1
|
Wang ST, Li L, Yang Q, Wang W, Wang LP, Zhang SD, Zhang GF. Biomineralization mechanisms in the estuarine oyster (Crassostrea ariakensis): Unveiling the adaptive potential of mollusks in response to rapid climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126411. [PMID: 40355070 DOI: 10.1016/j.envpol.2025.126411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Rapid climate change is often considered detrimental to biomineralization in mollusks; however, accumulating contradictory evidence necessitates reevaluation of the concept. Estuaries, characterized by fluctuating pH levels and limited calcifying substrate availability, are generally considered unfavorable for biomineralization. Understanding how biomineralization evolves in estuarine environments is essential for assessing adaptive potential and identifying mechanisms that could support molluscan adaptation to future environmental change. Phenotypic analyses, multi-omics approaches, and functional assays were employed within a common garden design to investigate the mechanisms underlying the estuarine oyster (Crassostrea ariakensis) adaptation to estuarine environments, using Pacific oysters (Crassostrea gigas), which inhabit non-estuarine areas, as a control. Compared with C. gigas, C. ariakensis exhibited superior biomineralization capacity, evidenced by heavier shells with increased density, enhanced resistance to dissolution, and greater toughness. Ion homeostasis and high expression of classical-pathway mantle secretomes were identified as compensatory mechanisms for the biomineralization adaptation of C. ariakensis. The novel C. ariakensis C-type lectin, a species-specific classical-pathway shell matrix secreted protein (SMSP), demonstrated a high capacity to accelerate the CaCO3 precipitation rate of calcite particles, thereby underscoring the essential roles of species-specific SMSPs in estuarine adaptations. This study provides novel insights into the adaptive potential of biomineralization in mollusks under rapid climate change. Analyzing biomineralization in estuarine organisms is critical for anticipating the emergent impacts of climate change.
Collapse
Affiliation(s)
- Shen-Tong Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| | - Qi Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Lu-Ping Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shou-Du Zhang
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China; Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Guo-Fan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China; Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| |
Collapse
|
2
|
Huang Y, Zhang Z, Yang T, Zhang Y, Cheng X, Kang Y, Guang Y, Zou Y, Zhang X, Luo Z, Chen J, Cheng W. Gemini Molecular Assembly Colocalization (GOAL): Accurate and Efficient Fusion Genotyping for Chronic Myeloid Leukemia Intelligent Diagnosis. SMALL METHODS 2025:e2500194. [PMID: 40226864 DOI: 10.1002/smtd.202500194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Indexed: 04/15/2025]
Abstract
RNA small fragment aberrances are associated with diseases by mediating a range of pathogenesis and pathological processes. DNA assembly-based barcoding and amplification technologies are currently being actively explored for RNA in situ analysis. However, these modular integrated DNA assembly processes are inevitably accompanied with false positive signals caused by unexpected misassembly. Completely avoiding this phenomenon through simple and universal methods is challenging. Here, a novel dual-input to dual-output in situ analysis paradigm is proposed, aiming to improve target specificity through co-recognition (dual-input) and to eliminate false positive misassembly through fluorescent signal co-localization (dual-output). Based on this paradigm, Gemini molecular assembly co-localization (GOAL) in situ imaging system is launched to accurately distinguish the fusion gene subtypes associated with chronic myeloid leukemia (CML), and to precisely report the proportion of minimum residual cancer cells in clinical samples by intelligent co-localization counting and sorting. GOAL achieves highly sensitive and accurate genotyping recognition of 0.01% CML tumor cells and realizes fully automatic rapid diagnosis with a customized Intelligent Cell Image Sorter (iCis). iCis-assisted GOAL represents an innovative and versatile molecular toolkit for accurate, rapid, user-friendly, and professional-independent profiling of cancer cells with RNA small fragment aberrances, providing efficient clinical decision support for disease diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zixin Zhang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxue Cheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, P.R. China
| | - Yuexi Kang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yujie Guang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuting Zou
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoying Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
3
|
Lin Y, Hou J, Li B, Shu W, Wan J. Advancements in Nanomaterials and Molecular Probes for Spatial Omics. ACS NANO 2025; 19:11604-11624. [PMID: 40125910 DOI: 10.1021/acsnano.4c18470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Spatial omics is emerging as a focus of life sciences because of its applications in investigating the molecular mechanisms of cancer, mapping cellular distributions, and revealing specific cellular ecological niches. Notably, the in-depth acquisition of spatial omics information relies on highly sensitive, high-resolution, and high-throughput biological analysis tools and techniques. However, conventional methods of omics data acquisition still suffer from some drawbacks such as limited-resolution and low-throughput and are difficult to adapt directly to the collection of high-quality spatial omics data. Recently, an increasing number of advanced nanomaterials and molecular probes are employed in spatial omics due to their excellent optoelectronic properties, biocompatibility, and multifunction. These well-designed innovative nanoscaffolds successfully enhance the key parameters of spatial omics and, thus, increase the spatial resolution, detection sensitivity, and detection throughput. This review summarizes the design and application of functional nanoscaffolds for spatial omics in recent years, with a particular emphasis on nanomaterials and molecular probes. We believe that the present review can inspire and motivate researchers in designing and selecting appropriate materials and probes for high-quality spatial omics, thus promoting the development of spatial omics and life sciences.
Collapse
Affiliation(s)
- Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jiaxin Hou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Bin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Li J, Jiang L, Wu H, Zou Y, Zhu S, Huang Y, Hu X, Bai H, Li Y, Zou Y, Ding S, Cheng W. Self-contained G-quadruplex/hemin DNAzyme: a superior ready-made catalyst for in situ imaging analysis. Nucleic Acids Res 2025; 53:gkaf227. [PMID: 40156860 PMCID: PMC11952962 DOI: 10.1093/nar/gkaf227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
The G4 DNAzyme holds significant potential for applications in bioanalysis and determination owing to its peroxidase mimetic activity and DNA programmability. However, its clinical practicability is constrained by limited catalytic activity and supplementary assembly requirements, attributed to weak π-π stacking, deficient active-site components, and ion-dependent assembly mechanisms. Thus, we constructed a highly active self-contained intramolecular G4/hemin DNAzyme through the direct covalent cross-linking of catalytic core components involving the hemin prosthetic group, G4 pocket, and distal ligand-like assistant nucleotide (adenine or cytosine). Detailed investigations of the catalytic efficiency and mechanism confirmed the formation of a compact catalytic active center through covalent bonding, which enhanced the catalysis to a stage comparable to that of horseradish peroxidase in localized surroundings. The superior ready-made catalytic modularity with programmability enabled the highly sensitive in situ imaging analysis of HER2 protein in breast cancer specimens. This study provides a powerful tool for disease marker imaging detection with high sensitivity and immediate availability.
Collapse
Affiliation(s)
- Jia Li
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanxin Jiang
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Yuting Zou
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shasha Zhu
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Huang
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinping Hu
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Huili Bai
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Li
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuan Zou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Hui T, Zhou J, Yao M, Xie Y, Zeng H. Advances in Spatial Omics Technologies. SMALL METHODS 2025:e2401171. [PMID: 40099571 DOI: 10.1002/smtd.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Rapidly developing spatial omics technologies provide us with new approaches to deeply understanding the diversity and functions of cell types within organisms. Unlike traditional approaches, spatial omics technologies enable researchers to dissect the complex relationships between tissue structure and function at the cellular or even subcellular level. The application of spatial omics technologies provides new perspectives on key biological processes such as nervous system development, organ development, and tumor microenvironment. This review focuses on the advancements and strategies of spatial omics technologies, summarizes their applications in biomedical research, and highlights the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease.
