1
|
Berles P, Wölfer J, Alfieri F, Botton-Divet L, Guéry JP, Nyakatura JA. Linking morphology, performance, and habitat utilization: adaptation across biologically relevant 'levels' in tamarins. BMC Ecol Evol 2024; 24:22. [PMID: 38355429 PMCID: PMC10865561 DOI: 10.1186/s12862-023-02193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Biological adaptation manifests itself at the interface of different biologically relevant 'levels', such as ecology, performance, and morphology. Integrated studies at this interface are scarce due to practical difficulties in study design. We present a multilevel analysis, in which we combine evidence from habitat utilization, leaping performance and limb bone morphology of four species of tamarins to elucidate correlations between these 'levels'. RESULTS We conducted studies of leaping behavior in the field and in a naturalistic park and found significant differences in support use and leaping performance. Leontocebus nigrifrons leaps primarily on vertical, inflexible supports, with vertical body postures, and covers greater leaping distances on average. In contrast, Saguinus midas and S. imperator use vertical and horizontal supports for leaping with a relatively similar frequency. S. mystax is similar to S. midas and S. imperator in the use of supports, but covers greater leaping distances on average, which are nevertheless shorter than those of L. nigrifrons. We assumed these differences to be reflected in the locomotor morphology, too, and compared various morphological features of the long bones of the limbs. According to our performance and habitat utilization data, we expected the long bone morphology of L. nigrifrons to reflect the largest potential for joint torque generation and stress resistance, because we assume longer leaps on vertical supports to exert larger forces on the bones. For S. mystax, based on our performance data, we expected the potential for torque generation to be intermediate between L. nigrifrons and the other two Saguinus species. Surprisingly, we found S. midas and S. imperator having relatively more robust morphological structures as well as relatively larger muscle in-levers, and thus appearing better adapted to the stresses involved in leaping than the other two. CONCLUSION This study demonstrates the complex ways in which behavioral and morphological 'levels' map onto each other, cautioning against oversimplification of ecological profiles when using large interspecific eco-morphological studies to make adaptive evolutionary inferences.
Collapse
Affiliation(s)
- Patricia Berles
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 12/13, 10115, Berlin, Germany.
| | - Jan Wölfer
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 12/13, 10115, Berlin, Germany
| | - Fabio Alfieri
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 12/13, 10115, Berlin, Germany
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Léo Botton-Divet
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 12/13, 10115, Berlin, Germany
| | | | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 12/13, 10115, Berlin, Germany
| |
Collapse
|
2
|
Neaux D, Louail M, Ferchaud S, Surault J, Merceron G. Experimental assessment of the relationship between diet and mandibular morphology using a pig model: new insights for paleodietary reconstructions. Anat Rec (Hoboken) 2022; 305:3150-3160. [PMID: 35142076 DOI: 10.1002/ar.24895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
Dietary habits exert significant selective pressures on anatomical structures in animals, leading to substantial morphological adaptations. Yet, the relationships between the mandible and diet are still unclear, raising issues for paleodietary reconstructions notably. To assess the impact of food hardness and size on morphological structures, we used an experimental baseline using a model based on the domestic pig, an omnivorous mammal with bunodont, thick-enameled dentition, and chewing movements similar to hominids. We hypothesized that the consumption of different types of seeds would result in substantial differences in the morphology of the mandible despite similar overall diets. The experiment was conducted on four groups of juvenile pigs fed with mixed cereal and soy flours. The control group received only flours. We supplemented the four others with either 10 hazelnuts, 30 hazelnuts, 30% barley seeds or 20% corn kernels per day. We investigated the shape differences between the controlled-fed groups using three-dimensional geometric morphometrics. Our results provide strong evidence that the supplemental consumption of a significant amount of seeds for a short period (95 days) substantially modify the mandibular morphology of pigs. Our analyses suggest that this shape differentiation is due to the size of the seeds, requiring high and repeated bite force, rather than their hardness. These results provide new perspectives for the use of mandibular morphology as a proxy in paleodietary reconstructions complementing dental microwear textures analyses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle CNRS, Paris, France.,Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | - Margot Louail
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | | | - Jérôme Surault
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | - Gildas Merceron
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| |
Collapse
|
3
|
Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci Rep 2021; 11:22775. [PMID: 34815469 PMCID: PMC8611077 DOI: 10.1038/s41598-021-02102-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.
