1
|
Ye X, Yang Y, Fang Q, Ye G. Genomics of insect natural enemies in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101298. [PMID: 39547440 DOI: 10.1016/j.cois.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Currently, a wealth of genomic data are now accessible for numerous insect natural enemies, serving as valuable resources that deepen our understanding of the genetic basis of biocontrol traits in these organisms. We summarize the current state of genome sequencing and highlight candidate genes related to biocontrol traits that hold promise for genetic improvement. We also review the recent population genomic studies in biological control and the discovery of potential insecticidal genes in parasitoid wasps. Collectively, current genomic works have shown the powerful ability to identify candidate genes responsible for desirable traits or promising effectors. However, further functional study is necessary to gain a mechanistic understanding of these genes, and future efforts are also needed to develop suitable approaches to translate genomic insights into field applications.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Di Cristina G, Dirksen E, Altenhein B, Büschges A, Korsching SI. Pioneering genome editing in parthenogenetic stick insects: CRISPR/Cas9-mediated gene knockout in Medauroidea extradentata. Sci Rep 2025; 15:2584. [PMID: 39833307 PMCID: PMC11747256 DOI: 10.1038/s41598-025-85911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The parthenogenetic life cycle of the stick insect Medauroidea extradentata offers unique advantages for the generation of genome-edited strains, as an isogenic and stable mutant line can in principle be achieved already in the first generation (G0). However, genetic tools for the manipulation of their genes had not been developed until now. Here, we successfully implement CRISPR/Cas9 as a technique to modify the genome of the stick insect M. extradentata. As proof-of-concept we targeted two genes involved in the ommochrome pathway of eye pigmentation (cinnabar and white, second and first exon, respectively), to generate knockout (KO) mutants. Microinjections were performed within 24 h after oviposition, to focus on the mononuclear (and haploid) stage of development. The KOs generated resulted in distinct eye and cuticle colour phenotypes for cinnabar and white. Homozygous cinnabar mutants showed pale pigmentation of eyes and cuticle. They develop into adults capable of producing viable eggs. Homozygous white KO resulted in a completely unpigmented phenotype in developing embryos that were unable to hatch. In conclusion, we show that CRISPR/Cas9 can be successfully applied to the genome of M. extradentata by creating phenotypically different and viable insects. This powerful gene editing technique can now be employed to create stable genetically modified lines using a parthenogenetic non-model organism.
Collapse
Affiliation(s)
- Giulia Di Cristina
- Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Elina Dirksen
- Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Benjamin Altenhein
- Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
4
|
Ye X, Yang Y, Zhao X, Fang Q, Ye G. The state of parasitoid wasp genomics. Trends Parasitol 2024; 40:914-929. [PMID: 39227194 DOI: 10.1016/j.pt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Parasitoid wasps represent a group of parasitic insects with high species diversity that have played a pivotal role in biological control and evolutionary studies. Over the past 20 years, developments in genomics have greatly enhanced our understanding of the biology of these species. Technological leaps in sequencing have facilitated the improvement of genome quality and quantity, leading to the availability of hundreds of parasitoid wasp genomes. Here, we summarize recent progress in parasitoid wasp genomics, focusing on the evolution of genome size (GS) and the genomic basis of several key traits. We also discuss the contributions of genomics in studying venom evolution and endogenization of viruses. Finally, we advocate for increased sequencing and functional research to better understand parasitoid biology and enhance biological control.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Liu ZL, Zhou YY, Xu QX, Wang XC, Liu TX, Tian HG. Efficient CRISPR-mediated genome editing can be initiated by embryonic injection but not by ovarian delivery in the beetle Tribolium castaneum. INSECT SCIENCE 2024. [PMID: 39300921 DOI: 10.1111/1744-7917.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
The clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9)-mediated gene editing technology has revolutionized the study of fundamental biological questions in various insects. Diverse approaches have been developed to deliver the single-guide RNA (sgRNA) and Cas9 to the nucleus of insect embryos or oocytes to achieve gene editing, including the predominant embryonic injection methods and alternative protocols through parental ovary delivery. However, a systematic comparative study of these approaches is limited, especially within a given insect. Here, we focused on revealing the detailed differences in CRISPR/Cas9-mediated gene editing between the embryo and ovary delivery methods in the beetle Tribolium castaneum, using the cardinal and tyrosine hydroxylase (TH) as reporter genes. We demonstrated that both genes could be efficiently edited by delivering Cas9/sgRNA ribonucleoproteins to the embryos by microinjection, leading to the mutant phenotypes and indels in the target gene sites. Next, the Cas9/sgRNA complex, coupled with a nanocarrier called Branched Amphiphilic Peptide Capsules (BAPC), were delivered to the ovaries of parental females to examine the efficacy of BAPC-mediated gene editing. Although we observed that a small number of beetles' progeny targeting the cardinal exhibited the expected white-eye phenotype, unexpectedly, no target DNA indels were found following subsequent sequencing analysis. In addition, we adopted a novel approach termed "direct parental" CRISPR (DIPA-CRISPR). However, we still failed to find gene-editing events in the cardinal or TH gene-targeted insects. Our results indicate that the conventional embryonic injection of CRISPR is an effective method to initiate genome editing in T. castaneum. However, it is inefficient by the parental ovary delivery approach.
Collapse
Affiliation(s)
- Zi-Ling Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Yu Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiu-Xuan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xing-Ce Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Hong-Gang Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Tytgat J. A personal view on the history of toxins: From ancient times to artificial intelligence. Toxicon 2024; 248:108034. [PMID: 39038662 DOI: 10.1016/j.toxicon.2024.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Bioactive substances found in plants, microorganisms and animals have fascinated mankind since time immemorial. This review will focus on the progress that has been made over the centuries and our growing insights. The developments relate to both the discovery and characterization of novel bioactive substances, as well as the ceaseless implementation of refined techniques, the use of high-end instruments and breakthroughs in artificial intelligence with deep learning-based computational methods. As these approaches possess great translational potential, with many applications in different fields, such as therapeutic, diagnostic and agrochemical use, there is a good rationale to continue investing in toxinology-related research.
Collapse
Affiliation(s)
- Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, ON2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Zhang X, Singh A, Soriano Martinez K, Ferree PM. Direct Parental (DIPA) CRISPR in the jewel wasp, Nasonia vitripennis. G3 (BETHESDA, MD.) 2024; 14:jkae095. [PMID: 38734969 PMCID: PMC11228858 DOI: 10.1093/g3journal/jkae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
While clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology has demonstrated remarkable promise as a gene-editing tool, its application in certain insects, such as the jewel wasp, Nasonia vitripennis, has been hindered by a lack of a tractable method for reagent delivery. Direct Parental (DIPA-) CRISPR recently emerged as a facile way to induce gene lesions because it involves adult injection with commercially available Cas9-sgRNA with no helper reagent. However, DIPA-CRISPR has so far been tested in only a few insects. Here, we have assessed the amenability of DIPA-CRISPR in N. vitripennis by targeting two eye pigmentation genes, cinnabar and vermilion, which function in the ommochrome pathway. Successful generation of lesions in both genes demonstrated the functionality of DIPA-CRISPR in N. vitripennis and its potential application to other genes, thereby expanding the range of insects suitable for this method. We varied two parameters, Cas9-sgRNA concentration and injection volume, to determine optimal injection conditions. We found that the larger injection volume coupled with either higher or lower reagent concentration was needed for consistent mutation production. However, DIPA-CRISPR yields an overall low mutation rate in N. vitripennis when compared to other tested insects, a characteristic that may be attributed to a proportionally low vitellogenic import efficiency in the jewel wasp. We discuss different factors that may be considered in determining when DIPA-CRISPR may be preferable over other reagent delivery methods.
