vaccine achieves the prevention and treatment of melanoma in mice. Further, POctS-loading mixed lineage kinase domain-like protein (MLKL) mRNA as an in situ tumor vaccine effectively treats orthotopic pancreatic cancer in mice. This delivery carrier offers a feasible mRNA vaccine-based immunotherapy strategy for various types of tumors.
Collapse
Affiliation(s)
- Xiaoya Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiyu Yang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaopei Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huiyan Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Hanyu Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Meng Meng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Jie Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Xuan Pang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Huayu Tian
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Zhao X, Zhang Y, Wang X, Fu Z, Zhong Z, Deng C. Multivalent ionizable lipid-polypeptides for tumor-confined mRNA transfection. Bioact Mater 2025; 46:423-433. [PMID: 39850023 PMCID: PMC11754973 DOI: 10.1016/j.bioactmat.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection. Leveraging the multivalent electrostatic, hydrophobic, and H-bond interactions, MILP efficiently packs both mRNA and plasmid DNA into sub-80 nm nanoparticles that are stable against lyophilization and long-term storage. The best MILP@mRNA complexes afford 8-fold more cellular uptake than SM-102 lipid nanoparticle formulation (SM-102 LNP), efficient endosomal disruption, and high transfection in different cells. Interestingly, MILP@mLuc displays exclusive tumor residence and distribution via multivalency-directed strong affinity and transcytosis, and affords specific protein expression in tumor cells and macrophages at tumor sites following intratumoral injection, in sharp contrast to the indiscriminate distribution and transfection in main organs of SM-102 LNP. Notably, MILP@mIL-12 with specific and efficient cytokine expression generates significant remodeling of tumor immunoenvironments and remarkable antitumor response in subcutaneous Lewis lung carcinoma and 4T1 tumor xenografts. MILP provides a unique strategy to site-specific transfection that may greatly broaden the applications of mRNA.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yueyue Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xin Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Ziming Fu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Chen L, Tang W, Liu J, Zhu M, Mu W, Tang X, Liu T, Zhu Z, Weng L, Cheng Y, Zhang Y, Chen X. On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment. Biomaterials 2025; 315:122956. [PMID: 39549441 DOI: 10.1016/j.biomaterials.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCMR) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCMR consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM. During therapy, the acid environment of tumor tissue cleaved the Schiff base to generate free R837 and SNAs@CCM. The SNAs@CCM further entered tumor cells via CCM mediated internalization, and then specifically hybridized with over-expressed miR-130a and miR-21, resulting in effective inhibition of the migration and PD-L1 expression of tumor cells to avoid their immune escape. Meanwhile, the RNAs capture also caused significant aggregation of SNAs, which immediately generated photothermal agents within tumor cells to perform highly selective photothermal therapy under NIR irradiation. These chain processes not only damaged the primary tumor, but also produced plenty of tumor-associated antigens, which matured the surrounding dendritic cells (DCs) and activated anti-tumor T cells along with the released R837, resulting in the enhanced immunotherapy with suppressive immune escape. Both in vivo and in vitro experiments demonstrated that our nanoparticles were able to inhibit primary tumor and its metastasis via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immune activations, which provided a promising strategy to reprogram the immunosuppressive microenvironment in tumor tissue for better malignant tumor therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
16
|
Zhou Z, Chen W, Cao Y, Abdi R, Tao W. Nanomedicine-based strategies for the treatment of vein graft disease. Nat Rev Cardiol 2025; 22:255-272. [PMID: 39501093 PMCID: PMC11925677 DOI: 10.1038/s41569-024-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Autologous saphenous veins are the most frequently used conduits for coronary and peripheral artery bypass grafting. However, vein graft failure rates of 40-50% within 10 years of the implantation lead to poor long-term outcomes after bypass surgery. Currently, only a few therapeutic approaches for vein graft disease have been successfully translated into clinical practice. Building on the past two decades of advanced understanding of vein graft biology and the pathophysiological mechanisms underlying vein graft disease, nanomedicine-based strategies offer promising opportunities to address this important unmet clinical need. In this Review, we provide deep insight into the latest developments in the rational design and applications of nanoparticles that have the potential to target specific cells during various pathophysiological stages of vein graft disease, including early endothelial dysfunction, intermediate intimal hyperplasia and late-stage accelerated atherosclerosis. Additionally, we underscore the convergence of nanofabricated biomaterials, with a particular focus on hydrogels, external graft support devices and cell-based therapies, alongside bypass surgery to improve local delivery efficiency and therapeutic efficacy. Finally, we provide a specific discussion on the considerations, challenges and novel perspectives for the future clinical translation of nanomedicine for the treatment of vein graft disease.
Collapse
Affiliation(s)
- Zhuoming Zhou
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Abdi
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Zhu Q, Yu C, Chen Y, Luo W, Li M, Zou J, Xiao F, An S, Saiding Q, Tao W, Kong N, Xie T. Dual mRNA nanoparticles strategy for enhanced pancreatic cancer treatment and β-elemene combination therapy. Proc Natl Acad Sci U S A 2025; 122:e2418306122. [PMID: 40067898 PMCID: PMC11929461 DOI: 10.1073/pnas.2418306122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notoriously immune-resistant, limiting the clinical efficacy of single-agent immune modulators and thereby necessitating the exploration of multimodal immunotherapy combinations. Traditional approaches combining conventional immune checkpoint inhibitors with neoantigen vaccines have shown some promise in treating PDAC but are often compromised by intratumoral T lymphocyte exhaustion and systemic toxicity. Hence, novel approaches are needed to address these challenges. Herein, we demonstrate that mRNA polymeric nanoparticles encoding anti-PD-1 antibodies in situ at the tumor site enhance the therapeutic efficacy of neoantigen-based mRNA vaccine for PDAC. This mRNA-based, in situ anti-PD-1 antibody production strategy also protects tumor-infiltrating T cells from PD-1 inhibition, potentially reducing the toxicities induced by systemic checkpoint inhibition. Our study may provide an innovative dual mRNA nanoparticle strategy for effective tumor neoantigen immunotherapy, as well as an mRNA cancer combination therapy strategy with other clinically approved drugs (e.g., β-elemene).
