1
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
2
|
Terletskaya NV, Erbay M, Mamirova A, Ashimuly K, Korbozova NK, Zorbekova AN, Kudrina NO, Hoffmann MH. Altitude-Dependent Morphophysiological, Anatomical, and Metabolomic Adaptations in Rhodiola linearifolia Boriss. PLANTS (BASEL, SWITZERLAND) 2024; 13:2698. [PMID: 39409568 PMCID: PMC11479101 DOI: 10.3390/plants13192698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Rhodiola linearifolia Boriss., a perennial alpine plant from the Crassulaceae family, is renowned for its unique medicinal properties. However, existing research on this species is limited, particularly regarding the impact of altitude on its physiological and medicinal compounds. The current study employed morphophysiological and anatomical methods to explore the adaptive mechanisms of R. linearifolia across different altitudinal gradients, while also examining photosynthetic pigments and metabolomic changes. Our results indicate that despite the simultaneous effects of various mountain abiotic factors, significant correlations can be identified between altitude and trait variation. An optimal growth altitude of 2687 m above sea level was identified, which is pivotal for sustainable ecosystem management and potential species introduction strategies. It is noted that increasing altitude stress enhances the synthesis of secondary antioxidant metabolites in R. linearifolia, enhancing its pharmaceutical potential.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Malika Erbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim N. Zorbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Matthias H. Hoffmann
- Wittenberg Institut für Geobotanik und Botanischer Garten, Martin-Luther-Universität Halle, Am Kirchtor 3, D-06108 Halle, Germany;
| |
Collapse
|
3
|
Fuica-Carrasco C, Toro-Núñez Ó, Lira-Noriega A, Pérez AJ, Hernández V. Metabolome expression in Eucryphia cordifolia populations: Role of seasonality and ecological niche centrality hypothesis. JOURNAL OF PLANT RESEARCH 2023; 136:827-839. [PMID: 37486392 DOI: 10.1007/s10265-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The ecological niche centrality hypothesis states that population abundance is determined by the position in the ecological niche, expecting higher abundances towards the center of the niche and lower at the periphery. However, the variations in the conditions that favor the persistence of populations between the center and the periphery of the niche can be a surrogate of stress factors that are reflected in the production of metabolites in plants. In this study we tested if metabolomic similarity and diversity in populations of the tree species Eucryphia cordifolia Cav. vary according to their position with respect to the structure of the ecological niche. We hypothesize that populations growing near the centroid should exhibit lower metabolites diversity than plants growing at the periphery of the niche. The ecological niche of the species was modeled using correlative approaches and bioclimatic variables to define central and peripheral localities from which we chose four populations to obtain their metabolomic information using UHPLC-DAD-QTOF-MS. We observed that populations farther away from the centroid tend to have higher metabolome diversity, thus supporting our expectation of the niche centrality hypothesis. Nonetheless, the Shannon index showed a marked variation in metabolome diversity at the seasonal level, with summer and autumn being the periods with higher metabolite diversity compared to winter and spring. We conclude that both the environmental variation throughout the year in combination with the structure of the ecological niche are relevant to understand the variation in expression of metabolites in plants.
Collapse
Affiliation(s)
- Camila Fuica-Carrasco
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile.