Collapse
Affiliation(s)
- Xinmi Zhang
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Anabhra Singh
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Kassandra Soriano Martinez
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Patrick M Ferree
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| |
Collapse
|
8
|
Fricke LC, Lindsey ARI. Identification of Parthenogenesis-Inducing Effector Proteins in Wolbachia. Genome Biol Evol 2024; 16:evae036. [PMID: 38530785 PMCID: PMC11019157 DOI: 10.1093/gbe/evae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 yr ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine-rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model Saccharomyces cerevisiae. We suggest that these proteins are parthenogenesis-inducing factors and our results indicate that this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
9
|
Bai X, Yu K, Xiong S, Chen J, Yang Y, Ye X, Yao H, Wang F, Fang Q, Song Q, Ye G. CRISPR/Cas9-mediated mutagenesis of the white gene in an ectoparasitic wasp, Habrobracon hebetor. PEST MANAGEMENT SCIENCE 2024; 80:1219-1227. [PMID: 37899674 DOI: 10.1002/ps.7851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Sun X, Hong J, Ding T, Wu Z, Lin D. Snail microbiota and snail-schistosome interactions: axenic and gnotobiotic technologies. Trends Parasitol 2024; 40:241-256. [PMID: 38278688 DOI: 10.1016/j.pt.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
The microbiota in the intermediate snail hosts of human schistosomes can significantly affect host biology. For decades, researchers have developed axenic snails to manipulate the symbiotic microbiota. This review summarizes the characteristics of symbiotic microbes in intermediate snail hosts and describes their interactions with snails, affecting snail growth, development, and parasite transmission ability. We focus on advances in axenic and gnotobiotic technologies for studying snail-microbe interactions and exploring the role of microbiota in snail susceptibility to Schistosoma infection. We discuss the challenges related to axenic and gnotobiotic snails, possible solutions to address these challenges, and future research directions to deepen our understanding of snail-microbiota interactions, with the aim to develop microbiota-based strategies for controlling snail populations and reducing their competence in transmitting parasites.
Collapse
Affiliation(s)
- Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Terradas G, Macias VM, Peterson H, McKeand S, Krawczyk G, Rasgon JL. The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond. Integr Comp Biol 2023; 63:1550-1563. [PMID: 37742320 PMCID: PMC10755176 DOI: 10.1093/icb/icad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Hillary Peterson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Sage McKeand
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| |
Collapse
|
12
|
Fricke LC, Lindsey ARI. Identification of parthenogenesis-inducing effector proteins in Wolbachia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569668. [PMID: 38076953 PMCID: PMC10705499 DOI: 10.1101/2023.12.01.569668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis-induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 years ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex-determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model, Saccharomyces cerevisiae. We suggest these proteins are parthenogenesis-inducing factors and our results indicate this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Amelia RI Lindsey
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
13
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
14
|
Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp Nasonia vitripennis. PLoS One 2023; 18:e0288278. [PMID: 37917617 PMCID: PMC10621845 DOI: 10.1371/journal.pone.0288278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/23/2023] [Indexed: 11/04/2023] Open
Abstract
Recurrent polyploidization occurred in the evolutionary history of most Eukaryota. However, how neopolyploid detriment (sterility, gigantism, gene dosage imbalances) has been overcome and even been bridged to evolutionary advantage (gene network diversification, mass radiation, range expansion) is largely unknown, particularly for animals. We used the parasitoid wasp Nasonia vitripennis, a rare insect system with heritable polyploidy, to begin addressing this knowledge gap. In Hymenoptera the sexes have different ploidies (haploid males, diploid females) and neopolyploids (diploid males, triploid females) occur for various species. Although such polyploids are usually sterile, those of N. vitripennis are reproductively capable and can even establish stable polyploid lines. To assess the effects of polyploidization, we compared a long-established polyploid line, the Whiting polyploid line (WPL) and a newly generated transformer knockdown line (tKDL) for fitness traits, absolute gene expression, and cell size and number. WPL polyploids have high male fitness and low female fecundity, while tKDL polyploids have poor male mate competition ability and high fertility. WPL has larger cells and cell number reduction, but the tKDL does not differ in this respect. Expression analyses of two housekeeping genes indicated that gene dosage is linked to sex irrespective of ploidy. Our study suggests that polyploid phenotypic variation may explain why some polyploid lineages thrive and others die out; a commonly proposed but difficult-to-test hypothesis. This documentation of diploid males (tKDL) with impaired competitive mating ability; triploid females with high fitness variation; and hymenopteran sexual dosage compensation (despite the lack of sex chromosomes) all challenges general assumptions on hymenopteran biology. We conclude that polyploidization is dependent on the duplicated genome characteristics and that genomes of different lines are unequally suited to survive diploidization. These results demonstrate the utility of N. vitripennis for delineating mechanisms of animal polyploid evolution, analogous to more advanced polyploid plant models.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Konu M, Kulmuni J, Viljakainen L. Genetic modification of the ant Lasius niger using CRISPR-Cas9 technology. INSECT MOLECULAR BIOLOGY 2023; 32:11-25. [PMID: 36030521 PMCID: PMC10087202 DOI: 10.1111/imb.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
CRISPR-Cas9 has become one of the most prominent gene editing tools available and it has been utilized in various organisms from bacteria to fungi, plants, and animals. In this study, we developed a CRISPR-Cas9 protocol for the black garden ant Lasius niger, a common and easily available study species for lab and field experiments. To create indel mutations using CRISPR-Cas9 in L. niger, we targeted three different locations in a well-studied eye pigmentation gene cinnabar, generating several mutations that disrupt the ommochrome biosynthesis pathway and result in the lack of the pigment and therefore, abnormal eye coloration in adult workers. We also developed a protocol to collect L. niger eggs, inject them with CRISPR-Cas9 construct, and rear the eggs into mature adult workers with the assistance of nursing workers. We demonstrated for the first time in L. niger that CRISPR-Cas9 is an excellent tool to create targeted mutations for this species. Our protocol can be referred to when developing similar studies for other species of ants and eusocial insects.