Collapse
Affiliation(s)
- Tianxiao Hui
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Zhou
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Muchen Yao
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yige Xie
- School of Nursing, Peking University, Beijing, 100871, China
| | - Hu Zeng
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Ullrich S, Nadelson I, Krebs S, Blum H, Leonhardt H, Solovei I. Co-transcriptional splicing is delayed in the highly expressed thyroglobulin gene. J Cell Sci 2025; 138:jcs263872. [PMID: 40105117 PMCID: PMC11959613 DOI: 10.1242/jcs.263872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Transcription of the majority of eukaryotic genes is accompanied by splicing. The timing of splicing varies significantly between introns, transcripts, genes and species. Although quick co-transcriptional intron removal has been demonstrated for many mammalian genes, most splicing events do not occur immediately after intron synthesis. In this study, we utilized the highly expressed Tg gene, which forms exceptionally long transcription loops, providing a convenient model for studying splicing dynamics using advanced light microscopy. Using single-cell oligopainting, we observed a splicing delay occurring several tens of kilobases downstream of a transcribed intron, a finding supported by standard cell population analyses. We speculate that this phenomenon is due to the abnormally high transcriptional rate of the Tg gene, which might lead to a localized deficiency in splicing factors and, consequently, delayed spliceosome assembly on thousands of nascent transcripts decorating the gene. Additionally, we found that, in contrast to what is seen for short introns (<10 kb), the long Tg intron (>50 kb) is spliced promptly, providing further support for the idea that intron length might modulate splicing speed.
Collapse
Affiliation(s)
- Simon Ullrich
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Iliya Nadelson
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, 81377 Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Faculty of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Avilés EC, Wang SK, Patel S, Cordero S, Shi S, Lin L, Kefalov VJ, Goodrich LV, Cepko CL, Xue Y. ERG responses to high-frequency flickers require FAT3 signaling in mouse retinal bipolar cells. J Gen Physiol 2025; 157:e202413642. [PMID: 39903280 PMCID: PMC11793021 DOI: 10.1085/jgp.202413642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/17/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Vision is initiated by the reception of light by photoreceptors and subsequent processing via downstream retinal neurons. Proper circuit organization depends on the multifunctional tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal lamination. Here, we investigated the retinal function of Fat3 mutant mice and found decreases in both electroretinography and perceptual responses to high-frequency flashes. These defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in bipolar cell subtypes that also express FAT3. The role of FAT3 in the response to high temporal frequency flashes depends upon its ability to transduce an intracellular signal. Mechanistically, FAT3 binds to the synaptic protein PTPσ intracellularly and is required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors. These findings expand the repertoire of FAT3's functions and reveal its importance in bipolar cells for high-frequency light response.
Collapse
Affiliation(s)
- Evelyn C. Avilés
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sean K. Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarina Patel
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sebastian Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shuxiang Shi
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lucas Lin
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute and Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
| | - Lisa V. Goodrich
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Lingang Laboratory, Shanghai, China
| |
Collapse
|
8
|
Merino MF, Cosma MP, Neguembor MV. Super-resolving chromatin in its own terms: Recent approaches to portray genomic organization. Curr Opin Struct Biol 2025; 92:103021. [PMID: 40037101 DOI: 10.1016/j.sbi.2025.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Chromatin organizes in a highly hierarchical manner that affects gene regulation. While many discoveries in the field have been driven by genomic techniques, super-resolution microscopy has proved to be an essential method to fully understand folding in single cells. In this article we summarize the main strategies to probe chromatin architecture using single-molecule localization microscopy and some of the key findings this has enabled. We specifically focus on the recent developments in techniques using oligonucleotide libraries and how their versatility drives multiplexing. These multiplexed libraries allow to super-resolve architectural proteins, DNA folding and transcription. We compare the latest results in this field and reflect about the future of these methods.
Collapse
Affiliation(s)
- Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona, 08028, Spain.
| |
Collapse
|
9
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Berleant JD, Banal JL, Rao DK, Bathe M. Enabling global-scale nucleic acid repositories through versatile, scalable biochemical selection from room-temperature archives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.04.12.24305660. [PMID: 38699348 PMCID: PMC11064994 DOI: 10.1101/2024.04.12.24305660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Conventional collection, preservation, and retrieval of nucleic acid specimens, particularly unstable RNA, require costly cold-chain infrastructure and rely on inefficient robotic sample handling, hindering downstream analyses. These generate critical bottlenecks for global pathogen surveillance and genomic biobanking efforts, prohibiting large-scale nucleic acid sample collection and analyses that are needed to empower pathogen tracing, as well as rare disease diagnostics1. Here, we introduce a scalable nucleic acid storage system that enables rapid and precise retrieval on pooled nucleic acid samples-stored at room-temperature with minimal physical footprint2,3-using versatile database-like queries on barcoded, encapsulated samples. Queries can incorporate numerical ranges, categorical filters, and combinations thereof, which is a significant advancement beyond previous demonstrations limited to single-sample retrieval or Boolean classifiers. We apply our system to a pool of ninety-six mock SARS-CoV-2 genomic samples identified with theoretical patient data including patient age, geographic location, and diagnostic state, allowing rapid, multiplexed nucleic acid sample retrieval in a scalable manner to empower genomic analyses. By avoiding expensive and cumbersome freezer storage and retrieval systems, our approach in principle scales to millions of samples without loss of fidelity or throughput, thereby supporting the development of large-scale pathogen and genomic repositories in under-resourced or isolated regions of the US and worldwide.
Collapse
Affiliation(s)
- Joseph D. Berleant
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Present address: Cache DNA, Inc. 733 Industrial Rd., San Carlos, CA 94070 USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139 USA
| |
Collapse
|
12
|
Mei J, Luo Z, Cai Y, Wan R, Qian Z, Chu J, Sun Y, Shi Y, Jiang Y, Zhang Y, Yin Y, Chen S. Altered Atlas of Exercise-Responsive MicroRNAs Revealing miR-29a-3p Attacks Armored and Cold Tumors and Boosts Anti-B7-H3 Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0590. [PMID: 39845707 PMCID: PMC11751204 DOI: 10.34133/research.0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers. Here, we reported that miR-29a-3p was the exercise-responsive miRNA, which was lowly expressed in tumor tissues and associated with unfavorable prognosis in BRCA. Mechanistically, miR-29a-3p targeted macrophages, fibroblasts, and tumor cells to down-regulate B7 homolog 3 (B7-H3) expression. Single-cell RNA sequencing (scRNA-seq) and cytometry by time-of-flight (CyTOF) demonstrated that miR-29a-3p attacked the armored and cold tumors, thereby shaping an immuno-hot tumor microenvironment (TME). Translationally, liposomes were developed and loaded with miR-29a-3p (lipo@miR-29a-3p), and lipo@miR-29a-3p exhibited promising antitumor effects in a mouse model with great biocompatibility. In conclusion, we uncovered that miR-29a-3p is a critical exercise-responsive miRNA, which attacked armored and cold tumors by inhibiting B7-H3 expression. Thus, miR-29a-3p restoration could be an alternative strategy for antitumor therapy.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yun Cai
- Department of Central Laboratory, Changzhou Jintan First People’s Hospital, Jiangsu University, Changzhou 213200, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Zhiwen Qian
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Ying Jiang
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yan Zhang
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Curantz C, Doody C, Horkan HR, Krasovec G, Weavers PK, DuBuc TQ, Frank U. A positive feedback loop between germ cells and gonads induces and maintains sexual reproduction in a cnidarian. SCIENCE ADVANCES 2025; 11:eadq8220. [PMID: 39772697 PMCID: PMC11708894 DOI: 10.1126/sciadv.adq8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The fertile gonad includes cells of two distinct developmental origins: the somatic mesoderm and the germ line. How somatic and germ cells interact to develop and maintain fertility is not well understood. Here, using grafting experiments and transgenic reporter animals, we find that a specific part of the gonad-the germinal zone-acts as a sexual organizer to induce and maintain de novo germ cells and somatic gonads in the cnidarian Hydractinia symbiolongicarpus. Germ cells express a member of the transforming growth factor-β family, Gonadless (Gls), that induces gonad morphogenesis. Loss of Gls resulted in animals lacking gonads but having nonproliferative germ cells. We propose that primary germ cells drive gonad development though Gls secretion. The germinal zone in the newly formed gonad provides positive feedback to induce secondary germ cells by activating Tfap2 in resident pluripotent stem cells. The contribution of germ cell signaling to the patterning of somatic gonadal tissue may be a general animal feature.