| | - Óscar Toro-Núñez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Andrés Lira-Noriega
- CONAHCyT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, Mexico City, A.C, México
| | - Andy J Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Víctor Hernández
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| |
Collapse
|
4
|
Ciocan AG, Tecuceanu V, Enache-Preoteasa C, Mitoi EM, Helepciuc FE, Dimov TV, Simon-Gruita A, Cogălniceanu GC. Phenological and Environmental Factors' Impact on Secondary Metabolites in Medicinal Plant Cotinus coggygria Scop. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091762. [PMID: 37176820 PMCID: PMC10181090 DOI: 10.3390/plants12091762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Cotinus coggygria Scop. (smoketree) is a phytotherapeutically valuable shrub growing in specific areas in many Eurasian countries. Exploring the intrinsic and extrinsic (abiotic) factors that modulate its secondary metabolism has fundamental and applicative importance. Three smoketree plants from the same population were studied for a period of 4.5 months. Their extracts were characterized using LC-MS/MS, HPLC-UV-VIS-DAD and colorimetric assays to determine the chemical composition and antioxidant potential. Multivariate analysis was applied to correlate the metabolomic data with registered habitat variables and phenological stages. The identified and quantified compounds belonged to the flavonoids (myricetin-3-O-galactoside, myricitrin) and hydrolysable tannins groups (pentagalloyl glucose, methyl gallate, methyl digallate I). Phenolic compounds and tannins were synthesized abundantly in the flowering and fruit stages, whereas flavonoids and triterpenes accumulated during senescence. The antioxidant activities varied between detection methods, samplings and individuals and were only punctually correlated with the compound contents in certain phenological stages. Based on the HCAbp analysis, the samples clustered under four groups, according to their metabolic profile. The CCA analysis revealed that during the reproductive stages (flower, fruit or seed), the secondary metabolism of the plants' leaves is sensitive to the action of abiotic factors, while in senescence, the metabolic content is according to the phenological phase. This study provides a first attempt at understanding the interplay between the habitat and the metabolome of smoketree.
Collapse
Affiliation(s)
- Alexandra-Gabriela Ciocan
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenței Street, 060031 Bucharest, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Victorița Tecuceanu
- "C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202 B Spl. Independentei, 060023 Bucharest, Romania
| | | | - Elena Monica Mitoi
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenței Street, 060031 Bucharest, Romania
| | - Florența Elena Helepciuc
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenței Street, 060031 Bucharest, Romania
| | - Tatiana Vassu Dimov
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Alexandra Simon-Gruita
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gina Carmen Cogălniceanu
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenței Street, 060031 Bucharest, Romania
| |
Collapse
|
5
|
Cassago ALL, Artêncio MM, de Moura Engracia Giraldi J, Da Costa FB. Metabolomics as a marketing tool for geographical indication products: a literature review. Eur Food Res Technol 2021; 247:2143-2159. [PMID: 34149310 PMCID: PMC8204615 DOI: 10.1007/s00217-021-03782-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Geographical indication (GI) is used to identify a product's origin when its characteristics or quality are a result of geographical origin, which includes agricultural products and foodstuff. Metabolomics is an “omics” technique that can support product authentication by providing a chemical fingerprint of a biological system, such as plant and plant-derived products. The main purpose of this article is to verify possible contributions of metabolomic studies to the marketing field, mainly for certified regions, through an integrative review of the literature and maps produced by VOSviewer software. The results indicate that studies based on metabolomics approaches can relate specific food attributes to the region’s terroir and know-how. The evidence of this connection, marketing of GIs and metabolomics methods, is viewed as potential tool for marketing purposes (e.g., to assist communication of positive aspects and quality), and legal protection. In addition, our results provide a taxonomic categorization that can guide future marketing research involving metabolomics. Moreover, the results are also useful to government agencies to improve GIs registration systems and promotion strategies.
