1
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
2
|
Donnelly H, Ross E, Xiao Y, Hermantara R, Taqi AF, Doherty-Boyd WS, Cassels J, Tsimbouri PM, Dunn KM, Hay J, Cheng A, Meek RMD, Jain N, West C, Wheadon H, Michie AM, Peault B, West AG, Salmeron-Sanchez M, Dalby MJ. Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells. Nat Commun 2024; 15:5791. [PMID: 38987295 PMCID: PMC11237034 DOI: 10.1038/s41467-024-50054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Ewan Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Rio Hermantara
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Aqeel F Taqi
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - W Sebastian Doherty-Boyd
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Jennifer Cassels
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Karen M Dunn
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Jodie Hay
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Annie Cheng
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - R M Dominic Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, United Kingdom
| | - Nikhil Jain
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Christopher West
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Helen Wheadon
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Alison M Michie
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Bruno Peault
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Adam G West
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| |
Collapse
|
3
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Dimmock RL, Rotherham M, El Haj AJ, Yang Y. Fabrication and Characterisation of Hydrogels with Reversible Wrinkled Surfaces for Limbal Study and Reconstruction. Gels 2023; 9:915. [PMID: 37999005 PMCID: PMC10671082 DOI: 10.3390/gels9110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
In the biomedical field, there is a demand for the development of novel approaches for the investigation of optical epithelial anatomical features with biomimetic materials. These materials are not only required to replicate structures but also enable dynamic modelling for disease states such as limbal stem cell deficiency and ageing. In the present study, the effective generation of reversible wrinkled polydimethylsiloxane (PDMS) substrates was undertaken to mimic the undulating anatomy of the limbal epithelial stem cell niche. This undulating surface pattern was formed through a dual treatment with acid oxidation and plasma using an innovatively designed stretching frame. This system enabled the PDMS substrate to undergo deformation and relaxation, creating a reversible and tuneable wrinkle pattern with cell culture applications. The crypt-like pattern exhibited a width of 70-130 µm and a depth of 17-40 µm, resembling the topography of a limbal epithelial stem cell niche, which is characterised by an undulating anatomy. The cytocompatibility of the patterned substrate was markedly improved using a gelatin methacrylate polymer (GelMa) coating. It was also observed that these wrinkled PDMS surfaces were able to dictate cell growth patterns, showing alignment in motile cells and colony segregation in colony-forming cells when using human and porcine limbal cells, respectively.
Collapse
Affiliation(s)
- Ryan L. Dimmock
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Michael Rotherham
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
5
|
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, Al-Bihani S, Ahmed F, Felimban RI, Alkhatabi H, Alserihi R, Abedalthagafi M, AlFadel A, Awidi A, Chaudhary AG, Merzaban J, Hauser CAE. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res 2023; 27:111. [PMID: 37932837 PMCID: PMC10626721 DOI: 10.1186/s40824-023-00457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Collapse
Affiliation(s)
- Dana M Alhattab
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yara Marghani
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa A Alghuneim
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuroug Al-Bihani
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, USA
| | - AlShaibani AlFadel
- Division of Hematology, Stem Cell Transplantation & Cellular Therapy, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Medical School, The University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Adeel Gulzar Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
de Janon A, Mantalaris A, Panoskaltsis N. Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:895-904. [PMID: 36947817 PMCID: PMC7614371 DOI: 10.4049/jimmunol.2200836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023]
Abstract
Hematoimmunopoiesis takes place in the adult human bone marrow (BM), which is composed of heterogeneous niches with complex architecture that enables tight regulation of homeostatic and stress responses. There is a paucity of representative culture systems that recapitulate the heterogeneous three-dimensional (3D) human BM microenvironment and that can endogenously produce soluble factors and extracellular matrix that deliver culture fidelity for the study of both normal and abnormal hematopoiesis. Native BM lymphoid populations are also poorly represented in current in vitro and in vivo models, creating challenges for the study and treatment of BM immunopathology. BM organoid models leverage normal 3D organ structure to recreate functional niche microenvironments. Our focus herein is to review the current state of the art in the use of 3D BM organoids, focusing on their capacities to recreate critical quality attributes of the in vivo BM microenvironment for the study of human normal and abnormal hematopoiesis.
Collapse
Affiliation(s)
- Alejandro de Janon
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- National Institute for Bioprocessing Research and Training, Ireland
| | - Nicki Panoskaltsis
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Department of Haematology, St. James’s Hospital Dublin, Ireland
| |
Collapse
|
7
|
Injectable bone marrow microniches by co-culture of HSPCs with MSCs in 3D microscaffolds promote hematopoietic reconstitution from acute lethal radiation. Bioact Mater 2022; 22:453-465. [PMID: 36311043 PMCID: PMC9593104 DOI: 10.1016/j.bioactmat.2022.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hematopoietic syndrome of acute radiation syndrome (h-ARS) is an acute illness resulted from the damage of bone marrow (BM) microenvironment after exposure to radiation. Currently, the clinical management of h-ARS is limited to medication-assisted treatment, while there is still no specific therapy for the hematopoietic injury from high-dose radiation exposure. Our study aimed to assemble biomimetic three-dimensional (3D) BM microniches by co-culture of hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs) in porous, injectable and viscoelastic microscaffolds in vitro. The biodegradable BM microniches were then transplanted in vivo into the BM cavity for the treatment of h-ARS. We demonstrated that the maintenance of HSPCs was prolonged by co-culture with MSCs in the porous 3D microscaffolds with 84 μm in pore diameter and 11.2 kPa in Young's modulus compared with 2D co-culture system. Besides, the minimal effective dose and therapeutic effects of the BM microniches were investigated on a murine model of h-ARS, which showed that the intramedullary cavity-injected BM microniches could adequately promote hematopoietic reconstitution and mitigate death from acute lethal radiation with a dose as low as 1000 HSPCs. Furthermore, the mRNA expression of Notch1 and its downstream target gene Hes1 of HSPCs were increased when co-cultured with MSCs, while the Jagged1 expression of the co-cultured MSCs was upregulated, indicating the significance of Notch signaling pathway in maintenance of HSPCs. Collectively, our findings provide evidence that biomimetic and injectable 3D BM microniches could maintain HSPCs, promote hematopoiesis regeneration and alleviate post-radiation injury, which provides a promising approach to renovate conventional HSPCs transplantation for clinical treatment of blood and immune disorders.
