1
|
Månsson A. Mechanistic insights into effects of the cardiac myosin activator omecamtiv mecarbil from mechanokinetic modelling. Front Physiol 2025; 16:1576245. [PMID: 40313875 PMCID: PMC12043640 DOI: 10.3389/fphys.2025.1576245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Small molecular compounds that affect the force, and motion-generating actin-myosin interaction in the heart have emerged as alternatives to treat or alleviate symptoms in severe debilitating conditions, such as cardiomyopathies and heart failure. Omecamtiv mecarbil (OM) is such a compound developed to enhance cardiac contraction. In addition to potential therapeutic use, its effects may help to elucidate myosin energy transduction mechanisms in health and disease and add insights into how the molecular properties govern contraction of large myosin ensembles in cardiac cells. Despite intense studies, the effects of OM are still incompletely understood. Methods Here we take an in silico approach to elucidate the issue. First, we modify a model, previously used in studies of skeletal muscle, with molecular parameter values for human ventricular β-myosin to make it useful for studies of both myosin mutations and drugs. Repeated tests lead to at a set of parameter values that allow faithful reproduction of range of functional variables of cardiac myocytes. We then apply the model to studies of OM. Results and discussion The results suggest that major effects of OM such as large reduction of the maximum velocity with more limited effects on maximum isometric force and slowed actin-activated ATPase can be accounted for by two key molecular effects. These encompass a reduced difference in binding free energy between the pre- and post-power-stroke states and greatly increased activation energy for the lever arm swing during the power-stroke. Better quantitative agreement, e.g., isometric force minimally changed from the control value by OM is achieved by additional changes in model parameter values previously suggested by studies of isolated proteins.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Hatano A, Izu LT, Chen-Izu Y, Sato D. Modeling autoregulation of cardiac excitation-Ca-contraction and arrhythmogenic activities in response to mechanical load changes. iScience 2025; 28:111788. [PMID: 39935456 PMCID: PMC11810713 DOI: 10.1016/j.isci.2025.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/26/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
The heart has intrinsic abilities to autoregulate contractile force in response to mechanical load. Recent experimental studies show that cardiomyocytes have mechano-chemo-transduction (MCT) mechanisms that form a closed feedback loop in the excitation-Ca2+ signaling-contraction (E-C) coupling. This closed feedback loop enables autoregulation of contraction in response to mechanical load changes. Here, we develop the first autoregulatory E-C coupling model that couples electrophysiology, Ca2+ signaling, force development and contraction, and MCT feedback. The model recapitulates the experimental data showing that the mechanical load on cardiomyocytes during contraction increases the L-type Ca2+ current, action potential duration, sarcoplasmic reticulum (SR) Ca2+ content, and SR Ca2+ release, giving rise to increased cytosolic Ca2+ transient (MCT-Ca2+ gain) and enhanced contraction. The model also makes non-trivial predictions on the autoregulation of contraction with moderate MCT-Ca2+ gain under a range of physiological load changes, but arrhythmogenic discordant alternans with excessive MCT-Ca2+ gain under pathological overload.
Collapse
Affiliation(s)
- Asuka Hatano
- Department of Pharmacology, University of California – Davis, Davis, CA 94040, USA
- Department of Mechanical Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Leighton T. Izu
- Department of Pharmacology, University of California – Davis, Davis, CA 94040, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California – Davis, Davis, CA 94040, USA
- Department of Biomedical Engineering, University of California – Davis, Davis, CA 94040, USA
- Department of Internal Medicine/Cardiology, University of California – Davis, Davis, CA 94040, USA
| | - Daisuke Sato
- Department of Pharmacology, University of California – Davis, Davis, CA 94040, USA
| |
Collapse
|
3
|
Kerivan EM, Amari VN, Weeks WB, Hardin LH, Tobin L, Al Azzam OY, Reinemann DN. Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk Using QCM-D. Cell Mol Bioeng 2025; 18:99-108. [PMID: 39949486 PMCID: PMC11813833 DOI: 10.1007/s12195-024-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose Cytoskeletal protein ensembles exhibit emergent mechanics where behavior in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior. Methods QCM-D is used for the first time to probe alterations in actin-myosin bundle viscoelasticity due to changes in skeletal myosin II concentration and motor nucleotide state. Actomyosin bundles were constructed on a gold QCM-D sensor using a microfluidic setup, and frequency and dissipation change measurements were recorded for each component addition to decipher which assay constituents lead to changes in bundle structural compliancy. Results Lowering myosin concentration is detected as lower shifts in frequency and dissipation, while the relative changes in frequency and dissipation shifts for both the first and second actin additions are relatively similar. Strikingly, buffer washes with different nucleotides (ATP vs. ADP) yielded unique signatures in frequency and dissipation shifts. As myosin II's ADP-bound state tightly binds actin filaments, we observe an increase in frequency and decrease in dissipation change, indicating a decrease in viscoelasticity, likely due to myosin's increased affinity for actin, conversion from an active motor to a static crosslinker, and ability to recruit additional actin filaments from the surface, making an overall more rigid sensor coating. However, lowering the ADP concentration results in increased system compliancy, indicating that transient crosslinking and retaining a balance of motor activity perhaps results in a more cooperative and productive force generating system. Conclusions QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state. These results provide support for actin's role as a mechanical force-feedback sensor and demonstrate a new approach for deciphering the feedback mechanisms that drive emergent cytoskeletal ensemble crosstalk and intracellular mechanosensing. This approach can be adapted to investigate environmental influences on more complex cytoskeletal ensemble mechanics, including addition of other motors, crosslinkers, and filament types. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00835-w.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Victoria N. Amari