Collapse
Affiliation(s)
- Camille Curantz
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Ciara Doody
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Helen R. Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris F-75013, France
| | - Paris K. Weavers
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q. DuBuc
- Department of Biology, Queens College, The City University of New York, 6530 Kissena Blvd., Flushing, NY 11367, USA
- Biology and Biochemistry PhD Programs, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
14
|
McIntyre ABR, Tschan AB, Meyer K, Walser S, Rai AK, Fujita K, Pelkmans L. Phosphorylation of a nuclear condensate regulates cohesion and mRNA retention. Nat Commun 2025; 16:390. [PMID: 39755675 DOI: 10.1038/s41467-024-55469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of mRNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing, we characterize the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm, particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increases with nuclear speckle cohesion, the ratios of most mRNA species to each other are constant, indicating non-selective retention. We further find that cellular responses to heat shock, oxidative stress, and hypoxia include changes to the phosphorylation and cohesion of nuclear speckles and to mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Adrian Beat Tschan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Systems Biology PhD program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Severin Walser
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Keisuke Fujita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Fukuda A, Sato K, Fujimori C, Yamashita T, Takeuchi A, Ohuchi H, Umatani C, Kanda S. Direct photoreception by pituitary endocrine cells regulates hormone release and pigmentation. Science 2025; 387:43-48. [PMID: 39745961 DOI: 10.1126/science.adj9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca2+ imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca2+ during short-wavelength light exposure. Moreover, we identified Opn5m as the key molecule that drives this response. Knocking out opn5m attenuated melanogenesis by reducing tyrosinase expression in the skin. Our findings suggest a mechanism in which direct reception of short-wavelength light by pituitary melanotrophs triggers a pathway that might contribute to protection from ultraviolet radiation in medaka.
Collapse
Affiliation(s)
- Ayaka Fukuda
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chika Fujimori
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Atsuko Takeuchi
- Division of Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
16
|
Kocabey S, Cattin S, Gray I, Rüegg C. Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry. Biosens Bioelectron 2025; 267:116839. [PMID: 39369516 DOI: 10.1016/j.bios.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The detection of cancer-associated nucleic acids and mutations through liquid biopsy has emerged as a highly promising non-invasive approach for early cancer detection and monitoring. In this study, we report the development of primer exchange reaction (PER) based signal amplification strategy that enables the rapid, sensitive and specific detection of nucleic acids bearing cancer specific single nucleotide mutations using flow cytometry. Using micrometer size beads as support for immobilizing oligonucleotides and programmable PER assembly for target oligonucleotide recognition and fluorescence signal amplification, we demonstrated the versatile detection of target nucleic acids including KRAS oligonucleotide, fragmented mRNAs, and miR-21. Moreover, our detection system can discriminate single base mutations frequently occurred in cancer-associated genes including KRAS, PIK3CA and P53 from cell extracts and circulating tumor DNAs (ctDNAs). The detection is highly sensitive, with a limit of detection down to 27 fM without pre-amplification. In view of a clinical application, we demonstrate the detection of single mutations after extraction and pre-amplification of ctDNAs from the plasma of breast cancer patients. Importantly, our detection strategy enabled the detection of single KRAS mutation even in the presence of 1000-fold excess of wild type (WT) DNA using multi-color flow cytometry detection approach. Overall, our strategy holds immense potential for clinical applications, offering significant improvements for early cancer detection and monitoring.
Collapse
Affiliation(s)
- Samet Kocabey
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Sarah Cattin
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland; Cell Analytics Facility, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland
| | - Isabelle Gray
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
17
|
Defard T, Desrentes A, Fouillade C, Mueller F. Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example. Methods Mol Biol 2025; 2864:77-105. [PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spatial transcriptomics methods provide insight into the cellular heterogeneity and spatial architecture of complex, multicellular systems. Combining molecular and spatial information provides important clues to study tissue architecture in development and disease. Here, we present a comprehensive do-it-yourself (DIY) guide to perform such experiments at reduced costs leveraging open-source approaches. This guide spans the entire life cycle of a project, from its initial definition to experimental choices, wet lab approaches, instrumentation, and analysis. As a concrete example, we focus on tertiary lymphoid structures (TLS), which we use to develop typical questions that can be addressed by these approaches.
Collapse
Affiliation(s)
- Thomas Defard
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | - Auxence Desrentes
- UMRS1135 Sorbonne University, Paris, France
- INSERM U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre for Immunology and Microbial Infections (CIMI), Paris, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France.
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France.
| |
Collapse
|
18
|
Attar S, Browning VE, Krebs M, Liu Y, Nichols EK, Tsue AF, Shechner DM, Shendure J, Lieberman JA, Schweppe DK, Akilesh S, Beliveau BJ. Efficient and highly amplified imaging of nucleic acid targets in cellular and histopathological samples with pSABER. Nat Methods 2025; 22:156-165. [PMID: 39548245 DOI: 10.1038/s41592-024-02512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate covisualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide, enabling the localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets in cultured cells and FFPE specimens. Furthermore, pSABER can achieve fivefold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.
Collapse
Affiliation(s)
- Sahar Attar
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Hong F. Programmable DNA Reactions for Advanced Fluorescence Microscopy in Bioimaging. SMALL METHODS 2024:e2401279. [PMID: 39679773 DOI: 10.1002/smtd.202401279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Biological organisms are composed of billions of molecules organized across various length scales. Direct visualization of these biomolecules in situ enables the retrieval of vast molecular information, including their location, species, and quantities, which is essential for understanding biological processes. The programmability of DNA interactions has made DNA-based reactions a major driving force in extending the limits of fluorescence microscopy, allowing for the study of biological complexity at different scales. This review article provides an overview of recent technological advancements in DNA-based fluorescence microscopy, highlighting how these innovations have expanded the technique's capabilities in terms of target multiplexity, signal amplification, super-resolution, and mechanical properties. These advanced DNA-based fluorescence microscopy techniques have been widely used to uncover new biological insights at the molecular level.
Collapse
Affiliation(s)
- Fan Hong
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Soares CC, Rizzo A, Maresma MF, Meier P. Autocrine glutamate signaling drives cell competition in Drosophila. Dev Cell 2024; 59:2974-2989.e5. [PMID: 39047739 DOI: 10.1016/j.devcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cell competition is an evolutionarily conserved quality control process that eliminates suboptimal or potentially dangerous cells. Although differential metabolic states act as direct drivers of competition, how these are measured across tissues is not understood. Here, we demonstrate that vesicular glutamate transporter (VGlut) and autocrine glutamate signaling are required for cell competition and Myc-driven super-competition in the Drosophila epithelia. We find that the loss of glutamate-stimulated VGlut>NMDAR>CaMKII>CrebB signaling triggers loser status and cell death under competitive settings via the autocrine induction of TNF. This in turn drives TNFR>JNK activation, triggering loser cell elimination and PDK/LDH-dependent metabolic reprogramming. Inhibiting caspases or preventing loser cells from transferring lactate to their neighbors nullifies cell competition. Further, in a Drosophila model for premalignancy, Myc-overexpressing clones co-opt this signaling circuit to acquire super-competitor status. Targeting glutamate signaling converts Myc "super-competitor" clones into "losers," highlighting new therapeutic opportunities to restrict the evolution of fitter clones.