Collapse
|
8
|
Petaroudi M, Rodrigo‐Navarro A, Dobre O, Dalby MJ, Salmeron‐Sanchez M. Living Biomaterials to Engineer Hematopoietic Stem Cell Niches. Adv Healthc Mater 2022; 11:e2200964. [PMID: 35933595 PMCID: PMC11469072 DOI: 10.1002/adhm.202200964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Living biointerfaces are a new class of biomaterials combining living cells and polymeric matrices that can act as biologically active and instructive materials that host and provide signals to surrounding cells. Here, living biomaterials based on Lactococcus lactis to control hematopoietic stem cells in 2D surfaces and 3D hydrogels are introduced. L. lactis is modified to express C-X-C motif chemokine ligand 12 (CXCL12), thrombopoietin (TPO), vascular cell adhesion protein 1 (VCAM1), and the 7th-10th type III domains of human plasma fibronectin (FN III7-10 ), in an attempt to mimic ex vivo the conditions of the human bone marrow. These results suggest that living biomaterials that incorporate bacteria expressing recombinant CXCL12, TPO, VCAM1, and FN in both 2D systems direct hematopoietic stem and progenitor cells (HSPCs)-bacteria interaction, and in 3D using hydrogels functionalized with full-length human plasma fibronectin allow for a notable expansion of the CD34+ /CD38- /CD90+ HSPC population compared to the initial population. These results provide a strong evidence based on data that suggest the possibility of using living materials based on genetically engineered bacteria for the ex-vivo expansion of HSPC with eventual practical clinical applications in HSPCs transplantation for hematological disorders.
Collapse
Affiliation(s)
- Michaela Petaroudi
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | | - Oana Dobre
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | |
Collapse
|
9
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
10
|
Nandakumar N, Mohan M, Thilakan AT, Sidharthan HK, Janarthanan R, Sharma D, Nair SV, Sathy BN. Bioengineered 3D microfibrous-matrix modulates osteopontin release from MSCs and facilitates the expansion of hematopoietic stem cells. Biotechnol Bioeng 2022; 119:2964-2978. [PMID: 35799309 DOI: 10.1002/bit.28175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
The osteopontin released from mesenchymal stem cells (MSC) undergoing lineage differentiation can negatively influence the expansion of hematopoietic stem cells (HSCs) in co-culture systems developed for expanding HSCs. Therefore, minimising the amount of osteopontin in the co-culture system is important for the successful ex vivo expansion of HSCs. Towards this goal, a bioengineered 3D microfibrous-matrix that can maintain MSCs in less osteopontin-releasing conditions has been developed, and its influence on the expansion of HSCs has been studied. The newly developed 3D matrix significantly decreased the release of osteopontin, depending on the MSC culture conditions used during the priming period before HSC seeding. The culture system with the lowest amount of osteopontin facilitated a more than 24-fold increase in HSC number in 1 week time period. Interestingly, the viability of expanded cells and the CD34+ pure population of HSCs were found to be the highest in the low osteopontin-containing system. Therefore, bioengineered microfibrous 3D matrices seeded with MSCs, primed under suitable culture conditions, can be an improved ex vivo expansion system for HSC culture. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Niji Nandakumar
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Malini Mohan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Akhil T Thilakan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Hridhya K Sidharthan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Janarthanan
- Centre for Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepti Sharma
- Department of Obstetrics and Gynaecology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Binulal N Sathy
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
11
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
12
|
Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone Marrow Microenvironment-On-Chip for Culture of Functional Hematopoietic Stem Cells. Front Bioeng Biotechnol 2022; 10:855777. [PMID: 35795163 PMCID: PMC9252162 DOI: 10.3389/fbioe.2022.855777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Hematopoiesis takes place in the bone marrow and is supported by a complex cellular and molecular network in the bone marrow microenvironment. Commonly used models of the human bone marrow microenvironment include murine models and two-dimensional and three-dimensional tissue cultures. While these model systems have led to critical advances in the field, they fail to recapitulate many aspects of the human bone marrow. This has limited our understanding of human bone marrow pathophysiology and has led to deficiencies in therapy for many bone marrow pathologies such as bone marrow failure syndromes and leukemias. Therefore, we have developed a modular murine bone marrow microenvironment-on-chip using a commercially available microfluidic platform. This model includes a vascular channel separated from the bone marrow channel by a semi-porous membrane and incorporates critical components of the bone marrow microenvironment, including osteoblasts, endothelial cells, mesenchymal stem cells, and hematopoietic stem and progenitor cells. This system is capable of maintaining functional hematopoietic stem cells in vitro for at least 14 days at frequencies similar to what is found in the primary bone marrow. The modular nature of this system and its accessibility will allow for acceleration of our understanding of the bone marrow.