Collapse
Affiliation(s)
- Qianru Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Chuao Yu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affliated Hospital, Zhejiang University, Hangzhou, Zhejiang311121, China
| | - Wei Luo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Meng Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Jianhua Zou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affliated Hospital, Zhejiang University, Hangzhou, Zhejiang311121, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Soohwan An
- Center for Nanomedicine and Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affliated Hospital, Zhejiang University, Hangzhou, Zhejiang311121, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| |
Collapse
|
18
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
19
|
Gao M, Zhong J, Liu X, Zhao Y, Zhu D, Shi X, Xu X, Zhou Q, Xuan W, Zhang Y, Zhou Y, Cheng J. Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver. ACS NANO 2025; 19:5966-5978. [PMID: 39899798 DOI: 10.1021/acsnano.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
Collapse
Affiliation(s)
- Menghua Gao
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jiafeng Zhong
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Xinxin Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dingcheng Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Xuehan Xu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Qin Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjing Xuan
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yaofeng Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jianjun Cheng
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
20
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
21
|
Somu Naidu G, Rampado R, Sharma P, Ezra A, Kundoor GR, Breier D, Peer D. Ionizable Lipids with Optimized Linkers Enable Lung-Specific, Lipid Nanoparticle-Mediated mRNA Delivery for Treatment of Metastatic Lung Tumors. ACS NANO 2025; 19:6571-6587. [PMID: 39912611 PMCID: PMC11841047 DOI: 10.1021/acsnano.4c18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as a groundbreaking delivery system for vaccines and therapeutic mRNAs. Ionizable lipids are the most pivotal component of LNPs due to their ability to electrostatically interact with mRNA, allowing its encapsulation while concurrently enabling its endosomal escape following cellular internalization. Thus, extensive research has been performed to optimize the ionizable lipid structure and to develop formulations that are well tolerated and allow efficient targeting of different organs that result in a high and sustained mRNA expression. However, one facet of the ionizable lipids' structure has been mostly overlooked: the linker segment between the ionizable headgroup and their tails. Here, we screened a rationally designed library of ionizable lipids with different biodegradable linkers. We extensively characterized LNPs formulated using these ionizable lipids and elucidated how these minor structural changes in the ionizable lipids structure radically influenced the LNPs' biodistribution in vivo. We showed how the use of amide and urea linkers can modulate the LNPs' pKa, resulting in an improved specificity for lung transfection. Finally, we demonstrated how one of these lipids (lipid 35) that form LNPs entrapping a bacterial toxin [pseudomonas exotoxin A (mmPE)] in the form of an mRNA reduced tumor burden and significantly increased the survival of mice with lung metastasis.
Collapse
Affiliation(s)
- Gonna Somu Naidu
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Riccardo Rampado
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Pharmaceutical Sciences, University of
Padova, Padova 35131, Italy
| | - Preeti Sharma
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Assaf Ezra
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Govinda Reddy Kundoor
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Dor Breier
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Dan Peer
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
22
|
El-Sahli S, Manturthi S, Durocher E, Bo Y, Akman A, Sannan C, Kirkby M, Iroakazi CD, Deyell H, Kaczmarek S, Lee SH, Iqbal U, Côté M, Wang L, Gadde S. Nanoparticle-Mediated mRNA Delivery to Triple-Negative Breast Cancer (TNBC) Patient-Derived Xenograft (PDX) Tumors. ACS Pharmacol Transl Sci 2025; 8:460-469. [PMID: 39974646 PMCID: PMC11833720 DOI: 10.1021/acsptsci.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
mRNA-based therapies can overcome several challenges faced by traditional therapies in treating a variety of diseases by selectively modulating genes and proteins without genomic integration. However, due to mRNA's poor stability and inherent limitations, nanoparticle (NP) platforms have been developed to deliver functional mRNA into cells. In cancer treatment, mRNA technology has multiple applications, such as restoration of tumor suppressors and activating antitumor immunity. Most of these applications have been evaluated using simple cell-line-based tumor models, which failed to represent the complexity, heterogeneity, and 3D architecture of patient tumors. This discrepancy has led to inconsistencies and failures in clinical translation. Compared to cell line models, patient-derived xenograft (PDX) models more accurately represent patient tumors and are better suitable for modeling. Therefore, for the first time, this study employed two different TNBC PDX tumors to examine the effects of the mRNA-NPs. mRNA-NPs are developed using EGFP-mRNA as a model and studied in TNBC cell lines, ex vivo TNBC PDX organotypic slice cultures, and in vivo TNBC PDX tumors. Our findings show that NPs can effectively accumulate in tumors after intravenous administration, protecting and delivering mRNA to PDX tumors with different genetic and chemosensitivity backgrounds. These studies offer more clinically relevant modeling systems for mRNA nanotherapies in cancer applications.