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - William B. Weeks
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Leigh H. Hardin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Omayma Y. Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
4
|
Wang T, Nayak A, Kraft T, Amrute‐Nayak M. Single-Molecule Investigation of Load-Dependent Actomyosin Dissociation Kinetics for Cardiac and Slow Skeletal Myosin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406865. [PMID: 39374027 PMCID: PMC11657034 DOI: 10.1002/smll.202406865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native β-cardiac myosin (βM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings. Using mobile optical tweezers with a square wave-scanning mode, a range of external assisting and resisting loads from 0 to 15 pN is exerted on single myosin molecules as they interact with the actin filament. Influenced of load on specific strongly-bound states in the cross-bridge cycle is examined by adjusting the [ATP]. The results implies that the detachment kinetics of actomyosin ADP.Pi strongly-bound force-generating state are load sensitive. Low assisting load accelerates, while the resisting load hinders the actomyosin detachment, presumably, by slowing both the Pi and ADP release. However, under both high assisting and resisting load, the rate of actomyosin dissociation decelerates. The transition from actomyosin ADP.Pi to ADP state appears to occur with a higher probability for βM-II than SolM-II. This study interpret that dissociation of at least three strongly-bound actomyosin states are load-sensitive and may contribute to functional diversity among different myosins.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Arnab Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Theresia Kraft
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Mamta Amrute‐Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| |
Collapse
|
5
|
Kerivan EM, Amari VN, Weeks WB, Hardin LH, Tobin L, Al Azzam OY, Reinemann DN. Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk using QCM-D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582155. [PMID: 38464072 PMCID: PMC10925119 DOI: 10.1101/2024.02.26.582155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose Cytoskeletal protein ensembles exhibit emergent mechanics where behavior exhibited in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior. Methods QCM-D is used for the first time to probe alterations in actin-myosin bundle viscoelasticity due to changes in skeletal myosin II concentration and motor nucleotide state. Actomyosin bundles were constructed on a gold QCM-D sensor using a microfluidic setup, and frequency and dissipation change measurements were recorded for each component addition to decipher which assay constituents lead to changes in bundle structural compliancy. Results Lowering myosin concentration is detected as lower shifts in frequency and dissipation, while the relative changes in frequency and dissipation shifts for both the first and second actin additions are relatively similar. Strikingly, buffer washes with different nucleotides (ATP vs. ADP) yielded unique signatures in frequency and dissipation shifts. As myosin II's ADP-bound state tightly binds actin filaments, we observe an increase in frequency and decrease in dissipation change, indicating a decrease in viscoelasticity, likely due to myosin's increased affinity for actin, conversion from an active motor to a static crosslinker, and ability to recruit additional actin filaments from the surface, making an overall more rigid sensor coating. However, lowering the ADP concentration results in increased system compliancy, indicating that transient crosslinking and retaining a balance of motor activity perhaps results in a more cooperative and productive force generating system. Conclusions QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state. These results provide support for actin's role as a mechanical force-feedback sensor and demonstrate a new approach for deciphering the feedback mechanisms that drive emergent cytoskeletal ensemble crosstalk and intracellular mechanosensing. This approach can be adapted to investigate environmental influences on more complex cytoskeletal ensemble mechanics, including addition of other motors, crosslinkers, and filament types.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
| | - Victoria N. Amari
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
| | - William B. Weeks
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
| | - Leigh H. Hardin
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
| | - Omayma Y. Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, MS, USA 38677
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA 38677
- Department of Chemical Engineering, University of Mississippi, University, MS, USA 38677
| |
Collapse
|
6
|
Scott B, Greenberg L, Squarci C, Campbell KS, Greenberg MJ. Danicamtiv reduces myosin's working stroke but enhances contraction by activating the thin filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617269. [PMID: 39416013 PMCID: PMC11482770 DOI: 10.1101/2024.10.09.617269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Heart failure is a leading cause of death worldwide, and even with current treatments, the 5-year transplant-free survival rate is only ~50-70%. As such, there is a need to develop new treatments for patients that improve survival and quality of life. Recently, there have been efforts to develop small molecules for heart failure that directly target components of the sarcomere, including cardiac myosin. One such molecule, danicamtiv, recently entered phase II clinical trials; however, its mechanism of action and direct effects on myosin's mechanics and kinetics are not well understood. Using optical trapping techniques, stopped flow transient kinetics, and in vitro reconstitution assays, we found that danicamtiv reduces the size of cardiac myosin's working stroke, and in contrast to studies in muscle fibers, we found that it does not affect actomyosin detachment kinetics at the level of individual crossbridges. We demonstrate that danicamtiv accelerates actomyosin association kinetics, leading to increased recruitment of myosin crossbridges and subsequent thin filament activation at physiologically-relevant calcium concentrations. Finally, we computationally model how the observed changes in mechanics and kinetics at the level of single crossbridges contribute to increased cardiac contraction and improved diastolic function compared to the related myotrope, omecamtiv mecarbil. Taken together, our results have important implications for the design of new sarcomeric-targeting compounds for heart failure.
