1
|
Nentwig TB, Obray JD, Kruyer A, Wilkes ET, Vaughan DT, Scofield MD, Chandler LJ. Central amygdala astrocyte plasticity underlies GABAergic dysregulation in ethanol dependence. Transl Psychiatry 2025; 15:132. [PMID: 40199844 PMCID: PMC11978928 DOI: 10.1038/s41398-025-03337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Dependence is a hallmark of alcohol use disorder characterized by excessive alcohol intake and withdrawal symptoms. The central nucleus of the amygdala (CeA) is a key brain structure underlying the synaptic and behavioral consequences of ethanol dependence. While accumulating evidence suggests that astrocytes regulate synaptic transmission and behavior, there is a limited understanding of the role astrocytes play in ethanol dependence. The present study used a combination of viral labeling, super resolution confocal microscopy, 3D image analysis, and slice electrophysiology to determine the effects of chronic intermittent ethanol (CIE) exposure on astrocyte plasticity in the CeA. During withdrawal from CIE exposure, we observed increased GABA transmission, an upregulation in astrocytic GAT3 levels, and an increased proximity of astrocyte processes near CeA synapses. Furthermore, GAT3 levels and synaptic proximity were positively associated with voluntary ethanol drinking in dependent rats. Slice electrophysiology confirmed that the upregulation in astrocytic GAT3 levels was functional, as CIE exposure unmasked a GAT3-sensitive tonic GABA current in the CeA. A causal role for astrocytic GAT3 in ethanol dependence was assessed using viral-mediated GAT3 overexpression and knockdown approaches. However, GAT3 knockdown or overexpression had no effect on somatic withdrawal symptoms, dependence-escalated ethanol intake, aversion-resistant drinking, or post-dependent ethanol drinking in male or female rats. Moreover, intra-CeA pharmacological inhibition of GAT3 did not alter dependent ethanol drinking. Together, these findings indicate that ethanol dependence induces GABAergic dysregulation and astrocyte plasticity in the CeA. However, these changes in astrocytic GAT3 do not appear to be necessary for the drinking related phenotypes associated with dependence.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - J Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Erik T Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
2
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture for stress to disrupt agency and promote habit. Nature 2025; 640:722-731. [PMID: 39972126 PMCID: PMC12011321 DOI: 10.1038/s41586-024-08580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/27/2024] [Indexed: 02/21/2025]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions1-5. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual-pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the projection from the basolateral amygdala to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision-making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the projection from the central amygdala to the dorsomedial striatum mediates habit formation. Following stress, this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision-making, and help understanding of how stress can lead to the disrupted decision-making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | - Natalie Paredes
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Wiener
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Chukwuebuka Oragwam
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hanniel O Uwadia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Abigail L Yu
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kayla Lim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenna S Pimenta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela E Vilchez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gift Nnamdi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alicia Wang
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando McV Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana C Sias
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Heuermann RJ, Gereau RW. Inhibitory effects of dopamine agonists on pain-responsive neurons in the central nucleus of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642168. [PMID: 40161816 PMCID: PMC11952480 DOI: 10.1101/2025.03.10.642168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The central nucleus of the amygdala (CeA) is a heterogenous region of primarily GABAergic neurons that contributes to numerous behaviors, including fear learning, feeding, reward, and pain. Dopaminergic inputs to the CeA have been shown to regulate many of these behaviors, but how dopamine exerts these effects at the cellular level has not been well characterized. We used the Targeted Recombination in Active Populations (TRAP) mouse line to fluorescently label pain-responsive CeA neurons, and then targeted these cells for patch-clamp recordings in acute slices to test the effects of dopamine agonists. The D1 agonist SKF-38393 and D2 agonist quinpirole both had inhibitory effects, reducing the input resistance and evoked firing and increasing rheobase of labeled CeA neurons. Both agents also inhibited the NMDA component of excitatory postsynaptic currents (EPSCs) evoked by basolateral amygdala (BLA) stimulation, but did not affect the AMPA component. D1 activation, but not D2, also appeared to have a presynaptic effect, increasing the frequency of spontaneous EPSCs. These results provide new insights into how dopamine regulates activity within pain-responsive CeA networks. NEW & NOTEWORTHY Dopamine is known to regulate activity within the central amygdala (CeA), an important region for central pain processing. However, its effects at the cellular level have not been well characterized. We targeted pain-responsive CeA neurons for patch-clamp recordings to examine the cellular and synaptic effects of D1 and D2 agonists. Activation of either D1 or D2 receptors induced inhibitory effects, suggesting dopamine signaling in CeA dampens pain-related activity and could be a target for analgesics.
Collapse
|
4
|
Yao W, Huang SX, Zhang L, Li ZS, Huang DY, Huang KQ, Huang ZX, Nian LW, Li JL, Chen L, Cai P. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia. Commun Biol 2025; 8:381. [PMID: 40050691 PMCID: PMC11885604 DOI: 10.1038/s42003-025-07679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Sleep-onset insomnia, characterized by difficulty falling asleep, is linked to increased health risks. Previous studies have shown that the central amygdala (CeA) plays a crucial role in stress regulation, with the somatostatin neurons in the CeA (CeASST+) involved in adaptive stress responses. However, the role of CeASST+ neurons in stress-induced sleep-onset insomnia remains unclear. In this study, we found that the activity of CeASST+ neurons is closely associated with stressful events using fiber photometry in mice. Acute optogenetic activation of CeASST+ neurons induced a rapid transition from non-rapid eye movement (NREM) sleep to wakefulness. Semi-chronic optogenetic and chemogenetic activation of CeASST+ neurons led to prolonged sleep-onset latency and increased wakefulness. Chemogenetic inhibition of these neurons ameliorated sleep-onset insomnia induced by stressful stimuli, but did not affect sleep-wake behavior under physiological conditions. Collectively, our results suggested that CeASST+ neurons are a key neural substrate for modulating stress-induced sleep-onset insomnia, without influencing physiological sleep. These findings highlight CeASST+ neurons as a promising target for treating stress-related sleep-onset insomnia in clinical practice.
Collapse
Affiliation(s)
- Wei Yao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Shu-Xin Huang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lei Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhang-Shu Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ding-Yuan Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai-Qi Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zi-Xuan Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Li-Wei Nian
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jia-Lu Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, China.