Collapse
Affiliation(s)
- Sara El-Sahli
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Emma Durocher
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Yuxia Bo
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
| | - Alexandra Akman
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Christina Sannan
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Melanie Kirkby
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Chiamaka Divine Iroakazi
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Hannah Deyell
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shelby Kaczmarek
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Seung-Hwan Lee
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Umar Iqbal
- Human
Health
Therapeutics Research Centre, National Research Council Canada, Ottawa K1A 0R6, Canada
| | - Marceline Côté
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Lisheng Wang
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa-Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa K1S 5B6, Canada
| |
Collapse
|
23
|
Bai X, Zhang X. Artificial Intelligence-Powered Materials Science. NANO-MICRO LETTERS 2025; 17:135. [PMID: 39912967 PMCID: PMC11803041 DOI: 10.1007/s40820-024-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025]
Abstract
The advancement of materials has played a pivotal role in the advancement of human civilization, and the emergence of artificial intelligence (AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy, environment, and biomedical concerns in a sustainable manner. The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly, energy-efficient, and conducive to human well-being. This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications. We anticipate that AI technology will be extensively utilized in material research and development, thereby expediting the growth and implementation of novel materials. AI will serve as a catalyst for materials innovation, and in turn, advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science. Through the synergistic collaboration between AI and materials science, we stand to realize a future propelled by advanced AI-powered materials.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, People's Republic of China
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China
| | - Xingcai Zhang
- World Tea Organization, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Liu T, Li J, Yin X, Lu F, Zhao H, Wang L, Qin CF. Establishment of enterically transmitted hepatitis virus animal models using lipid nanoparticle-based full-length viral genome RNA delivery system. Gut 2025; 74:467-476. [PMID: 39353724 DOI: 10.1136/gutjnl-2024-332784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Enterically transmitted hepatitis viruses, such as hepatitis A virus (HAV) and hepatitis E virus (HEV), remain notable threats to public health. However, stable and reliable animal models of HAV and HEV infection are lacking. OBJECTIVE This study aimed to establish HAV and HEV infections in multiple small animals by intravenously injecting lipid nanoparticle (LNP)-encapsulated full-length viral RNAs (LNP-vRNA). DESIGN In vitro transcribed and capped full-length HAV RNA was encapsulated into LNP and was intravenously inoculated to Ifnar-/- mice, and HEV RNA to rabbits and gerbils. Virological parameters were determined by RT-qPCR, ELISA and immunohistochemistry. Liver histopathological changes were analysed by H&E staining. Antiviral drug and vaccine efficacy were further evaluated by using the LNP-vRNA-based animal model. RESULTS On intravenous injection of LNP-vRNA, stable viral shedding was detected in the faeces and infectious HAV or HEV was recovered from the livers of the inoculated animals. Liver damage was observed in LNP-vRNA (HAV)-injected mice and LNP-vRNA (HEV)-injected rabbits. Mongolian gerbils were also susceptible to LNP-vRNA (HEV) injections. Finally, the antiviral countermeasures and in vivo function of HEV genome deletions were validated in the LNP-vRNA-based animal model. CONCLUSION This stable and standardised LNP-vRNA-based animal model provides a powerful platform to investigate the pathogenesis and evaluate countermeasures for enterically transmitted hepatitis viruses and can be further expanded to other viruses that are not easily cultured in vitro or in vivo.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
25
|
Hui Y, Liu Y, Yang G, Weng Y, Hou F, Wang X, Fang S, Gao H, Zhao CX. Critical Role of Nanomaterial Mechanical Properties in Drug Delivery, Nanovaccines and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413779. [PMID: 39737655 DOI: 10.1002/adma.202413779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Indexed: 01/01/2025]
Abstract
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked. Tuning the mechanical properties of nanomaterials and designing them for biomedical applications is thus crucial. This review begins by discussing the various mechanical cues in biological processes, including how viruses and cells adjust their mechanical properties throughout their life cycles. Basic concepts and terminology related to NP mechanical properties are introduced. Next, five different groups of nanomaterials with tunable mechanical properties are explored. The review then examines the impact of NP mechanical properties on their interactions in vitro and in vivo, covering tumor-targeted drug delivery, nanovaccines, and emerging applications such as oral and intranasal drug delivery. Current challenges in the field and perspectives on future developments are also provided.
Collapse
Affiliation(s)
- Yue Hui
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yun Liu
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yilun Weng
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fei Hou
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| |
Collapse
|
26
|
Hu C, He X, Gao H, Zhang J. DELIVER: The core principles for the clinic translation of nanomedicines. Acta Pharm Sin B 2025; 15:1196-1198. [PMID: 40177551 PMCID: PMC11959886 DOI: 10.1016/j.apsb.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 04/05/2025] Open
Affiliation(s)
- Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinling He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
27
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
28
|
Wolczyk M, Szymanski J, Trus I, Naz Z, Tame T, Bolembach A, Choudhury N, Kasztelan K, Rappsilber J, Dziembowski A, Michlewski G. 5' terminal nucleotide determines the immunogenicity of IVT RNAs. Nucleic Acids Res 2025; 53:gkae1252. [PMID: 39704128 PMCID: PMC11797061 DOI: 10.1093/nar/gkae1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
In vitro transcription (IVT) is a technology of vital importance that facilitated the production of mRNA therapeutics and drove numerous breakthroughs in RNA biology. T7 polymerase-produced RNAs can begin with either 5'-triphosphate guanosine (5'-pppG) or 5'-triphosphate adenosine (5'-pppA), generating potential agonists for the RIG-I/type I interferon response. While it is established that IVT can yield highly immunogenic double-stranded RNA (dsRNA) via promoterless transcription, the specific contribution of initiating nucleosides to this process has not been previously reported. Our study shows that IVT-derived RNAs containing 5'-pppA are significantly more immunogenic compared with their 5'-pppG counterparts. We observed heightened levels of dsRNAs triggered by IVT with 5'-pppA RNA, activating the RIG-I signaling pathway in cultured cells, as well as in ex vivo and in vivo mouse models, where the IFN-β gene was substituted with the mKate2 fluorescent reporter. Elevated levels of dsRNA were found in both short and long 5'-pppA RNAs, including those of COVID-19 vaccines. These findings reveal the unexpected source of IVT RNA immunogenicity, offering valuable insights for both academic research and future medical applications of this technology.