Collapse
Affiliation(s)
- Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caterina Squarci
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
7
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Cubuk J, Greenberg L, Greenberg AE, Emenecker RJ, Stuchell-Brereton MD, Holehouse AS, Soranno A, Greenberg MJ. Structural dynamics of the intrinsically disordered linker region of cardiac troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596451. [PMID: 38853835 PMCID: PMC11160775 DOI: 10.1101/2024.05.30.596451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of troponin, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for cardiomyopathy mutations. This linker region is predicted to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker and demonstrate that it does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other troponin complex subunits, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms driving the pathogenesis of cardiomyopathies.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| |
Collapse
|
9
|
Lewalle A, Milburn G, Campbell KS, Niederer SA. Cardiac length-dependent activation driven by force-dependent thick-filament dynamics. Biophys J 2024; 123:2996-3009. [PMID: 38807364 PMCID: PMC11428202 DOI: 10.1016/j.bpj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.
Collapse
Affiliation(s)
- Alexandre Lewalle
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Gregory Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Steven A Niederer
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
11
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Tanner BCW, Palmer BM, Chung CS. Strain rate of stretch affects crossbridge detachment during relaxation of intact cardiac trabeculae. PLoS One 2024; 19:e0297212. [PMID: 38437198 PMCID: PMC10911597 DOI: 10.1371/journal.pone.0297212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 03/06/2024] Open
Abstract
Mechanical Control of Relaxation refers to the dependence of myocardial relaxation on the strain rate just prior to relaxation, but the mechanisms of enhanced relaxation are not well characterized. This study aimed to characterize how crossbridge kinetics varied with strain rate and time-to-stretch as the myocardium relaxed in early diastole. Ramp-stretches of varying rates (amplitude = 1% muscle length) were applied to intact rat cardiac trabeculae following a load-clamp at 50% of the maximal developed twitch force, which provides a first-order estimate of ejection and coupling to an afterload. The resultant stress-response was calculated as the difference between the time-dependent stress profile between load-clamped twitches with and without a ramp-stretch. The stress-response exhibited features of the step-stretch response of activated, permeabilized myocardium, such as distortion-dependent peak stress, rapid force decay related to crossbridge detachment, and stress recovery related to crossbridge recruitment. The peak stress was strain rate dependent, but the minimum stress and the time-to-minimum stress values were not. The initial rapid change in the stress-response indicates enhanced crossbridge detachment at higher strain rates during relaxation in intact cardiac trabeculae. Physiologic considerations, such as time-varying calcium, are discussed as potential limitations to fitting these data with traditional distortion-recruitment models of crossbridge activity.
Collapse
Affiliation(s)
- Bertrand C. W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Charles S. Chung
- Department of Physiology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
13
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. Proc Natl Acad Sci U S A 2024; 121:e2315472121. [PMID: 38377203 PMCID: PMC10907259 DOI: 10.1073/pnas.2315472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Kainomyx, Inc., Palo Alto, CA94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Colby J. Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Greg R. Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
15
|
Liu C, Ruppel KM, Spudich JA. Motility Assay to Probe the Calcium Sensitivity of Myosin and Regulated Thin Filaments. Methods Mol Biol 2024; 2735:169-189. [PMID: 38038849 PMCID: PMC10773985 DOI: 10.1007/978-1-0716-3527-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of β-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
| | - James A Spudich
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Nag S, Gollapudi SK, Del Rio CL, Spudich JA, McDowell R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients. SCIENCE ADVANCES 2023; 9:eabo7622. [PMID: 37506209 DOI: 10.1126/sciadv.abo7622] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder characterized by left ventricular hypertrophy, hyperdynamic contraction, and impaired relaxation of the heart. These functional derangements arise directly from altered sarcomeric function due to either mutations in genes encoding sarcomere proteins, or other defects such as abnormal energetics. Current treatment options do not directly address this causal biology but focus on surgical and extra-sarcomeric (sarcolemmal) pharmacological symptomatic relief. Mavacamten (formerly known as MYK-461), is a small molecule designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin, the fundamental motor of the sarcomere. This review summarizes the mechanism and translational progress of mavacamten from proteins to patients, describing how the mechanism of action and pharmacological characteristics, involving both systolic and diastolic effects, can directly target pathophysiological derangements within the cardiac sarcomere to improve cardiac structure and function in HCM. Mavacamten was approved by the Food and Drug Administration in April 2022 for the treatment of obstructive HCM and now goes by the commercial name of Camzyos. Full information about the risks, limitations, and side effects can be found at www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf.
Collapse
Affiliation(s)
- Suman Nag
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Sampath K Gollapudi
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Carlos L Del Rio
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
- Cardiac Consulting, 1630 S Delaware St. #56426, San Mateo, CA 94403, USA
| | | | - Robert McDowell
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| |
Collapse
|
17
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547385. [PMID: 37425764 PMCID: PMC10327197 DOI: 10.1101/2023.07.02.547385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β -cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β , embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β , myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Colby J Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Greg R Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
18
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single-molecule mechanics and kinetics of cardiac myosin interacting with regulated thin filaments. Biophys J 2023; 122:2544-2555. [PMID: 37165621 PMCID: PMC10323011 DOI: 10.1016/j.bpj.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.
Collapse
Affiliation(s)
- Sarah R Clippinger Schulte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
19
|
Lee LA, Barrick SK, Buvoli AE, Walklate J, Stump WT, Geeves M, Greenberg MJ, Leinwand LA. Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b. J Biol Chem 2023; 299:104631. [PMID: 36963494 PMCID: PMC10141508 DOI: 10.1016/j.jbc.2023.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.