Collapse
Affiliation(s)
- Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Maggie L. Lesch
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin J. Frisch
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Benjamin J. Frisch,
| |
Collapse
|
13
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
14
|
Zippel S, Dilger N, Chatterjee C, Raic A, Brenner-Weiß G, Schadzek P, Rapp BE, Lee-Thedieck C. A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication 2022; 14. [PMID: 35472717 DOI: 10.1088/1758-5090/ac6a7e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictive in vitro drug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a 3D human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creating in vivo-like conditions to enable in vitro drug testing. This system is a step towards drug testing in biomimetic, parallelized in vitro approaches, facilitating the discovery of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Sabrina Zippel
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Nadine Dilger
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Chandralekha Chatterjee
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Annamarija Raic
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, GERMANY
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Stadtfelddamm 34, Hannover, Niedersachsen, 30625, GERMANY
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| |
Collapse
|
15
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
16
|
In Vitro Models of Bone Marrow Remodelling and Immune Dysfunction in Space: Present State and Future Directions. Biomedicines 2022; 10:biomedicines10040766. [PMID: 35453515 PMCID: PMC9031916 DOI: 10.3390/biomedicines10040766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Spaceflight affects the body on every level. Reports on astronaut health identify bone marrow remodelling and dysfunction of the innate immune system as significant health risks of long-term habitation in space. Microgravity-induced alterations of the bone marrow induce physical changes to the bone marrow stem cell niche. Downstream effects on innate immunity are expected due to impaired hematopoiesis and myelopoiesis. To date, few studies have investigated these effects in real microgravity and the sparsely available literature often reports contrasting results. This emphasizes a need for the development of physiologically relevant in vitro models of the bone marrow stem cell niche, capable of delivering appropriate sample sizes for robust statistics. Here, we review recent findings on the impact of spaceflight conditions on innate immunity in in vitro and animal models and discusses the latest in vitro models of the bone marrow stem cell niche and their potential translatability to gravitational biology research.
Collapse
|
17
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
18
|
Zmrhal V, Svoradova A, Batik A, Slama P. Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Front Cell Dev Biol 2022; 9:730804. [PMID: 35127695 PMCID: PMC8811169 DOI: 10.3389/fcell.2021.730804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Svoradova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- NPPC, Research Institute for Animal Production in Nitra, Luzianky, Slovak Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Wang J, Xiong M, Sun Q, Tan WS, Cai H. Three-Dimension Co-culture of Hematopoietic Stem Cells and Differentiated Osteoblasts on Gallic Acid Grafted-Chitosan Scaffold as a Model of Hematopoietic Stem Cells Niche. Stem Cell Rev Rep 2022; 18:1168-1180. [PMID: 34985623 DOI: 10.1007/s12015-021-10325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The existing approaches of hematopoietic stem cells (HSCs) expansion in vitro were difficult to meet the needs of clinical application. While in vivo, HSCs efficiently self-renew in niche where they interact with three dimension extracellular matrix and stromal cells. Osteoblasts (OBs) are one of most significant stromal cells of HSCs niche. Here, we proposed a three-dimensional environment based on gallic acid grafted-chitosan (2c) scaffold and OBs differentiated from human umbilical cord mesenchymal stem cells (HUMSCs) to recapitulate the main components of HSCs niche. The results of alkaline phosphatase staining and alizarin red staining demonstrated that HUMSCs were successfully induced into OBs. The results showed that the expansions of CD34+cells, CD34+CD38- cells and CD34+CD38-CD45RA-CD49f+CD90+ cells (primitive hematopoietic stem cells, pHSCs) harvested from the biomimetic HSCs niche based on 2c scaffold and OBs (IV) group were larger than those harvested from other three culture groups. Importantly, it was found that the CD34+ cells harvested from IV group had better secondary expansion capability and colony forming potential, indicating better self-renewal ability. In addition, the biomimetic HSCs niche based on 2c scaffold and OBs protected HSCs apoptosis and promoted HSCs division. Taken together, the biomimetic HSCs niche based on 2c scaffold and OBs was an effective strategy for ex vivo expansion of HSCs in clinical scale.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
20
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
21
|
Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021; 132:129-148. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.
Collapse
|
22
|
Yao CL, Huang P, Liu TC, Lin YK, Chen CY, Lai YT, Chin TY, Tseng TY, Hsu YC. CCL2 associated with CD38 expression during ex vivo expansion in human cord blood-derived hematopoietic stem cells. Aging (Albany NY) 2021; 13:19878-19893. [PMID: 34375303 PMCID: PMC8386547 DOI: 10.18632/aging.203398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
To date, different experimental strategies have been developed for the ex vivo expansion of human hematopoietic stem cells (HSCs) for clinical applications. However, differences in the genomic function of expanded HSCs under different culture systems remain unclear. In this study, we compared the gene expression profiles of HSCs in ex vivo expanded serum (10% FBS, fetal bovine serum) and serum-free culture systems and analyzed the molecular functions of differentially expressed genes using microarray chips. We identified 839 differentially expressed genes between the two culture systems. These genes were enriched in the TNF -regulated inflammatory pathway in an FBS culture system. In addition, the mRNA expression of CCL2 (C-C motif chemokine ligand 2), TNF (tumor necrosis factor) and FOS (FBJ murine osteosarcoma viral oncogene homolog) was validated by RT-qPCR. Our data revealed that ex vivo expansion of HSCs using the FBS culture system induces an inflammatory response and high CD38 expression, indicating that this system might activate an inflammatory pathway and induce expression of the cancer marker CD38 during ex vivo expansion of HSCs. This study provides a transcriptional profile and new insights into the genomic functions of HSCs under different expanded cultures.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan City 320, Taiwan.,Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan City 320, Taiwan
| | - Poyin Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.,Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Tsai-Chi Liu
- Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taoyuan City 320, Taiwan
| | - Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202, Taiwan.,Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taoyuan City 320, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan City 320, Taiwan
| | - Tzu Yun Chin
- Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taoyuan City 320, Taiwan
| | - Tsung-Yu Tseng
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan City 320, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taoyuan City 320, Taiwan