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
6
|
Li Z, Ma J, Bai H, Deng B, Lin J, Wang W. Brain local structural connectomes and the subtypes of the medial temporal lobe parcellations. Front Neurosci 2025; 19:1529123. [PMID: 40012681 PMCID: PMC11861214 DOI: 10.3389/fnins.2025.1529123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To investigate the quantitative characteristics and major subtypes of local structural connectomes for medial temporal lobe (MTL) parcellations. Methods The Q-Space Diffeomorphic Reconstruction (QSDR) method was used to track white matter fibers for the ROIs within MTL based on the integrating high-resolution T1 structural MR imaging and diffusion MR imaging of 100 adult Chinese individuals. Graph theoretical analysis was employed to construct the local structural connectome models for ROIs within MTL and acquire the network parameters. These connectivity matrices of these connectomes were classified into major subtypes undergoing hierarchical clustering. Results (1) In the local brain connectomes, the overall network features exhibited a low characteristic path length paired with moderate to high global efficiency, suggesting the effectiveness of the local brain connectome construction. The amygdala connectomes exhibited longer characteristic path length and weaker global efficiency than the ipsilateral hippocampus and parahippocampal connectomes. (2) The hubs of the amygdala connectomes were dispersed across the ventral frontal, olfactory area, limbic, parietal regions and subcortical nuclei, and the hubs the hippocampal connectomes were mainly situated within the limbic, parietal, and subcortical regions. The hubs distribution of the parahippocampal connectomes resembled the hippocampal structural connectomes, but lacking interhemispheric connections and connectivity with subcortical nuclei. (3) The subtypes of the brain local structural connectomes for each ROI were classified by hierarchical clustering, The subtypes of the bilateral amygdala connectomes were the amygdala-prefrontal connectome; the amygdala-ipsilateral or contralateral limbic connectome and the amygdala-posterior connectome. The subtypes of the bilateral hippocampal connectomes primarily included the hippocampus-ipsilateral or contralateral limbic connectome and the anterior temporal-hippocampus-ventral temporal-occipital connectome in the domain hemisphere. The subtypes of the parahippocampal connectomes exhibited resemblances to those of the hippocampus. Conclusion We have constructed the brain local connectomes of the MTL parcellations and acquired the network parameters to delineate the hubs distribution through graph theory analysis. The connectomes can be classified into different major subtypes, which were closely related to the functional connectivity.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jie Ma
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
7
|
Cornwell BR, Didier PR, Grogans SE, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Hur J, Scott ZS, Fox AS, DeYoung KA, Smith JF, Shackman AJ. A shared threat-anticipation circuit is dynamically engaged at different moments by certain and uncertain threat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602972. [PMID: 39026814 PMCID: PMC11257510 DOI: 10.1101/2024.07.10.602972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Temporal dynamics play a central role in models of emotion: "fear" is widely conceptualized as a phasic response to certain-and-imminent danger, whereas "anxiety" is a sustained response to uncertain-or-distal harm. Yet the underlying neurobiology remains contentious. Leveraging a translationally relevant fMRI paradigm and theory-driven modeling approach in 220 adult humans, we demonstrate that certain- and uncertain-threat anticipation recruit a shared circuit that encompasses the central extended amygdala (EAc), periaqueductal gray, midcingulate, and anterior insula. This circuit exhibits persistently elevated activation when threat is uncertain and distal, and transient bursts of activation just before certain encounters with threat. Although there is agreement that the EAc plays a critical role in orchestrating responses to threat, confusion persists about the respective contributions of its major subdivisions, the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce). Here we used anatomical regions-of-interest to demonstrate that the BST and Ce exhibit statistically indistinguishable threat dynamics. Both regions exhibited activation dynamics that run counter to popular models, with the Ce showing sustained responses to uncertain-and-distal threat and the BST showing phasic responses to certain-and-imminent threat. For many scientists, feelings are the hallmark of fear and anxiety. Here we used an independently validated multivoxel brain 'signature' to covertly probe the moment-by-moment dynamics of anticipatory distress for the first time. Results mirrored the dynamics of neural activation. These observations provide fresh insights into the neurobiology of threat-elicited emotions and set the stage for more ambitious clinical and mechanistic research.
Collapse
Affiliation(s)
- Brian R. Cornwell
- Department of Psychological & Brain Sciences, George Washington University, Washington, DC 20006 USA
| | - Paige R. Didier
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Shannon E. Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Allegra S. Anderson
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA 19139 USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | | | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zachary S. Scott
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
8
|
Sung K, Jeong MJ, Yoo T, Jung JH, Kang S, Yoo JY, Kim HJ, Park K, Pyo JH, Lee HY, Koo N, Choi SH, Kim JH. ErbB4 precludes the occurrence of PTSD-like fear responses by supporting the bimodal activity of the central amygdala. Exp Mol Med 2024; 56:2703-2713. [PMID: 39623093 DOI: 10.1038/s12276-024-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) often arises after exposure to traumatic events and is characterized by dysregulated fear responses. Although the associations of erb-b2 receptor tyrosine kinase 4 (ErbB4) with various neuropsychiatric diseases, including schizophrenia and bipolar disorder, have been widely examined, the physiological roles of ErbB4 in PTSD and fear responses remain unclear. Using Cre-dependent ErbB4 knockout (KO) mice, we observed that PTSD-like fear behaviors emerged in ErbB4-deficient mice, particularly in inhibitory neurons. Specifically, the loss of ErbB4 in somatostatin-expressing (SST+) neurons was sufficient to induce PTSD-like fear responses. We also adopted the CRISPR/Cas9 system for region-specific KO of ErbB4, which revealed that ErbB4 deletion in SST+ neurons of the lateral division of the amygdala (CeL) caused elevated anxiety and PTSD-like fear generalization. Consistent with its physiological role, ErbB4 expression was diminished in CeLSST neurons from mice that exhibited PTSD-like phenotypes. While fear On and Off cells identified in the CeL displayed distinct responses to conditioned and novel cues, as previously shown, the selectivity of those On and Off cells was compromised in SSTErbB4-/- and stressed mice, which displayed strong fear generalization. Therefore, the bimodal activity that CeL On/Off cells display is likely required for proper discrimination of fearful stimuli from ambient stimuli, which should be sustained by the presence of ErbB4. Taken together, our data substantiate the correlation between PTSD-like fear responses and ErbB4 expression in CeLSST neurons and further underscore the functional effects of ErbB4 in CeLSST neurons, supporting the bimodal responses of CeL neurons.
Collapse
Affiliation(s)
- Kibong Sung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Min-Jae Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Taesik Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jung Hoon Jung
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Sumin Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jong-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kyunghyun Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jung Hyun Pyo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun-Yong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Noah Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Fox AS, Shackman AJ. An Honest Reckoning With the Amygdala and Mental Illness. Am J Psychiatry 2024; 181:1059-1075. [PMID: 39616453 PMCID: PMC11611071 DOI: 10.1176/appi.ajp.20240941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Anxiety disorders are a leading source of human misery, morbidity, and premature mortality. Existing treatments are far from curative for many, underscoring the need to clarify the underlying neural mechanisms. Although many brain regions contribute, the amygdala has received the most intense scientific attention. Over the past several decades, this scrutiny has yielded a detailed understanding of amygdala function, but it has failed to produce new clinical assays, biomarkers, or cures. Rising to this urgent public health challenge demands an honest reckoning with the functional-neuroanatomical complexity of the amygdala and a shift from theories anchored on "the amygdala" to models centered on specific amygdala nuclei and cell types. This review begins by examining evidence from studies of rodents, monkeys, and humans for the "canonical model," the idea that the amygdala plays a central role in fear- and anxiety-related states, traits, and disorders. Next, the authors selectively highlight work indicating that the canonical model, while true, is overly simplistic and fails to adequately capture the actual state of the evidentiary record, the breadth of amygdala-associated functions and illnesses, or the complexity of the amygdala's functional architecture. The authors describe the implications of these facts for basic and clinical neuroimaging research. The review concludes with some general recommendations for grappling with the complexity of the amygdala and accelerating efforts to understand and more effectively treat amygdala-related psychopathology.