Collapse
Affiliation(s)
- Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ada E Buvoli
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA.
| |
Collapse
|
20
|
Barrick SK, Garg A, Greenberg L, Zhang S, Lin CY, Stitziel NO, Greenberg MJ. Functional assays reveal the pathogenic mechanism of a de novo tropomyosin variant identified in patient with dilated cardiomyopathy. J Mol Cell Cardiol 2023; 176:58-67. [PMID: 36739943 PMCID: PMC11285302 DOI: 10.1016/j.yjmcc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single Molecule Mechanics and Kinetics of Cardiac Myosin Interacting with Regulated Thin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522880. [PMID: 36711892 PMCID: PMC9881944 DOI: 10.1101/2023.01.09.522880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction. Significance Statement Human heart contraction is powered by the molecular motor β-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of β-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.
Collapse
|
22
|
Al Azzam OY, Watts JC, Reynolds JE, Davis JE, Reinemann DN. Myosin II Adjusts Motility Properties and Regulates Force Production Based on Motor Environment. Cell Mol Bioeng 2022; 15:451-465. [PMID: 36444350 PMCID: PMC9700534 DOI: 10.1007/s12195-022-00731-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Myosin II has been investigated with optical trapping, but single motor-filament assay arrangements are not reflective of the complex cellular environment. To understand how myosin interactions propagate up in scale to accomplish system force generation, we devised a novel actomyosin ensemble optical trapping assay that reflects the hierarchy and compliancy of a physiological environment and is modular for interrogating force effectors. Methods Hierarchical actomyosin bundles were formed in vitro. Fluorescent template and cargo actin filaments (AF) were assembled in a flow cell and bundled by myosin. Beads were added in the presence of ATP to bind the cargo AF and activate myosin force generation to be measured by optical tweezers. Results Three force profiles resulted across a range of myosin concentrations: high force with a ramp-plateau, moderate force with sawtooth movement, and baseline. The three force profiles, as well as high force output, were recovered even at low solution concentration, suggesting that myosins self-optimize within AFs. Individual myosin steps were detected in the ensemble traces, indicating motors are taking one step at a time while others remain engaged in order to sustain productive force generation. Conclusions Motor communication and system compliancy are significant contributors to force output. Environmental conditions, motors taking individual steps to sustain force, the ability to backslip, and non-linear concentration dependence of force indicate that the actomyosin system contains a force-feedback mechanism that senses the local cytoskeletal environment and communicates to the individual motors whether to be in a high or low duty ratio mode. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00731-1.
Collapse
Affiliation(s)
- Omayma Y. Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Janie C. Watts
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Justin E. Reynolds
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Juliana E. Davis
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
23
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
24
|
Wakefield JI, Bell SP, Palmer BM. Inorganic phosphate accelerates cardiac myofilament relaxation in response to lengthening. Front Physiol 2022; 13:980662. [PMID: 36171969 PMCID: PMC9510985 DOI: 10.3389/fphys.2022.980662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial relaxation in late systole is enhanced by increasing velocities of lengthening. Given that inorganic phosphate (Pi) can rebind to the force-producing myosin enzyme prior to MgADP release and hasten crossbridge detachment, we hypothesized that myocardial relaxation in late systole would be further enhanced by lengthening in the presence of Pi. Wistar rat left ventricular papillary muscles were attached to platinum clips, placed between a force transducer and a length motor at room temperature, and bathed in Krebs solution with 1.8 mM Ca2+ and varying Pi of 0, 1, 2, and 5 mM. Tension transients were elicited by electrical stimulation at 1 Hz. Peak tension was significantly enhanced by Pi: 0.593 ± 0.088 mN mm−2 at 0 mM Pi and 0.817 ± 0.159 mN mm−2 at 5 mM Pi (mean ± SEM, p < 0.01 by ANCOVA). All temporal characteristics of the force transient were significantly shortened with increasing Pi, e.g., time-to-50% recovery was shortened from 305 ± 14 ms at 0 mM Pi to 256 ± 10 ms at 5 mM Pi (p < 0.01). A 1% lengthening stretch with varying duration of 10–200 ms was applied at time-to-50% recovery during the descending phase of the force transient. Matching lengthening stretches were also applied when the muscle was not stimulated, thus providing a control for the passive viscoelastic response. After subtracting the passive from the active force response, the resulting myofilament response demonstrated features of faster myofilament relaxation in response to the stretch. For example, time-to-70% relaxation with 100 ms lengthening duration was shortened by 8.8 ± 6.8 ms at 0 Pi, 19.6 ± 4.8* ms at 1 mM Pi, 31.0 ± 5.6* ms at 2 Pi, and 25.6 ± 5.3* ms at 5 mM Pi (*p < 0.01 compared to no change). Using skinned myocardium, half maximally calcium-activated myofilaments underwent a 1% quick stretch, and the tension response was subjected to analysis for sensitivity of myosin detachment rate to stretch, g1, at various Pi concentrations. The parameter g1 was enhanced from 15.39 ± 0.35 at 0 Pi to 22.74 ± 1.31 s−1/nm at 8 Pi (p < 0.01). Our findings suggest that increasing Pi at the myofilaments enhances lengthening-induced relaxation by elevating the sensitivity of myosin crossbridge detachment due to lengthening and thus speed the transition from late-systole to early-diastole.