Collapse
|
4
|
Smith AL, Robinson C, Taylor AB, Panagiotopoulou O, Davis J, Ward CV, Kimbel WH, Alemseged Z, Ross CF. Comparative biomechanics of the Pan and Macaca mandibles during mastication: finite element modelling of loading, deformation and strain regimes. Interface Focus 2021; 11:20210031. [PMID: 34938438 PMCID: PMC8361577 DOI: 10.1098/rsfs.2021.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 10/17/2023] Open
Abstract
The mechanical behaviour of the mandibles of Pan and Macaca during mastication was compared using finite element modelling. Muscle forces were calculated using species-specific measures of physiological cross-sectional area and scaled using electromyographic estimates of muscle recruitment in Macaca. Loading regimes were compared using moments acting on the mandible and strain regimes were qualitatively compared using maps of principal, shear and axial strains. The enlarged and more vertically oriented temporalis and superficial masseter muscles of Pan result in larger sagittal and transverse bending moments on both working and balancing sides, and larger anteroposterior twisting moments on the working side. The mandible of Pan experiences higher principal strain magnitudes in the ramus and mandibular prominence, higher transverse shear strains in the top of the symphyseal region and working-side corpus, and a predominance of sagittal bending-related strains in the balancing-side mandible. This study lays the foundation for a broader comparative study of Hominidae mandibular mechanics in extant and fossil hominids using finite element modelling. Pan's larger and more vertical masseter and temporalis may make it a more suitable model for hominid mandibular biomechanics than Macaca.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, 200 University Parkway, Yakima, WA 98901, USA
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chris Robinson
- Department of Biological Sciences, Bronx Community College, Bronx, NY 10453, USA
| | | | - Olga Panagiotopoulou
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Julian Davis
- Department of Engineering, University of Southern Indiana, 8600 University Boulevard, Evansville, IN 47712, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, One Hospital Drive, University of Missouri, Columbia, MO 65212, USA
| | - William H. Kimbel
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-4101, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
5
|
López‐Aguirre C, Wilson LAB, Koyabu D, Tu VT, Hand SJ. Variation in cross‐sectional shape and biomechanical properties of the bat humerus under Wolff's law. Anat Rec (Hoboken) 2021; 304:1937-1952. [DOI: 10.1002/ar.24620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Camilo López‐Aguirre
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
| | - Laura A. B. Wilson
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
- School of Archaeology and Anthropology, Australian National University Canberra ACT Australia
| | - Daisuke Koyabu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong Kowloon Hong Kong
- Department of Molecular Craniofacial Embryology Tokyo Medical and Dental University Tokyo Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Suzanne J. Hand
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
6
|
Arayapisit T, Ngamsom S, Duangthip P, Wongdit S, Wattanachaisiri S, Joonthongvirat Y, Mitrirattanakul S. Understanding the mandibular condyle morphology on panoramic images: A conebeam computed tomography comparison study. Cranio 2020:1-8. [PMID: 33297888 DOI: 10.1080/08869634.2020.1857627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: To compare variations in condylar morphology (CM) in panoramic images with those demonstrated in cone beam computed tomography (CBCT) and to investigate factors related to the variations.Methods: Three thousand panoramic images were analyzed for CM classification and relationship between CM and patient factors. Then, CM of 178 cases of panoramic and CBCT images were compared.Results: CM was classified into five types: round (70.63%), pointed (15.12%), angled (8.43%), flat (4.53%), and irregular (1.28%). CM was significantly related to all patient factors (p < 0.001). Round CM in panoramic images presented as round in CBCT images. Pointed and flat CM were observed mainly in the lateral aspect of the condyle, and no angle-shaped CM was found, according to CBCT images.Conclusion: Round, flat, and pointed CM seen on panoramic images possibly reflected the actual shape of the condyle, as confirmed by CBCT, whereas angled CM appeared not to exist.