Collapse
Affiliation(s)
- Carmo Castilho Soares
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Alberto Rizzo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Marta Forés Maresma
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
22
|
Kania EE, Fenix A, Marciniak DM, Lin Q, Bianchi S, Hristov B, Li S, Camplisson CK, Fields R, Beliveau BJ, Schweppe DK, Noble WS, Ong SE, Bertero A, Murry CE, Shechner DM. Nascent transcript O-MAP reveals the molecular architecture of a single-locus subnuclear compartment built by RBM20 and the TTN RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622011. [PMID: 39574693 PMCID: PMC11580901 DOI: 10.1101/2024.11.05.622011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods. By targeting O-MAP to introns within the TTN pre-mRNA, we systematically map the chromatin loci, RNAs, and proteins within a muscle-specific RNA factory organized around the TTN locus. This reveals an unanticipated compartmental architecture that organizes cis - and trans -interacting chromosomal domains, including a hub of transcriptionally silenced chromatin. The factory also recruits dozens of unique RNA-binding and chromatin-scaffolding factors, including QKI and SAFB, along with their target transcripts. Loss of the cardiac-specific splicing factor RBM20-a master regulator of TTN splicing that is mutated in dilated cardiomyopathy-remodels nearly every facet of this architecture. This establishes O-MAP as a pioneering method for probing single-locus, microcompartment-level interactions that are opaque to conventional tools. Our findings suggest new mechanisms by which coding genes can "moonlight" in nuclear-architectural roles.
Collapse
|
23
|
Khechmar S, Chesnais Q, Villeroy C, Brault V, Drucker M. Interplay between a polerovirus and a closterovirus decreases aphid transmission of the polerovirus. Microbiol Spectr 2024; 12:e0111524. [PMID: 39387567 PMCID: PMC11537018 DOI: 10.1128/spectrum.01115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
Multi-infection of plants by viruses is very common and can change drastically infection parameters such as virus accumulation, distribution, and vector transmission. Sugar beet is an important crop that is frequently co-infected by the polerovirus beet chlorosis virus (BChV) and the closterovirus beet yellows virus (BYV), both vectored by the green peach aphid (Myzus persicae). These phloem-limited viruses are acquired while aphids ingest phloem sap from infected plants. Here we found that co-infection decreased transmission of BChV by ~50% but had no impact on BYV transmission. The drastic reduction of BChV transmission was due to neither lower accumulation of BChV in co-infected plants nor reduced phloem sap ingestion by aphids from these plants. Using the signal amplification by exchange reaction fluorescent in situ hybridization technique on plants, we observed that 40% of the infected phloem cells were co-infected and that co-infection caused redistribution of BYV in these cells. The BYV accumulation pattern changed from distinct intracellular spherical inclusions in mono-infected cells to a diffuse form in co-infected cells. There, BYV co-localized with BChV throughout the cytoplasm, indicative of virus-virus interactions. We propose that BYV-BChV interactions could restrict BChV access to the sieve tubes and reduce its accessibility for aphids and present a model of how co-infection could alter BChV intracellular movement and/or phloem loading and reduce BChV transmission.IMPORTANCEMixed viral infections in plants are understudied yet can have significant influences on disease dynamics and virus transmission. We investigated how co-infection with two unrelated viruses, BChV and BYV, affects aphid transmission of the viruses in sugar beet plants. We show that co-infection reduced BChV transmission by about 50% without affecting BYV transmission, despite similar virus accumulation rates in co-infected and mono-infected plants. Follow-up experiments examined the localization and intracellular distribution of the viruses, leading to the discovery that co-infection caused a redistribution of BYV in the phloem vessels and altered its repartition pattern within plant cells, suggesting virus-virus interactions. In conclusion, the interplay between BChV and BYV affects the transmission of BChV but not BYV, possibly through direct or indirect virus-virus interactions at the cellular level. Understanding these interactions could be crucial for managing virus propagation in crops and preventing yield losses.
Collapse
Affiliation(s)
- Souheyla Khechmar
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Quentin Chesnais
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | | | - Véronique Brault
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Martin Drucker
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Tsue AF, Kania EE, Lei DQ, Fields R, McGann CD, Marciniak DM, Hershberg EA, Deng X, Kihiu M, Ong SE, Disteche CM, Kugel S, Beliveau BJ, Schweppe DK, Shechner DM. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat Methods 2024; 21:2058-2071. [PMID: 39468212 DOI: 10.1038/s41592-024-02457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/09/2024] [Indexed: 10/30/2024]
Abstract
RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context. O-MAP uses RNA-fluorescence in situ hybridization-like oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA in situ, enabling nearby molecules to be enriched by streptavidin pulldown. This induces exceptionally precise biotinylation that can be easily optimized and ported to new targets or sample types. Using the noncoding RNAs 47S, 7SK and Xist as models, we develop O-MAP workflows for discovering RNA-proximal proteins, transcripts and genomic loci, yielding a multiomic characterization of these RNAs' subcellular compartments and new regulatory interactions. O-MAP requires no genetic manipulation, uses exclusively off-the-shelf parts and requires orders of magnitude fewer cells than established methods, making it accessible to most laboratories.
Collapse
Affiliation(s)
- Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Evan E Kania
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Shape Therapeutics, Seattle, WA, USA
| | - Diana Q Lei
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Elliot A Hershberg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maryanne Kihiu
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sita Kugel
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian J Beliveau
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
25
|
Fan N, Yang K, Bian X, Chen Y, Zhang L, Ai Z, Li X, Ding S, Li S, Cheng W. GlycoSS: A DNA Glycosignal Sieve for Deciphering Spatially Resolved EpCAM-Specific Glycoforms. ACS NANO 2024; 18:29106-29120. [PMID: 39374425 DOI: 10.1021/acsnano.4c10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant transformation of cancer is often accompanied by aberrant glycopatterns. Epithelial-mesenchymal transition (EMT) is a crucial biological process in cancer migration and invasion, accelerating cancer deterioration. High-precision analysis of protein-glycan spatial profiling in the EMT process is essential for elucidating glycosylation functions and cancer progression. However, the diversity of glycans in composition and conformation complicates their spatial analysis. Here, we develop a DNA glycosignal sieve (GlycoSS) visualization platform for screening glycoform expression with a protein spatial dimension. GlycoSS utilizes protein-anchored DNA nanoscanners of distinct lengths to control glycosignal readout, enabling protein-glycan distance modulations, and simultaneously orthogonally amplify glycoform output through signal amplification by an exchange reaction. Using GlycoSS, we screened EpCAM-specific hypoglycosylated glycoform signals in different breast cancer cell subtypes, especially characterizing the spatial distribution of glycans on the MCF-7 cell surface. Considering that the EpCAM-specific N-glycan dysregulation in EMT is pivotal, GlycoSS revealed dynamic glycan fluctuations during IGF-1-induced EMT, revealing that the N-glycans were positively associated with tumor malignancy and metastasis. GlycoSS is anticipated to accelerate the identification of aberrant N-glycosylation in tumor progression, advancing systemic glycobiology insights. Notably, GlycoSS is capable of analyzing diverse glycoprotein profiles, offering additional dimensions into the role of glycoprotein nanoenvironments in regulating membrane protein function.
Collapse
Affiliation(s)
- Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ketong Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xintong Bian
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhujun Ai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Song M, Wang J, Hou J, Fu T, Feng Y, Lv W, Ge F, Peng R, Han D, Tan W. Multiplexed In Situ Imaging of Site-Specific m6A Methylation with Proximity Hybridization Followed by Primer Exchange Amplification (m6A-PHPEA). ACS NANO 2024; 18:27537-27546. [PMID: 39331796 DOI: 10.1021/acsnano.4c08407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Post-transcriptional modification of N6-methyladenosine (m6A) is crucial for ribonucleic acid (RNA) metabolism and cellular function. The ability to visualize site-specific m6A methylation at the single-cell level would markedly enhance our understanding of its pivotal regulatory functions in the field of epitranscriptomics. Despite this, current in situ imaging techniques for site-specific m6A are constrained, posing a significant barrier to epitranscriptomic studies and pathological diagnostics. Capitalizing on the precise targeting capability of deoxyribonucleic acid (DNA) hybridization and the high specificity of the m6A antibody, we present a method, termed proximity hybridization followed by primer exchange amplification (m6A-PHPEA), for the site-specific imaging of m6A methylation within cells. This approach enables high-resolution, single-cell imaging of m6A methylation across various RNA molecules coupled with efficient signal amplification. We successfully imaged three distinct m6A methylation sites concurrently in multiple cell types, revealing cell-to-cell variability in expression levels. This method promises to illuminate the dynamics of m6A-modified RNAs, potentially revolutionizing epitranscriptomic research and the development of advanced pathological diagnosis for chemical modifications.