Collapse
Affiliation(s)
- Mauno Konu
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Jonna Kulmuni
- Organismal and Evolutionary Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
16
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
17
|
Cerqueira de Araujo A, Josse T, Sibut V, Urabe M, Asadullah A, Barbe V, Nakai M, Huguet E, Periquet G, Drezen JM. Chelonus inanitus bracovirus encodes lineage-specific proteins and truncated immune IκB-like factors. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host–parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.
Collapse
Affiliation(s)
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Vonick Sibut
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Mariko Urabe
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Azam Asadullah
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Madoka Nakai
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
18
|
Wu MM, Chen X, Xu QX, Zang LS, Wang S, Li M, Xiao D. Melanin Synthesis Pathway Interruption: CRISPR/Cas9-mediated Knockout of dopa decarboxylase (DDC) in Harmonia axyridis (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6694719. [PMID: 36082675 PMCID: PMC9459435 DOI: 10.1093/jisesa/ieac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 05/28/2023]
Abstract
CRISPR/Cas9 technology is a very powerful genome editing tool and has been used in many insect species for functional genomics studies through targeted gene mutagenesis. Here, we successfully established CRISPR/Cas9 research platform in Asian multi-colored ladybird beetle, Harmonia axyridis, an important natural enemy in biological control. In this study, one pivotal gene dopa decarboxylase (DDC) in melanin synthesis was targeted by CRISPR/Cas9 to generate mutants in H. axyridis by CRISPR/Cas9 technology. Our results showed that injection of single guide RNA of the DDC and Cas9 protein into preblastoderm eggs induced one insertion and four deletion (indels) mutant H. axyridis. Mutations of HaDDC gene generated 25% mutant rate with melanin missing phenotype in larva, pupa,l and adult stage. The predation ability of the fourth instar larvae has no significant difference between wild (control) and mutant H. axyridis (G0), while these mutant fourth instar larvae had longer developmental period than that of the wild type. Consequently, the total predation of the fourth instar larvae was significantly increased in H. axyridis mutants comparing with the wild type. These results indicated that the success of CRISPR/Cas9 gene editing in H. axyridis. The gene editing platform in H. axyridis would facilitate the gene function research and promote special strain of predatory ladybird beetle generation.
Collapse
Affiliation(s)
| | | | - Qing-xuan Xu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lian-sheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering of Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Li
- Corresponding author, e-mail: (M.L.), (D.X.)
| | - Da Xiao
- Corresponding author, e-mail: (M.L.), (D.X.)
| |
Collapse
|
19
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
20
|
Ji SX, Bi SY, Wang XD, Wu Q, Tang YH, Zhang GF, Wan FH, Lü ZC, Liu WX. First Report on CRISPR/Cas9-Based Genome Editing in the Destructive Invasive Pest Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae). Front Genet 2022; 13:865622. [PMID: 35664294 PMCID: PMC9160428 DOI: 10.3389/fgene.2022.865622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The tomato leaf miner Tuta absoluta (Meyrick) is one of the world’s most destructive pests of tomato, and because of its severe economic impacts, as well as the development of pesticide resistance, the species has been intensively studied, especially in regard to the identification of targets for T. absoluta control. However, functional genomic studies of T. absoluta have been constrained by a lack of effective genetic tools. Therefore, the aim of the present study was to develop a CRISPR/Cas9 zygote microinjection protocol for generating heritable mutations in T. absoluta, using the ommochrome synthesis gene cinnabar as an easily evaluated target gene. The injection of fertilised eggs with Cas9 protein and four sgRNAs, which targeted cinnabar exon 3, resulted in a mutagenesis rate of 31.9% for eggs reaching adulthood, and cinnabar mutagenesis resulted in either red or mosaic eye colour phenotypes. As such, this study is the first to report a complete and detailed CRISPR/Cas9 workflow for the efficient genome editing of the globally important invasive pest T. absoluta. The application of this robust genome-editing tool to T. absoluta will greatly facilitate the discovery of suitable RNAi control targets and the subsequent development of novel control strategies.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Si-Yan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Hong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Fen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhi-Chuang Lü,
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug. Sci Rep 2022; 12:4917. [PMID: 35322099 PMCID: PMC8943060 DOI: 10.1038/s41598-022-08908-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
The western tarnished plant bug, Lygus hesperus, is a key hemipteran pest of numerous agricultural, horticultural, and industrial crops in the western United States and Mexico. A lack of genetic tools in L. hesperus hinders progress in functional genomics and in developing innovative pest control methods such as gene drive. Here, using RNA interference (RNAi) against cardinal (LhCd), cinnabar (LhCn), and white (LhW), we showed that knockdown of LhW was lethal to developing embryos, while knockdown of LhCd or LhCn produced bright red eye phenotypes, in contrast to wild-type brown eyes. We further used CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) genome editing to generate germline knockouts of both LhCd (Card) and LhCn (Cinn), producing separate strains of L. hesperus characterized by mutant eye phenotypes. Although the cardinal knockout strain Card exhibited a gradual darkening of the eyes to brown typical of the wild-type line later in nymphal development, we observed bright red eyes throughout all life stages in the cinnabar knockout strain Cinn, making it a viable marker for tracking gene editing in L. hesperus. These results provide evidence that CRISPR/Cas9 gene editing functions in L. hesperus and that eye pigmentation genes are useful for tracking the successful genetic manipulation of this insect.