Collapse
Affiliation(s)
- Alvaro Luis Lamas Cassago
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Mateus Manfrin Artêncio
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Janaina de Moura Engracia Giraldi
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Fernando Batista Da Costa
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
6
|
Padilla-González GF, Diazgranados M, Da Costa FB. Effect of the Andean Geography and Climate on the Specialized Metabolism of Its Vegetation: The Subtribe Espeletiinae (Asteraceae) as a Case Example. Metabolites 2021; 11:220. [PMID: 33916648 PMCID: PMC8065660 DOI: 10.3390/metabo11040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023] Open
Abstract
The Andean mountains are 'center stage' to some of the most spectacular examples of plant diversifications, where geographic isolation and past climatic fluctuations have played a major role. However, the influence of Andean geography and climate as drivers of metabolic variation in Andean plants is poorly elucidated. Here, we studied the influence of those factors on the metabolome of the subtribe Espeletiinae (Asteraceae) using liquid chromatography coupled to high-resolution mass spectrometry data of over two hundred samples from multiple locations. Our results demonstrate that metabolic profiles can discriminate Espeletiinae taxa at different geographic scales, revealing inter- and intraspecific metabolic variations: at the country level, segregation between Colombian and Venezuelan taxa was observed; regionally, between páramo massifs; and locally, between páramo complexes. Metabolic differences in Espeletiinae were mainly explained by geographic isolation, although differences in taxonomic genera, temperature, and elevation, were also important. Furthermore, we found that different species inhabiting the same páramo complex showed stronger chemical similarities than the same species at different locations, corroborating that geographic isolation represents the main driver of metabolic change in Espeletiinae. The current study serves as a starting point to fill in the gaps in how Andean geography and climate have shaped the metabolism of its vegetation and reveal the potential of untargeted metabolomics to study the environmental physiology of plants.
Collapse
Affiliation(s)
- Guillermo F. Padilla-González
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto SP 14040-903, Brazil;
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Kew Road, London TW9 3AB, UK
| | - Mauricio Diazgranados
- Millennium Seed Bank, Royal Botanic Gardens, Kew, Ardingly, West Sussex, Haywards Heath RH17 6TN, UK;
| | - Fernando B. Da Costa
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto SP 14040-903, Brazil;
| |
Collapse
|
7
|
Cruz-Nicolás J, Villarruel-Arroyo A, Gernandt DS, Fonseca RM, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP. Non-adaptive evolutionary processes governed the diversification of a temperate conifer lineage after its migration into the tropics. Mol Phylogenet Evol 2021; 160:107125. [PMID: 33636326 DOI: 10.1016/j.ympev.2021.107125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Constructing phylogenetic relationships among closely related species is a recurrent challenge in evolutionary biology, particularly for long-lived taxa with large effective population sizes and uncomplete reproductive isolation, like conifers. Conifers further have slow evolutionary rates, which raises the question of whether adaptive or non/adaptive processes were predominantly involved when they rapidly diversified after migrating from temperate regions into the tropical mountains. Indeed, fine-scale phylogenetic relationships within several conifer genus remain under debate. Here, we studied the phylogenetic relationships of endemic firs (Abies, Pinaceae) discontinuously distributed in the montane forests from the Southwestern United States to Guatemala, and addressed several hypotheses related to adaptive and non-adaptive radiations. We derived over 80 K SNPs from genotyping by sequencing (GBS) for 45 individuals of nine Mesoamerican species to perform phylogenetic analyses. Both Maximum Likelihood and quartets-inference phylogenies resulted in a well-resolved topology, showing a single fir lineage divided in four subgroups that coincided with the main mountain ranges of Mesoamerica; thus having important taxonomic implications. Such subdivision fitted a North-South isolation by distance framework, in which non-adaptive allopatric processes seemed the rule. Interestingly, several reticulations were observed within subgroups, especially in the central-south region, which may explain past difficulties for generating infrageneric phylogenies. Further evidence for non-adaptive processes was obtained from analyses of 21 candidate-gene regions, which exhibited diminishing values of πa/πs and Ka/Ks with latitude, thus indicating reduced efficiency of purifying selection towards the Equator. Our study indicates that non-adaptive allopatric processes may be key generators of species diversity and endemism in the tropics.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Alfredo Villarruel-Arroyo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, AP 70-233, Mexico City CDMX 04510, Mexico
| | - Rosa María Fonseca
- Laboratorio de Plantas Vasculares, Facultad de Ciencias, Universidad Nacional Autónoma de México, AP 70-282, Mexico City CDMX 04510, Mexico
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Juan P Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico.