Collapse
Affiliation(s)
- Minghui Song
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Junyan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wenyi Lv
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Feng Ge
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Da Han
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
27
|
Ren J, Luo S, Shi H, Wang X. Spatial omics advances for in situ RNA biology. Mol Cell 2024; 84:3737-3757. [PMID: 39270643 PMCID: PMC11455602 DOI: 10.1016/j.molcel.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Spatial regulation of RNA plays a critical role in gene expression regulation and cellular function. Understanding spatially resolved RNA dynamics and translation is vital for bringing new insights into biological processes such as embryonic development, neurobiology, and disease pathology. This review explores past studies in subcellular, cellular, and tissue-level spatial RNA biology driven by diverse methodologies, ranging from cell fractionation, in situ and proximity labeling, imaging, spatially indexed next-generation sequencing (NGS) approaches, and spatially informed computational modeling. Particularly, recent advances have been made for near-genome-scale profiling of RNA and multimodal biomolecules at high spatial resolution. These methods enabled new discoveries into RNA's spatiotemporal kinetics, RNA processing, translation status, and RNA-protein interactions in cells and tissues. The evolving landscape of experimental and computational strategies reveals the complexity and heterogeneity of spatial RNA biology with subcellular resolution, heralding new avenues for RNA biology research.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuchen Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailing Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Jia Y, Zhao S, Wang A, Huang J, Yang J, Yang L. Target-induced multiregion MNAzyme nanowires for ultrasensitive homogeneous detection of microRNAs. Int J Biol Macromol 2024; 277:134175. [PMID: 39067728 DOI: 10.1016/j.ijbiomac.2024.134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
A target-induced multiregion MNAzyme nanowire system is designed for the ultrasensitive and homogeneous detection of microRNAs (miRNAs). miRNA-21 and miRNA-375 are chosen as analytes, and a miRNA-induced primer exchange reaction (PER) is utilized to construct a long DNA strand with repetitive sequences. This innovative design enables the efficient anchoring of numerous MNAzymes. This unique architecture significantly boosts the effective local concentration of MNAzymes, thereby enhancing the sensitivity and efficiency of miRNA detection. Notably, the limit of detection (LOD) achieved with our target-induced multiregion MNAzyme nanowire approach is over an order of magnitude lower than most other MNAzyme-based methods, while the MNAzyme reaction time is reduced from several hours to 50 min. The method has demonstrated successful applications in quantitatively determining the expression levels of two miRNAs in cell lysates of MCF-7, HeLa and MCF-10 A cells, highlighting its potential for assaying miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Yaxue Jia
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Jing Huang
- Laboratory Department of The First Hospital of Jilin University, Changchun, P. R. China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
29
|
Chen C, Li Y, Wei W, Lu Y, Zou B, Zhang L, Shan J, Zhu Y, Wang S, Wu H, Su H, Zhou G. A precise microdissection strategy enabled spatial heterogeneity analysis on the targeted region of formalin-fixed paraffin-embedded tissues. Talanta 2024; 278:126501. [PMID: 38963978 DOI: 10.1016/j.talanta.2024.126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
In recent years, the development of spatial transcriptomic technologies has enabled us to gain an in-depth understanding of the spatial heterogeneity of gene expression in biological tissues. However, a simple and efficient tool is required to analyze multiple spatial targets, such as mRNAs, miRNAs, or genetic mutations, at high resolution in formalin-fixed paraffin-embedded (FFPE) tissue sections. In this study, we developed hydrogel pathological sectioning coupled with the previously reported Sampling Junior instrument (HPSJ) to assess the spatial heterogeneity of multiple targets in FFPE sections at a scale of 180 μm. The HPSJ platform was used to demonstrate the spatial heterogeneity of 9 ferroptosis-related genes (TFRC, NCOA4, FTH1, ACSL4, LPCAT3, ALOX12, SLC7A11, GLS2, and GPX4) and 2 miRNAs (miR-185-5p and miR522) in FFPE tissue samples from patients with triple-negative breast cancer (TNBC). The results validated the significant heterogeneity of ferroptosis-related mRNAs and miRNAs. In addition, HPSJ confirmed the spatial heterogeneity of the L858R mutation in 7 operation-sourced and 4 needle-biopsy-sourced FFPE samples from patients with lung adenocarcinoma (LUAD). The successful detection of clinical FFPE samples indicates that HPSJ is a precise, high-throughput, cost-effective, and universal platform for analyzing spatial heterogeneity, which is beneficial for elucidating the mechanisms underlying drug resistance and guiding the prescription of mutant-targeted drugs in patients with tumors.
Collapse
Affiliation(s)
- Chen Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Ying Li
- Department of Pathology Center of Diagnostic of Pathology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Wei Wei
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Yin Lu
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Likun Zhang
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yue Zhu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Shanshan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Wu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Hua Su
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China.
| | - Guohua Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
30
|
Quinodoz SA, Jiang L, Abu-Alfa AA, Comi TJ, Zhao H, Yu Q, Wiesner LW, Botello JF, Donlic A, Soehalim E, Zorbas C, Wacheul L, Košmrlj A, Lafontaine D, Klinge S, Brangwynne CP. Mapping and engineering RNA-controlled architecture of the multiphase nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615444. [PMID: 39386460 PMCID: PMC11463421 DOI: 10.1101/2024.09.28.615444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biomolecular condensates are key features of intracellular compartmentalization. As the most prominent nuclear condensate in eukaryotes, the nucleolus is a layered multiphase liquid-like structure and the site of ribosome biogenesis. In the nucleolus, ribosomal RNAs (rRNAs) are transcribed and processed, undergoing multiple maturation steps that ultimately result in formation of the ribosomal small subunit (SSU) and large subunit (LSU). However, how rRNA processing is coupled to the layered nucleolar organization is poorly understood due to a lack of tools to precisely monitor and perturb nucleolar rRNA processing dynamics. Here, we developed two complementary approaches to spatiotemporally map rRNA processing and engineer de novo nucleoli. Using sequencing in parallel with imaging, we found that rRNA processing steps are spatially segregated, with sequential maturation of rRNA required for its outward movement through nucleolar phases. Furthermore, by generating synthetic de novo nucleoli through an engineered rDNA plasmid system in cells, we show that defects in SSU processing can alter the ordering of nucleolar phases, resulting in inside-out nucleoli and preventing rRNA outflux, while LSU precursors are necessary to build the outermost layer of the nucleolus. These findings demonstrate how rRNA is both a scaffold and substrate for the nucleolus, with rRNA acting as a programmable blueprint for the multiphase architecture that facilitates assembly of an essential molecular machine.