| |
Collapse
|
23
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
24
|
Oliveira CS, Carreira M, Correia CR, Mano JF. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:379-392. [PMID: 33683146 DOI: 10.1089/ten.teb.2021.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The repair process of bone fractures is a complex biological mechanism requiring the recruitment and in situ functionality of stem/stromal cells from the bone marrow (BM). BM mesenchymal stem/stromal cells have been widely explored in multiple bone tissue engineering applications, whereas the use of hematopoietic stem cells (HSCs) has been poorly investigated in this context. A reasonable explanation is the fact that the role of HSCs and their combined effect with other elements of the hematopoietic niches in the bone-healing process is still elusive. Therefore, in this review we intend to highlight the influence of HSCs in the bone repair process, mainly through the promotion of osteogenesis and angiogenesis at the bone injury site. For that, we briefly describe the main biological characteristics of HSCs, as well as their hematopoietic niches, while reviewing the biomimetic engineered BM niche models. Moreover, we also highlighted the role of HSCs in translational in vivo transplantation or implantation as promoters of bone tissue repair.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana Carreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
25
|
Bessy T, Itkin T, Passaro D. Bioengineering the Bone Marrow Vascular Niche. Front Cell Dev Biol 2021; 9:645496. [PMID: 33996805 PMCID: PMC8113773 DOI: 10.3389/fcell.2021.645496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
The bone marrow (BM) tissue is the main physiological site for adult hematopoiesis. In recent years, the cellular and matrix components composing the BM have been defined with unprecedent resolution, both at the molecular and structural levels. With the expansion of this knowledge, the possibility of reproducing a BM-like structure, to ectopically support and study hematopoiesis, becomes a reality. A number of experimental systems have been implemented and have displayed the feasibility of bioengineering BM tissues, supported by cells of mesenchymal origin. Despite being known as an abundant component of the BM, the vasculature has been largely disregarded for its role in regulating tissue formation, organization and determination. Recent reports have highlighted the crucial role for vascular endothelial cells in shaping tissue development and supporting steady state, emergency and malignant hematopoiesis, both pre- and postnatally. Herein, we review the field of BM-tissue bioengineering with a particular focus on vascular system implementation and integration, starting from describing a variety of applicable in vitro models, ending up with in vivo preclinical models. Additionally, we highlight the challenges of the field and discuss the clinical perspectives in terms of adoptive transfer of vascularized BM-niche grafts in patients to support recovering hematopoiesis.
Collapse
Affiliation(s)
- Thomas Bessy
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| | - Tomer Itkin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Diana Passaro
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
26
|
Pievani A, Savoldelli R, Poelchen J, Mattioli E, Anselmi G, Girardot A, Utikal J, Bourdely P, Serafini M, Guermonprez P. Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Front Immunol 2021; 12:631279. [PMID: 33790904 PMCID: PMC8006008 DOI: 10.3389/fimmu.2021.631279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Pievani
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Roberto Savoldelli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Elisa Mattioli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, Radcliffe Department of Medicine, Medical Research Council, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Girardot
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Pierre Bourdely
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Marta Serafini
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| |
Collapse
|
27
|
Horton PD, Dumbali SP, Bhanu KR, Diaz MF, Wenzel PL. Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:1-15. [PMID: 33937868 PMCID: PMC8087251 DOI: 10.1007/s43152-020-00027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sandeep P. Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Krithikaa Rajkumar Bhanu
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Miguel F. Diaz
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
28
|
Kaleybar LS, Khoshfetrat AB, Rahbarghazi R, Nozad Charoudeh H. Performance evaluation of a novel conceptual bioprocess for clinically-required mass production of hematopoietic cells. Biotechnol Lett 2021; 43:959-966. [PMID: 33554302 DOI: 10.1007/s10529-020-03062-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The novel engineered bioprocess, which was designed and modeled to provide the clinically relevant cell numbers for different therapies in our previous work (Kaleybar et al. Food Bioprod Process 122:254-268, https://doi.org/10.1016/j.fbp.2020.04.012 , 2020), was evaluated by using U937 as hematopoietic model cells. RESULTS The culture system showed a 30-fold expansion of U937 cells in one-step during a 10-day culture period. The cell growth profile, the substrate and oxygen consumptions, and byproduct formations were all in agreement with the model predications during 7 days. The cell proliferation decrease after 7 days was attributed to optional oxygen limiting condition in the last days of culture. The bioreactor culture system revealed also a slight enhancement of lactate dehydrogenase (LDH) production as compared to the 2D conventional culture system, indicating the low impact of shear stress on cellular damage in the dynamic system. CONCLUSIONS The results demonstrated that the conceptual bioprocess for suspended stem cell production has a great potential in practice although additional experiments are required to improve the system.
Collapse
Affiliation(s)
- Leila Shafiei Kaleybar
- Chemical Engineering Faculty, Sahand University of Technology, 51335-1996, Tabriz, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, 51335-1996, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, 51335-1996, Tabriz, Iran. .,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, 51335-1996, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|
30
|
Dupard SJ, Bourgine PE. 3D Engineering of Human Hematopoietic Niches in Perfusion Bioreactor. Methods Mol Biol 2021; 2308:253-262. [PMID: 34057728 DOI: 10.1007/978-1-0716-1425-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hematopoietic microenvironment, also referred to as hematopoietic niche, is a functional three-dimensional (3D) unit of the bone marrow (BM) that planar culture systems cannot recapitulate. Existing limitations of 2D protocols are driving the development of advanced 3D methodologies, capable of superior modeling of the native organization and interactions between hematopoietic cells and their niche.Hereafter we describe the use of a 3D perfusion bioreactor for in vitro generation of human hematopoietic niches. The approach enables the recapitulation of the interactions between hematopoietic stem and progenitor cells (HSPCs), mesenchymal cells (MSCs), and their extracellular matrix in a 3D relevant setting. This was shown to support the functional maintenance of blood populations, self-distributing in the system compartments depending on their differentiation status. Such 3D niche modeling represents an advanced tool toward uncovering human hematopoiesis in relation to its host microenvironment , for both fundamental hematopoiesis and personalized medicine applications.