Collapse
|
23
|
Li R, Meng Q, Qi J, Hu L, Huang J, Zhang Y, Yang J, Sun J. Microinjection-based CRISPR/Cas9 mutagenesis in the decapoda crustaceans, Neocaridina heteropoda and Eriocheir sinensis. J Exp Biol 2022; 225:274276. [DOI: 10.1242/jeb.243702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
CRISPR/Cas9 technology has been applied to many arthropods. However, application of this technology to crustaceans remains limited due to the unique characteristics of embryos. Our group has developed a microinjection system to introduce the CRISPR/Cas9 system into Neocaridina heteropoda embryos (one-cell stage). Using the developed method, we mutated the target gene Nh-scarlet (N. heteropoda scarlet), which functions in eye development and pigmentation. The results showed that both eye color and shape were altered in individuals in which Nh-scarlet was knocked out. Furthermore, this system was also successfully applied to another decapod crustacean, Eriocheir sinensis. DNA sequencing revealed that the zoeae with red eyes had an edited version of Es-scarlet. This study provides a stable microinjection method for freshwater crustaceans, and will contribute to functional genomics studies in various decapods.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiachen Qi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lezhen Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinwei Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiale Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
24
|
Abstract
CRISPR-mediated genome engineering technologies have been adapted to a wide variety of organisms with high efficiency and specificity. The yellow fever mosquito, Aedes aegypti , is one such organism. It is also responsible for transmitting a wide variety of deadly viruses including Dengue, Zika, Yellow fever, and Chikungunya. The key to successful CRISPR-mediated gene editing applications is the delivery of both Cas9 ribonuclease and single-guide RNA (sgRNA ) to the nucleus of desired cells. Various methods have been developed for supplying the Cas9 endonuclease, sgRNA , and donor DNA to Ae. aegypti. In this chapter, we focus on methods of direct embryo delivery of editing components, presenting detailed step-by-step CRISPR/Cas9-based genome-editing protocols for inducing desired heritable edits in mosquitoes as well as insights into successful application of these protocols. We also highlight potential opportunities for customizing these protocols to manipulate the mosquito genome for innovative in vivo gene function studies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Liang L, Li Z, Li Q, Wang X, Su S, Nie H. Expansion of CRISPR Targeting Sites Using an Integrated Gene-Editing System in Apis mellifera. INSECTS 2021; 12:insects12100954. [PMID: 34680723 PMCID: PMC8540347 DOI: 10.3390/insects12100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary CRISPR/Cas9, a versatile gene manipulation tool, has been harnessed for targeted genome engineering in honeybees. However, until now, only SpCas9 that enables NGG recognition has been shown to manipulate the genome in A. mellifera, limiting the editable range to the NGG-included loci. In the current study, to evaluate the potential expansion when utilising Cpf1, SpCas9 and SaCas9, we predicted the distribution and number of targeting sites throughout the whole honeybee genome with a bioinformatic approach. The results of bioinformatics analysis suggest that the number of accessible targeting sites in A. mellifera could be significantly increased via the integrated CRISPR system. In addition, we measured the cleavage activity of these new CRISPR enzymes in A. mellifera, and it was found that both SaCas9 and Cpf1 can induce genome alternation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our study provides the first evidence that SaCas9 and Cpf1 can efficiently mediate genome sequence mutation, thereby expanding the targetable spectrum in A. mellifera. The integrated CRISPR system will probably boost both fundamental studies and applied researches in A. mellifera and perhaps other insects. Abstract CRISPR/Cas9, a predominant gene-editing tool, has been utilised to dissect the gene function in Apis mellifera. However, only the genomic region containing NGG PAM could be recognised and edited in A. mellifera, seriously hampering the application of CRISPR technology in honeybees. In this study, we carried out the bioinformatics analysis for genome-wide targeting sites of NGG, TTN, and NNGRRT to determine the potential expansion of the SpCas9, SaCas9, Cpf1, and it was found that the targetable spectrum of the CRISPR editing system could be markedly extended via the integrated gene manipulation system. Meanwhile, the single guide RNA (sgRNA)/crRNA of different novel gene editing systems and the corresponding CRISPR proteins were co-injected into honeybee embryos, and their feasibility was tested in A. mellifera. The sequencing data revealed that both SaCas9 and Cpf1 are capable of mediating mutation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our results provide the first demonstration that SaCas9 and Cpf1 can function to induce genome sequence alternation, which extended the editing scope to the targets with TTN and NNGRRT and enabled CRISPR-based genome research in a broader range in A. mellifera.
Collapse
Affiliation(s)
- Liqiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Zhenghanqing Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Qiufang Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Xiuxiu Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- Correspondence: (S.S.); (H.N.); Tel.: +86-181-0503-9938 (S.S.); +86-157-0590-2721 (H.N.)
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- Correspondence: (S.S.); (H.N.); Tel.: +86-181-0503-9938 (S.S.); +86-157-0590-2721 (H.N.)
| |
Collapse
|
26
|
Palmer S, Dearden PK, Mercier OR, King-Hunt A, Lester PJ. Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand. J R Soc N Z 2021; 52:508-525. [PMID: 39440191 PMCID: PMC11485957 DOI: 10.1080/03036758.2021.1985531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
There is a global need for novel, next-generation technologies and techniques to manage pest species. We review work on potential step-changing technologies for large landscape (>1000 hectares) pest management of social Vespula wasps. We also review Māori perspectives on these controls to gauge social and cultural acceptability to research, test and use of novel controls. Approaches discussed are the use of gene silencing (RNAi) and gene drives (CRISPR-Cas 9) involving genetic modification, which has potential for pest control but vary in feasibility, cost, benefits and off-target risks. RNAi may be better suited for wasp control in high-value cropping systems due to scaling inefficiencies. Gene drives offer potential for large-scale control but would require legislative and wide social deliberation due to their status as genetic modification. Both RNAi and gene drives will require consultation with tangata whenua. Māori interest groups agreed that exotic wasps must be controlled and expressed aversion to non-targeted traditional control methods. We present a diversity of opinions in parallel with scientific research underscoring the need for continued dialogue with Māori. Novel biotechnological controls must satisfy a broad range of social and cultural criteria, receive regulatory approval, along with being demonstrated as safe, selective, and cost-effective.
Collapse
Affiliation(s)
- Symon Palmer
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa, Bioprotection Research Centre, and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Ocean R. Mercier
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Alan King-Hunt
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Phillip J. Lester
- School of Biology, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
27
|
Watanabe K, Yoshiyama M, Akiduki G, Yokoi K, Hoshida H, Kayukawa T, Kimura K, Hatakeyama M. A simple method for ex vivo honey bee cell culture capable of in vitro gene expression analysis. PLoS One 2021; 16:e0257770. [PMID: 34555120 PMCID: PMC8460014 DOI: 10.1371/journal.pone.0257770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Cultured cells are a very powerful tool for investigating biological events in vitro; therefore, cell lines have been established not only in model insect species, but also in non-model species. However, there are few reports on the establishment of stable cell lines and development of systems to introduce genes into the cultured cells of the honey bee (Apis mellifera). We describe a simple ex vivo cell culture system for the honey bee. Hemocyte cells obtained from third and fourth instar larvae were cultured in commercial Grace’s insect medium or MGM-450 insect medium for more than two weeks maintaining a normal morphology without deterioration. After an expression plasmid vector bearing the enhanced green fluorescent protein (egfp) gene driven by the immediate early 2 (IE2) viral promoter was transfected into cells, EGFP fluorescence was detected in cells for more than one week from one day after transfection. Furthermore, double-stranded RNA corresponding to a part of the egfp gene was successfully introduced into cells and interfered with egfp gene expression. A convenient and reproducible method for an ex vivo cell culture that is fully practicable for gene expression assays was established for the honey bee.
Collapse
Affiliation(s)
- Kazuyo Watanabe
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Mikio Yoshiyama
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Gaku Akiduki
- Insect Pest Management Group, Division of Agro-Environment Research, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, Japan
| | - Kakeru Yokoi
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Hiroko Hoshida
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Takumi Kayukawa
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Kiyoshi Kimura
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
28
|
Li M, Yang T, Bui M, Gamez S, Wise T, Kandul NP, Liu J, Alcantara L, Lee H, Edula JR, Raban R, Zhan Y, Wang Y, DeBeaubien N, Chen J, Sánchez C HM, Bennett JB, Antoshechkin I, Montell C, Marshall JM, Akbari OS. Suppressing mosquito populations with precision guided sterile males. Nat Commun 2021; 12:5374. [PMID: 34508072 PMCID: PMC8433431 DOI: 10.1038/s41467-021-25421-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are needed. To complement existing measures, here we develop a molecular genetic control system termed precision-guided sterile insect technique (pgSIT) in Aedes aegypti. PgSIT uses a simple CRISPR-based approach to generate flightless females and sterile males that are deployable at any life stage. Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, suppress, and even eliminate mosquito populations. This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable, and reversible manner. A. aegypti is the principal vector for arboviruses that impact on human health and wellbeing. Here the authors use precision guided sterile insect technique—pgSIT—to suppress or eliminate mosquito populations in multigeneration cage experiments.