Collapse
Affiliation(s)
- Magdalena Wolczyk
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Szymanski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Ivan Trus
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Zara Naz
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Tola Tame
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Bolembach
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Nila Roy Choudhury
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, EH4 1QY Edinburgh, UK
| | - Karolina Kasztelan
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Gracjan Michlewski
- International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
29
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Xue L, Xiong X, Zhao G, Molina-Arocho W, Palanki R, Xiao Z, Han X, Yoon IC, Figueroa-Espada CG, Xu J, Gong N, Shi Q, Chen Q, Alameh MG, Vaughan AE, Haldar M, Wang K, Weissman D, Mitchell MJ. Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen. J Am Chem Soc 2025; 147:1542-1552. [PMID: 39742515 DOI: 10.1021/jacs.4c10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as pivotal vehicles for messenger RNA (mRNA) delivery to hepatocytes upon systemic administration and to antigen-presenting cells following intramuscular injection. However, achieving systemic mRNA delivery to non-hepatocytes remains challenging without the incorporation of targeting ligands such as antibodies, peptides, or small molecules. Inspired by comb-like polymeric architecture, here we utilized a multiarm-assisted design to construct a library of 270 dendron-like degradable ionizable lipids by altering the structures of amine heads and multiarmed tails for optimal mRNA delivery. Following in vitro high-throughput screening, a series of top-dendron-like LNPs with high transfection efficacy were identified. These dendron-like ionizable lipids facilitated greater mRNA delivery to the spleen in vivo compared to ionizable lipid analogs lacking dendron-like structure. Proteomic analysis of corona-LNP pellets showed enhancement of key protein clusters, suggesting potential endogenous targeting to the spleen. A lead dendron-like LNP formulation, 18-2-9b2, was further used to encapsulate Cre mRNA and demonstrated excellent genome modification in splenic macrophages, outperforming a spleen-tropic MC3/18PA LNP in the Ai14 mice model. Moreover, 18-2-9b2 LNP encapsulating therapeutic BTB domain and CNC homologue 1 (BACH1) mRNA exhibited proficient BACH1 expression and subsequent Spic downregulation in splenic red pulp macrophages (RPM) in a Spic-GFP transgene model upon intravenous administration. These results underscore the potential of dendron-like LNPs to facilitate mRNA delivery to splenic macrophages, potentially opening avenues for a range of mRNA-LNP therapeutic applications, including regenerative medicine, protein replacement, and gene editing therapies.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William Molina-Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qiangqiang Shi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qinyuan Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Zhang S, Wang H, Cheng Y, Chen C. Zwitterionic polymers with high serum tolerance for intracellular protein delivery. Biomater Sci 2025; 13:477-485. [PMID: 39620696 DOI: 10.1039/d4bm01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Cationic polymers have been widely developed as carriers for intracellular protein delivery, but face tough challenges such as poor serum tolerance and inevitable material toxicity. Here, we present a type of phase-separating polymer with an anionic surface to address the above issues. A cationic dendrimer is first modified with a hydrophobic moiety to obtain a pH-responsive amphiphilic polymer, which is further conjugated with anionic benzenesulphonate at different grafting degrees. The benzenesulphonate modification facilely changes the hydrophobicity of the polymer and reduces the material cytotoxicity. Interestingly, the polymer can co-assemble with cargo proteins to form nanovesicles for intracellular protein delivery. The benzenesulphonate on the polymer surface bolsters the resistance of polymers to serum proteins, allowing the materials to maintain high delivery efficacy in culture media containing abundant serum proteins. This study provides a facile strategy to design materials with high serum tolerance for intracellular protein delivery.
Collapse
Affiliation(s)
- Song Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | - Chao Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| |
Collapse
|
32
|
Sahoo D, Atochina-Vasserman EN, Lu J, Maurya DS, Ona N, Vasserman JA, Ni H, Berkihiser S, Park WJ, Weissman D, Percec V. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA. Biomacromolecules 2025; 26:726-737. [PMID: 39688403 DOI: 10.1021/acs.biomac.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA. Simplified synthesis and assembly processes allow for rapid IAJD screening for discovery. The role of the primary structure of IAJDs in activity indicated, with preliminary investigations, that ionizable amine (IA), sequence, and architecture of hydrophilic and hydrophobic domains are important for in vivo targeted delivery. Here, we study the role of the interconnecting linker length between the IA and the hydrophobic domain of pentaerythritol-based IAJDs. The linker length determines, through inductive effects, the position of the IA and the pKa of the IAJDs and through flexibility, the stability of the DNPs, highlighting their extraordinarily important role in effective targeted delivery.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sydni Berkihiser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
33
|
Mancino C, Franke M, Greco A, Sontam T, Mcculloch P, Corbo C, Taraballi F. RNA therapies for musculoskeletal conditions. J Control Release 2025; 377:756-766. [PMID: 39617171 DOI: 10.1016/j.jconrel.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Musculoskeletal conditions impact 1.71 billion individuals, posing significant challenges due to their complexity, varying clinical courses, and unclear molecular mechanisms. Conventional spectrum treatments often prove inadequate, underscoring the importance of targeted therapies. Recently, RNA-based technologies have emerged as a groundbreaking approach in therapeutics, showing applications in joint related ailments. This perspective aims to examine endeavors exploring the use of RNA-based treatments in both experimental and clinical contexts for addressing joint issues like osteoarthritis, rheumatoid arthritis, and cartilage injuries. The cited studies demonstrate how mRNA can stimulate the production of proteins that aid in controlling inflammation, fostering tissue regeneration and repairing cartilage damage. In summary, this perspective offers an overview of the progress made in mRNA-based technologies for treating related conditions by highlighting favorable findings from preclinical research and encouraging results from clinical trials. With advancements in the field, mRNA therapeutics have the potential to revolutionize treatment approaches for musculoskeletal disorders, bringing renewed hope to the future of musculoskeletal conditions.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Madeline Franke
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Antonietta Greco
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Tarun Sontam
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy; IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20161 Milan, Italy.