Collapse
Affiliation(s)
- S A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA
| | - L Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - A A Abu-Alfa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - T J Comi
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - H Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - Q Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton NJ, 08544, USA
| | - L W Wiesner
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - J F Botello
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - A Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - E Soehalim
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - C Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - L Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - A Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton NJ, 08544, USA
- Princeton Materials Institute, Princeton NJ, 08544, USA
| | - Dlj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - S Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - C P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton NJ, 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA
| |
Collapse
|
31
|
Luo Z, Mei J, Wang X, Wang R, He Z, Geffen Y, Sun X, Zhang X, Xu J, Wan R, Feng X, Jiao C, Su X, Sun J, Chen S, Chen J, Mao W, Yang Y, Sun Y. Voluntary exercise sensitizes cancer immunotherapy via the collagen inhibition-orchestrated inflammatory tumor immune microenvironment. Cell Rep 2024; 43:114697. [PMID: 39217611 DOI: 10.1016/j.celrep.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Physical activity reduces cancer-associated mortality through multiple mechanisms, including tumor immune microenvironment (TIME) reprogramming. However, whether and how physiological interventions promote anti-tumor immunity remain elusive. Here, we report that clinically relevant voluntary exercise promotes muscle-derived extracellular vesicle (EV)-associated miR-29a-3p for tumor extracellular matrix (ECM) inhibition in patients and mouse models, thereby permitting immune cell infiltration and immunotherapy. Mechanistically, an unbiased screening identifies EV-associated miR-29a-3p in response to leisure-time physical activity or voluntary exercise. MiR-29a-3p-containing EVs accumulate in tumors and downregulate collagen composition by targeting COL1A1. Gain- and loss-of-function experiments and cytometry by time of flight (CyTOF) demonstrate that myocyte-secreted miR-29a-3p promotes anti-tumor immunity. Combining immunotherapy with voluntary exercise or miR-29a-3p further enhances anti-tumor efficacy. Clinically, miR-29a-3p correlates with reduced ECM, increased T cell infiltration, and response to immunotherapy. Our work reveals the predictive value of miR-29a-3p for immunotherapy, provides mechanistic insights into exercise-induced anti-cancer immunity, and highlights the potential of voluntary exercise in sensitizing immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China; Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ruixin Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhao He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiaomeng Sun
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chunmeng Jiao
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
32
|
Bialy N, Alber F, Andrews B, Angelo M, Beliveau B, Bintu L, Boettiger A, Boehm U, Brown CM, Maina MB, Chambers JJ, Cimini BA, Eliceiri K, Errington R, Faklaris O, Gaudreault N, Germain RN, Goscinski W, Grunwald D, Halter M, Hanein D, Hickey JW, Lacoste J, Laude A, Lundberg E, Ma J, Malacrida L, Moore J, Nelson G, Neumann EK, Nitschke R, Onami S, Pimentel JA, Plant AL, Radtke AJ, Sabata B, Schapiro D, Schöneberg J, Spraggins JM, Sudar D, Vierdag WMAM, Volkmann N, Wählby C, Wang SS, Yaniv Z, Strambio-De-Castillia C. Harmonizing the Generation and Pre-publication Stewardship of FAIR bioimage data. ARXIV 2024:arXiv:2401.13022v5. [PMID: 38351940 PMCID: PMC10862930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured bioimage data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable bioimage data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing bioimage data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). Here, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse bioimage data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made generating community standard practices for imaging Quality Control (QC) and metadata (Faklaris et al., 2022; Hammer et al., 2021; Huisman et al., 2021; Microscopy Australia, 2016; Montero Llopis et al., 2021; Rigano et al., 2021; Sarkans et al., 2021). We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.
Collapse
Affiliation(s)
- Nikki Bialy
- Morgridge Institute for Research, Madison, USA
| | | | | | | | | | | | | | | | | | | | | | - Beth A Cimini
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, USA
| | - Kevin Eliceiri
- Morgridge Institute for Research, Madison, USA
- University of Wisconsin-Madison, Madison, USA
| | | | | | | | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | - Michael Halter
- National Institute of Standards and Technology, Gaithersburg, USA
| | | | | | | | - Alex Laude
- Newcastle University, Newcastle upon Tyne, UK
| | - Emma Lundberg
- Stanford University, Palo Alto, USA
- SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jian Ma
- Carnegie Mellon University, Pittsburgh, USA
| | - Leonel Malacrida
- Institut Pasteur de Montevideo, & Universidad de la República, Montevideo, Uruguay
| | - Josh Moore
- German BioImaging-Gesellschaft für Mikroskopie und Bildanalyse e.V., Constance, Germany
| | - Glyn Nelson
- Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Anne L Plant
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | | | | | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, USA
| | | | | | | | | | - Ziv Yaniv
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | |
Collapse
|
33
|
Krause TB, Cepko CL. Abortive and productive infection of CNS cell types following in vivo delivery of VSV. Proc Natl Acad Sci U S A 2024; 121:e2406421121. [PMID: 39159381 PMCID: PMC11363278 DOI: 10.1073/pnas.2406421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Viral infection is frequently assayed by ongoing expression of viral genes. These assays fail to identify cells that have been exposed to the virus but limit or inhibit viral replication. To address this limitation, we used a dual-labeling vesicular stomatitis virus (DL-VSV), which has a deletion of the viral glycoprotein gene, to allow evaluation of primary infection outcomes. This virus encodes Cre, which can stably mark any cell with even a minimal level of viral gene expression. Additionally, the virus encodes GFP, which distinguishes cells with higher levels of viral gene expression, typically due to genome replication. Stereotactic injections of DL-VSV into the murine brain showed that different cell types had very different responses to the virus. Almost all neurons hosted high levels of viral gene expression, while glial cells varied in their responses. Astrocytes (Sox9+) were predominantly productively infected, while oligodendrocytes (Sox10+) were largely abortively infected. Microglial cells (Iba1+) were primarily uninfected. Furthermore, we monitored the early innate immune response to viral infection and identified unique patterns of interferon (IFN) induction. Shortly after infection, microglia were the main producers of IFNb, whereas later, oligodendrocytes were the main producers. IFNb+ cells were primarily abortively infected regardless of cell type. Last, we investigated whether IFN signaling had any impact on the outcome of primary infection and did not observe significant changes, suggesting that intrinsic factors are likely responsible for determining the outcome of primary infection.
Collapse
Affiliation(s)
- Tyler B Krause
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Chevy Chase, MD20815
| |
Collapse
|
34
|
Cui X, Dong X, Hu M, Zhou W, Shi W. Large field of view and spatial region of interest transcriptomics in fixed tissue. Commun Biol 2024; 7:1020. [PMID: 39164496 PMCID: PMC11335973 DOI: 10.1038/s42003-024-06694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Expression profiling in spatially defined regions is crucial for systematically understanding tissue complexity. Here, we report a method of photo-irradiation for in-situ barcoding hybridization and ligation sequencing, named PBHL-seq, which allows targeted expression profiling from the photo-irradiated region of interest in intact fresh frozen and formalin fixation and paraffin embedding (FFPE) tissue samples. PBHL-seq uses photo-caged oligodeoxynucleotides for in situ reverse transcription followed by spatially targeted barcoding of cDNAs to create spatially indexed transcriptomes of photo-illuminated regions. We recover thousands of differentially enriched transcripts from different regions by applying PBHL-seq to OCT-embedded tissue (E14.5 mouse embryo and mouse brain) and FFPE mouse embryo (E15.5). We also apply PBHL-seq to the subcellular microstructures (cytoplasm and nucleus, respectively) and detect thousands of differential expression genes. Thus, PBHL-seq provides an accessible workflow for expression profiles from the region of interest in frozen and FFPE tissue at subcellular resolution with areas expandable to centimeter scale, while preserving the sample intact for downstream analysis to promote the development of transcriptomics.