Collapse
Affiliation(s)
- Tawepong Arayapisit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Supak Ngamsom
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Sarut Wongdit
- Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Somsak Mitrirattanakul
- Department of Masticatory Science, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Krings W, Marcé-Nogué J, Karabacak H, Glaubrecht M, Gorb SN. Finite element analysis of individual taenioglossan radular teeth (Mollusca). Acta Biomater 2020; 115:317-332. [PMID: 32853812 DOI: 10.1016/j.actbio.2020.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Molluscs are a highly successful group of invertebrates characterised by a specialised feeding organ called the radula. The diversity of this structure is associated with distinct feeding strategies and ecological niches. However, the precise function of the radula (each tooth type and their arrangement) remains poorly understood. Here for the first time, we use a quantitative approach, Finite-Element-Analysis (FEA), to test hypotheses regarding the function of particular taenioglossan tooth types. Taenioglossan radulae are of special interest, because they are comprised of multiple teeth that are regionally distinct in their morphology. For this study we choose the freshwater gastropod species Spekia zonata, endemic to Lake Tanganyika, inhabiting and feeding on algae attached to rocks. As a member of the African paludomid species flock, the enigmatic origin and evolutionary relationships of this species has received much attention. Its chitinous radula comprises several tooth types with distinctly different shapes. We characterise the tooth's position, material properties and attachment to the radular membrane and use this data to evaluate 18 possible FEA scenarios differing in the above parameters. Our estimations of stress and strain indicate different functional loads for different teeth. We posit that the central and lateral teeth are best suitable for scratching substrate loosening ingesta, whereas the marginals are best suited for gathering food particles. Our successful approach and workflow are readily applicable to other mollusc species.
Collapse
|
8
|
Brassard C, Merlin M, Guintard C, Monchâtre-Leroy E, Barrat J, Bausmayer N, Bausmayer S, Bausmayer A, Beyer M, Varlet A, Houssin C, Callou C, Cornette R, Herrel A. Bite force and its relationship to jaw shape in domestic dogs. J Exp Biol 2020; 223:jeb224352. [PMID: 32587065 DOI: 10.1242/jeb.224352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 08/26/2023]
Abstract
Previous studies based on two-dimensional methods have suggested that the great morphological variability of cranial shape in domestic dogs has impacted bite performance. Here, we used a three-dimensional biomechanical model based on dissection data to estimate the bite force of 47 dogs of various breeds at several bite points and gape angles. In vivo bite force for three Belgian shepherd dogs was used to validate our model. We then used three-dimensional geometric morphometrics to investigate the drivers of bite force variation and to describe the relationships between the overall shape of the jaws and bite force. The model output shows that bite force is rather variable in dogs and that dogs bite harder on the molar teeth and at lower gape angles. Half of the bite force is determined by the temporal muscle. Bite force also increased with size, and brachycephalic dogs showed higher bite forces for their size than mesocephalic dogs. We obtained significant covariation between the shape of the upper or lower jaw and absolute or residual bite force. Our results demonstrate that domestication has not resulted in a disruption of the functional links in the jaw system in dogs and that mandible shape is a good predictor of bite force.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| | - Claude Guintard
- ANSES, Laboratoire de la Rage et de la Faune Sauvage, Station Expérimentale d'Atton, CS 40009 54220 Malzéville, France
- Laboratoire d'Anatomie Comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique - ONIRIS, Nantes Cedex 03, France
| | - Elodie Monchâtre-Leroy
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Nathalie Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Stéphane Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Adrien Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Michel Beyer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - André Varlet
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
9
|