Collapse
Affiliation(s)
- Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, BMC B11, 221 84, Department of Clinical Sciences Lund, Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, BMC B11, 221 84, Department of Clinical Sciences Lund, Stem Cell Center, Lund University, Lund, Sweden. .,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
32
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Mason CC, Fiol CR, Baker MJ, Nadal-Melsio E, Yebra-Fernandez E, Bicalho L, Chowdhury A, Albert M, Reid AG, Claudiani S, Apperley JF, Khorashad JS. Identification of genetic targets in acute myeloid leukaemia for designing targeted therapy. Br J Haematol 2020; 192:137-145. [PMID: 33022753 DOI: 10.1111/bjh.17129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023]
Abstract
Few effective therapies exist for acute myeloid leukaemia (AML), in part due to the molecular heterogeneity of this disease. We sought to identify genes crucial to deregulated AML signal transduction pathways which, if inhibited, could effectively eradicate leukaemia stem cells. Due to difficulties in screening primary cells, most previous studies have performed next-generation sequencing (NGS) library knockdown screens in cell lines. Using carefully considered methods including evaluation at multiple timepoints to ensure equitable gene knockdown, we employed a large NGS short hairpin RNA (shRNA) knockdown screen of nearly 5 000 genes in primary AML cells from six patients to identify genes that are crucial for leukaemic survival. Across various levels of stringency, genome-wide bioinformatic analysis identified a gene in the NOX family, NOX1, to have the most consistent knockdown effectiveness in primary cells (P = 5∙39 × 10-5 , Bonferroni-adjusted), impacting leukaemia cell survival as the top-ranked gene for two of the six AML patients and also showing high effectiveness in three of the other four patients. Further investigation of this pathway highlighted NOX2 as the member of the NOX family with clear knockdown efficacy. We conclude that genes in the NOX family are enticing candidates for therapeutic development in AML.
Collapse
Affiliation(s)
- Clinton C Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | | | - Monika J Baker
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Harada T, Tsuboi I, Utsunomiya M, Yasuda M, Aizawa S. Kinetics of leukemic cells in 3D culture with stromal cells and with arginine deprivation stress. J Biosci Bioeng 2020; 130:650-658. [PMID: 32861594 DOI: 10.1016/j.jbiosc.2020.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Previously, we established a three-dimensional (3D) bone marrow culture system that maintains normal hematopoiesis, including prolongation of hematopoietic stem cell proliferation and differentiation. To analyze the role of bone marrow stromal cells that compose the microenvironment, the growth of a leukemic cell line (K562) in the 3D condition and with arginine deprivation stress was compared with two-dimensional stromal cell monolayers (2D) and suspension cultures without stromal cells (stroma (-)). Arginine is essential for the proliferation and differentiation of erythrocytes. The proliferation and differentiation of K562 cells cultured in the 3D system were stabilized compared with cells in 2D or stroma (-). Furthermore, the number of K562 cells in the G0/G1 phase in 3D was increased significantly compared with cells grown in 2D or stroma (-). Interestingly, the mRNA expression of various hematopoietic growth factors of stromal cells in 3D was not different from 2D, even though supportive activity on K562 cell growth was observed in the arginine deprivation condition. Thus, the hematopoietic microenvironment involves multi-dimensional and complex systems including biochemical and physiochemical factors that regulate quiescence, proliferation, activation, and differentiation of normal hematopoietic cells and cloned leukemic cells. Our 3D culture system may be a valuable new tool for investigating leukemic cell-stromal cell interactions in vitro.
Collapse
Affiliation(s)
- Tomonori Harada
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Isao Tsuboi
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mizuki Utsunomiya
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masahiro Yasuda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shin Aizawa
- Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
35
|
Abbonante V, Di Buduo CA, Malara A, Laurent PA, Balduini A. Mechanisms of platelet release: in vivo studies and in vitro modeling. Platelets 2020; 31:717-723. [PMID: 32522064 DOI: 10.1080/09537104.2020.1774532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanisms related to platelet release in the context of the bone marrow niche are not completely known. In this review we discuss what has been discovered about four critical aspects of this process: 1) the bone marrow niche organization, 2) the role of the extracellular matrix components, 3) the mechanisms by which megakaryocytes release platelets and 4) the novel approaches to mimic the bone marrow environment and produce platelets ex vivo.
Collapse
Affiliation(s)
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | | | | |
Collapse
|
36
|
Okeke C, Silas U, Okeke C, Chikwendu C. Current Trends on Hemopoietic Stem Cells. Curr Stem Cell Res Ther 2020; 16:199-208. [PMID: 32729427 DOI: 10.2174/1574888x15999200729162021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Advances in single-cell technology and genetic mouse models have resulted in the identification of new types of hemopoietic stem cells (HSC), resulting in baffling observations, suggesting a reconsideration of the long-held notion that all hematopoietic cells in the adult are derived from HSCs. The existence of long-lived HSC-independent hematopoiesis has led to the conclusion that despite the single hierarchical differentiation route that generates functional blood types, other differentiation routes exist in-vivo. Heterogeneity in the HSC population and the evolving knowledge around HSC has translated to it's improved application as a therapeutic tool for various blood disorders. The reprogramming of non-hematopoietic somatic and mature blood cells to pluripotency with their subsequent differentiation into hematopoietic stem cells/progenitor cells and the introduction of new generation sequencing holds the potential for the resolution of ambiguities involved in HSC bone marrow transplantation. There is a change in the paradigm for HSC transplantation donor selection. Donor choice favors haploidentical HCT than cord blood. This review provides a general overview of the current events around hemopoietic stem cells, with emphasis on the rising trend of HSC transplantation, especially haploidentical stem cell transplantation.