Collapse
Affiliation(s)
- Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
10
|
Poplin T, Ironside M, Kuplicki R, Aupperle RL, Guinjoan SM, Khalsa SS, Stewart JL, Victor TA, Paulus MP, Kirlic N. The unique face of comorbid anxiety and depression: Increased frontal, insula and cingulate cortex response during Pavlovian fear-conditioning. J Affect Disord 2024; 366:98-105. [PMID: 39187192 PMCID: PMC11481760 DOI: 10.1016/j.jad.2024.08.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Dysregulation of fear processing through altered sensitivity to threat is thought to contribute to the development of anxiety disorders and major depressive disorder (MDD). However, fewer studies have examined fear processing in MDD than in anxiety disorders. The current study used propensity matching to examine the hypothesis that comorbid MDD and anxiety (AnxMDD) shows greater neural correlates of fear processing than MDD, suggesting that the co-occurrence of AnxMDD is exemplified by exaggerated defense related processes. METHODS 195 individuals with MDD (N = 65) or AnxMDD (N = 130) were recruited from the community and completed multi-level assessments, including a Pavlovian fear learning task during functional imaging. Visual images paired with threat (conditioned stimuli: CS+) were compared to stimuli not paired with threat (CS-). RESULTS MDD and AnxMDD showed significantly different patterns of activation for CS+ vs CS- in the dorsal anterior insula/inferior frontal gyrus (partial eta squared; ηp2 = 0.02), dorsolateral prefrontal cortex (ηp2 = 0.01) and dorsal anterior/mid cingulate cortex (ηp2 = 0.01). These differences were driven by greater activation to the CS+ in AnxMDD versus MDD. LIMITATIONS Limitations include the cross-sectional design, a scream US rather than shock and half the number of MDD as AnxMDD participants. CONCLUSIONS AnxMDD showed a pattern of increased activation in regions identified with fear processing. Effects were consistently driven by threat, further suggesting fear signaling as the emergent target process. Differences emerged in regions associated with salience processing, attentional orienting/conflict, self-relevant processing and executive functioning in comorbid anxiety and depression, thereby highlighting potential treatment targets for this prevalent and treatment resistant group.
Collapse
Affiliation(s)
- Tate Poplin
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Maria Ironside
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA.
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Namik Kirlic
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| |
Collapse
|
11
|
Rosenkranz JA. Developmental Shifts in Amygdala Function. Curr Top Behav Neurosci 2024. [PMID: 39546164 DOI: 10.1007/7854_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mammals have evolved with strategies to optimize survival and thrive in their native environment. This includes both physical and behavioral adaptations, and extends to their social environment. However, within a social context, the roles of an animal change across development, and their behavior and biology must update to match these changes. The amygdala has a key role in social and emotional processing and expression, and displays developmental changes in early juvenile, adolescent, and adult transitions. Furthermore, the amygdala is highly sensitive to the social environment. This chapter will describe the primary amygdala developmental changes, how this maps onto major changes in social and emotional domains, and propose a framework where developmental stage of intra-amygdala circuits and its regulation by cortical inputs biases the animal toward developmentally appropriate social and emotional behavior. This developmental plasticity also presents an opportunity for retuning the developmental trajectory in the presence of ongoing challenges during maturation, such as constant threat or resource scarcity, so there can be realignment of behavior to match environmental demands.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
12
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex neuronal ensemble encoded during learning attenuates fear generalization expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608308. [PMID: 39229064 PMCID: PMC11370439 DOI: 10.1101/2024.08.18.608308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventral medial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain are sparse, distributed groups of neurons known as ensembles (i.e., the engram). Here, we set out to determine whether neuronal ensembles established in the IL during learning contribute to generalized responses. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 × eYFP system), a neuronal ensemble, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL neuronal ensemble established during learning was selectively chemogenetically silenced, generalization increased. Conversely, IL neuronal ensemble stimulation reduced generalization. Overall, these data identify a crucial role for IL in suppressing generalized responses. Further, an IL neuronal ensemble, formed during learning, functions to later attenuate the expression of generalization in the presence of ambiguous threat stimuli.
Collapse
Affiliation(s)
- Rajani Subramanian
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Avery Bauman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Olivia Carpenter
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Chris Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Gabrielle Coste
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Ahona Dam
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Kasey Drake
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sara Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Naomi Fitzgerald
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Abigail Jenkins
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Koolpe
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Runqi Liu
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tamar Paserman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - David Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Diego Scala Chavez
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Stefano Rozental
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tyler Tsukuda
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sasha Zweig
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Megan Gall
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Bojana Zupan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hadley Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| |
Collapse
|
13
|
McTaggart EM, Miller NW, Ortiz-Juza MM, Pégard NC, Rodriguez-Romaguera J. A fully automated social interaction chamber for studying social threat learning in mice. Front Behav Neurosci 2024; 18:1481935. [PMID: 39563961 PMCID: PMC11573581 DOI: 10.3389/fnbeh.2024.1481935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Social interactions are fundamental for our survival as a predominately social species. We need and seek positive social interactions to navigate the world. However, when social interactions are negative, and occur in the presence of an aversive event, learning occurs to associate such social interactions as threatening. Gaining insight into the neural circuits that drive social threat learning is crucial for understanding social interactions. Animal models can be leveraged to employ technologies that allow us to track neuronal processes with very high resolution to obtain a better understanding of the neural circuits involved. To accomplish this, we need robust behavioral models that are replicable and high throughput. Here, we present an open-source social interaction chamber that detects social interaction and automatically pairs it with foot shock. The social interaction chamber is designed to easily integrate into modular chambers commonly used for auditory and context threat learning. It contains an array of optical gates that precisely track mouse-to-mouse interactions in real time with digital triggers that can communicate with external devices to deliver a foot shock. We find that pairing social interactions with electric foot shock using our fully automated social interaction chamber is optimal for social threat associations. We further demonstrate that timing of social contact with foot shock produces optimal learning.
Collapse
Affiliation(s)
- Ellora M McTaggart
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Noah W Miller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maria M Ortiz-Juza
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicolas C Pégard
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jose Rodriguez-Romaguera
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Stress Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Development Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 PMCID: PMC11956751 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Basu A, Yang JH, Yu A, Glaeser-Khan S, Rondeau JA, Feng J, Krystal JH, Li Y, Kaye AP. Frontal Norepinephrine Represents a Threat Prediction Error Under Uncertainty. Biol Psychiatry 2024; 96:256-267. [PMID: 38316333 PMCID: PMC11269024 DOI: 10.1016/j.biopsych.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - Jen-Hau Yang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Abigail Yu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Jocelyne A Rondeau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; Peking University-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
18
|
Ma J, O'Malley JJ, Kreiker M, Leng Y, Khan I, Kindel M, Penzo MA. Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus. Nat Commun 2024; 15:6598. [PMID: 39097600 PMCID: PMC11297946 DOI: 10.1038/s41467-024-50941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Current concepts of corticothalamic organization in the mammalian brain are mainly based on sensory systems, with less focus on circuits for higher-order cognitive functions. In sensory systems, first-order thalamic relays are driven by subcortical inputs and modulated by cortical feedback, while higher-order relays receive strong excitatory cortical inputs. The applicability of these principles beyond sensory systems is uncertain. We investigated mouse prefronto-thalamic projections to the midline thalamus, revealing distinct top-down control. Unlike sensory systems, this pathway relies on indirect modulation via the thalamic reticular nucleus (TRN). Specifically, the prelimbic area, which influences emotional and motivated behaviors, impacts instrumental avoidance responses through direct and indirect projections to the paraventricular thalamus. Both pathways promote defensive states, but the indirect pathway via the TRN is essential for organizing avoidance decisions through disinhibition. Our findings highlight intra-thalamic circuit dynamics that integrate cortical cognitive signals and their role in shaping complex behaviors.