| |
Collapse
|
8
|
Pouchon C, Lavergne S, Fernández Á, Alberti A, Aubert S, Mavárez J. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. AMERICAN JOURNAL OF BOTANY 2021; 108:113-128. [PMID: 33426651 DOI: 10.1002/ajb2.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Events of accelerated species diversification represent one of Earth's most celebrated evolutionary outcomes. Northern Andean high-elevation ecosystems, or páramos, host some plant lineages that have experienced the fastest diversification rates, likely triggered by ecological opportunities created by mountain uplifts, local climate shifts, and key trait innovations. However, the mechanisms behind rapid speciation into the new adaptive zone provided by these opportunities have long remained unclear. METHODS We address this issue by studying the Venezuelan clade of Espeletia, a species-rich group of páramo-endemics showing a dazzling ecological and morphological diversity. We performed several comparative analyses to study both lineage and trait diversification, using an updated molecular phylogeny of this plant group. RESULTS We showed that sets of either vegetative or reproductive traits have conjointly diversified in Espeletia along different vegetation belts, leading to adaptive syndromes. Diversification in vegetative traits occurred earlier than in reproductive ones. The rate of species and morphological diversification showed a tendency to slow down over time, probably due to diversity dependence. We also found that closely related species exhibit significantly more overlap in their geographic distributions than distantly related taxa, suggesting that most events of ecological divergence occurred at close geographic proximity within páramos. CONCLUSIONS These results provide compelling support for a scenario of small-scale ecological divergence along multiple ecological niche dimensions, possibly driven by competitive interactions between species, and acting sequentially over time in a leapfrog pattern.
Collapse
Affiliation(s)
- Charles Pouchon
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| | - Ángel Fernández
- Herbario IVIC. Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas, 1020-A, Venezuela
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Serge Aubert
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
- Université Grenoble Alpes, CNRS, Université Savoie Mont Blanc, SAJF, Station Alpine Joseph Fourier, 38000, Grenoble, France
| | - Jesús Mavárez
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| |
Collapse
|
9
|
Padilla-González GF, Sadgrove NJ, Ccana-Ccapatinta GV, Leuner O, Fernandez-Cusimamani E. Feature-Based Molecular Networking to Target the Isolation of New Caffeic Acid Esters from Yacon ( Smallanthus sonchifolius, Asteraceae). Metabolites 2020; 10:metabo10100407. [PMID: 33066019 PMCID: PMC7601859 DOI: 10.3390/metabo10100407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Smallanthus sonchifolius (yacon) is an edible tuberous Andean shrub that has been included in the diet of indigenous people since before recorded history. The nutraceutical and medicinal properties of yacon are widely recognized, especially for the improvement of hyperglycemic disorders. However, the chemical diversity of the main bioactive series of caffeic acid esters has not been explored in detail. In this metabolomics study, we applied the latest tools to facilitate the targeted isolation of new caffeic acid esters. Using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we analyzed extracts from different organs (roots, vascular tissues of the stems, stem epidermis, leaves, bracts, and ray flowers) and followed a feature-based molecular networking approach to characterize the structural diversity of caffeic acid esters and recognize new compounds. The analysis identified three potentially new metabolites, one of them confirmed by isolation and full spectroscopic/spectrometric assignment using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and MS/MS. This metabolite (5-O-caffeoyl-2,7-anhydro-d-glycero-β-d-galacto-oct-2-ulopyranosonic acid), along with eight known caffeic acid esters, was isolated from the roots and stems. Furthermore, based on detailed tandem MS analyses, we suggest that the two isomeric monocaffeoyl-2,7-anhydro-2-octulopyranosonic acids found in yacon can be reliably distinguished based on their characteristic MS2 and MS3 spectra. The outcome of the current study confirms the utility of feature-based molecular networking as a tool for targeted isolation of previously undescribed metabolites and reveals the full diversity of potentially bioactive metabolites from S. sonchifolius.