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
34
|
Yaremenko AV, Khan MM, Zhen X, Tang Y, Tao W. Clinical advances of mRNA vaccines for cancer immunotherapy. MED 2025; 6:100562. [PMID: 39798545 DOI: 10.1016/j.medj.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response. This review provides a comprehensive overview of recent clinical progress in mRNA cancer vaccines, discusses the innovative strategies being employed to overcome existing hurdles, and explores future directions, including the integration of CRISPR-Cas9 technology and advancements in mRNA design. Our aim is to provide insights into the ongoing research and clinical trials, highlighting the transformative potential of mRNA vaccines in advancing oncology and improving patient outcomes.
Collapse
Affiliation(s)
- Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Development of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
36
|
Wei Y, Kong W, Dong Z, Liu W, Lu X, Yang P, Zhao J, Feng J, Wei Z, Yang J, Qi J. Developing a Ready-to-Use Lipid Nanoparticle Technology for Nucleic Acid Delivery Based on Deep Eutectic Solvents. NANO LETTERS 2025; 25:166-176. [PMID: 39577878 DOI: 10.1021/acs.nanolett.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Microfluidic technology has emerged as a prevalent tool to produce lipid nanoparticles (LNPs) for nucleic acid delivery. However, its wide-ranging application is hindered by specialized, costly equipment and consumables. Herein, a ready-to-use lipid nanoparticle (RULNP) technology employing deep eutectic solvents (DESs) was developed. The DES, consisting of fructose and glycerol ([Fru][Gly]), was able to dissolve lipids and nucleic acids, facilitating the formation of RULNPs by simple physical mixing and hydrating. This innovative approach circumvents the high costs and organic solvents associated with microfluidic methods and offers flexibility in preparation techniques, accommodating various application scenarios. RULNPs exhibited physicochemical properties and plasmid DNA (pDNA) or RNA delivery efficacy comparable to those of LNPs. Mechanistic studies revealed that RULNPs achieved superior cellular uptake compared with LNPs despite exhibiting limited endosomal escape capabilities. Collectively, the DES-based RULNP system presents a rapid and straightforward method for LNP production, potentially revolutionizing nucleic acid delivery.
Collapse
Affiliation(s)
- Yuning Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Weiwen Kong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Zirong Dong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Wenjuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Xinrui Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Peiheng Yang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Jiaxin Zhao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Jiayi Feng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Zibo Wei
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jinlong Yang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| |
Collapse
|
37
|
Lu Y, Li Z, Zhu X, Zeng Q, Liu S, Guan W. Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment. Int J Nanomedicine 2025; 20:181-197. [PMID: 39802380 PMCID: PMC11721825 DOI: 10.2147/ijn.s503780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons. Cyclic dinucleotides (CDNs), produced by cGAS sensing cytoplasmic abnormal DNA, are major intermediate activating molecules in the STING pathway. Nowadays, CDNs and their derivatives have widely worked as powerful STING agonists in tumor immunotherapy. However, their clinical translation is hindered by the negative electrical properties, sensitivity to hydrolytic enzymes, and systemic toxicity. Recently, various CDN delivery systems have made significant progress in addressing these issues, either through monotherapy or in combination with other treatment modalities. This review details recent advances in CDNs-based pharmaceutical development or delivery strategies for enriching CDNs at tumor sites and activating the STING pathway.