Collapse
Affiliation(s)
- Jun Ma
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
- Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, China
| | - John J O'Malley
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Malaz Kreiker
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Yan Leng
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Isbah Khan
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Morgan Kindel
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Mario A Penzo
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Chanthongdee K, Fuentealba Y, Wahlestedt T, Foulhac L, Kardash T, Coppola A, Heilig M, Barbier E. Comprehensive ethological analysis of fear expression in rats using DeepLabCut and SimBA machine learning model. Front Behav Neurosci 2024; 18:1440601. [PMID: 39148895 PMCID: PMC11324570 DOI: 10.3389/fnbeh.2024.1440601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Defensive responses to threat-associated cues are commonly evaluated using conditioned freezing or suppression of operant responding. However, rats display a broad range of behaviors and shift their defensive behaviors based on immediacy of threats and context. This study aimed to systematically quantify the defensive behaviors that are triggered in response to threat-associated cues and assess whether they can accurately be identified using DeepLabCut in conjunction with SimBA. Methods We evaluated behavioral responses to fear using the auditory fear conditioning paradigm. Observable behaviors triggered by threat-associated cues were manually scored using Ethovision XT. Subsequently, we investigated the effects of diazepam (0, 0.3, or 1 mg/kg), administered intraperitoneally before fear memory testing, to assess its anxiolytic impact on these behaviors. We then developed a DeepLabCut + SimBA workflow for ethological analysis employing a series of machine learning models. The accuracy of behavior classifications generated by this pipeline was evaluated by comparing its output scores to the manually annotated scores. Results Our findings show that, besides conditioned suppression and freezing, rats exhibit heightened risk assessment behaviors, including sniffing, rearing, free-air whisking, and head scanning. We observed that diazepam dose-dependently mitigates these risk-assessment behaviors in both sexes, suggesting a good predictive validity of our readouts. With adequate amount of training data (approximately > 30,000 frames containing such behavior), DeepLabCut + SimBA workflow yields high accuracy with a reasonable transferability to classify well-represented behaviors in a different experimental condition. We also found that maintaining the same condition between training and evaluation data sets is recommended while developing DeepLabCut + SimBA workflow to achieve the highest accuracy. Discussion Our findings suggest that an ethological analysis can be used to assess fear learning. With the application of DeepLabCut and SimBA, this approach provides an alternative method to decode ongoing defensive behaviors in both male and female rats for further investigation of fear-related neurobiological underpinnings.
Collapse
Affiliation(s)
- Kanat Chanthongdee
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yerko Fuentealba
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Thor Wahlestedt
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Lou Foulhac
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Bordeaux Neurocampus, University of Bordeaux, Bordeaux, France
| | - Tetiana Kardash
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andrea Coppola
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Vieira JB, Olsson A. The convergence between defence and care in mammals. Trends Cogn Sci 2024; 28:714-725. [PMID: 38749809 DOI: 10.1016/j.tics.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 08/09/2024]
Abstract
The motivations to protect oneself and others have often been seen as conflicting. Here, we discuss recent evidence that self-defensive mechanisms may in fact be recruited to enable the helping of others. In some instances, the defensive response to a threat may even be more decisive in promoting helping than the response to a conspecific's distress (as predicted by empathy-altruism models). In light of this evidence, we propose that neural mechanisms implicated in self-defence may have been repurposed through evolution to enable the protection of others, and that defence and care may be convergent rather than conflicting functions. Finally, we present and discuss a working model of the shared brain mechanisms implicated in defence of both self and others.
Collapse
Affiliation(s)
- Joana B Vieira
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
21
|
Wang L, Tseng YT, Schaefke B, Wei P, He S. Reply to 'Fear, anxiety and the functional architecture of the human central extended amygdala'. Nat Rev Neurosci 2024; 25:589-590. [PMID: 38858580 DOI: 10.1038/s41583-024-00834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Liping Wang
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yu-Ting Tseng
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Shackman AJ, Grogans SE, Fox AS. Fear, anxiety and the functional architecture of the human central extended amygdala. Nat Rev Neurosci 2024; 25:587-588. [PMID: 38858579 PMCID: PMC11262955 DOI: 10.1038/s41583-024-00832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, USA.
- Maryland Neuroimaging Center, University of Maryland, College Park, College Park, MD, USA.
| | - Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
23
|
Piszczek L, Haubensak W. Neuroethology: Fear outside the box. Curr Biol 2024; 34:R685-R687. [PMID: 39043141 DOI: 10.1016/j.cub.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Behavioral neuroscience has successfully and in great detail deconstructed circuit mechanisms underlying fear behaviors using reductionist approaches. Recent research in more naturalistic settings now reveals additional higher-level organization, where hypothalamic circuits multiplex threat detection and fear memory updating to safely navigate complex environments.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
24
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Demaestri C, Pisciotta M, Altunkeser N, Berry G, Hyland H, Breton J, Darling A, Williams B, Bath KG. Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice. Nat Commun 2024; 15:5522. [PMID: 38951506 PMCID: PMC11217353 DOI: 10.1038/s41467-024-49828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance. Further, chemogenic inhibition of CeAL CRF+ neurons selectively diminishes startle and produces a long-lasting suppression of threat reactivity. These findings identify a mechanism for sex-differences in susceptibility for anxiety following ELA and have broad implications for understanding the neural circuitry that encodes and gates the behavioral expression of fear.
Collapse
Affiliation(s)
- Camila Demaestri
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, USA
| | - Margaux Pisciotta
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Naira Altunkeser
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Georgia Berry
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Hyland
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Jocelyn Breton
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Darling
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Brenna Williams
- Doctoral Program in Cellular and Molecular Physiology & Biophysics, Columbia University, New York, NY, USA
| | - Kevin G Bath
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
Wang H, Flores RJ, Yarur HE, Limoges A, Bravo-Rivera H, Casello SM, Loomba N, Enriquez-Traba J, Arenivar M, Wang Q, Ganley R, Ramakrishnan C, Fenno LE, Kim Y, Deisseroth K, Or G, Dong C, Hoon MA, Tian L, Tejeda HA. Prefrontal cortical dynorphin peptidergic transmission constrains threat-driven behavioral and network states. Neuron 2024; 112:2062-2078.e7. [PMID: 38614102 PMCID: PMC11250624 DOI: 10.1016/j.neuron.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Collapse
Affiliation(s)
- Huikun Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Columbia University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector Bravo-Rivera
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M Casello
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Loomba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Brown University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Queenie Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ganley
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Kim
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Grace Or
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mark A Hoon
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hugo A Tejeda
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Nentwig TB, Obray JD, Kruyer A, Wilkes ET, Vaughan DT, Scofield MD, Chandler LJ. Central Amygdala Astrocyte Plasticity Underlies GABAergic Dysregulation in Ethanol Dependence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598470. [PMID: 38915577 PMCID: PMC11195260 DOI: 10.1101/2024.06.11.598470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dependence is a hallmark of alcohol use disorder characterized by excessive alcohol intake and withdrawal symptoms. The central nucleus of the amygdala (CeA) is a key brain structure underlying the synaptic and behavioral consequences of ethanol dependence. While accumulating evidence suggests that astrocytes regulate synaptic transmission and behavior, there is a limited understanding of the role astrocytes play in ethanol dependence. The present study used a combination of viral labeling, super resolution confocal microscopy, 3D image analysis, and slice electrophysiology to determine the effects of chronic intermittent ethanol (CIE) exposure on astrocyte plasticity in the CeA. During withdrawal from CIE exposure, we observed increased GABA transmission, an upregulation in astrocytic GAT3 levels, and an increased proximity of astrocyte processes near CeA synapses. Furthermore, GAT3 levels and synaptic proximity were positively associated with voluntary ethanol drinking in dependent rats. Slice electrophysiology confirmed that the upregulation in astrocytic GAT3 levels was functional, as CIE exposure unmasked a GAT3-sensitive tonic GABA current in the CeA. A causal role for astrocytic GAT3 in ethanol dependence was assessed using viral-mediated GAT3 overexpression and knockdown approaches. However, GAT3 knockdown or overexpression had no effect on somatic withdrawal symptoms, dependence-escalated ethanol intake, aversion-resistant drinking, or post-dependent ethanol drinking in male or female rats. Moreover, intra-CeA pharmacological inhibition of GAT3 also did not alter dependent ethanol drinking. Together, these findings indicate that ethanol dependence induces GABAergic dysregulation and astrocyte plasticity in the CeA. However, astrocytic GAT3 does not appear necessary for the drinking related phenotypes associated with dependence.