Collapse
Affiliation(s)
- Chinwe Okeke
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| | - Chinedu Okeke
- Haematology Department, College of Medicine,University of Abuja, Abuja, Nigeria
| | - Chiedozie Chikwendu
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
37
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
38
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
39
|
Budgude P, Kale V, Vaidya A. Mesenchymal stromal cell‐derived extracellular vesicles as cell‐free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biol Int 2020; 44:1078-1102. [DOI: 10.1002/cbin.11313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
- Symbiosis School of Biological SciencesSymbiosis International (Deemed University) Pune 412115 India
| |
Collapse
|
40
|
On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 2020; 4:394-406. [PMID: 31988457 PMCID: PMC7160021 DOI: 10.1038/s41551-019-0495-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
Abstract
The inaccessibility of living bone marrow hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human bone-marrow-on-a-chip supports the differentiation and maturation of multiple blood-cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of marrow injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation as well as marrow recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34+ cells and bone-marrow-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that bone-marrow chips containing cells from patients with the rare genetic disorder Shwachman–Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil-maturation abnormality. As an in vitro model of haematopoietic dysfunction, the bone-marrow-on-a-chip may serve as a human-specific alternative to animal testing for the study of bone-marrow pathophysiology.
Collapse
|
41
|
Ribeiro-Filho AC, Levy D, Ruiz JLM, Mantovani MDC, Bydlowski SP. Traditional and Advanced Cell Cultures in Hematopoietic Stem Cell Studies. Cells 2019; 8:cells8121628. [PMID: 31842488 PMCID: PMC6953118 DOI: 10.3390/cells8121628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Hematopoiesis is the main function of bone marrow. Human hematopoietic stem and progenitor cells reside in the bone marrow microenvironment, making it a hotspot for the development of hematopoietic diseases. Numerous alterations that correspond to disease progression have been identified in the bone marrow stem cell niche. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells determine the balance between the proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation. However, our understanding of human hematopoiesis and the associated niche biology remains limited due to accessibility to human material and the limits of in vitro culture models. Traditional culture systems for human hematopoietic studies lack microenvironment niches, spatial marrow gradients, and dense cellularity, rendering them incapable of effectively translating marrow physiology ex vivo. This review will discuss the importance of 2D and 3D culture as a physiologically relevant system for understanding normal and abnormal hematopoiesis.
Collapse
Affiliation(s)
- Antonio Carlos Ribeiro-Filho
- Organoid Development Team, Center of Innovation and Translational Medicine (CIMTRA), University of São Paulo School of Medicine, Sao Paulo 05360-130, Brazil; (A.C.R.-F.); (M.d.C.M.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), University of São Paulo School of Medicine, Sao Paulo 05403-900, Brazil;
| | - Jorge Luis Maria Ruiz
- Life and Nature Science Institute, Federal University of Latin American Integration-UNILA, Foz de Iguaçú, PR 858570-901, Brazil;
| | - Marluce da Cunha Mantovani
- Organoid Development Team, Center of Innovation and Translational Medicine (CIMTRA), University of São Paulo School of Medicine, Sao Paulo 05360-130, Brazil; (A.C.R.-F.); (M.d.C.M.)
| | - Sérgio Paulo Bydlowski
- Organoid Development Team, Center of Innovation and Translational Medicine (CIMTRA), University of São Paulo School of Medicine, Sao Paulo 05360-130, Brazil; (A.C.R.-F.); (M.d.C.M.)
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), University of São Paulo School of Medicine, Sao Paulo 05403-900, Brazil;
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
42
|
Tavakol DN, Tratwal J, Bonini F, Genta M, Campos V, Burch P, Hoehnel S, Béduer A, Alessandrini M, Naveiras O, Braschler T. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials 2019; 232:119665. [PMID: 31881380 DOI: 10.1016/j.biomaterials.2019.119665] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs). Flow cytometry and hematopoietic colony forming assays demonstrate the stromal supportive capacity for in vitro hematopoiesis in the absence of exogenous cytokines. After in vitro culture, we recover a paste-like living injectable niche biomaterial from CCM co-cultures by controlled, partial dehydration. Cell viability and the association between stroma and HSPCs are maintained in this process. After subcutaneous injection of this living artificial niche in vivo, we find maintenance of stromal and hematopoietic populations over 12 weeks in immunodeficient mice. Indeed, vascularization is enhanced in the presence of HSPCs. Our approach provides a minimalistic, scalable, biomimetic in vitro model of hematopoiesis in a microcarrier format that preserves the HSPC progenitor function, while being injectable in vivo without disrupting the cell-cell interactions established in vitro.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Sylke Hoehnel
- Sun Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Hematology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Hematology Service, Department of Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
43
|
Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:312-329. [DOI: 10.1089/ten.teb.2018.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Lu X, Lodi A, Konopleva M, Tiziani S. Three-Dimensional Leukemia Co-Culture System for In Vitro High-Content Metabolomics Screening. SLAS DISCOVERY 2019; 24:817-828. [PMID: 31345091 DOI: 10.1177/2472555219860446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolomics is increasingly applied to investigate different individuals and time-dependent responses to environmental stimuli. Rapid data acquisition and improved detection limits of direct infusion mass spectrometry (DIMS) are paving the way for applications of metabolomics in preclinical screening, opening new opportunities in drug discovery and personalized medicine. Three-dimensional (3D) cell culture systems, which mimic the in vivo cell microenvironment, are well recognized as tissue and organ substitutes. Here, we investigated cell viability and induction of reactive oxygen species (ROS) in stromal cells cultured in various 3D systems as well as the standard monolayer culture to evaluate which system provides the most favorable growing conditions. The selected 3D system was then tested for use in 3D co-culture of leukemia and stromal cells for DIMS-based high-throughput/high-content metabolic drug screens. The NanobioMatrix-poly(ε-caprolactone) (NBM-PCL) scaffold resulted in the lowest ROS production, supported rapid cell proliferation, and was suitable for the 96- and 384-well plate formats. Doxorubicin treatment in leukemia co-cultured with stromal cells induced some unique metabolic responses that drastically differed from those observed in leukemia cells alone. The DIMS results also showed that the drug-induced metabolic modulations in both normal and cancer cells were weakened by co-culturing even at high treatment doses, thereby demonstrating the value of the 3D co-culture high-content metabolic drug screen. In conclusion, we optimized a high sample throughput method for 3D co-culture with a DIMS-based high-content metabolic drug screen and drug development.