Collapse
Affiliation(s)
- Jane I. Wakefield
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Stephen P. Bell
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- *Correspondence: Bradley M. Palmer,
| |
Collapse
|
25
|
Morck MM, Bhowmik D, Pathak D, Dawood A, Spudich J, Ruppel KM. Hypertrophic cardiomyopathy mutations in the pliant and light chain-binding regions of the lever arm of human β-cardiac myosin have divergent effects on myosin function. eLife 2022; 11:e76805. [PMID: 35767336 PMCID: PMC9242648 DOI: 10.7554/elife.76805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.
Collapse
Affiliation(s)
- Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Debanjan Bhowmik
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Divya Pathak
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - James Spudich
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
26
|
Day SM, Tardiff JC, Ostap EM. Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. J Clin Invest 2022; 132:148557. [PMID: 35229734 PMCID: PMC8884898 DOI: 10.1172/jci148557] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myosin modulators are a novel class of pharmaceutical agents that are being developed to treat patients with a range of cardiomyopathies. The therapeutic goal of these drugs is to target cardiac myosins directly to modulate contractility and cardiac power output to alleviate symptoms that lead to heart failure and arrhythmias, without altering calcium signaling. In this Review, we discuss two classes of drugs that have been developed to either activate (omecamtiv mecarbil) or inhibit (mavacamten) cardiac contractility by binding to β-cardiac myosin (MYH7). We discuss progress in understanding the mechanisms by which the drugs alter myosin mechanochemistry, and we provide an appraisal of the results from clinical trials of these drugs, with consideration for the importance of disease heterogeneity and genetic etiology for predicting treatment benefit.
Collapse
Affiliation(s)
- Sharlene M Day
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - E Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
28
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
29
|
Solís C, Russell B. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophys Rev 2021; 13:679-695. [PMID: 34777614 PMCID: PMC8555064 DOI: 10.1007/s12551-021-00835-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
30
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021. [PMID: 34117120 DOI: 10.1073/pnas.2025030118/suppl_file/pnas.2025030118.sm02.avi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
31
|
Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021; 118:e2025030118. [PMID: 34117120 PMCID: PMC8214707 DOI: 10.1073/pnas.2025030118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Collapse
Affiliation(s)
- Alison Schroer Vander Roest
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Chao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Makenna M Morck
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- School of Medicine, University of Washington, Seattle, WA 98109
| | - Gwanghyun Jung
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Song
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Aminah Dawood
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arnav Jhingran
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
| | - Gaspard Pardon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, School of Engineering and School of Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Mechanical and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - James A Spudich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M Ruppel
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA 94304;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
32
|
Palmer BM, Swank DM, Miller MS, Tanner BCW, Meyer M, LeWinter MM. Enhancing diastolic function by strain-dependent detachment of cardiac myosin crossbridges. J Gen Physiol 2021; 152:151575. [PMID: 32197271 PMCID: PMC7141588 DOI: 10.1085/jgp.201912484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
The force response of cardiac muscle undergoing a quick stretch is conventionally interpreted to represent stretching of attached myosin crossbridges (phase 1) and detachment of these stretched crossbridges at an exponential rate (phase 2), followed by crossbridges reattaching in increased numbers due to an enhanced activation of the thin filament (phases 3 and 4). We propose that, at least in mammalian cardiac muscle, phase 2 instead represents an enhanced detachment rate of myosin crossbridges due to stretch, phase 3 represents the reattachment of those same crossbridges, and phase 4 is a passive-like viscoelastic response with power-law relaxation. To test this idea, we developed a two-state model of crossbridge attachment and detachment. Unitary force was assigned when a crossbridge was attached, and an elastic force was generated when an attached crossbridge was displaced. Attachment rate, f(x), was spatially distributed with a total magnitude f0. Detachment rate was modeled as g(x) = g0+ g1x, where g0 is a constant and g1 indicates sensitivity to displacement. The analytical solution suggested that the exponential decay rate of phase 2 represents (f0 + g0) and the exponential rise rate of phase 3 represents g0. The depth of the nadir between phases 2 and 3 is proportional to g1. We prepared skinned mouse myocardium and applied a 1% stretch under varying concentrations of inorganic phosphate (Pi). The resulting force responses fitted the analytical solution well. The interpretations of phases 2 and 3 were consistent with lower f0 and higher g0 with increasing Pi. This novel scheme of interpreting the force response to a quick stretch does not require enhanced thin-filament activation and suggests that the myosin detachment rate is sensitive to stretch. Furthermore, the enhanced detachment rate is likely not due to the typical detachment mechanism following MgATP binding, but rather before MgADP release, and may involve reversal of the myosin power stroke.