Collapse
Affiliation(s)
- Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
| | - J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
- Current affiliation: Department of Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Erik T Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
- Current affiliation: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston SC 29425, United States
| |
Collapse
|
28
|
Hur J, Tillman RM, Kim HC, Didier P, Anderson AS, Islam S, Stockbridge MD, De Los Reyes A, DeYoung KA, Smith JF, Shackman AJ. Adolescent social anxiety is associated with diminished discrimination of anticipated threat and safety in the bed nucleus of the stria terminalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564701. [PMID: 38853920 PMCID: PMC11160578 DOI: 10.1101/2023.10.30.564701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Social anxiety-which typically emerges in adolescence-lies on a continuum and, when extreme, can be devastating. Socially anxious individuals are prone to heightened fear, anxiety, and the avoidance of contexts associated with potential social scrutiny. Yet most neuroimaging research has focused on acute social threat. Much less attention has been devoted to understanding the neural systems recruited during the uncertain anticipation of potential encounters with social threat. Here we used a novel fMRI paradigm to probe the neural circuitry engaged during the anticipation and acute presentation of threatening faces and voices in a racially diverse sample of 66 adolescents selectively recruited to encompass a range of social anxiety and enriched for clinically significant levels of distress and impairment. Results demonstrated that adolescents with more severe social anxiety symptoms experience heightened distress when anticipating encounters with social threat, and reduced discrimination of uncertain social threat and safety in the bed nucleus of the stria terminalis (BST), a key division of the central extended amygdala (EAc). Although the EAc-including the BST and central nucleus of the amygdala-was robustly engaged by the acute presentation of threatening faces and voices, the degree of EAc engagement was unrelated to the severity of social anxiety. Together, these observations provide a neurobiologically grounded framework for conceptualizing adolescent social anxiety and set the stage for the kinds of prospective-longitudinal and mechanistic research that will be necessary to determine causation and, ultimately, to develop improved interventions for this often-debilitating illness.
Collapse
|
29
|
Han RW, Zhang ZY, Jiao C, Hu ZY, Pan BX. Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice. Nat Commun 2024; 15:3455. [PMID: 38658548 PMCID: PMC11043328 DOI: 10.1038/s41467-024-47966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Understanding how distinct functional circuits are coordinated to fine-tune mood and behavior is of fundamental importance. Here, we observe that within the dense projections from basolateral amygdala (BLA) to bed nucleus of stria terminalis (BNST), there are two functionally opposing pathways orchestrated to enable contextually appropriate expression of anxiety-like behaviors in male mice. Specifically, the anterior BLA neurons predominantly innervate the anterodorsal BNST (adBNST), while their posterior counterparts send massive fibers to oval BNST (ovBNST) with moderate to adBNST. Optogenetic activation of the anterior and posterior BLA inputs oppositely regulated the activity of adBNST neurons and anxiety-like behaviors, via disengaging and engaging the inhibitory ovBNST-to-adBNST microcircuit, respectively. Importantly, the two pathways exhibited synchronized but opposite responses to both anxiolytic and anxiogenic stimuli, partially due to their mutual inhibition within BLA and the different inputs they receive. These findings reveal synergistic interactions between two BLA-to-BNST pathways for appropriate anxiety expression with ongoing environmental demands.
Collapse
Affiliation(s)
- Ren-Wen Han
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Zi-Yi Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chen Jiao
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ze-Yu Hu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
30
|
O'Neill PK, Posani L, Meszaros J, Warren P, Schoonover CE, Fink AJP, Fusi S, Salzman CD. The representational geometry of emotional states in basolateral amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.558668. [PMID: 37790470 PMCID: PMC10542536 DOI: 10.1101/2023.09.23.558668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sensory stimuli associated with aversive outcomes cause multiple behavioral responses related to an animal's evolving emotional state, but neural mechanisms underlying these processes remain unclear. Here aversive stimuli were presented to mice, eliciting two responses reflecting fear and flight to safety: tremble and ingress into a virtual burrow. Inactivation of basolateral amygdala (BLA) eliminated differential responses to aversive and neutral stimuli without eliminating responses themselves, suggesting BLA signals valence, not motor commands. However, two-photon imaging revealed that neurons typically exhibited mixed selectivity for stimulus identity, valence, tremble and/or ingress. Despite heterogeneous selectivity, BLA representational geometry was lower-dimensional when encoding valence, tremble and safety, enabling generalization of emotions across conditions. Further, tremble and valence coding directions were orthogonal, allowing linear readouts to specialize. Thus BLA representational geometry confers two computational properties that identify specialized neural circuits encoding variables describing emotional states: generalization across conditions, and readouts lacking interference from other readouts.
Collapse
|
31
|
Ghanem K, Saltoun K, Suvrathan A, Draganski B, Bzdok D. Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics. Commun Biol 2024; 7:477. [PMID: 38637627 PMCID: PMC11026520 DOI: 10.1038/s42003-024-06187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.
Collapse
Affiliation(s)
- Karam Ghanem
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| | - Karin Saltoun
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Aparna Suvrathan
- Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience (BRaIN) Research Program, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bogdan Draganski
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
32
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Park K, Park H, Chung C. Fear conditioning and extinction distinctively alter bidirectional synaptic plasticity within the amygdala of an animal model of post-traumatic stress disorder. Neurobiol Stress 2024; 29:100606. [PMID: 38292517 PMCID: PMC10825524 DOI: 10.1016/j.ynstr.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Synaptic plasticity in the amygdala plays an essential role in the formation and inhibition of fear memory; however, this plasticity has mainly been studied in the lateral amygdala, making it largely uninvestigated in other subnuclei. Here, we investigated long-term potentiation (LTP) and long-term depression (LTD) in the basolateral amygdala (BLA) to the medial division of the central amygdala (CEm) synapses of juvenile C57BL/6N (B6) and 129S1/SvImJ (S1) mice. We found that in naïve B6 and S1 mice, LTP was not induced at the BLA to CEm synapses, whereas fear conditioning lowered the threshold for LTP induction in these synapses of both B6 and S1 mice. Interestingly, fear extinction disrupted the induction of LTP at the BLA to CEm synapses of B6 mice, whereas LTP was left intact in S1 mice. Both low-frequency stimulation (LFS) and modest LFS (mLFS) induced LTD in naïve B6 and S1 mice, suggesting that the BLA to CEm synapses express bidirectional plasticity. Fear conditioning disrupted both types of LTD induction selectively in S1 mice and LFS-LTD, presumably NMDAR-dependent LTD was partially recovered by fear extinction. However, mLFS-LTD which has been known to be endocannabinoid receptor 1 (CB1R)-dependent was not induced after fear extinction in both mouse strains. Our observations suggest that fear conditioning enhances LTP while fear extinction diminishes LTP at the BLA to the CEm synapses of B6 mice with successful extinction. Considering that S1 mice showed strong fear conditioning and impaired extinction, strong fear conditioning in the S1 strain may be related to disrupted LTD, and impaired extinction may be due to constant LTP and weak LFS-LTD at the BLA to CEm synapses. Our study contributes to the further understanding of the dynamics of synaptic potentiation and depression between the subnuclei of the amygdala in juvenile mice after fear conditioning and extinction.