Collapse
Affiliation(s)
| | - Nicholas J. Sadgrove
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Kew Road, London TW9 3AB, UK; (G.F.P.-G.); (N.J.S.)
| | - Gari V. Ccana-Ccapatinta
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, Ribeirão Preto 14040-903, SP, Brazil;
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-22438-2183
| |
Collapse
|
10
|
Valencia JB, Mesa J, León JG, Madriñán S, Cortés AJ. Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.565708] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
LC-MS-Based Metabolomics for the Chemosystematics of Kenyan Dodonaea viscosa Jacq (Sapindaceae) Populations. Molecules 2020; 25:molecules25184130. [PMID: 32927597 PMCID: PMC7570515 DOI: 10.3390/molecules25184130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Dodonaea viscosa Jacq (Sapindaceae) is a medicinal plant with a worldwide distribution. The species has undergone enormous taxonomic changes which caused confusion amongst plant users. In Kenya, for example, two varieties are known to exist based on morphology, i.e., D. viscosa var. viscosa along the coast, and D. viscosa var. angustifolia in the Kenyan inland. These two taxa are recognized as distinct species in some reports. This prompted us to apply metabolomics to understand the relationship among naturally occurring populations of D. viscosa in Kenya, and to identify compounds that can assist in taxonomic delineation of the different varieties of D. viscosa from different parts of Kenya. The phytochemical variability of Kenyan D. viscosa var. angustifolia populations collected from four different geographical regions (Nanyuki, Machakos, Nairobi, and Narok) and one coastal D. viscosa var. viscosa (the Gazi) were analyzed by LC-MS using a metabolomics-driven approach. Four known compounds, two diterpenoids (dodonic acid (1), hautriwaic acid lactone (3), and two flavonoids (5,7,4',5'-tetrahydroxy-3,6,2'-trimethoxyflavone (2) and catechin (4)) were isolated and purified from the Gazi coastal collection. The presence of these compounds and their relative abundance in other populations was determined by LC-MS analyses. Multivariate statistical analyses of LC-MS data was used for the visualization of the patterns of variation and identification of additional compounds. Eleven discriminant compounds responsible for separating chemometric clusters were tentatively identified. In an antimicrobial assay, hautriwaic acid lactone (3) and catechin (4) were the most active compounds followed by the extract from the coastal (Gazi) population. The clustering pattern of the five populations of D. viscosa suggested that the metabolite profiles were influenced by geo-environmental conditions and did not support the current classification of D. viscosa based on morphology. This study disputes the current classification of D. viscosa in Kenya and recommends revision using tools such as molecular phylogenetics.
Collapse
|
12
|
Abstract
The major goal in plant metabolomics is to study complex extracts for the purposes of metabolic exploration and natural products discovery. To achieve this goal, plant metabolomics relies on accurate and selective acquisition of all possible chemical information, which includes maximization of the number of detected metabolites and their correct molecular assignment. Nuclear magnetic resonance (NMR) spectroscopy has been recognized as a powerful platform for obtaining the metabolite profiles of plant extracts. In this chapter, we provide a workflow for targeted and untargeted metabolite profiling of plant extracts using both 1D and 2D NMR methods. The protocol includes sample preparation, instrument operation, data processing, multivariate analysis, biomarker elucidation, and metabolite quantitation. It also addresses the annotation of plant metabolite peaks considering NMR's capabilities to cover a broad range of metabolites and elucidate structures for unknown compounds.