Collapse
Affiliation(s)
- Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Douglas M Swank
- Department of Biological Sciences and Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Markus Meyer
- Department of Medicine, University of Vermont, Burlington, VT
| | | |
Collapse
|
33
|
A reverse stroke characterizes the force generation of cardiac myofilaments, leading to an understanding of heart function. Proc Natl Acad Sci U S A 2021; 118:2011659118. [PMID: 34088833 DOI: 10.1073/pnas.2011659118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Changes in the molecular properties of cardiac myosin strongly affect the interactions of myosin with actin that result in cardiac contraction and relaxation. However, it remains unclear how myosin molecules work together in cardiac myofilaments and which properties of the individual myosin molecules impact force production to drive cardiac contractility. Here, we measured the force production of cardiac myofilaments using optical tweezers. The measurements revealed that stepwise force generation was associated with a higher frequency of backward steps at lower loads and higher stall forces than those of fast skeletal myofilaments. To understand these unique collective behaviors of cardiac myosin, the dynamic responses of single cardiac and fast skeletal myosin molecules, interacting with actin filaments, were evaluated under load. The cardiac myosin molecules switched among three distinct conformational positions, ranging from pre- to post-power stroke positions, in 1 mM ADP and 0 to 10 mM phosphate solution. In contrast to cardiac myosin, fast skeletal myosin stayed primarily in the post-power stroke position, suggesting that cardiac myosin executes the reverse stroke more frequently than fast skeletal myosin. To elucidate how the reverse stroke affects the force production of myofilaments and possibly heart function, a simulation model was developed that combines the results from the single-molecule and myofilament experiments. The results of this model suggest that the reversal of the cardiac myosin power stroke may be key to characterizing the force output of cardiac myosin ensembles and possibly to facilitating heart contractions.
Collapse
|
34
|
Pertici I, Taft MH, Greve JN, Fedorov R, Caremani M, Manstein DJ. Allosteric modulation of cardiac myosin mechanics and kinetics by the conjugated omega-7,9 trans-fat rumenic acid. J Physiol 2021; 599:3639-3661. [PMID: 33942907 DOI: 10.1113/jp281563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Direct binding of rumenic acid to the cardiac myosin-2 motor domain increases the release rate for orthophosphate and increases the Ca2+ responsiveness of cardiac muscle at low load. Physiological cellular concentrations of rumenic acid affect the ATP turnover rates of the super-relaxed and disordered relaxed states of β-cardiac myosin, leading to a net increase in myocardial metabolic load. In Ca2+ -activated trabeculae, rumenic acid exerts a direct inhibitory effect on the force-generating mechanism without affecting the number of force-generating motors. In the presence of saturating actin concentrations rumenic acid binds to the β-cardiac myosin-2 motor domain with an EC50 of 200 nM. Molecular docking studies provide information about the binding site, the mode of binding, and associated allosteric communication pathways. Free rumenic acid may exceed thresholds in cardiomyocytes above which contractile efficiency is reduced and interference with small molecule therapeutics, targeting cardiac myosin, occurs. ABSTRACT Based on experiments using purified myosin motor domains, reconstituted actomyosin complexes and rat heart ventricular trabeculae, we demonstrate direct binding of rumenic acid, the cis-delta-9-trans-delta-11 isomer of conjugated linoleic acid, to an allosteric site located in motor domain of mammalian cardiac myosin-2 isoforms. In the case of porcine β-cardiac myosin, the EC50 for rumenic acid varies from 10.5 μM in the absence of actin to 200 nM in the presence of saturating concentrations of actin. Saturating concentrations of rumenic acid increase the maximum turnover of basal and actin-activated ATPase activity of β-cardiac myosin approximately 2-fold but decrease the force output per motor by 23% during isometric contraction. The increase in ATP turnover is linked to an acceleration of the release of the hydrolysis product orthophosphate. In the presence of 5 μM rumenic acid, the difference in the rate of ATP turnover by the super-relaxed and disordered relaxed states of cardiac myosin increases from 4-fold to 20-fold. The equilibrium between the two functional myosin states is not affected by rumenic acid. Calcium responsiveness is increased under zero-load conditions but unchanged under load. Molecular docking studies provide information about the rumenic acid binding site, the mode of binding, and associated allosteric communication pathways. They show how the isoform-specific replacement of residues in the binding cleft induces a different mode of rumenic acid binding in the case of non-muscle myosin-2C and blocks binding to skeletal muscle and smooth muscle myosin-2 isoforms.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab, University of Florence, Florence, 50019, Italy.,Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Johannes N Greve
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Roman Fedorov
- Division of Structural Biochemistry, OE8830, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Marco Caremani
- PhysioLab, University of Florence, Florence, 50019, Italy
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,Division of Structural Biochemistry, OE8830, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| |
Collapse
|
35
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
36
|
Snoberger A, Barua B, Atherton JL, Shuman H, Forgacs E, Goldman YE, Winkelmann DA, Ostap EM. Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. eLife 2021; 10:63691. [PMID: 33605878 PMCID: PMC7895523 DOI: 10.7554/elife.63691] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/31/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathies (HCMs) are the leading cause of acute cardiac failure in young individuals. Over 300 mutations throughout β-cardiac myosin, including in the motor domain, are associated with HCM. A β-cardiac myosin motor mutation (R712L) leads to a severe form of HCM. Actin-gliding motility of R712L-myosin is inhibited, despite near-normal ATPase kinetics. By optical trapping, the working stroke of R712L-myosin was decreased 4-fold, but actin-attachment durations were normal. A prevalent hypothesis that HCM mutants are hypercontractile is thus not universal. R712 is adjacent to the binding site of the heart failure drug omecamtiv mecarbil (OM). OM suppresses the working stroke of normal β-cardiac myosin, but remarkably, OM rescues the R712L-myosin working stroke. Using a flow chamber to interrogate a single molecule during buffer exchange, we found OM rescue to be reversible. Thus, the R712L mutation uncouples lever arm rotation from ATPase activity and this inhibition is rescued by OM.
Collapse
Affiliation(s)
- Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Jennifer L Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Henry Shuman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
37
|
Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open 2021; 10:bio057646. [PMID: 33589442 PMCID: PMC7904003 DOI: 10.1242/bio.057646] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.