Collapse
Affiliation(s)
- Kwanghoon Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
34
|
Yeh LF, Zuo S, Liu PW. Molecular diversity and functional dynamics in the central amygdala. Front Mol Neurosci 2024; 17:1364268. [PMID: 38419794 PMCID: PMC10899328 DOI: 10.3389/fnmol.2024.1364268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The central amygdala (CeA) is crucial in integrating sensory and associative information to mediate adaptive responses to emotional stimuli. Recent advances in genetic techniques like optogenetics and chemogenetics have deepened our understanding of distinct neuronal populations within the CeA, particularly those involved in fear learning and memory consolidation. However, challenges remain due to overlapping genetic markers complicating neuron identification. Furthermore, a comprehensive understanding of molecularly defined cell types and their projection patterns, which are essential for elucidating functional roles, is still developing. Recent advancements in transcriptomics are starting to bridge these gaps, offering new insights into the functional dynamics of CeA neurons. In this review, we provide an overview of the expanding genetic markers for amygdala research, encompassing recent developments and current trends. We also discuss how novel transcriptomic approaches are redefining cell types in the CeA and setting the stage for comprehensive functional studies.
Collapse
Affiliation(s)
- Li-Feng Yeh
- RIKEN Center for Brain Science, Saitama, Japan
| | - Shuzhen Zuo
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Pin-Wu Liu
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Sears RM, Andrade EC, Samels SB, Laughlin LC, Moloney DM, Wilson DA, Alwood MR, Moscarello JM, Cain CK. Devaluation of response-produced safety signals reveals circuits for goal-directed versus habitual avoidance in dorsal striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579321. [PMID: 38370659 PMCID: PMC10871355 DOI: 10.1101/2024.02.07.579321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Active avoidance responses (ARs) are instrumental behaviors that prevent harm. Adaptive ARs may contribute to active coping, whereas maladaptive avoidance habits are implicated in anxiety and obsessive-compulsive disorders. The AR learning mechanism has remained elusive, as successful avoidance trials produce no obvious reinforcer. We used a novel outcome-devaluation procedure in rats to show that ARs are positively reinforced by response-produced feedback (FB) cues that develop into safety signals during training. Males were sensitive to FB-devaluation after moderate training, but not overtraining, consistent with a transition from goal-directed to habitual avoidance. Using chemogenetics and FB-devaluation, we also show that goal-directed vs. habitual ARs depend on dorsomedial vs. dorsolateral striatum, suggesting a significant overlap between the mechanisms of avoidance and rewarded instrumental behavior. Females were insensitive to FB-devaluation due to a remarkable context-dependence of counterconditioning. However, degrading the AR-FB contingency suggests that both sexes rely on safety signals to perform goal-directed ARs.
Collapse
Affiliation(s)
- Robert M Sears
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Medicine, 1 Park Avenue, 8 Floor, New York, NY 10016
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
- These authors contributed equally
| | - Erika C Andrade
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
- These authors contributed equally
| | - Shanna B Samels
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
| | - Lindsay C Laughlin
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
| | - Danielle M Moloney
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Medicine, 1 Park Avenue, 8 Floor, New York, NY 10016
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Medicine, 1 Park Avenue, 8 Floor, New York, NY 10016
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
| | - Matthew R Alwood
- Department of Psychological & Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, 301 Old Main, TAMU MS 3474, College Station, TX 77843-3474
| | - Justin M Moscarello
- Department of Psychological & Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, 301 Old Main, TAMU MS 3474, College Station, TX 77843-3474
| | - Christopher K Cain
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Medicine, 1 Park Avenue, 8 Floor, New York, NY 10016
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962
| |
Collapse
|
36
|
Ozsvár A, Sieburg MC, Sietam MD, Hou WH, Capogna M. A combinatory genetic strategy for targeting neurogliaform neurons in the mouse basolateral amygdala. Front Cell Neurosci 2024; 18:1254460. [PMID: 38362542 PMCID: PMC10867116 DOI: 10.3389/fncel.2024.1254460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
The mouse basolateral amygdala (BLA) contains various GABAergic interneuron subpopulations, which have distinctive roles in the neuronal microcircuit controlling numerous behavioral functions. In mice, roughly 15% of the BLA GABAergic interneurons express neuropeptide Y (NPY), a reasonably characteristic marker for neurogliaform cells (NGFCs) in cortical-like brain structures. However, genetically labeled putative NPY-expressing interneurons in the BLA yield a mixture of interneuron subtypes besides NGFCs. Thus, selective molecular markers are lacking for genetically accessing NGFCs in the BLA. Here, we validated the NGFC-specific labeling with a molecular marker, neuron-derived neurotrophic factor (NDNF), in the mouse BLA, as such specificity has been demonstrated in the neocortex and hippocampus. We characterized genetically defined NDNF-expressing (NDNF+) GABAergic interneurons in the mouse BLA by combining the Ndnf-IRES2-dgCre-D transgenic mouse line with viral labeling, immunohistochemical staining, and in vitro electrophysiology. We found that BLA NDNF+ GABAergic cells mainly expressed NGFC neurochemical markers NPY and reelin (Reln) and exhibited small round soma and dense axonal arborization. Whole-cell patch clamp recordings indicated that most NDNF+ interneurons showed late spiking and moderate firing adaptation. Moreover, ∼81% of BLA NDNF+ cells generated retroaxonal action potential after current injections or optogenetic stimulations, frequently developing into persistent barrage firing. Optogenetic activation of the BLA NDNF+ cell population yielded both GABAA- and GABAB receptor-mediated currents onto BLA pyramidal neurons (PNs). We demonstrate a combinatory strategy combining the NDNF-cre mouse line with viral transfection to specifically target adult mouse BLA NGFCs and further explore their functional and behavioral roles.
Collapse
Affiliation(s)
- Attila Ozsvár
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Meike Claudia Sieburg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Monica Dahlstrup Sietam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
- Center for Proteins in Memory (PROMEMO), Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Wang H, Flores RJ, Yarur HE, Limoges A, Bravo-Rivera H, Casello SM, Loomba N, Enriquez-Traba J, Arenivar M, Wang Q, Ganley R, Ramakrishnan C, Fenno LE, Kim Y, Deisseroth K, Or G, Dong C, Hoon MA, Tian L, Tejeda HA. Prefrontal cortical dynorphin peptidergic transmission constrains threat-driven behavioral and network states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574700. [PMID: 38283686 PMCID: PMC10822088 DOI: 10.1101/2024.01.08.574700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and mal-adaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.