Collapse
Affiliation(s)
- Denise Medeiros Selegato
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Carnevale Neto
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Jesús Mavárez
- Laboratoire d'Écologie Alpine, UMR UGA-USMB-CNRS 5553 Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
14
|
Plazas E, Casoti R, Avila Murillo M, Batista Da Costa F, Cuca LE. Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. PHYTOCHEMISTRY 2019; 168:112128. [PMID: 31557705 DOI: 10.1016/j.phytochem.2019.112128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The isolation of bioactive compounds from natural sources is a key step in drug discovery and development, however, this procedure is usually expensive and difficult due to the complexity and the limited amounts of the metabolites in the extracts. Thus, rational or targeting isolations are becoming more popular to reduce the bottlenecks in bioactive natural products research. In this study, we used a LC-MS-based metabolomic approach and biochemometric statistical tools (PCA and OPLS-DA) to identify potential anti-cholinesterase alkaloids predictors in Zanthoxylum genus (Rutaceae). For this purpose, 41 alkaloid extracts from nine Colombian Zanthoxylum species were screened by UHPLC-UV-HRMS and inhibitory activity against Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE). Based on the screening results, a multivariate statistical analysis (MVA) and selection of anti-cholinesterase candidates were performed using the S-plot from the OPLS-DA model. The supervised analysis (OPLS-DA) paring the anti-cholinesterase screening and LC-HRMS data showed at least 11 ChE inhibition markers which could have contributed in the differentiation of active and inactive extracts. The predictors were tentatively identified by comparing chromatographic retention times (Rt) and accurate mass and MS2 fragmentation patterns. In general, the inhibition markers correspond to four types of isoquinoline alkaloids: tetrahydroprotoberberines, protoberberines, dihydrobenzophenanthridines and benzophenanthridines. The most active extracts from Z. schreberi and Z. monophylum showed the highest presence of berberine and chelerythrine, previously reported as cholinesterase inhibitors. Thus, to validate the results of the OPLS-DA model, three alkaloids from the bark of Z. schreberi (identified as berberine, chelerythrine and columbamine) were bio-directed isolated, and all of them showed strong inhibition against both enzymes. These findings support our statistical models and contribute to the rational search of anticholinesterase alkaloids. Therefore, LC-MS-based metabolomic approach combined with chemometric statistical analysis are shown as useful tools for the isolation of targeted bioactive natural products, contributing to improve the research and development stages of lead compounds.
Collapse
Affiliation(s)
- Erika Plazas
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia.
| | - Rosana Casoti
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Monica Avila Murillo
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| | - Fernando Batista Da Costa
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Luis Enrique Cuca
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| |
Collapse
|
15
|
Žiarovská J, Padilla-González GF, Viehmannová I, Fernández E. Genetic and chemical diversity among yacon [Smallanthus sonchifolius (Poepp. et Endl.) H. Robinson] accessions based on iPBS markers and metabolomic fingerprinting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:183-192. [PMID: 31174035 DOI: 10.1016/j.plaphy.2019.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The present study is focused on the characterization of yacon [Smallanthus sonchifolius (Poepp. et Endl.) H. Robinson] accessions from different geographic origins (Bolivia, Ecuador, and Peru) by iPBS markers and metabolomic fingerprinting. The results showed that the number of amplified polymorphic fragment levels ranged from 20 up to 27 with a level of polymorphism ranging from 80 to 100%. Five of the iPBS primers used in this study provided no specific banding pattern able to discriminate between the different yacon accessions. However, two iPBS primer pairs were able to separate Peru accessions from those of Ecuador and Bolivia. The UPLC-HRMS/MS-based metabolomic fingerprinting showed highly similar metabolomic fingerprints characterized by the accumulation of high quantities of sesquiterpene lactones and diterpenes, but no apparent geographic clustering. The present study demonstrates that yacon accessions from different geographical origins maintained ex situ (in the Czech Republic) present a rather low chemical and genetic diversity.
Collapse
Affiliation(s)
- Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Guillermo F Padilla-González
- School of Pharmaceutical Sciences of Ribeirăo Preto, University of Săo Paulo, Av. Do Café, 14040-903, Ribeirăo Preto, Brazil.