Andrews C, Masters JC, Génin F, Couette S. The evolution of palate shape in the Lepilemur-Cheirogaleidae clade (Primates: Strepsirrhini). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:307-321. [PMID: 32666552 DOI: 10.1002/ajpa.24093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Phylogenies consistently group the folivorous Lepilemur species with the small-bodied insectivorous-frugivorous cheirogaleids. Juvenile lepilemurs and adult cheirogaleids share allometries in most aspects of skull morphology, except the palate. We investigated potential influences on palate shape in these taxa and several outgroups using geometric morphometrics. MATERIALS AND METHODS Our sample included representatives of four extant strepsirrhine families, Cheirogaleidae (including Lepilemurinae), Lemuridae, Indriidae, and Galagidae, and one subfossil Megaladapis. Our dataset comprised 32 landmarks collected from 397 specimens representing 15 genera and 28 species, and was analyzed using generalized procrustes analyses and between group principal component analysis. We explored the influence of size, phylogeny, diet, and the propagation of loud vocalizations on palate shape. RESULTS While congeneric species clustered within the morphospace, the phylomorphospace did not mirror molecular phylogenetic hypotheses of higher-order relationships. Four palate forms were distinguished within the Cheirogaleidae. Diet, strongly linked to body size, had the single greatest influence on palate shape. The production of long-distance advertisement calls was most often associated with positive scores on the PC1 axis. DISCUSSION Our results suggest that the extensive variation in palate shape among Cheirogaleidae is related to dietary shifts that accompanied changes in body size during the clade's radiation. Molecular phylogenies indicate that cheirogaleid diversification involved repeated dwarfing events, which in turn drove dietary shifts from ancestral folivory-frugivory to frugivory, gummivory, and faunivory in the descendant species. The elongated Lepilemur palate is probably related to accelerated eruption of the cheek teeth to render juveniles competent to shear leaves upon weaning.
Collapse
Affiliation(s)
- Curswan Andrews
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa.,African Primate Initiative for Ecology and Speciation (APIES), Earth Stewardship Science Research Institute, Nelson Mandela University, Port Elizabeth, South Africa.,APIES, Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Judith C Masters
- APIES, Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa.,Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Fabien Génin
- African Primate Initiative for Ecology and Speciation (APIES), Earth Stewardship Science Research Institute, Nelson Mandela University, Port Elizabeth, South Africa
| | - Sébastien Couette
- EPHE, PSL Paris Université, Paris, France.,UMR CNRS 6282 Biogéosciences, Université de Bourgogne, Dijon, France
| |
Collapse
|
10
|
Granatosky MC, Ross CF. Differences in muscle mechanics underlie divergent optimality criteria between feeding and locomotor systems. J Anat 2020; 237:1072-1086. [PMID: 32671858 DOI: 10.1111/joa.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Tetrapod musculoskeletal diversity is usually studied separately in feeding and locomotor systems. However, direct comparisons between these systems promise important insight into how natural selection deploys the same basic musculoskeletal toolkit-connective tissues, bones, nerves, and skeletal muscle-to meet the differing performance criteria of feeding and locomotion. Recent studies using this approach have proposed that the feeding system is optimized for precise application of high forces and the locomotor system is optimized for wide and rapid joint excursions for minimal energetic expenditure. If this hypothesis is correct, then it stands to reason that other anatomical and biomechanical variables within the feeding and locomotor systems should reflect these diverging functions. To test this hypothesis, we compared muscle moment arm lengths, mechanical advantages, and force vector orientations of two jaw elevator muscles (m. temporalis and m. superficial masseter), an elbow flexor (m. brachialis) and extensor (m. triceps- lateral head), and a knee flexor (m. biceps femoris-short head) and extensor (m. vastus lateralis) across 18 species of primates. Our results show that muscles of the feeding system are more orthogonally oriented relative to the resistance arm (mandible) and operate at relatively large moment arms and mechanical advantages. Moreover, these variables show relatively little change across the range of jaw excursion. In contrast, the representative muscles of the locomotor system have much smaller mechanical advantages and, depending on joint position, smaller muscle moment arm lengths and almost parallel orientations relative to the resistance arm. These patterns are consistent regardless of phylogeny, body mass, locomotor mode, and feeding specialization. We argue that these findings reflect fundamental functional dichotomies between tetrapod locomotor and feeding systems. By organizing muscles in a manner such that moment arms and mechanical advantage are relatively small, the locomotor system can produce broad joint excursions and high angular velocities with only small muscular contraction. As such, the anatomical organization of muscles within the limbs allows striding animals to move relatively rapidly and with minimal energetic expenditure. In contrast, the anatomical configuration of muscles in the feeding system, at least m. superficial masseter and m. temporalis, favors their force-producing capacity at the expense of excursion and velocity.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology, Old Westbury, New York, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Marcé-Nogué J, Püschel TA, Daasch A, Kaiser TM. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage. Sci Rep 2020; 10:6793. [PMID: 32322020 PMCID: PMC7176708 DOI: 10.1038/s41598-020-63739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/01/2020] [Indexed: 11/14/2022] Open