Collapse
Affiliation(s)
- Huikun Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J. Flores
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector E. Yarur
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Columbia University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Hector Bravo-Rivera
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M. Casello
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niharika Loomba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Brown University - NIH Graduate Partnership Program, National Institutes of Health, Bethesda, MD, USA
| | - Queenie Wang
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Robert Ganley
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Current affiliation: Departments of Psychiatry and Neuroscience, University of Texas, Austin, Dell Medical School, Austin, TX, USA
| | - Yoon Kim
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Grace Or
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mark A. Hoon
- Molecular Genetics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hugo A. Tejeda
- Neuromodulation and Synaptic Integration Unit, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Sherman BE, Turk-Browne NB, Goldfarb EV. Multiple Memory Subsystems: Reconsidering Memory in the Mind and Brain. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:103-125. [PMID: 37390333 PMCID: PMC10756937 DOI: 10.1177/17456916231179146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The multiple-memory-systems framework-that distinct types of memory are supported by distinct brain systems-has guided learning and memory research for decades. However, recent work challenges the one-to-one mapping between brain structures and memory types central to this taxonomy, with key memory-related structures supporting multiple functions across substructures. Here we integrate cross-species findings in the hippocampus, striatum, and amygdala to propose an updated framework of multiple memory subsystems (MMSS). We provide evidence for two organizational principles of the MMSS theory: First, opposing memory representations are colocated in the same brain structures; second, parallel memory representations are supported by distinct structures. We discuss why this burgeoning framework has the potential to provide a useful revision of classic theories of long-term memory, what evidence is needed to further validate the framework, and how this novel perspective on memory organization may guide future research.
Collapse
Affiliation(s)
| | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
- National Center for PTSD, West Haven, USA
| |
Collapse
|
39
|
Brown A, Martins M, Richard I, Chaudhri N. Context-induced renewal of passive but not active coping behaviours in the shock-probe defensive burying task. Learn Behav 2023; 51:468-481. [PMID: 37095421 DOI: 10.3758/s13420-023-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Renewal is the return of extinguished responding after removal from the extinction context. Renewal has been extensively studied using classical aversive conditioning procedures that measure a passive freezing response to an aversive conditioned stimulus. However, coping responses to aversive stimuli are complex and can be reflected in passive and active behaviours. Using the shock-probe defensive burying task, we investigated whether different coping responses are susceptible to renewal. During conditioning, male, Long-Evans rats were placed into a specific context (Context A) where an electrified shock-probe delivered a 3 mA shock upon contact. During extinction, the shock-probe was unarmed in either the same (Context A) or a different context (Context B). Renewal of conditioned responses was assessed in the conditioning context (ABA) or in a novel context (ABC or AAB). Renewal of passive coping responses, indicated by an increased latency and a decreased duration of shock-probe contacts, was observed in all groups. However, renewal of passive coping, measured by increased time spent on the side of the chamber opposite the shock-probe, was only found in the ABA group. Renewal of active coping responses linked to defensive burying was not observed in any group. The present findings highlight the presence of multiple psychological processes underlying even basic forms of aversive conditioning and demonstrate the importance of assessing a broader set of behaviours to tease apart these different underlying mechanisms. The current findings suggest that passive coping responses may be more reliable indicators for assessing renewal than active coping behaviours associated with defensive burying.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada.
| | - Melissa Martins
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Isabelle Richard
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B-1R6, Canada
| |
Collapse
|
40
|
Tseng YT, Schaefke B, Wei P, Wang L. Defensive responses: behaviour, the brain and the body. Nat Rev Neurosci 2023; 24:655-671. [PMID: 37730910 DOI: 10.1038/s41583-023-00736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
41
|
Jiang Y, Zhou J, Song BL, Wang Y, Zhang DL, Zhang ZT, Li LF, Liu YJ. 5-HT1A receptor in the central amygdala and 5-HT2A receptor in the basolateral amygdala are involved in social hierarchy in male mice. Eur J Pharmacol 2023; 957:176027. [PMID: 37659688 DOI: 10.1016/j.ejphar.2023.176027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Most social animals self-organize into dominance hierarchies that strongly influence their behavior and health. The serotonin (5-HT) system is believed to play an important role in the formation of social hierarchy. 5-HT receptors are abundantly expressed in the amygdala, which is considered as the central node for the perception and learning of social hierarchy. In this study, we assessed the functions of various 5-HT receptor subtypes related to social rank determination in different subregions of the amygdala using the confrontation tube test in mice. We revealed that most adult C57BL/6 J male mice exhibited a linear social rank after a few days of cohousing. The tube test ranks were slightly related to anxiety-like behavioral performance. After the tube test, the amygdala and 5-HT neurons in the dorsal raphe nucleus were activated in lower-rank individuals. Quantitative real-time polymerase chain reaction analysis revealed that despite the high expression of 5-HT1A receptor mRNA in the central amygdala (CeA), 5-HT2A receptor mRNA expression was downregulated in the basolateral amygdala (BLA) in higher-rank individuals. The dominant-subordinate relationship between mouse pairs could be switched via pharmacological modulation of these receptors in CeA and BLA, suggesting that these expression changes are essential for establishing social ranks. Our findings provide novel insights into the divergent functions of 5-HT receptors in the amygdala related to social hierarchy, which is closely related to our health and welfare.