| | - Iva Viehmannová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| | - Eloy Fernández
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
16
|
Chibli LA, Rosa AL, Nonato MC, Da Costa FB. Untargeted LC-MS metabolomic studies of Asteraceae species to discover inhibitors of Leishmania major dihydroorotate dehydrogenase. Metabolomics 2019; 15:59. [PMID: 30949823 DOI: 10.1007/s11306-019-1520-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Interesting data about the family Asteraceae as a new source of Leishmania major dihydroorotate dehydrogenase (LmDHODH) inhibitors are presented. This key macromolecular target for parasites causing neglected diseases catalyzes the fourth reaction of the de novo pyrimidine biosynthetic pathway, which takes part in major cell functions, including DNA and RNA biosynthesis. OBJECTIVES We aimed to (1) determine LmDHODH inhibitor candidates, revealing the type of chemistry underlying such bioactivity, and (2) predict the inhibitory potential of extracts from new untested plant species, classifying them as active or inactive based on their LC-MS based metabolic fingerprints. METHODS Extracts from 150 species were screened for the inhibition of LmDHODH, and untargeted UHPLC-(ESI)-HRMS metabolomic studies were carried out in combination with in silico approaches. RESULTS The IC50 values determined for a subset of 59 species ranged from 148 µg mL-1 to 9.4 mg mL-1. Dereplication of the metabolic fingerprints allowed the identification of 48 metabolites. A reliable OPLS-DA model (R2 > 0.9, Q2 > 0.7, RMSECV < 0.3) indicated the inhibitor candidates; nine of these metabolites were identified using data from isolated chemical standards, one of which-4,5-di-O-E-caffeoylquinic acid (IC50 73 µM)-was capable of inhibiting LmDHODH. The predictive OPLS model was also effective, with 60% correct predictions for the test set. CONCLUSION Our approach was validated for (1) the discovery of LmDHODH inhibitors or interesting starting points for the optimization of new leishmanicides from Asteraceae species and (2) the prediction of extracts from untested species, classifying them as active or inactive.
Collapse
Affiliation(s)
- Lucas A Chibli
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Annylory L Rosa
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Maria Cristina Nonato
- Laboratory of Protein Crystallography, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernando B Da Costa
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
17
|
Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, Trevisan G, Ferreira J, Silva CR, Oliveira SM. Tabernaemontana catharinensis leaves exhibit topical anti-inflammatory activity without causing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:205-216. [PMID: 30445106 DOI: 10.1016/j.jep.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Tabernaemontana catharinensis, popularly known as snake skin, has been empirically used as an anti-inflammatory to treat cutaneous skin disorders. However, no study proves its effectiveness as a topical anti-inflammatory. STUDY DESIGN We investigated the topical anti-inflammatory effect of T.catharinensis leaves crude extract (TcE) in irritant contact dermatitis models in mice and its preliminary toxicity profile. METHODS The topical anti-inflammatory effect was evaluated by ear thickness measurement, inflammatory cell infiltration (MPO activity measurement and histological procedure) and cytokines levels. TcE qualitative phytochemical analysis was performed by UHPLC-ESI-HRMS and the TcE effect (therapeutic dose; 10 µg/ear) on preliminary toxicological parameters was also evaluated (on the 14° day of experiment). RESULTS TcE (10 μg/ear) prevented the development of ear edema induced by cinnamaldehyde, capsaicin, arachidonic acid, phenol, and croton oil with maximum inhibition of 100% to cinnamaldehyde, arachidonic acid, phenol, and croton oil and 75 ± 6% to capsaicin. Besides, the TcE (10 μg/ear) also prevented the increase of MPO activity by 96 ± 2%, 48 ± 7%, 100%, 87 ± 8%, and 93 ± 4%, respectively, to the same irritant agents. The positive controls also prevented both ear edema and the increased of MPO activity by 100% and 42 ± 8% (HC-030031), 54 ± 6% and 80 ± 4% (SB-366791), 100% and 54 ± 5% (indomethacin), 100% and 80 ± 4% (dexamethasone in skin inflammation model induced by phenol) and 100% and 97 ± 3% (dexamethasone in inflammation model induced by croton oil), respectively. TcE also prevented the inflammatory cells infiltration and the increase of MIP-2, IL-1β and TNF-α levels irritant agents-induced. TcE topical anti-inflammatory effect may be attributed to the combined effect of indole alkaloids, terpenes, and phenolic compounds found in the extract and identified by dereplication method. The TcE' therapeutic dose proved to be safe in preliminary toxicological tests. CONCLUSION Our results suggest that TcE could be an interesting strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciencies of Ribeirão Preto- University of São Paulo (FCFRP-USP), Ribeirão Preto (SP), Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Piana