Abstract
An on-going debate concerning the dietary adaptations of archaic hominins and early Homo has been fuelled by contradictory inferences obtained using different methodologies. This work presents an extensive comparative sample of 30 extant primate species that was assembled to perform a morpho-functional comparison of these taxa with 12 models corresponding to eight fossil hominin species. Finite Element Analysis and Geometric Morphometrics were employed to analyse chewing biomechanics and mandible morphology to, firstly, establish the variation of this clade, secondly, relate stress and shape variables, and finally, to classify fossil individuals into broad ingesta related hardness categories using a support vector machine algorithm. Our results suggest that some hominins previously assigned as hard food consumers (e.g. the members of the Paranthropus clade) in fact seem to rely more strongly on soft foods, which is consistent with most recent studies using either microwear or stable isotope analyses. By analysing morphometric and stress results in the context of the comparative framework, we conclude that in the hominin clade there were probably no hard-food specialists. Nonetheless, the biomechanical ability to comminute harder items, if required as fallback option, adds to their strategy of increased flexibility.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany.
- Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain.
| | - Thomas A Püschel
- Primate Models for Behavioural Evolution, Institute of Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, United Kingdom
| | - Alexander Daasch
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| | - Thomas M Kaiser
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
12
|
Morales-García NM, Burgess TD, Hill JJ, Gill PG, Rayfield EJ. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J R Soc Interface 2019; 16:20190674. [PMID: 31822222 PMCID: PMC6936041 DOI: 10.1098/rsif.2019.0674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium. In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.
Collapse
Affiliation(s)
| | - Thomas D Burgess
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Jennifer J Hill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
13
|
Brachetta‐Aporta N, Gonzalez PN, Bernal V. Variation in facial bone growth remodeling in prehistoric populations from southern South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:422-434. [DOI: 10.1002/ajpa.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Brachetta‐Aporta
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| | - Paula N. Gonzalez
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET‐HEC‐UNAJ) Buenos Aires Argentina
| | - Valeria Bernal
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| |
Collapse
|
14
|
Zhou Z, Winkler DE, Fortuny J, Kaiser TM, Marcé-Nogué J. Why ruminating ungulates chew sloppily: Biomechanics discern a phylogenetic pattern. PLoS One 2019; 14:e0214510. [PMID: 30995252 PMCID: PMC6469769 DOI: 10.1371/journal.pone.0214510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/15/2019] [Indexed: 11/21/2022] Open
Abstract
There is considerable debate regarding whether mandibular morphology in ungulates primarily reflects phylogenetic affinities or adaptation to specific diet. In an effort to help resolve this debate, we use three-dimensional finite element analysis (FEA) to assess the biomechanical performance of mandibles in eleven ungulate taxa with well-established but distinct dietary preferences. We found notable differences in the magnitude and the distribution of von Mises stress between Artiodactyla and Perissodactyla, with the latter displaying lower overall stress values. Additionally, within the order Artiodactyla the suborders Ruminantia and Tylopoda showed further distinctive stress patterns. Our data suggest that a strong phylogenetic signal can be detected in biomechanical performance of the ungulate mandible. In general, Perissodactyla have stiffer mandibles than Artiodactyla. This difference is more evident between Perissodactyla and ruminant species. Perissodactyla likely rely more heavily on thoroughly chewing their food upon initial ingestion, which demands higher bite forces and greater stress resistance, while ruminants shift comminution to a later state (rumination) where less mechanical effort is required by the jaw to obtain sufficient disintegration. We therefore suggest that ruminants can afford to chew sloppily regardless of ingesta, while hindgut fermenters cannot. Additionally, our data support a secondary degree of adaptation towards specific diet. We find that mandibular morphologies reflect the masticatory demands of specific ingesta within the orders Artiodactyla and Perissodactyla. Of particular note, stress patterns in the white rhinoceros (C. simum) look more like those of a general grazer than like other rhinoceros’ taxa. Similarly, the camelids (Tylopoda) appear to occupy an intermediate position in the stress patterns, which reflects the more ancestral ruminating system of the Tylopoda.