Collapse
Affiliation(s)
- Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Michelle Bui
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Tyler Wise
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Lenissa Alcantara
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haena Lee
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jyotheeswara R Edula
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, La Jolla, CA, USA.,Tata Institute for Genetics and Society (TIGS), TIGS Center at inStem, GKVK Campus, Bangalore, Karnataka, India
| | - Robyn Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Yinpeng Zhan
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Yijin Wang
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Nick DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Jieyan Chen
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Héctor M Sánchez C
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Jared B Bennett
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - John M Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA. .,Tata Institute for Genetics and Society, La Jolla, CA, USA.
| |
Collapse
|
29
|
Nie HY, Liang LQ, Li QF, Li ZHQ, Zhu YN, Guo YK, Zheng QL, Lin Y, Yang DL, Li ZG, Su SK. CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104264. [PMID: 34081960 DOI: 10.1016/j.jinsphys.2021.104264] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Visible genetic markers are critical to gene function studies using genome editing technology in insects. However, there is no report about visible phenotypic markers in Apis mellifera, which extremely influences the application of genomic editing in honey bees. Here, we cloned and characterized the Amyellow-y gene in A. mellifera. Stage expression profiles showed that Amyellow-y gene was highly expressed in 2-, 4-day-old pupae, and newly emerged bees, and a high expression level was detected in the leg, thorax, wing and sting. To understand its functional role in pigmentation, Amyellow-y edited honeybees were created using CRISPR/Cas9, and it was found that the black pigment was decreased in the cuticle of mosaic workers and mutant drones. In particular, mutant drones manifested an overall appearance of yellowish cuticle in the body and appendages, including antennae, wings and legs, indicating that mutagenesis induced by disruption of Amyellow-y with CRISPR/Cas9 are heritable. Furthermore, the expression levels of genes associated with melanin pigmentation was investigated in mutant and wild-type drones using quantitative reverse transcription PCR. Transcription levels of Amyellow-y and aaNAT decreased markedly in mutant drones than that in wild-type ones, whereas laccase 2 was significantly up-regulated. Our results provide the first evidence, to our knowledge, that CRISPR/Cas9 edited G1 mutant drones of A. mellifera have a dramatic body pigmentation defect that can be visualized in adults, suggesting that Amyellow-y may serve as a promising visible phenotypic marker for genome editing in honey bees.
Collapse
Affiliation(s)
- Hong-Yi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Qiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Fang Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng-Han-Qing Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Nan Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Kang Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Lan Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Lin Yang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Guo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song-Kun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
Nuss A, Sharma A, Gulia-Nuss M. Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases Research. Front Cell Infect Microbiol 2021; 11:678037. [PMID: 34041045 PMCID: PMC8141593 DOI: 10.3389/fcimb.2021.678037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate hematophagous arthropods that are distributed worldwide and are one of the most important vectors of pathogens affecting humans and animals. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind other arthropod vectors, such as mosquitoes. This is largely because of challenges in applying functional genomics and genetic tools to the idiosyncrasies unique to tick biology, particularly techniques for stable genetic transformations. CRISPR-Cas9 is transforming non-model organism research; however, successful germline editing has yet to be accomplished in ticks. Here, we review the ancillary methods needed for transgenic tick development and the use of CRISPR/Cas9, the most promising gene-editing approach, for tick genetic transformation.
Collapse
Affiliation(s)
- Andrew Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, United States
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| |
Collapse
|
31
|
Rahman SR, Cnaani J, Kinch LN, Grishin NV, Hines HM. A combined RAD-Seq and WGS approach reveals the genomic basis of yellow color variation in bumble bee Bombus terrestris. Sci Rep 2021; 11:7996. [PMID: 33846496 PMCID: PMC8042027 DOI: 10.1038/s41598-021-87194-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Bumble bees exhibit exceptional diversity in their segmental body coloration largely as a result of mimicry. In this study we sought to discover genes involved in this variation through studying a lab-generated mutant in bumble bee Bombus terrestris, in which the typical black coloration of the pleuron, scutellum, and first metasomal tergite is replaced by yellow, a color variant also found in sister lineages to B. terrestris. Utilizing a combination of RAD-Seq and whole-genome re-sequencing, we localized the color-generating variant to a single SNP in the protein-coding sequence of transcription factor cut. This mutation generates an amino acid change that modifies the conformation of a coiled-coil structure outside DNA-binding domains. We found that all sequenced Hymenoptera, including sister lineages, possess the non-mutant allele, indicating different mechanisms are involved in the same color transition in nature. Cut is important for multiple facets of development, yet this mutation generated no noticeable external phenotypic effects outside of setal characteristics. Reproductive capacity was reduced, however, as queens were less likely to mate and produce female offspring, exhibiting behavior similar to that of workers. Our research implicates a novel developmental player in pigmentation, and potentially caste, thus contributing to a better understanding of the evolution of diversity in both of these processes.
Collapse
Affiliation(s)
- Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Labs, University Park, PA, USA
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | - Lisa N Kinch
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Labs, University Park, PA, USA.
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
32
|
Effect of using green fluorescent proteindouble-stranded RNA as non-target negative control in Nasonia vitripennisRNA interference assays. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2020.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractRNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when usingGreen Fluorescent Protein(GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect ofGFPRNAi (GFP-i) inNasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response toGFP-i. A subset of these genes appears involved in microtubule and sperm functions.In silicoanalysis identified 17 potential off-targets, of which only one was differentially expressed afterGFP-i. We suggest the primary cause for differential expression afterGFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.
Collapse
|
33
|
Chaverra-Rodriguez D, Dalla Benetta E, Heu CC, Rasgon JL, Ferree PM, Akbari OS. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. INSECT MOLECULAR BIOLOGY 2020; 29:569-577. [PMID: 32715554 DOI: 10.1111/imb.12663] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel wasp Nasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adult N. vitripennis females using either ReMOT control (Receptor-Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used the Drosophila melanogaster-derived peptide 'P2C' fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of the cinnabar gene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR-applied genetic manipulation in this and other rising model organisms.