Collapse
Affiliation(s)
- Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
38
|
Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol 2021; 4:64. [PMID: 33441912 PMCID: PMC7806905 DOI: 10.1038/s42003-020-01574-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Benefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction. With fluorescence based-TIRF microspectroscopy, Ušaj et al. unveil mechanistic details about the ATP turnover rates by myosin and actomyosin with enzymatic reaction pathways that were not possible to obtain from ensemble studies. This study could be important to the field of molecular motors.
Collapse
Affiliation(s)
- Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| |
Collapse
|
39
|
Awinda PO, Bishaw Y, Watanabe M, Guglin MA, Campbell KS, Tanner BCW. Effects of mavacamten on Ca 2+ sensitivity of contraction as sarcomere length varied in human myocardium. Br J Pharmacol 2020; 177:5609-5621. [PMID: 32960449 PMCID: PMC7707091 DOI: 10.1111/bph.15271] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Heart failure can reflect impaired contractile function at the myofilament level. In healthy hearts, myofilaments become more sensitive to Ca2+ as cells are stretched. This represents a fundamental property of the myocardium that contributes to the Frank-Starling response, although the molecular mechanisms underlying the effect remain unclear. Mavacamten, which binds to myosin, is under investigation as a potential therapy for heart disease. We investigated how mavacamten affects the sarcomere-length dependence of Ca2+ -sensitive isometric contraction to determine how mavacamten might modulate the Frank-Starling mechanism. EXPERIMENTAL APPROACH Multicellular preparations from the left ventricular-free wall of hearts from organ donors were chemically permeabilized and Ca2+ activated in the presence or absence of 0.5-μM mavacamten at 1.9 or 2.3-μm sarcomere length (37°C). Isometric force and frequency-dependent viscoelastic myocardial stiffness measurements were made. KEY RESULTS At both sarcomere lengths, mavacamten reduced maximal force and Ca2+ sensitivity of contraction. In the presence and absence of mavacamten, Ca2+ sensitivity of force increased as sarcomere length increased. This suggests that the length-dependent activation response was maintained in human myocardium, even though mavacamten reduced Ca2+ sensitivity. There were subtle effects of mavacamten reducing force values under relaxed conditions (pCa 8.0), as well as slowing myosin cross-bridge recruitment and speeding cross-bridge detachment under maximally activated conditions (pCa 4.5). CONCLUSION AND IMPLICATIONS Mavacamten did not eliminate sarcomere length-dependent increases in the Ca2+ sensitivity of contraction in myocardial strips from organ donors at physiological temperature. Drugs that modulate myofilament function may be useful therapies for cardiomyopathies.
Collapse
Affiliation(s)
- Peter O. Awinda
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Yemeserach Bishaw
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Marissa Watanabe
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Maya A. Guglin
- Division of Cardiovascular MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Kenneth S. Campbell
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Division of Cardiovascular MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Bertrand C. W. Tanner
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
40
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
41
|
Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32451857 DOI: 10.1007/978-3-030-38062-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Inside the cellular environment, molecular motors can work in concert to conduct a variety of important physiological functions and processes that are vital for the survival of a cell. However, in order to decipher the mechanism of how these molecular motors work, single-molecule microscopy techniques have been popular methods to understand the molecular basis of the emerging ensemble behavior of these motor proteins.In this chapter, we discuss various single-molecule biophysical imaging techniques that have been used to expose the mechanics and kinetics of myosins. The chapter should be taken as a general overview and introductory guide to the many existing techniques; however, since other chapters will discuss some of these techniques more thoroughly, the readership should refer to those chapters for further details and discussions. In particular, we will focus on scattering-based single-molecule microscopy methods, some of which have become more popular in the recent years and around which the work in our laboratories has been centered.
Collapse
|
42
|
Sarkar SS, Trivedi DV, Morck MM, Adhikari AS, Pasha SN, Ruppel KM, Spudich JA. The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin. SCIENCE ADVANCES 2020; 6:eaax0069. [PMID: 32284968 PMCID: PMC7124958 DOI: 10.1126/sciadv.aax0069] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/09/2020] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) mutations in β-cardiac myosin and myosin binding protein-C (MyBP-C) lead to hypercontractility of the heart, an early hallmark of HCM. We show that hypercontractility caused by the HCM-causing mutation R663H cannot be explained by changes in fundamental myosin contractile parameters, much like the HCM-causing mutation R403Q. Using enzymatic assays with purified human β-cardiac myosin, we provide evidence that both mutations cause hypercontractility by increasing the number of functionally accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of MyBP-C. Furthermore, addition of C0-C7 decreases the wild-type myosin basal ATPase single turnover rate, while the mutants do not show a similar reduction. These data suggest that a primary mechanism of action for these mutations is to increase the number of myosin heads functionally available for interaction with actin, which could contribute to hypercontractility.