Collapse
Affiliation(s)
- Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Zhiyan Li
- Division of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qingwei Zeng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
38
|
Tian S, Zhou S, Wu W, lin Y, Wang T, Sun H, A‐Ni‐Wan A, Li Y, Wang C, Li X, Yu P, Zhao Y. GLP-1 Receptor Agonists Alleviate Diabetic Kidney Injury via β-Klotho-Mediated Ferroptosis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409781. [PMID: 39630101 PMCID: PMC11775532 DOI: 10.1002/advs.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Semaglutide (Smg), a GLP-1 receptor agonist (GLP-1RA), shows renal protective effects in patients with diabetic kidney disease (DKD). However, the exact underlying mechanism remains elusive. This study employs transcriptome sequencing and identifies β-Klotho (KLB) as the critical target responsible for the role of Smg in kidney protection. Smg treatment alleviates diabetic kidney injury by inhibiting ferroptosis in patients, animal models, and HK-2 cells. Notably, Smg treatment significantly increases the mRNA expression of KLB through the activation of the cyclic adenosine monophosphate (cAMP) signaling pathway, specifically through the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Subsequently, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway is activated, reprograming the key metabolic processes of ferroptosis such as iron metabolism, fatty acid synthesis, and the antioxidant response against lipid peroxidation. Suppression of ferroptosis by Smg further attenuates renal inflammation and fibrosis. This work highlights the potential of GLP-1RAs and KLB targeting as promising therapeutic approaches for DKD management.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Department of NephrologyThe Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)TaiyuanShanxi030000China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yao lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Tongdan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Haizhen Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - A‐Shan‐Jiang A‐Ni‐Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| | - Chongyang Wang
- School of Life SciencesPeking UniversityBeijing100871China
| | - Xiaogang Li
- Department of Internal MedicineMayo ClinicRochesterMN55901USA
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Nephropathy & Blood Purification DepartmentThe Second Hospital of Tianjin Medical UniversityTianjin300134China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| |
Collapse
|
39
|
Chen J, Patel A, Mir M, Hudock MR, Pinezich MR, Guenthart B, Bacchetta M, Vunjak-Novakovic G, Kim J. Enhancing Cytoplasmic Expression of Exogenous mRNA Through Dynamic Mechanical Stimulation. Adv Healthc Mater 2025; 14:e2401918. [PMID: 39440644 DOI: 10.1002/adhm.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Ionizable lipid nanoparticles (LNPs) are pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, this work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Aneri Patel
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Brandon Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94304, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
40
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
41
|
Pinyon JL, von Jonquieres G, Mow SL, Abed AA, Lai K, Manoharan M, Crawford EN, Xue SH, Smith‐Moore S, Caproni LJ, Milsom S, Klugmann M, Lovell NH, Housley GD. Vector-Free Deep Tissue Targeting of DNA/RNA Therapeutics via Single Capacitive Discharge Conductivity-Clamped Gene Electrotransfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406545. [PMID: 39601152 PMCID: PMC11744645 DOI: 10.1002/advs.202406545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Viral vector and lipid nanoparticle based gene delivery have limitations around spatiotemporal control, transgene packaging size, and vector immune reactivity, compromising translation of nucleic acid (NA) therapeutics. In the emerging field of DNA and particularly RNA-based gene therapies, vector-free delivery platforms are identified as a key unmet need. Here, this work addresses these challenges through gene electrotransfer (GET) of "naked" polyanionic DNA/mRNA using a single needle form-factor which supports "electro-lens" based compression of the local electric field, and local control of tissue conductivity, enabling single capacitive discharge minimal charge gene delivery. Proof-of-concept studies for "single capacitive discharge conductivity-clamped gene electrotransfer" (SCD-CC-GET) deep tissue delivery of naked DNA and mRNA in the mouse hindlimb skeletal muscle achieve stable (>18 month) expression of luciferase reporter synthetic DNA, and mRNA encoding the reporter yield rapid onset (<3 h) high transient expression for several weeks. Delivery of DNAs encoding secreted alkaline phosphatase and Cal/09 influenza virus hemagglutinin antigen generate high systemic circulating recombinant protein levels and antibody titres. The findings support adoption of SCD-CC-GET for vaccines and immunotherapies, and extend the utility of this technology to meet the demand for efficient vector-free, precision, deep tissue delivery of NA therapeutics.
Collapse
Affiliation(s)
- Jeremy L. Pinyon
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
- Charles Perkins CentreSchool of Medical SciencesFaculty of Medicine and HealthUniversity of SydneyCamperdownNSW2006Australia
| | - Georg von Jonquieres
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Stephen L. Mow
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Amr Al Abed
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Keng‐Yin Lai
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Mathumathi Manoharan
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Edward N. Crawford
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Stanley H. Xue
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | | | | | - Sarah Milsom
- Touchlight Genetics LtdLower Sunbury RoadHamptonUKTW12 2ER
| | - Matthias Klugmann
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Nigel H. Lovell
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Gary D. Housley
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| |
Collapse
|
42
|
Huang Y, Zhang Y, Wang Z, Miao L, Tan P, Guan Y, Ran Y, Feng X, Wang Y, Guo Y, Guo X. Modified mRNA-based gene editing reveals sarcomere-based regulation of gene expression in human induced-pluripotent stem cell-derived cardiomyocytes. Int Immunopharmacol 2024; 143:113378. [PMID: 39423657 DOI: 10.1016/j.intimp.2024.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.
Collapse
Affiliation(s)
- Yuqing Huang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yueyang Zhang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pingping Tan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Guan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
43
|
Gehrke L, Gonçalves VDR, Andrae D, Rasko T, Ho P, Einsele H, Hudecek M, Friedel SR. Current Non-Viral-Based Strategies to Manufacture CAR-T Cells. Int J Mol Sci 2024; 25:13685. [PMID: 39769449 PMCID: PMC11728233 DOI: 10.3390/ijms252413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications.