Collapse
Affiliation(s)
- D Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - E Dalla Benetta
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - C C Heu
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - J L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - P M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - O S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| |
Collapse
|
34
|
Koidou V, Denecke S, Ioannidis P, Vlatakis I, Livadaras I, Vontas J. Efficient genome editing in the olive fruit fly, Bactrocera oleae. INSECT MOLECULAR BIOLOGY 2020; 29:363-372. [PMID: 32141659 DOI: 10.1111/imb.12640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The olive fruit fly, Bactrocera oleae, causes great damage to the quality and quantity of olive production worldwide. Pest management approaches have proved difficult for a variety of reasons, a fact that has brought about a need for alternative tools and approaches. Here we report for the first time in B. oleae the development of the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene editing tool, using the well-known eye colour marker gene scarlet. Two synthetic guide RNAs targeting the coding region of the scarlet gene were synthesized and shown to work efficiently in vitro. These reagents were then microinjected along with purified Cas9 protein into early-stage embryos. Successful CRISPR-induced mutations of both copies of the scarlet gene showed a striking yellow eye phenotype, indicative of gene disruption. Multiple successful CRISPR events were confirmed by PCR and sequencing. The establishment of an efficient CRISPR-based gene editing tool in B. oleae will enable the study of critical molecular mechanisms in olive fruit fly biology and physiology, including the analysis of insecticide resistance mechanisms and the discovery of novel insecticide targets, as well as facilitate the development of novel biotechnology-based pest control strategies.
Collapse
Affiliation(s)
- V Koidou
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - S Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - P Ioannidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - I Vlatakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - I Livadaras
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - J Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
35
|
Li M, Li T, Liu N, Raban RR, Wang X, Akbari OS. Methods for the generation of heritable germline mutations in the disease vector Culex quinquefasciatus using clustered regularly interspaced short palindrome repeats-associated protein 9. INSECT MOLECULAR BIOLOGY 2020; 29:214-220. [PMID: 31693260 DOI: 10.1111/imb.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Culex quinquefasciatus is a vector of many diseases that adversely impact human and animal health; however, compared to other mosquito vectors limited genome engineering technologies have been characterized for this vector. Clustered regularly interspaced short palindrome repeats-associated protein 9 (CRISPR-Cas9) based technologies are a powerful tool for genome engineering and functional genetics and consequently have transformed genetic studies in many organisms. Our objective was to improve upon the limited technologies available for genome editing in C. quinquefasciatus to create a reproducible and straightforward method for CRISPR-Cas9-targeted mutagenesis in this vector. Here we describe methods to achieve high embryo survival and mutagenesis rates and we provide details on the injection supplies and procedures, embryo handling and guide RNA (gRNA) target designs. Through these efforts, we achieved embryo survival rates and germline mutagenesis rates that greatly exceed previously reported rates in this vector. This work is also the first to characterize the white gene marker in this species, which is a valuable phenotypic marker for future transgenesis or mutagenesis of this vector. Overall, these tools provide the framework for future functional genetic studies in this important disease vector and may support the development of future gene drive and genetic technologies that can be used to control this vector.
Collapse
Affiliation(s)
- M Li
- Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - T Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - N Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - R R Raban
- Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - X Wang
- College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - O S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- Tata Institute for Genetics and Society, University of California, CA, USA
| |
Collapse
|
36
|
Peng L, Wang Q, Zou MM, Qin YD, Vasseur L, Chu LN, Zhai YL, Dong SJ, Liu LL, He WY, Yang G, You MS. CRISPR/Cas9-Mediated Vitellogenin Receptor Knockout Leads to Functional Deficiency in the Reproductive Development of Plutella xylostella. Front Physiol 2020; 10:1585. [PMID: 32038281 PMCID: PMC6989618 DOI: 10.3389/fphys.2019.01585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The vitellogenin receptor (VgR) belongs to the low-density lipoprotein receptor (LDLR) gene superfamily and plays an indispensable role in Vg transport, yolk deposition, and oocyte development. For this reason, it has become a promising target for pest control. The involvement of VgR in Vg transport and reproductive functions remains unclear in diamondback moths, Plutella xylostella (L.), a destructive pest of cruciferous crops. Here, we cloned and identified the complete cDNA sequence of P. xylostella VgR, which encoded 1805 amino acid residues and contained four conserved domains of LDLR superfamily. PxVgR was mainly expressed in female adults, more specifically in the ovary. PxVgR protein also showed the similar expression profile with the PxVgR transcript. CRISPR/Cas9-mediated PxVgR knockout created a homozygous mutant of P. xylostella with 5-bp-nucleotide deletion in the PxVgR. The expression deficiency of PxVgR protein was detected in the ovaries and eggs of mutant individuals. Vg protein was still detected in the eggs of the mutant individuals, but with a decreased expression level. However, PxVg transcripts were not significantly affected by the PxVgR knockout. Knockout of PxVgR resulted in shorter ovarioles of newly emerged females. No significant difference was detected between wild and mutant individuals in terms of the number of eggs laid in the first 3 days after mating. The loss of PxVgR gene resulted in smaller and whiter eggs and lower egg hatching rate. This study represents the first report on the functions of VgR in Vg transport, ovary development, oviposition, and embryonic development of P. xylostella using CRISPR/Cas9 technology. This study lays the foundation for understanding molecular mechanisms of P. xylostella reproduction, and for making use of VgR as a potential genetic-based molecular target for better control of the P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Wey B, Heavner ME, Wittmeyer KT, Briese T, Hopper KR, Govind S. Immune Suppressive Extracellular Vesicle Proteins of Leptopilina heterotoma Are Encoded in the Wasp Genome. G3 (BETHESDA, MD.) 2020; 10:1-12. [PMID: 31676506 PMCID: PMC6945029 DOI: 10.1534/g3.119.400349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Leptopilina heterotoma are obligate parasitoid wasps that develop in the body of their Drosophila hosts. During oviposition, female wasps introduce venom into the larval hosts' body cavity. The venom contains discrete, 300 nm-wide, mixed-strategy extracellular vesicles (MSEVs), until recently referred to as virus-like particles. While the crucial immune suppressive functions of L. heterotoma MSEVs have remained undisputed, their biotic nature and origin still remain controversial. In recent proteomics analyses of L. heterotoma MSEVs, we identified 161 proteins in three classes: conserved eukaryotic proteins, infection and immunity related proteins, and proteins without clear annotation. Here we report 246 additional proteins from the L. heterotoma MSEV proteome. An enrichment analysis of the entire proteome supports vesicular nature of these structures. Sequences for more than 90% of these proteins are present in the whole-body transcriptome. Sequencing and de novo assembly of the 460 Mb-sized L. heterotoma genome revealed 90% of MSEV proteins have coding regions within the genomic scaffolds. Altogether, these results explain the stable association of MSEVs with their wasps, and like other wasp structures, their vertical inheritance. While our results do not rule out a viral origin of MSEVs, they suggest that a similar strategy for co-opting cellular machinery for immune suppression may be shared by other wasps to gain advantage over their hosts. These results are relevant to our understanding of the evolution of figitid and related wasp species.