Collapse
Affiliation(s)
- Saswata S. Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darshan V. Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Makenna M. Morck
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun S. Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaik N. Pasha
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
44
|
Muir WW, Hamlin RL. Myocardial Contractility: Historical and Contemporary Considerations. Front Physiol 2020; 11:222. [PMID: 32296340 PMCID: PMC7137917 DOI: 10.3389/fphys.2020.00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The term myocardial contractility is thought to have originated more than 125 years ago and has remained and enigma ever since. Although the term is frequently used in textbooks, editorials and contemporary manuscripts its definition remains illusive often being conflated with cardiac performance or inotropy. The absence of a universally accepted definition has led to confusion, disagreement and misconceptions among physiologists, cardiologists and safety pharmacologists regarding its definition particularly in light of new discoveries regarding the load dependent kinetics of cardiac contraction and their translation to cardiac force-velocity and ventricular pressure-volume measurements. Importantly, the Starling interpretation of force development is length-dependent while contractility is length independent. Most historical definitions employ an operational approach and define cardiac contractility in terms of the hearts mechanical properties independent of loading conditions. Literally defined the term contract infers that something has become smaller, shrunk or shortened. The addition of the suffix “ility” implies the quality of this process. The discovery and clinical investigation of small molecules that bind to sarcomeric proteins independently altering force or velocity requires that a modern definition of the term myocardial contractility be developed if the term is to persist. This review reconsiders the historical and contemporary interpretations of the terms cardiac performance and inotropy and recommends a modern definition of myocardial contractility as the preload, afterload and length-independent intrinsic kinetically controlled, chemo-mechanical processes responsible for the development of force and velocity.
Collapse
Affiliation(s)
- William W Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Robert L Hamlin
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
45
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
46
|
Linari M, Piazzesi G, Pertici I, Dantzig JA, Goldman YE, Lombardi V. Straightening Out the Elasticity of Myosin Cross-Bridges. Biophys J 2020; 118:994-1002. [PMID: 31968230 PMCID: PMC7063436 DOI: 10.1016/j.bpj.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
In a contracting muscle, myosin cross-bridges extending from thick filaments pull the interdigitating thin (actin-containing) filaments during cyclical ATP-driven interactions toward the center of the sarcomere, the structural unit of striated muscle. Cross-bridge attachments in the sarcomere have been reported to exhibit a similar stiffness under both positive and negative forces. However, in vitro measurements on filaments with a sparse complement of heads detected a decrease of the cross-bridge stiffness at negative forces attributed to the buckling of the subfragment 2 tail portion. Here, we review some old and new data that confirm that cross-bridge stiffness is nearly linear in the muscle filament lattice. The implications of high myosin stiffness at positive and negative strains are considered in muscle fibers and in nonmuscle intracellular cargo transport.
Collapse
Affiliation(s)
- Marco Linari
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Gabriella Piazzesi
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Irene Pertici
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Jody A Dantzig
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Vincenzo Lombardi
- PhysioLab, Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
47
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
48
|
Vera CD, Johnson CA, Walklate J, Adhikari A, Svicevic M, Mijailovich SM, Combs AC, Langer SJ, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties. J Biol Chem 2019; 294:17451-17462. [PMID: 31582565 DOI: 10.1074/jbc.ra119.010563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the β-cardiac myosin heavy chain gene (β-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any β-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 K app along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.
Collapse
Affiliation(s)
- Carlos D Vera
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Chloe A Johnson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Arjun Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | | | | | - Ariana C Combs
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Stephen J Langer
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Leslie A Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
49
|
Tang W, Unrath WC, Desetty R, Yengo CM. Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil. J Biol Chem 2019; 294:17314-17325. [PMID: 31578282 DOI: 10.1074/jbc.ra119.010217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated a dilated cardiomyopathy (DCM) mutation (F764L) in human β-cardiac myosin by determining its motor properties in the presence and absence of the heart failure drug omecamtive mecarbil (OM). The mutation is located in the converter domain, a key region of communication between the catalytic motor and lever arm in myosins, and is nearby but not directly in the OM-binding site. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing the F764L mutation, and compared it to WT with in vitro motility as well as steady-state and transient kinetics measurements. In the absence of OM we demonstrate that the F764L mutation does not significantly change maximum actin-activated ATPase activity but slows actin sliding velocity (15%) and the actomyosin ADP release rate constant (25%). The transient kinetic analysis without OM demonstrates that F764L has a similar duty ratio as WT in unloaded conditions. OM is known to enhance force generation in cardiac muscle while it inhibits the myosin power stroke and enhances actin-attachment duration. We found that OM has a reduced impact on F764L ATPase and sliding velocity compared with WT. Specifically, the EC50 for OM induced inhibition of in vitro motility was 3-fold weaker in F764L. Also, OM reduces maximum actin-activated ATPase 2-fold in F764L, compared with 4-fold with WT. Overall, our results suggest that F764L attenuates the impact of OM on actin-attachment duration and/or the power stroke. Our work highlights the importance of mutation-specific considerations when pursuing small molecule therapies for cardiomyopathies.
Collapse
Affiliation(s)
- Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - William C Unrath
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
50
|
Woody MS, Winkelmann DA, Capitanio M, Ostap EM, Goldman YE. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 2019; 8:49266. [PMID: 31526481 PMCID: PMC6748826 DOI: 10.7554/elife.49266] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (Pi), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 μs of actin binding by β-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.5 pN and proceeds directly to the stroke or detaches before releasing ATP hydrolysis products. The rates of these processes depend on the force. The time between binding and stroke is unaffected by 10 mM Pi which, along with other findings, indicates the stroke precedes phosphate release. After Pi release, Pi can rebind enabling reversal of the working stroke. Detecting these rapid events under physiological loads provides definitive indication of the dynamics by which actomyosin converts biochemical energy into mechanical work.
Collapse
Affiliation(s)
- Michael S Woody
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|