Collapse
Affiliation(s)
- Zupeng Zhou
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Daniela E. Winkler
- Johannes Gutenberg University Mainz, Institute of Geosciences, Mainz, Germany
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Barcelona, Spain
- Centre de Recherches en Paléontologie de Paris, Muséum National d'Histoire Naturelle, Bâtiment de Paléontologie, Paris, France
| | | | - Jordi Marcé-Nogué
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Barcelona, Spain
- Centrum für Naturkunde, University of Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Püschel TA, Marcé-Nogué J, Gladman JT, Bobe R, Sellers WI. Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology. J R Soc Interface 2018; 15:rsif.2018.0520. [PMID: 30257926 PMCID: PMC6170775 DOI: 10.1098/rsif.2018.0520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/28/2018] [Indexed: 11/12/2022] Open
Abstract
The talus is one of the most commonly preserved post-cranial elements in the platyrrhine fossil record. Talar morphology can provide information about postural adaptations because it is the anatomical structure responsible for transmitting body mass forces from the leg to the foot. The aim of this study is to test whether the locomotor behaviour of fossil Miocene platyrrhines could be inferred from their talus morphology. The extant sample was classified into three different locomotor categories and then talar strength was compared using finite-element analysis. Geometric morphometrics were used to quantify talar shape and to assess its association with biomechanical strength. Finally, several machine-learning (ML) algorithms were trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of the Miocene fossil sample. The obtained results show that the different locomotor categories are distinguishable using either biomechanical or morphometric data. The ML algorithms categorized most of the fossil sample as arboreal quadrupeds. This study has shown that a combined approach can contribute to the understanding of platyrrhine talar morphology and its relationship with locomotion. This approach is likely to be beneficial for determining the locomotor habits in other fossil taxa.
Collapse
Affiliation(s)
- Thomas A Püschel
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Jordi Marcé-Nogué
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany.,Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Justin T Gladman
- Department of Engineering, Shared Materials Instrumentation Facility (SMIF), Duke University, Durham, NC, USA
| | - René Bobe
- Departamento de Antropología, Universidad de Chile, Santiago, Chile.,Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, Oxford, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
16
|
Püschel TA, Marcé-Nogué J, Kaiser TM, Brocklehurst RJ, Sellers WI. Analyzing the sclerocarpy adaptations of the Pitheciidae mandible. Am J Primatol 2018; 80:e22759. [PMID: 29664191 DOI: 10.1002/ajp.22759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 11/09/2022]
Abstract
Primates are interpreted to be ancestrally adapted to frugivory, although some modern groups show clear adaptations to other diets. Among them, pitheciids stand out for specifically predating seeds. This dietary specialization is known as sclerocarpy and refers to the extraction of seeds from surrounding hard tissues using the anterior dentition followed by the mastication of seeds by the molars. It has been proposed that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasingly specialized anatomical traits for sclerocarpic foraging. This study addresses whether there is a sclerocarpic specialization gradient in the mandibular morphology of pitheciids. Finite element analysis (FEA) was used to simulate two biting scenarios and the obtained stress values were compared between different pitheciids. Geometric morphometrics (GM) were used to display the morphological variation of this group. No support was found for the morphocline hypothesis from a biomechanical viewpoint since all pitheciins showed similar stress values and on average Chiropotes rather than Cacajao exhibited the strongest mandible. From a morphological perspective, it was found that there is indeed relative "robusticity" continuum in the pitheciid mandible for some aspects of shape as expected for the morphocline hypothesis, but this gradient could be related to other factors rather than sclerocarpic specialization. The present results are expected to contribute to a better insight regarding the ecomorphological relationship between mandibular morphology and mechanical performance among pitheciids.