Collapse
Affiliation(s)
- Xiyuan Lu
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Alessia Lodi
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Marina Konopleva
- 3 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefano Tiziani
- 1 Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA.,2 Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
45
|
Kim S, Shah SB, Graney PL, Singh A. Multiscale engineering of immune cells and lymphoid organs. NATURE REVIEWS. MATERIALS 2019; 4:355-378. [PMID: 31903226 PMCID: PMC6941786 DOI: 10.1038/s41578-019-0100-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immunoengineering applies quantitative and materials-based approaches for the investigation of the immune system and for the development of therapeutic solutions for various diseases, such as infection, cancer, inflammatory diseases and age-related malfunctions. The design of immunomodulatory and cell therapies requires the precise understanding of immune cell formation and activation in primary, secondary and ectopic tertiary immune organs. However, the study of the immune system has long been limited to in vivo approaches, which often do not allow multidimensional control of intracellular and extracellular processes, and to 2D in vitro models, which lack physiological relevance. 3D models built with synthetic and natural materials enable the structural and functional recreation of immune tissues. These models are being explored for the investigation of immune function and dysfunction at the cell, tissue and organ levels. In this Review, we discuss 2D and 3D approaches for the engineering of primary, secondary and tertiary immune structures at multiple scales. We highlight important insights gained using these models and examine multiscale engineering strategies for the design and development of immunotherapies. Finally, dynamic 4D materials are investigated for their potential to provide stimuli-dependent and context-dependent scaffolds for the generation of immune organ models.
Collapse
Affiliation(s)
- Sungwoong Kim
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Shivem B. Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Pamela L. Graney
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
46
|
Braham MVJ, Li Yim ASP, Garcia Mateos J, Minnema MC, Dhert WJA, Öner FC, Robin C, Alblas J. A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro. Adv Healthc Mater 2019; 8:e1801444. [PMID: 30941927 DOI: 10.1002/adhm.201801444] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Indexed: 12/23/2022]
Abstract
Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Amélie S. P. Li Yim
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jara Garcia Mateos
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Monique C. Minnema
- Department of HematologyUniversity Medical Center Utrecht Cancer Center Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Wouter J. A. Dhert
- Faculty of Veterinary MedicineUtrecht University Yalelaan 7 3584 CL Utrecht The Netherlands
| | - F. Cumhur Öner
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Catherine Robin
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
- Hubrecht Institute‐KNAWUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jacqueline Alblas
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| |
Collapse
|
47
|
Harvestine JN, Saiz Jr AM, Leach JK. Cell-secreted extracellular matrix influences cellular composition sequestered from unprocessed bone marrow aspirate for osteogenic grafts. Biomater Sci 2019; 7:2091-2101. [PMID: 30869662 PMCID: PMC6478553 DOI: 10.1039/c8bm01478g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone marrow aspirates provide a rich source of cells for use in tissue engineering of bone and other clinical indications. However, progenitor cells such as mesenchymal stem cells (MSCs) account for a small fraction of nucleated cells in bone marrow aspirate (BMA), requiring extensive culture expansion. Accessory cell populations such as endothelial or hematopoietic cells can potentiate the bone-forming potential of MSCs, and cell-secreted extracellular matrix (ECM) can increase cell seeding efficiency and osteogenic differentiation of heterogeneous cell populations. In this study, we hypothesized that cell-secreted ECM could be used to sequester MSCs and accessory cells from BMA for bone regeneration. To generate 3D implantable constructs, BMA was resuspended in media with or without type I collagen or ECM and injected into a perfusion bioreactor system. The addition of protein coatings increased cell seeding efficiency compared to uncoated scaffolds. Compared to fresh BMA, the culture of BMA on all scaffolds reduced the proportion of CD45+ myeloid cells and increased CD31+CD45- endothelial cells. Compared to uncoated scaffolds, we observed a 143- and 30-fold increase in MSCs when fresh BMA was cultured on ECM- or collagen-coated scaffolds, respectively. Upon subcutaneous implantation, ECM-coated scaffolds promoted cell survival and early vascularization. However, bone formation was comparable across all implant groups, suggesting additional osteogenic cues are necessary to increase the bone forming potential of fresh BMA. These results motivate further investigation into strategies which elicit more robust bone regeneration by tissue aspirates.