Collapse
Affiliation(s)
- Leon Gehrke
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Vasco Dos Reis Gonçalves
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Dominik Andrae
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamas Rasko
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Patrick Ho
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, 97070 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
44
|
Manturthi S, El-Sahli S, Bo Y, Durocher E, Kirkby M, Popatia A, Mediratta K, Daniel R, Lee SH, Iqbal U, Côté M, Wang L, Gadde S. Nanoparticles Codelivering mRNA and SiRNA for Simultaneous Restoration and Silencing of Gene/Protein Expression In Vitro and In Vivo. ACS NANOSCIENCE AU 2024; 4:416-425. [PMID: 39713729 PMCID: PMC11659891 DOI: 10.1021/acsnanoscienceau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
RNA-based agents (siRNA, miRNA, and mRNA) can selectively manipulate gene expression/proteins and are set to revolutionize a variety of disease treatments. Nanoparticle (NP) platforms have been developed to deliver functional mRNA or siRNA inside cells to overcome their inherent limitations. Recent studies have focused on siRNA to knock down proteins causing drug resistance or mRNA technology to introduce tumor suppressors. However, cancer needs multitargeted approaches to selectively manipulate multiple gene expressions/proteins. In this proof-of-concept study, we developed NPs containing Luc-mRNA and siRNA-GFP as model agents ((M+S)-NPs) and showed that NPs can simultaneously deliver functional mRNA and siRNA and impact the expression of two genes/proteins in vitro. Additionally, after in vivo administration, (M+S)-NPs successfully knocked down GFP while introducing luciferase into a TNBC mouse model, indicating that our NPs have the potential to develop RNA-based anticancer therapeutics. These studies pave the way to develop RNA-based, multitargeted approaches for complex diseases like cancer.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
| | - Emma Durocher
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Melanie Kirkby
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alyanna Popatia
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Redaet Daniel
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Seung-Hwan Lee
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Umar Iqbal
- Human Health
Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Marceline Côté
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H
8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H
8L6, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa-Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa, ON K1S
5B6, Canada
| |
Collapse
|
45
|
Waaga-Gasser AM, Böldicke T. Genetically Engineered T Cells and Recombinant Antibodies to Target Intracellular Neoantigens: Current Status and Future Directions. Int J Mol Sci 2024; 25:13504. [PMID: 39769267 PMCID: PMC11727813 DOI: 10.3390/ijms252413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling. In contrast to the use of recombinant T cells, anti-neopeptide MHC (pMHC) antibodies and intrabodies neutralizing intracellular neoantigens can be more easily applied to cancer patients. However, different limitations should be considered, such as the loss of neoantigens, the modification of antigen peptide presentation, tumor heterogenicity, and the immunosuppressive activity of the tumor environment. The simultaneous application of immune checkpoint blocking antibodies and of CRISPR/Cas9-based genome editing tools to engineer different recombinant T cells with enhanced therapeutic functions could make T cell therapies more efficient and could pave the way for its routine clinical application.
Collapse
Affiliation(s)
- Ana Maria Waaga-Gasser
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
46
|
Zhang C, Teng Y, Bai X, Tang M, Stewart W, Chen JJ, Xu X, Zhang XQ. Prevent and Reverse Metabolic Dysfunction-Associated Steatohepatitis and Hepatic Fibrosis via mRNA-Mediated Liver-Specific Antibody Therapy. ACS NANO 2024; 18:34375-34390. [PMID: 39639502 DOI: 10.1021/acsnano.4c13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Chronic exposure of the liver to multiple insults culminates in the development of metabolic dysfunction-associated steatohepatitis (MASH), a complicated metabolic syndrome characterized by hepatic steatosis and inflammation, typically accompanied by progressive fibrosis. Despite extensive clinical evaluation, there remain challenges in MASH drug development, which are primarily due to unsatisfactory efficacy and limited specificity. Strategies to address the unmet medical need for MASH with fibrosis before it reaches the irreversible stage of decompensated cirrhosis are critically needed. Herein, we developed an mRNA-mediated liver-specific antibody therapy for MASH and hepatic fibrosis using a targeted lipid nanoparticle (LNP) delivery system. When encapsulated with IL-11 single-chain variable fragment (scFv)-encoded mRNA, the targeted AA3G LNP (termed mIL11-scFv@AA3G) specifically accumulated in the liver and secreted IL-11 scFv to neutralize overexpressed IL-11 in hepatic environments, thus inhibiting the IL-11 signaling pathway in hepatocytes and hepatic stellate cells. As a preventative regimen, systemic administration of mIL11-scFv@AA3G reversed MASH and prevented the progression to fibrosis in a murine model of early MASH. Notably, mIL11-scFv@AA3G exhibited superior efficacy compared to systemic administration of IL-11 scFv alone, attributed to the sustained antibody expression in the liver, which lasted 18-fold longer than that of IL-11 scFv. When tested in the MASH model with fibrosis, mIL11-scFv@AA3G effectively ameliorated steatosis and resolved fibrosis and inflammation. These findings present a versatile LNP platform targeting liver cell subtypes for the sustained expression of therapeutic antibodies to treat MASH and fibrosis. The developed mRNA-mediated liver-specific antibody therapy offers a promising approach for addressing MASH and holds the potential for expansion to various other diseases.
Collapse
Affiliation(s)
- Chenshuang Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - William Stewart
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jake Jinkun Chen
- Division of Oral Biology, School of Dental Medicine and Tufts University, Boston, Massachusetts 02111, United States
- Department of Genetics, Molecular and Cell Biology, School of Medicine, Tufts University, Boston, Massachusetts 02111, United States
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
47
|
von Fritschen M, Janosz E, Blume C, Jägle U, Keating K, Schneider CK. What's in a word? Defining "gene therapy medicines". Mol Ther Methods Clin Dev 2024; 32:101348. [PMID: 39502574 PMCID: PMC11535375 DOI: 10.1016/j.omtm.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gene therapy medicinal products (GTMPs) have emerged as a transformative class of medicines. Defining what a certain class of medicines encompasses, and what it does not, is key, with ample implications and consequential regulatory requirements. In April 2023, the European Commission proposed new pharmaceutical legislation safeguarding the public health within the European Union with a new, broader definition of GTMP, including genome editing medicines and nucleic acids of either source, regulating, replacing, or adding a genetic sequence that mediates its effect by transcription or translation. This definition is all-encompassing for any "genetic" intervention and is agnostic to mechanism of action, duration of action, location of action, and associated risk. Here, we take this as a paradigm to discuss how terminology and definitions are more than just words and can have meaningful regulatory, scientific, and public health implications.