Collapse
Affiliation(s)
- Xiaonan Cui
- Single Cell Systems Biology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xue Dong
- Single Cell Systems Biology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Mengzhu Hu
- Single Cell Systems Biology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Wenjian Zhou
- Single Cell Systems Biology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Weiyang Shi
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
35
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
36
|
Lun XK, Sheng K, Yu X, Lam CY, Gowri G, Serrata M, Zhai Y, Su H, Luan J, Kim Y, Ingber DE, Jackson HW, Yaffe MB, Yin P. Signal amplification by cyclic extension enables high-sensitivity single-cell mass cytometry. Nat Biotechnol 2024:10.1038/s41587-024-02316-x. [PMID: 39075149 PMCID: PMC11910986 DOI: 10.1038/s41587-024-02316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Mass cytometry uses metal-isotope-tagged antibodies to label targets of interest, which enables simultaneous measurements of ~50 proteins or protein modifications in millions of single cells, but its sensitivity is limited. Here, we present a signal amplification technology, termed Amplification by Cyclic Extension (ACE), implementing thermal-cycling-based DNA in situ concatenation in combination with 3-cyanovinylcarbazole phosphoramidite-based DNA crosslinking to enable signal amplification simultaneously on >30 protein epitopes. We demonstrate the utility of ACE in low-abundance protein quantification with suspension mass cytometry to characterize molecular reprogramming during the epithelial-to-mesenchymal transition as well as the mesenchymal-to-epithelial transition. We show the capability of ACE to quantify the dynamics of signaling network responses in human T lymphocytes. We further present the application of ACE in imaging mass cytometry-based multiparametric tissue imaging to identify tissue compartments and profile spatial aspects related to pathological states in polycystic kidney tissues.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Xueyang Yu
- Departments of Biology and Bioengineering, Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ching Yeung Lam
- Mount Sinai Health Systems and Department of Molecular Genetics, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Gokul Gowri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew Serrata
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jingyi Luan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Youngeun Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Hartland W Jackson
- Mount Sinai Health Systems and Department of Molecular Genetics, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Yaffe
- Departments of Biology and Bioengineering, Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Ren Y, Liu K, Yang H, Zhang Y, Deng S, Cao J, Xia X, Deng R. Multiplexing Imaging of Closely Located Single-Nucleotide Mutations in Single Cells via Encoded in situ PCR. ACS Sens 2024; 9:3549-3556. [PMID: 38982583 DOI: 10.1021/acssensors.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mutation accumulation in RNAs results in closely located single-nucleotide mutations (SNMs), which is highly associated with the drug resistance of pathogens. Imaging of SNMs in single cells has significance for understanding the heterogeneity of RNAs that are related to drug resistance, but the direct "see" closely located SNMs remains challenging. Herein, we designed an encoded ligation-mediated in situ polymerase chain reaction method (termed enPCR), which enabled the visualization of multiple closely located SNMs in bacterial RNAs. Unlike conventional ligation-based probes that can only discriminate a single SNM, this method can simultaneously image different SNMs at closely located sites with single-cell resolution using modular anchoring probes and encoded PCR primers. We tested the capacity of the method to detect closely located SNMs related to quinolone resistance in the gyrA gene of Salmonella enterica (S. enterica), and found that the simultaneous detection of the closely located SNMs can more precisely indicate the resistance of the S. enterica to quinolone compared to the detection of one SNM. The multiplexing imaging assay for SNMs can serve to reveal the relationship between complex cellular genotypes and phenotypes.
Collapse
Affiliation(s)
- Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kerui Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Ietswaart R, Smalec BM, Xu A, Choquet K, McShane E, Jowhar ZM, Guegler CK, Baxter-Koenigs AR, West ER, Fu BXH, Gilbert L, Floor SN, Churchman LS. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol Cell 2024; 84:2765-2784.e16. [PMID: 38964322 PMCID: PMC11315470 DOI: 10.1016/j.molcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Mohamoud Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal K Guegler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Luke Gilbert
- Arc Institute, Palo Alto, CA 94305, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94518, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Rocca G, Galli M, Celant A, Stucchi G, Marongiu L, Cozzi S, Innocenti M, Granucci F. Multiplexed imaging to reveal tissue dendritic cell spatial localisation and function. FEBS Lett 2024. [PMID: 38969618 DOI: 10.1002/1873-3468.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in immune surveillance, acting as sentinels that coordinate immune responses within tissues. Although differences in the identity and functional states of DC subpopulations have been identified through multiparametric flow cytometry and single-cell RNA sequencing, these methods do not provide information about the spatial context in which the cells are located. This knowledge is crucial for understanding tissue organisation and cellular cross-talk. Recent developments in multiplex imaging techniques can now offer insights into this complex spatial and functional landscape. This review provides a concise overview of these imaging methodologies, emphasising their application in identifying DCs to delineate their tissue-specific functions and aiding newcomers in navigating this field.
Collapse
Affiliation(s)
- Giuseppe Rocca
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Marco Galli
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Anna Celant
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Giulia Stucchi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Stefano Cozzi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
40
|
Di Mauro F, Arbore G. Spatial Dissection of the Immune Landscape of Solid Tumors to Advance Precision Medicine. Cancer Immunol Res 2024; 12:800-813. [PMID: 38657223 PMCID: PMC11217735 DOI: 10.1158/2326-6066.cir-23-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Chemotherapeutics, radiation, targeted therapeutics, and immunotherapeutics each demonstrate clinical benefits for a small subset of patients with solid malignancies. Immune cells infiltrating the tumor and the surrounding stroma play a critical role in shaping cancer progression and modulating therapy response. They do this by interacting with the other cellular and molecular components of the tumor microenvironment. Spatial multi-omics technologies are rapidly evolving. Currently, such technologies allow high-throughput RNA and protein profiling and retain geographical information about the tumor microenvironment cellular architecture and the functional phenotype of tumor, immune, and stromal cells. An in-depth spatial characterization of the heterogeneous tumor immune landscape can improve not only the prognosis but also the prediction of therapy response, directing cancer patients to more tailored and efficacious treatments. This review highlights recent advancements in spatial transcriptomics and proteomics profiling technologies and the ways these technologies are being applied for the dissection of the immune cell composition in solid malignancies in order to further both basic research in oncology and the implementation of precision treatments in the clinic.
Collapse
Affiliation(s)
- Francesco Di Mauro
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giuseppina Arbore
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
41
|
Mitani TT, Susaki EA, Matsumoto K, Ueda HR. Realization of cellomics to dive into the whole-body or whole-organ cell cloud. Nat Methods 2024; 21:1138-1142. [PMID: 38871985 DOI: 10.1038/s41592-024-02307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Tomoki T Mitani
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Etsuo A Susaki
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Michalska JM, Lyudchik J, Velicky P, Štefaničková H, Watson JF, Cenameri A, Sommer C, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas P, Danzl JG. Imaging brain tissue architecture across millimeter to nanometer scales. Nat Biotechnol 2024; 42:1051-1064. [PMID: 37653226 PMCID: PMC11252008 DOI: 10.1038/s41587-023-01911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease.
Collapse
Affiliation(s)
- Julia M Michalska
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Hana Štefaničková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jake F Watson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nicole Amberg
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Karl Roessler
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
43
|
Shin M, Chang E, Lee D, Kim N, Cho B, Cha N, Koranteng F, Song JJ, Shim J. Drosophila immune cells transport oxygen through PPO2 protein phase transition. Nature 2024; 631:350-359. [PMID: 38926577 PMCID: PMC11236712 DOI: 10.1038/s41586-024-07583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Avilés EC, Wang SK, Patel S, Shi S, Lin L, Kefalov VJ, Goodrich LV, Cepko CL, Xue Y. High temporal frequency light response in mouse retina requires FAT3 signaling in bipolar cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565326. [PMID: 37961274 PMCID: PMC10635074 DOI: 10.1101/2023.11.02.565326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vision is initiated by the reception of light by photoreceptors and subsequent processing via downstream retinal neurons. Proper cellular organization depends on the multi-functional tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal lamination. Here we investigated the retinal function of Fat3 mutant mice and found decreases in physiological and perceptual responses to high frequency flashes. These defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in bipolar cell subtypes that also express FAT3. The role of FAT3 in the response to high temporal frequency flashes depends upon its ability to transduce an intracellular signal. Mechanistically, FAT3 binds to the synaptic protein PTPσ, intracellularly, and is required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors. These findings expand the repertoire of FAT3's functions and reveal its importance in bipolar cells for high frequency light response.