Collapse
Affiliation(s)
- Jenna N Harvestine
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
48
|
Li D, Chiu G, Lipe B, Hopkins RA, Lillis J, Ashton JM, Paul S, Aljitawi OS. Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Adv 2019; 3:1011-1026. [PMID: 30940636 PMCID: PMC6457237 DOI: 10.1182/bloodadvances.2018019315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic "niche," a special 3-dimensional (3D) microenvironment that regulates HSPC self-renewal and multipotency. In this study, we evaluated a novel 3D in vitro culture system that uses components of the BM hematopoietic niche to expand umbilical cord blood (UCB) CD34+ cells. We developed this model using decellularized Wharton jelly matrix (DWJM) as an extracellular matrix (ECM) scaffold and human BM mesenchymal stromal cells (MSCs) as supporting niche cells. To assess the efficacy of this model in expanding CD34+ cells, we analyzed UCB CD34+ cells, following culture in DWJM, for proliferation, viability, self-renewal, multilineage differentiation, and transmigration capability. We found that DWJM significantly expanded UCB HSPC subset. It promoted UCB CD34+ cell quiescence, while maintaining their viability, differentiation potential with megakaryocytic differentiation bias, and clonogenic capacity. DWJM induced an increase in the frequency of c-kit+ cells, a population with enhanced self-renewal ability, and in CXCR4 expression in CD34+ cells, which enhanced their transmigration capability. The presence of BM MSCs in DWJM, however, impaired UCB CD34+ cell transmigration and suppressed CXCR4 expression. Transcriptome analysis indicated that DWJM upregulates a set of genes that are specifically involved in megakaryocytic differentiation, cell mobility, and BM homing. Collectively, our results indicate that the DWJM-based 3D culture system is a novel in vitro model that supports the proliferation of UCB CD34+ cells with enhanced transmigration potential, while maintaining their differentiation potential. Our findings shed light on the interplay between DWJM and BM MSCs in supporting the ex vivo culture of human UCB CD34+ cells for use in clinical transplantation.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Grace Chiu
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Brea Lipe
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Richard A Hopkins
- Cardiac Surgery Research Laboratories, Children's Mercy Hospital and Clinics, Kansas City, MO; and
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - John M Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Omar S Aljitawi
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
49
|
Calcium phosphate scaffolds with defined interconnecting channel structure provide a mimetic 3D niche for bone marrow metastasized tumor cell growth. Acta Biomater 2019; 88:527-539. [PMID: 30797105 DOI: 10.1016/j.actbio.2019.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/19/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
Abstract
Metastasis of tumor cells in the bone marrow (BM) is a multi-step and highly dynamic process during which cells succumb important phenotypic changes. Behavior of disseminated tumor cells in BM is strictly regulated by three-dimensional (3D) cell-cell and cell-matrix interactions. In this study, we explored whether the β-tricalcium-phosphate (β-TCP) scaffolds with a tailored interconnecting channel structure could enable appropriate 3D mimetic BM microenvironment for the growth of metastatic neuroblastoma cells. The scaffolds provided the mechanical support for human mesenchymal stromal cells (hMSC) allowing them to proliferate, differentiate towards osteoblasts, and produce the deposits of extracellular matrix inside the interconnected channels. The in vitro microenvironment shaped by stromal cells was then tailored by neuroblastoma tumor cells. Immunohistological analyses confirmed the organization of tumor cells into the forms of spheres only when co-cultured with hMSC-derived osteoblasts. The growing rate of tumor cells in 3D conditions was less marked comparing to the one of the cells grown as 2D monolayer as confirmed by decreased Ki-67 expression. Instead, the 3D culturing of neuroblastoma cells inside supportive stroma promoted cell quiescence as sustained by increased p27 level. A balance between cell proliferation, survival, and differentiation was more evident for tumor cells grown inside the 3D scaffolds, thus mirroring better the situation that occurs in vivo where the cells do not follow the exponential growth rate. We conclude that the proposed 3D β-TCP scaffold type provides a mimetic 3D in vitro niche suitable for studying behavior of BM metastasized tumor cells. STATEMENT OF SIGNIFICANCE: Bone marrow (BM) niche is a favorite target of metastatic neuroblastoma cells. To better address the molecular mechanisms that sustain spatiotemporal organization of neuroblastoma cells in the marrow we mimicked the three-dimensional (3D) assembly of stromal and tumor cells inside β-tricalcium-phosphate (β-TCP) scaffolds. β-TCP scaffolds with a tailored interconnecting channel structure provided mechanical support to mesenchymal stromal cells allowing them to differentiate towards osteoblasts and to produce extracellular matrix. A dynamic cell-matrix interplay favored the characteristic rosette-like growth of metastatic neuroblastoma cells and triggered their quiescence. With our study, we confirmed the potential of β-TCP scaffolds with reproduced BM niche as a cost-effective in vitro model for the growth of disseminated tumor cells, and for related biological and pharmacological surveys.
Collapse
|
50
|
Raic A, Naolou T, Mohra A, Chatterjee C, Lee-Thedieck C. 3D models of the bone marrow in health and disease: yesterday, today and tomorrow. MRS COMMUNICATIONS 2019; 9:37-52. [PMID: 30931174 PMCID: PMC6436722 DOI: 10.1557/mrc.2018.203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 05/12/2023]
Abstract
The complex interaction between hematopoietic stem cells (HSCs) and their microenvironment in the human bone marrow ensures a life-long blood production by balancing stem cell maintenance and differentiation. This so-called HSC niche can be disturbed by malignant diseases. Investigating their consequences on hematopoiesis requires deep understanding of how the niches function in health and disease. To facilitate this, biomimetic models of the bone marrow are needed to analyse HSC maintenance and hematopoiesis under steady-state and diseased conditions. Here, 3D bone marrow models, their fabrication methods (including 3D bioprinting) and implementations recapturing bone marrow functions in health and diseases, are presented.
Collapse
Affiliation(s)
- Annamarija Raic
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Toufik Naolou
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anna Mohra
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chandralekha Chatterjee
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|