Collapse
Affiliation(s)
- Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Dong-Lin Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Zheng-Tian Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
42
|
Frank SA. Disease from opposing forces in regulatory control. Evol Med Public Health 2023; 11:348-352. [PMID: 37868077 PMCID: PMC10590154 DOI: 10.1093/emph/eoad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/17/2023] [Indexed: 10/24/2023] Open
Abstract
Danger requires a strong rapid response. Speedy triggers are prone to false signals. False alarms can be costly, requiring strong negative regulators to oppose the initial triggers. Strongly opposed forces can easily be perturbed, leading to imbalance and disease. For example, immunity and fear response balance strong rapid triggers against widespread slow negative regulators. Diseases of immunity and behavior arise from imbalance. A different opposition of forces occurs in mammalian growth, which balances strong paternally expressed accelerators against maternally expressed suppressors. Diseases of overgrowth or undergrowth arise from imbalance. Other examples of opposing forces and disease include control of dopamine expression and male versus female favored traits.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| |
Collapse
|
43
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
44
|
Zhu Y, Xie SZ, Peng AB, Yu XD, Li CY, Fu JY, Shen CJ, Cao SX, Zhang Y, Chen J, Li XM. Distinct Circuits From the Central Lateral Amygdala to the Ventral Part of the Bed Nucleus of Stria Terminalis Regulate Different Fear Memory. Biol Psychiatry 2023:S0006-3223(23)01553-6. [PMID: 37678543 DOI: 10.1016/j.biopsych.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The ability to differentiate stimuli that predict fear is critical for survival; however, the underlying molecular and circuit mechanisms remain poorly understood. METHODS We combined transgenic mice, in vivo transsynaptic circuit-dissecting anatomical approaches, optogenetics, pharmacological methods, and electrophysiological recording to investigate the involvement of specific extended amygdala circuits in different fear memory. RESULTS We identified the projections from central lateral amygdala (CeL) protein kinase C δ (PKCδ)-positive neurons and somatostatin (SST)-positive neurons to GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons in the ventral part of the bed nucleus of stria terminalis (vBNST). Prolonged optogenetic activation or inhibition of the PKCδCeL-vBNST pathway specifically reduced context fear memory, whereas the SSTCeL-vBNST pathway mainly reduced tone fear memory. Intriguingly, optogenetic manipulation of vBNST neurons that received the projection from PKCδCeL neurons exerted bidirectional regulation of context fear, whereas manipulation of vBNST neurons that received the projection from SSTCeL neurons could bidirectionally regulate both context and tone fear memory. We subsequently demonstrated the presence of δ and κ opioid receptor protein expression within the CeL-vBNST circuits, potentially accounting for the discrepancy between prolonged activation of GABAergic circuits and inhibition of downstream vBNST neurons. Finally, administration of an opioid receptor antagonist cocktail on the PKCδCeL-vBNST or SSTCeL-vBNST pathway successfully restored context or tone fear memory reduction induced by prolonged activation of the circuits. CONCLUSIONS Together, these findings establish a functional role for distinct CeL-vBNST circuits in the differential regulation and appropriate maintenance of fear.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Ze Xie
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Bing Peng
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Yu Fu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Jie Shen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Penzo MA, Moscarello JM. From aversive associations to defensive programs: experience-dependent synaptic modifications in the central amygdala. Trends Neurosci 2023; 46:701-711. [PMID: 37495461 PMCID: PMC10529247 DOI: 10.1016/j.tins.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Plasticity elicited by fear conditioning (FC) is thought to support the storage of aversive associative memories. Although work over the past decade has revealed FC-induced plasticity beyond canonical sites in the basolateral complex of the amygdala (BLA), it is not known whether modifications across distributed circuits make equivalent or distinct contributions to aversive memory. Here, we review evidence demonstrating that experience-dependent synaptic plasticity in the central nucleus of the amygdala (CeA) has a circumscribed role in memory expression per se, guiding the selection of defensive programs in response to acquired threats. We argue that the CeA may be a key example of a broader phenomenon by which synaptic plasticity at specific nodes of a distributed network makes a complementary contribution to distinct memory processes.
Collapse
Affiliation(s)
- Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
46
|
Grogans SE, Bliss-Moreau E, Buss KA, Clark LA, Fox AS, Keltner D, Cowen AS, Kim JJ, Kragel PA, MacLeod C, Mobbs D, Naragon-Gainey K, Fullana MA, Shackman AJ. The nature and neurobiology of fear and anxiety: State of the science and opportunities for accelerating discovery. Neurosci Biobehav Rev 2023; 151:105237. [PMID: 37209932 PMCID: PMC10330657 DOI: 10.1016/j.neubiorev.2023.105237] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kristin A Buss
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Colin MacLeod
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Naragon-Gainey
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
47
|
Guerra DP, Wang W, Souza KA, Moscarello JM. A sex-specific role for the bed nucleus of the stria terminalis in proactive defensive behavior. Neuropsychopharmacology 2023; 48:1234-1244. [PMID: 37142666 PMCID: PMC10267121 DOI: 10.1038/s41386-023-01581-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a forebrain region implicated in aversive responses to uncertain threat. Much of the work on the role of BNST in defensive behavior has used Pavlovian paradigms in which the subject reacts to aversive stimuli delivered in a pattern determined entirely by the experimenter. Here, we explore the contribution of BNST to a task in which subjects learn a proactive response that prevents the delivery of an aversive outcome. To this end, male and female rats were trained to shuttle during a tone to avoid shock in a standard two-way signaled active avoidance paradigm. Chemogenetic inhibition (hM4Di) of BNST attenuated the expression of the avoidance response in male but not female rats. Inactivation of the neighboring medial septum in males produced no effect on avoidance, demonstrating that our effect was specific to BNST. A follow up study comparing hM4Di inhibition to hM3Dq activation of BNST in males replicated the effect of inhibition and demonstrated that activation of BNST extended the period of tone-evoked shuttling. These data support the novel conclusion that BNST mediates two-way avoidance behavior in male rats and suggest the intriguing possibility that the systems underlying proactive defensive behavior are sex-specific.
Collapse
Affiliation(s)
- Diana P Guerra
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Wei Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Justin M Moscarello
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
48
|
Boyle CA, Lei S. Neuromedin B excites central lateral amygdala neurons and reduces cardiovascular output and fear-potentiated startle. J Cell Physiol 2023; 238:1381-1404. [PMID: 37186390 PMCID: PMC10330072 DOI: 10.1002/jcp.31020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Neuromedin B (NMB) and gastrin-releasing peptide (GRP) are the two mammalian analogs in the bombesin peptide family that exert a variety of actions including emotional processing, appetitive behaviors, cognition, and tumor growth. The bombesin-like peptides interact with three receptors: the NMB-preferring bombesin 1 (BB1) receptors, the GRP-preferring bombesin 2 (BB2) receptors and the orphan bombesin 3 (BB3) receptors. Whereas, injection of bombesin into the central amygdala reduces satiety and modulates blood pressure, the underlying cellular and molecular mechanisms have not been determined. As administration of bombesin induces the expression of Fos in the lateral nucleus of the central amygdala (CeL) which expresses BB1 receptors, we probed the effects of NMB on CeL neurons using in vitro and in vivo approaches. We showed that activation of the BB1 receptors increased action potential firing frequency recorded from CeL neurons via inhibition of the inwardly rectifying K+ (Kir) channels. Activities of phospholipase Cβ and protein kinase C were required, whereas intracellular Ca2+ release was unnecessary for BB1 receptor-elicited potentiation of neuronal excitability. Application of NMB directly into the CeA reduced blood pressure and heart rate and significantly reduced fear-potentiated startle. We may provide a cellular and molecular mechanism whereby bombesin-like peptides modulate anxiety and fear responses in the amygdala.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
49
|
Williford KM, Taylor A, Melchior JR, Yoon HJ, Sale E, Negasi MD, Adank DN, Brown JA, Bedenbaugh MN, Luchsinger JR, Centanni SW, Patel S, Calipari ES, Simerly RB, Winder DG. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023; 48:1031-1041. [PMID: 36941364 PMCID: PMC10209190 DOI: 10.1038/s41386-023-01569-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/22/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.
Collapse
Affiliation(s)
- Kellie M Williford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - James R Melchior
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Eryn Sale
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Milen D Negasi
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
50
|
Winters ND, Yasmin F, Kondev V, Grueter BA, Patel S. Cannabidiol Differentially Modulates Synaptic Release and Cellular Excitability in Amygdala Subnuclei. ACS Chem Neurosci 2023. [PMID: 37163725 DOI: 10.1021/acschemneuro.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive constituent of the Cannabis plant that has purported effectiveness in treating an array of stress-related neuropsychiatric disorders. The amygdala is a subcortical brain structure that regulates emotional behavior, and its dysfunction has been linked to numerous disorders including anxiety and posttraumatic stress disorder. Despite this, the direct effects of CBD on synaptic and cellular function in the amygdala are not known. Using electrophysiology and pharmacology, we report that CBD reduces presynaptic neurotransmitter release in the amygdala, and these effects are dependent on subnucleus and cell type. Furthermore, CBD broadly decreases cellular excitability across amygdala subnuclei. These data reveal physiological mechanisms by which CBD modulates amygdala activity and could provide insights into how CBD could affect emotional and stress-related behavioral responses.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|