Collapse
Affiliation(s)
- Evelyn C. Avilés
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sean K. Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Sarina Patel
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Shuxiang Shi
- Lingang Laboratory, Shanghai, China, 200031
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Lucas Lin
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute & Center for Translational Vision Research, University of California, Irvine, CA 92697
| | - Lisa V. Goodrich
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Lingang Laboratory, Shanghai, China, 200031
- Lead contact
| |
Collapse
|
45
|
Zhao R, Moore EL, Gogol MM, Unruh JR, Yu Z, Scott AR, Wang Y, Rajendran NK, Trainor PA. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. eLife 2024; 13:RP92844. [PMID: 38873887 PMCID: PMC11178358 DOI: 10.7554/elife.92844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Emma L Moore
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Zulin Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Yan Wang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
46
|
Mao D, Tang X, Zhang R, Chen T, Liu C, Gou H, Sun P, Mao Y, Deng J, Li W, Sun F, Zhu X. DNA-Programmed Four-Bit Quaternary Fluorescence Encoding (FLUCO) Enables 51-Colored Bioimaging Analysis. J Am Chem Soc 2024. [PMID: 38859621 DOI: 10.1021/jacs.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Color encoding plays a crucial role in painting, digital photography, and spectral analysis. Achieving accurate, target-responsive color encoding at the molecular level has the potential to revolutionize scientific research and technological innovation, but significant challenges persist. Here, we propose a multibit DNA self-assembly system based on computer-aided design (CAD) technology, enabling accurate, target-responsive, amplified color encoding at the molecular level, termed fluorescence encoding (FLUCO). As a model, we establish a quaternary FLUCO system using four-bit DNA self-assembly, which can accurately encode 51 colors, presenting immense potential in applications such as spatial proteomic imaging and multitarget analysis. Notably, FLUCO enables the simultaneous imaging of multiple targets exceeding the limitations of channels using conventional imaging equipment, and marks the integration of computer science for molecular encoding and decoding. Overall, our work paves the way for target-responsive, controllable molecular encoding, facilitating spatial omics analysis, exfoliated cell analysis, and high-throughput liquid biopsy.
Collapse
Affiliation(s)
- Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jie Deng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
47
|
Ikeda S, Sato K, Fujita H, Ono-Minagi H, Miyaishi S, Nohno T, Ohuchi H. Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. J Dev Biol 2024; 12:16. [PMID: 38921483 PMCID: PMC11205083 DOI: 10.3390/jdb12020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The mouse Harderian gland (HG) is a secretory gland that covers the posterior portion of the eyeball, opening at the base of the nictitating membrane. The HG serves to protect the eye surface from infection with its secretions. Mice open their eyelids at about 2 weeks of age, and the development of the HG primordium mechanically opens the eye by pushing the eyeball from its rear. Therefore, when HG formation is disturbed, the eye exhibits enophthalmos (the slit-eye phenotype), and a line of Fgf10+/- heterozygous loss-of-function mice exhibits slit-eye due to the HG atrophy. However, it has not been clarified how and when HGs degenerate and atrophy in Fgf10+/- mice. In this study, we observed the HGs in embryonic (E13.5 to E19), postnatal (P0.5 to P18) and 74-week-old Fgf10+/- mice. We found that more than half of the Fgf10+/- mice had markedly degenerated HGs, often unilaterally. The degenerated HG tissue had a melanized appearance and was replaced by connective tissue, which was observed by P10. The development of HGs was delayed or disrupted in the similar proportion of Fgf10+/- embryos, as revealed via histology and the loss of HG-marker expression. In situ hybridization showed Fgf10 expression was observed in the Harderian mesenchyme in wild-type as well as in the HG-lacking heterozygote at E19. These results show that the Fgf10 haploinsufficiency causes delayed or defective HG development, often unilaterally from the unexpectedly early neonatal period.
Collapse
Affiliation(s)
- Shiori Ikeda
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hitomi Ono-Minagi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Miyaishi
- Department of Legal Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tsutomu Nohno
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
48
|
Valihrach L, Zucha D, Abaffy P, Kubista M. A practical guide to spatial transcriptomics. Mol Aspects Med 2024; 97:101276. [PMID: 38776574 DOI: 10.1016/j.mam.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Spatial transcriptomics is revolutionizing modern biology, offering researchers an unprecedented ability to unravel intricate gene expression patterns within tissues. From pioneering techniques to newly commercialized platforms, the field of spatial transcriptomics has evolved rapidly, ushering in a new era of understanding across various disciplines, from developmental biology to disease research. This dynamic expansion is reflected in the rapidly growing number of technologies and data analysis techniques developed and introduced. However, the expanding landscape presents a considerable challenge for researchers, especially newcomers to the field, as staying informed about these advancements becomes increasingly complex. To address this challenge, we have prepared an updated review with a particular focus on technologies that have reached commercialization and are, therefore, accessible to a broad spectrum of potential new users. In this review, we present the fundamental principles of spatial transcriptomic methods, discuss the challenges in data analysis, provide insights into experimental considerations, offer information about available resources for spatial transcriptomics, and conclude with a guide for method selection and a forward-looking perspective. Our aim is to serve as a guiding resource for both experienced users and newcomers navigating the complex realm of spatial transcriptomics in this era of rapid development. We intend to equip researchers with the necessary knowledge to make informed decisions and contribute to the cutting-edge research that spatial transcriptomics offers.
Collapse
Affiliation(s)
- Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
49
|
Liu F, Lu Y, Wang X, Sun S, Pan H, Wang M, Wang Z, Zhang W, Ma S, Sun G, Chu Q, Wang S, Qu J, Liu GH. Identification of FOXO1 as a geroprotector in human synovium through single-nucleus transcriptomic profiling. Protein Cell 2024; 15:441-459. [PMID: 38092362 PMCID: PMC11131031 DOI: 10.1093/procel/pwad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
The synovium, a thin layer of tissue that is adjacent to the joints and secretes synovial fluid, undergoes changes in aging that contribute to intense shoulder pain and other joint diseases. However, the mechanism underlying human synovial aging remains poorly characterized. Here, we generated a comprehensive transcriptomic profile of synovial cells present in the subacromial synovium from young and aged individuals. By delineating aging-related transcriptomic changes across different cell types and their associated regulatory networks, we identified two subsets of mesenchymal stromal cells (MSCs) in human synovium, which are lining and sublining MSCs, and found that angiogenesis and fibrosis-associated genes were upregulated whereas genes associated with cell adhesion and cartilage development were downregulated in aged MSCs. Moreover, the specific cell-cell communications in aged synovium mirrors that of aging-related inflammation and tissue remodeling, including vascular hyperplasia and tissue fibrosis. In particular, we identified forkhead box O1 (FOXO1) as one of the major regulons for aging differentially expressed genes (DEGs) in synovial MSCs, and validated its downregulation in both lining and sublining MSC populations of the aged synovium. In human FOXO1-depleted MSCs derived from human embryonic stem cells, we recapitulated the senescent phenotype observed in the subacromial synovium of aged donors. These data indicate an important role of FOXO1 in the regulation of human synovial aging. Overall, our study improves our understanding of synovial aging during joint degeneration, thereby informing the development of novel intervention strategies aimed at rejuvenating the aged joint.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Lu
- Sports Medicine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xuebao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230001, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Si Wang
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
50
|
Pham T, Chen Y, Labaer J, Guo J. Ultrasensitive and Multiplexed Protein Imaging with Clickable and Cleavable Fluorophores. Anal Chem 2024; 96:7281-7288. [PMID: 38663032 DOI: 10.1021/acs.analchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction, and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity, or are technically demanding. To tackle these issues, here, we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through repeated cycles of target staining, fluorescence imaging, and fluorophore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ∼820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed that different subregions of the tissue are composed of cells from specific clusters.
Collapse
Affiliation(s)
- Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi Chen
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|