Collapse
Affiliation(s)
- Maren von Fritschen
- Moderna Netherlands, Claude Debussylaan 7, 1082 MC Amsterdam Zuid, the Netherlands
| | - Ewa Janosz
- Cencora PharmaLex, Basler Strasse 7, 61352 Bad Homburg, Germany
| | | | - Ulrike Jägle
- CureVac SE, Leipziger Strasse 35, 65191 Wiesbaden, Germany
| | - Karen Keating
- Moderna Netherlands, Claude Debussylaan 7, 1082 MC Amsterdam Zuid, the Netherlands
| | - Christian K. Schneider
- Cencora PharmaLex, Basler Strasse 7, 61352 Bad Homburg, Germany
- TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| |
Collapse
|
48
|
Chen Z, Yang Y, Qiu X, Zhou H, Wang R, Xiong H. Crown-like Biodegradable Lipids Enable Lung-Selective mRNA Delivery and Dual-Modal Tumor Imaging In Vivo. J Am Chem Soc 2024; 146:34209-34220. [PMID: 39586009 DOI: 10.1021/jacs.4c14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Systemic mRNA delivery to specific cell types remains a great challenge. We herein report a new class of crown-like biodegradable ionizable lipids (CBILs) for predictable lung-selective mRNA delivery by leveraging the metal coordination chemistry. Each CBIL contains an impressive crown-like amino core that coordinates with various metal ions such as Zn2+ and further regulates the in vivo organ-targeting behavior of lipid nanoparticles (LNPs). The representative CBIL (Zn-9C-SCC-10)-formulated LNPs could exclusively deliver mRNA to the lung after systemic administration. Notably, following intravenous administration of 0.2 mg kg-1 Cre mRNA, Zn-9C-SCC-10 LNPs enabled the highly efficient gene editing of all lung epithelial and endothelial cells up to 43 and 61%, respectively, outperforming the current state-of-the-art LNPs in lung epithelial cell delivery. Moreover, compared to DLin-MC3-DMA LNPs with the addition of cationic lipid (DOTAP), our approach yielded a 44.6-fold enhancement in pulmonary mRNA expression and significantly improved biosafety in vivo. Taking advantage of paramagnetic gadolinium ion, Gd-12C-SCC-10 LNPs allowed the potent mRNA delivery to cancer cells and successfully illuminated lung tumors by magnetic and bioluminescent dual-mode imaging, facilitating the early discovery and diagnosis of lung cancer. This work will open a new avenue to rationally design predictable LNPs, as well as address the major challenges of mRNA delivery to specific cells in the lung tissues for treating a wide variety of diseases.
Collapse
Affiliation(s)
- Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinyu Qiu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Han Y, Wang M, Chen Y, Ouyang D, Zheng Y, Hu Y. Profiling patent compounds in lipid nanoparticle formulations of siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102362. [PMID: 39554995 PMCID: PMC11565460 DOI: 10.1016/j.omtn.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as a prominent delivery system for nucleic acid drugs, attracting significant attention, especially through the successful development of several commercial products. As a key component in LNPs, cationic lipids have long served as a key technical barrier to block competitors by building up a complex patent thicket. However, there have been few studies as yet that have comprehensively analyzed the patented compounds in LNP formulations, despite a large number of technical reviews and original articles. In this context, this study focuses on analyzing the macroscopic landscapes and microscopic molecular characteristics of LNP patents, aiming to provide a valuable reference for researchers and developers in making informed technological and commercial decisions. By mining 2,994 patents, 265 formulas, 7,674 compounds, and 28,789 fragments, this work sketches the empirical golden ratio of lipid materials in LNP formulation, discloses the advanced technology in the formulation, characterizes high-frequency fragments of heads, linkers and tails in both novel cationic lipids as well as targeting lipids, and establishes a virtual focus library of LNP materials.
Collapse
Affiliation(s)
- Yunfeng Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Mengyang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- DPM, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- DPS, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China
- DPM, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
50
|
Fu T, Zhou B, Li Y, Liu W, Xie Y, Mo Z, Yin F, Wang Y, Fang K, Fang Y, Xiong Z, Yu K, Le A. Innovative Dual mRNA-Lipid Nanoparticle Therapy Targeting CRHBP and CFHR3 for Enhanced Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13183-13199. [PMID: 39664759 PMCID: PMC11633302 DOI: 10.2147/ijn.s498065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a deadly disease requiring the identification of new therapeutic targets and strategies. Methods This study identified genes linked to HCC progression via differential analysis. Key genes were identified through univariate and multivariate Cox regression analysis. The biological effects of co-expressed CRHBP and CFHR3 were evaluated in vitro. mRNAs encoding CRHBP and CFHR3 were encapsulated in lipid nanoparticles (LNPs), with the addition of SP94 peptide on the LNPs surface to enhance targeting. The therapeutic efficacy of dual-mRNA LNPs was evaluated in HCC cells and mouse models. Results CRHBP and CFHR3 were closely associated with HCC progression. Low expression of CRHBP (P < 0.01, HR = 1.931 [1.174-3.175]) and CFHR3 (P < 0.05, HR = 1.755 [1.066-2.890]) was identified as a poor prognostic factor for HCC. The risk score model combining CRHBP and CFHR3 demonstrated superior predictive power (P < 0.001, HR = 2.935 [1.768-4.872]). Co-expression of CRHBP and CFHR3 significantly inhibited the malignant biological functions of HCC cells. Treatment with SP94 peptide-modified dual-mRNA LNPs markedly suppressed HCC tumor growth and exhibited excellent biocompatibility and safety. Conclusion Our study proposes a dual-targeted therapeutic strategy for HCC, which may represent a promising treatment approach.
Collapse
Affiliation(s)
- Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Boxuan Zhou
- Department of Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yingliang Li
- Department of Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Wei Liu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Zhaohong Mo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanchang, People’s Republic of China
| | - Fang Yin
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yu Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kang Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yangyang Fang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kuai Yu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|