Collapse
Affiliation(s)
- Thomas A Püschel
- School of Earth and Environmental Sciences, University of Mancheste, Manchester, United Kingdom
| | - Jordi Marcé-Nogué
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.,Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Thomas M Kaiser
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Mancheste, Manchester, United Kingdom
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Mancheste, Manchester, United Kingdom
| |
Collapse
|
17
|
Zablocki Thomas PB, Karanewsky CJ, Pendleton JL, Aujard F, Pouydebat E, Herrel A. Drivers of in vivo
bite performance in wild brown mouse lemurs and a comparison with the grey mouse lemur. J Zool (1987) 2018. [DOI: 10.1111/jzo.12550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. B. Zablocki Thomas
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - C. J. Karanewsky
- Department of Biochemistry; Stanford University; Stanford CA USA
| | - J. L. Pendleton
- Department of Biochemistry; Stanford University; Stanford CA USA
| | - F. Aujard
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - E. Pouydebat
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
- Evolutionary Morphology of Vertebrates; Ghent University; Ghent Belgium
| |
Collapse
|
18
|
Karamesinis K, Basdra EK. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1675-1683. [PMID: 29454076 DOI: 10.1016/j.bbadis.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
19
|
Ledogar JA, Luk THY, Perry JMG, Neaux D, Wroe S. Biting mechanics and niche separation in a specialized clade of primate seed predators. PLoS One 2018; 13:e0190689. [PMID: 29324822 PMCID: PMC5764286 DOI: 10.1371/journal.pone.0190689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
We analyzed feeding biomechanics in pitheciine monkeys (Pithecia, Chiropotes, Cacajao), a clade that specializes on hard-husked unripe fruit (sclerocarpy) and resistant seeds (seed predation). We tested the hypothesis that pitheciine crania are well-suited to generate and withstand forceful canine and molar biting, with the prediction that they generate bite forces more efficiently and better resist masticatory strains than the closely-related Callicebus, which does not specialize on unripe fruits and/or seeds. We also tested the hypothesis that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasing sclerocarpic specialization with respect to biting leverage and craniofacial strength, consistent with anterior dental morphology. We found that pitheciines have higher biting leverage than Callicebus and are generally more resistant to masticatory strain. However, Cacajao was found to experience high strain magnitudes in some facial regions. We therefore found limited support for the morphocline hypothesis, at least with respect to the mechanical performance metrics examined here. Biting leverage in Cacajao was nearly identical (or slightly less than) in Chiropotes and strain magnitudes during canine biting were more likely to follow a Cacajao-Chiropotes-Pithecia trend of increasing strength, in contrast to the proposed morphocline. These results could indicate that bite force efficiency and derived anterior teeth were selected for in pitheciines at the expense of increased strain magnitudes. However, our results for Cacajao potentially reflect reduced feeding competition offered by allopatry with other pitheciines, which allows Cacajao species to choose from a wider variety of fruits at various stages of ripeness, leading to reduction in the selection for robust facial features. We also found that feeding biomechanics in sympatric Pithecia and Chiropotes are consistent with data on food structural properties and observations of dietary niche separation, with the former being well-suited for the regular molar crushing of hard seeds and the latter better adapted for breaching hard fruits.
Collapse
Affiliation(s)
- Justin A. Ledogar
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Theodora H. Y. Luk
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dimitri Neaux
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Stephen Wroe
- Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|