Collapse
Affiliation(s)
- Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biology, The Graduate Center of the City University of New York
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
- Laboratory of Host-Pathogen Biology, Rockefeller University, 1230 York Ave, New York, 10065
| | - Kameron T Wittmeyer
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Thomas Briese
- Center of Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 10032
| | - Keith R Hopper
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031,
- PhD Program in Biology, The Graduate Center of the City University of New York
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
| |
Collapse
|
38
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
39
|
Paulo DF, Williamson ME, Arp AP, Li F, Sagel A, Skoda SR, Sanchez-Gallego J, Vasquez M, Quintero G, Pérez de León AA, Belikoff EJ, Azeredo-Espin AML, McMillan WO, Concha C, Scott MJ. Specific Gene Disruption in the Major Livestock Pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9. G3 (BETHESDA, MD.) 2019; 9:3045-3055. [PMID: 31340950 PMCID: PMC6723136 DOI: 10.1534/g3.119.400544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Cochliomyia hominivorax and Lucilia cuprina are major pests of livestock. Their larvae infest warm-blooded vertebrates and feed on host's tissues, resulting in severe industry losses. As they are serious pests, considerable effort has been made to develop genomic resources and functional tools aiming to improve their management and control. Here, we report a significant addition to the pool of genome manipulation tools through the establishment of efficient CRISPR/Cas9 protocols for the generation of directed and inheritable modifications in the genome of these flies. Site-directed mutations were introduced in the C hominivorax and L cuprina yellow genes (ChY and LcY) producing lightly pigmented adults. High rates of somatic mosaicism were induced when embryos were injected with Cas9 ribonucleoprotein complexes (RNPs) pre-assembled with guide RNAs (sgRNAs) at high concentrations. Adult flies carrying disrupted yellow alleles lacked normal pigmentation (brown body phenotype) and efficiently transmitted the mutated alleles to the subsequent generation, allowing the rapid creation of homozygous strains for reverse genetics of candidate loci. We next used our established CRISPR protocol to disrupt the C hominivorax transformer gene (Chtra). Surviving females carrying mutations in the Chtra locus developed mosaic phenotypes of transformed ovipositors with characteristics of male genitalia while exhibiting abnormal reproductive tissues. The CRISPR protocol described here is a significant improvement on the existing toolkit of molecular methods in calliphorids. Our results also suggest that Cas9-based systems targeting Chtra and Lctra could be an effective means for controlling natural populations of these important pests.
Collapse
Affiliation(s)
- Daniel F Paulo
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Megan E Williamson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Alex P Arp
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Agustin Sagel
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Steven R Skoda
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Joel Sanchez-Gallego
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Mario Vasquez
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Gladys Quintero
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Adalberto A Pérez de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Ana M L Azeredo-Espin
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
| | - W Owen McMillan
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Carolina Concha
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| |
Collapse
|
40
|
Groothuis J, van den Heuvel K, Smid HM. Species- and size-related differences in dopamine-like immunoreactive clusters in the brain of Nasonia vitripennis and N. giraulti. Cell Tissue Res 2019; 379:261-273. [PMID: 31440818 DOI: 10.1007/s00441-019-03079-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
An extreme reduction in body size has been shown to negatively impact the memory retention level of the parasitic wasp Nasonia vitripennis. In addition, N. vitripennis and Nasonia giraulti, closely related parasitic wasps, differ markedly in the number of conditioning trials required to form long-term memory. These differences in memory dynamics may be associated with differences in the dopaminergic neurons in the Nasonia brains. Here, we used dopamine immunoreactivity to identify and count the number of cell bodies in dopaminergic clusters of normal- and small-sized N. vitripennis and normal-sized N. giraulti. We counted in total a maximum of approximately 160 dopaminergic neurons per brain. These neurons were present in 9 identifiable clusters (D1a, D1b, D2, D3, D4a, D4b, D5, D6 and D7). Our analysis revealed that N. giraulti had fewer cells in the D2 and D4a clusters but more in D4b, compared with normal-sized N. vitripennis. In addition, we found fewer cells in the D5 and D7 cluster of small-sized N. vitripennis compared to normal-sized N. vitripennis. A comparison of our findings with the literature on dopaminergic clusters in the fruit fly Drosophila melanogaster and the honey bee Apis mellifera indicates that clusters D2, D3 and D5 may play a role in memory formation in Nasonia wasps. The results from both the species comparison and the size comparison are therefore of high interest and importance for our understanding of the complex intricacies that underlie the memory dynamics of insects.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Krista van den Heuvel
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
41
|
Groothuis J, Pfeiffer K, El Jundi B, Smid HM. The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:41-51. [PMID: 31357033 DOI: 10.1016/j.asd.2019.100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Nasonia, a genus of parasitoid wasps, is a promising model system in the study of developmental and evolutionary genetics, as well as complex traits such as learning. Of these "jewel wasps", the species Nasonia vitripennis is widely spread and widely studied. To accelerate neuroscientific research in this model species, fundamental knowledge of its nervous system is needed. To this end, we present an average standard brain of recently eclosed naïve female N. vitripennis wasps obtained by the iterative shape averaging method. This "Jewel Wasp Standard Brain" includes the optic lobe (excluding the lamina), the anterior optic tubercle, the antennal lobe, the lateral horn, the mushroom body, the central complex, and the remaining unclassified neuropils in the central brain. Furthermore, we briefly describe these well-defined neuropils and their subregions in the N. vitripennis brain. A volumetric analysis of these neuropils is discussed in the context of brains of other insect species. The Jewel Wasp Standard Brain will provide a framework to integrate and consolidate the results of future neurobiological studies in N. vitripennis. In addition, the volumetric analysis provides a baseline for future work on age- and experience-dependent brain plasticity.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
42
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
43
|
Mair MM, Ruther J. Chemical Ecology of the Parasitoid Wasp Genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
44
|
Hu XF, Zhang B, Liao CH, Zeng ZJ. High-Efficiency CRISPR/Cas9-Mediated Gene Editing in Honeybee ( Apis mellifera) Embryos. G3 (BETHESDA, MD.) 2019; 9:1759-1766. [PMID: 30948423 PMCID: PMC6505149 DOI: 10.1534/g3.119.400130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
Abstract
The honeybee (Apis mellifera) is an important insect pollinator of wild flowers and crops, playing critical roles in the global ecosystem. Additionally, the honeybee serves as an ideal social insect model. Therefore, functional studies on honeybee genes are of great interest. However, until now, effective gene manipulation methods have not been available in honeybees. Here, we reported an improved CRISPR/Cas9 gene-editing method by microinjecting sgRNA and Cas9 protein into the region of zygote formation within 2 hr after queen oviposition, which allows one-step generation of biallelic knockout mutants in honeybee with high efficiency. We first targeted the Mrjp1 gene. Two batches of honeybee embryos were collected and injected with Mrjp1 sgRNA and Cas9 protein at the ventral cephalic side and the dorsal posterior side of the embryos, respectively. The gene-editing rate at the ventral cephalic side was 93.3%, which was much higher than that (11.8%) of the dorsal-posterior-side injection. To validate the high efficiency of our honeybee gene-editing system, we targeted another gene, Pax6, and injected Pax6 sgRNA and Cas9 protein at the ventral cephalic side in the third batch. A 100% editing rate was obtained. Sanger sequencing of the TA clones showed that 73.3% (for Mrjp1) and 76.9% (for Pax6) of the edited current-generation embryos were biallelic knockout mutants. These results suggest that the CRISPR/Cas9 method we established permits one-step biallelic knockout of target genes in honeybee embryos, thereby demonstrating an efficient application to functional studies of honeybee genes. It also provides a useful reference to gene editing in other insects with elongated eggs.
Collapse
Affiliation(s)
- Xiao Fen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bo Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chun Hua Liao
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
45
|
Brent CS, Hull JJ. RNA interference-mediated knockdown of eye coloration genes in the western tarnished plant bug (Lygus hesperus Knight). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21527. [PMID: 30588650 DOI: 10.1002/arch.21527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect eye coloration arises from the accumulation of various pigments. A number of genes that function in the biosynthesis (vermilion, cinnabar, and cardinal) and importation (karmoisin, white, scarlet, and brown) of these pigments, and their precursors, have been identified in diverse species and used as markers for transgenesis and gene editing. To examine their suitability as visible markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for all seven genes were identified. Bioinformatic-based sequence and phylogenetic analyses supported initial annotations as eye coloration genes. Consistent with their proposed role, each of the genes was expressed in adult heads as well as throughout nymphal and adult development. Adult eyes of those injected with double-stranded RNAs (dsRNAs) for karmoisin, vermilion, cinnabar, cardinal, and scarlet were characterized by a red band along the medial margin extending from the rostral terminus to the antenna. In contrast, eyes of insects injected with dsRNAs for both white and brown were a uniform light brown. White knockdown also produced cuticular and behavioral defects. Based on its expression profile and robust visible phenotype, cardinal would likely prove to be the most suitable marker for developing gene editing methods in Lygus species.
Collapse
Affiliation(s)
- Colin S Brent
- USDA-ARS Arid Land Agricultural Center, Maricopa, Arizona
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, Arizona
| |
Collapse
|
46
|
Buchman A, Akbari OS. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. INSECT MOLECULAR BIOLOGY 2019; 28:65-73. [PMID: 30079589 PMCID: PMC8459378 DOI: 10.1111/imb.12528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the importance of Y-chromosomes in evolution and sex determination, their heterochromatic, repeat-rich nature makes them difficult to sequence (due, in part, to ambiguities in sequence alignment and assembly) and to genetically manipulate. Therefore, they generally remain poorly understood. For example, the Drosophila melanogaster Y-chromosome, one of the most extensively studied Y-chromosomes, is widely heterochromatic and composed mainly of highly repetitive sequences, with only a handful of expressed genes scattered throughout its length. Efforts to insert transgenes on this chromosome have thus far relied on either random insertion of transposons (sometimes harbouring 'landing sites' for subsequent integrations) with limited success or on chromosomal translocations, thereby limiting the types of Y-chromosome-related questions that could be explored. Here, we describe a versatile approach to site-specifically insert transgenes on the Y-chromosome in D. melanogaster via CRISPR/Cas9-mediated homology-directed repair. We demonstrate the ability to insert, and detect expression from, fluorescently marked transgenes at two specific locations on the Y-chromosome, and we utilize these marked Y-chromosomes to detect and quantify rare chromosomal nondisjunction effects. Finally, we discuss how this Y-docking technique could be adapted to other insects to aid in the development of genetic control technologies for the management of insect disease vectors and pests.
Collapse
Affiliation(s)
- Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093, United States of America
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093, United States of America
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093, United States of America
| |
Collapse
|
47
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
48
|
Fine JD, Shpigler HY, Ray AM, Beach NJ, Sankey AL, Cash-Ahmed A, Huang ZY, Astrauskaite I, Chao R, Zhao H, Robinson GE. Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PLoS One 2018; 13:e0203444. [PMID: 30183759 PMCID: PMC6124782 DOI: 10.1371/journal.pone.0203444] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/21/2018] [Indexed: 11/21/2022] Open
Abstract
Honey bee populations have been declining precipitously over the past decade, and multiple causative factors have been identified. Recent research indicates that these frequently co-occurring stressors interact, often in unpredictable ways, therefore it has become important to develop robust methods to assess their effects both in isolation and in combination. Most such efforts focus on honey bee workers, but the state of a colony also depends on the health and productivity of its queen. However, it is much more difficult to quantify the performance of queens relative to workers in the field, and there are no laboratory assays for queen performance. Here, we present a new system to monitor honey bee queen egg laying under laboratory conditions and report the results of experiments showing the effects of pollen nutrition on egg laying. These findings suggest that queen egg laying and worker physiology can be manipulated in this system through pollen nutrition, which is consistent with findings from field colonies. The results generated using this controlled, laboratory-based system suggest that worker physiology controls queen egg laying behavior. Additionally, the quantitative data generated in these experiments highlight the utility of the system for further use as a risk assessment tool.
Collapse
Affiliation(s)
- Julia D. Fine
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Hagai Y. Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Allyson M. Ray
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Nathanael J. Beach
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Alison L. Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Amy Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, United States of America
| | - Ieva Astrauskaite
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Ran Chao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
- LifeFoundry, Inc., Champaign, United States of America
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Gene E. Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, United States of America
- * E-mail:
| |
Collapse
|
49
|
Kohno H, Kubo T. mKast is dispensable for normal development and sexual maturation of the male European honeybee. Sci Rep 2018; 8:11877. [PMID: 30131569 PMCID: PMC6104065 DOI: 10.1038/s41598-018-30380-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
The European honeybee (Apis mellifera L.) exhibits various social behaviors. The molecular and neural mechanisms underlying these behaviors have long been explored, but causal relations between genes or neurons and behaviors remain to be elucidated because effective gene manipulation methods in the honeybee have not been available until recently. We recently established a basic technology to produce mutant honeybee drones using CRISPR/Cas9. Here we produced mutant drones using CRISPR/Cas9 targeting mKast, which is preferentially expressed in a certain subtype of class I Kenyon cells that comprise the mushroom bodies in the honeybee brain. By immunoblot analysis, we showed that mKast protein expression was completely lost in the mutant drone heads. In addition, during the production process of homozygous mutant workers, we demonstrated that heterozygous mutant workers could be produced by artificial insemination of wild-type queens with the sperm of mutant drones, indicating that mKast mutant drones were sexually mature. These results demonstrate that mKast is dispensable for normal development and sexual maturation in drone honeybees, and allow us to proceed with the production of homozygous mutant workers for the analysis of a particular gene by gene knockout in the future.
Collapse
Affiliation(s)
- Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
50
|
Chevignon G, Periquet G, Gyapay G, Vega-Czarny N, Musset K, Drezen JM, Huguet E. Cotesia congregata Bracovirus Circles Encoding PTP and Ankyrin Genes Integrate into the DNA of Parasitized Manduca sexta Hemocytes. J Virol 2018; 92:e00438-18. [PMID: 29769342 PMCID: PMC6052314 DOI: 10.1128/jvi.00438-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.
Collapse
Affiliation(s)
- Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Nathalie Vega-Czarny
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| |
Collapse
|