- Phytochemical Research Laboratory, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aline A Boligon
- Phytochemical Research Laboratory, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Almeida Cabrini
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gabriela Trevisan
- Graduate Program in Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cássia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, Trevisan G, Ferreira J, Silva CR, Oliveira SM. Tabernaemontana catharinensis leaves effectively reduce the irritant contact dermatitis by glucocorticoid receptor-dependent pathway in mice. Biomed Pharmacother 2019; 109:646-657. [DOI: 10.1016/j.biopha.2018.10.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022] Open
|
19
|
Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J. Phylogenomic Analysis of the Explosive Adaptive Radiation of the Espeletia Complex (Asteraceae) in the Tropical Andes. Syst Biol 2018; 67:1041-1060. [PMID: 30339252 DOI: 10.1093/sysbio/syy022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/15/2018] [Indexed: 01/17/2023] Open
Abstract
The subtribe Espeletiinae (Asteraceae), endemic to the high-elevations in the Northern Andes, exhibits an exceptional diversity of species, growth-forms, and reproductive strategies. This complex of 140 species includes large trees, dichotomous trees, shrubs and the extraordinary giant caulescent rosettes, considered as a classic example of adaptation in tropical high-elevation ecosystems. The subtribe has also long been recognized as a prominent case of adaptive radiation, but the understanding of its evolution has been hampered by a lack of phylogenetic resolution. Herein, we produce the first fully resolved phylogeny of all morphological groups of Espeletiinae, using whole plastomes and about a million nuclear nucleotides obtained with an original de novo assembly procedure without reference genome, and analyzed with traditional and coalescent-based approaches that consider the possible impact of incomplete lineage sorting and hybridization on phylogenetic inference. We show that the diversification of Espeletiinae started from a rosette ancestor about 2.3 Ma, after the final uplift of the Northern Andes. This was followed by two independent radiations in the Colombian and Venezuelan Andes, with a few trans-cordilleran dispersal events among low-elevation tree lineages but none among high-elevation rosettes. We demonstrate complex scenarios of morphological change in Espeletiinae, usually implying the convergent evolution of growth-forms with frequent loss/gains of various traits. For instance, caulescent rosettes evolved independently in both countries, likely as convergent adaptations to life in tropical high-elevation habitats. Tree growth-forms evolved independently three times from the repeated colonization of lower elevations by high-elevation rosette ancestors. The rate of morphological diversification increased during the early phase of the radiation, after which it decreased steadily towards the present. On the other hand, the rate of species diversification in the best-sampled Venezuelan radiation was on average very high (3.1 spp/My), with significant rate variation among growth-forms (much higher in polycarpic caulescent rosettes). Our results point out a scenario where both adaptive morphological evolution and geographical isolation due to Pleistocene climatic oscillations triggered an exceptionally rapid radiation for a continental plant group.
Collapse
Affiliation(s)
- Charles Pouchon
- Laboratoire d'Ecologie Alpine, UMR 5553, Université Grenoble Alpes-CNRS, Grenoble, France
| | - Angel Fernández
- Herbario IVIC, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela
| | - Jafet M Nassar
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela
| | - Frédéric Boyer
- Laboratoire d'Ecologie Alpine, UMR 5553, Université Grenoble Alpes-CNRS, Grenoble, France
| | - Serge Aubert
- Laboratoire d'Ecologie Alpine, UMR 5553, Université Grenoble Alpes-CNRS, Grenoble, France.,Station alpine Joseph-Fourier, UMS 3370, Université Grenoble Alpes-CNRS, Grenoble, France
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine, UMR 5553, Université Grenoble Alpes-CNRS, Grenoble, France
| | - Jesús Mavárez
- Laboratoire d'Ecologie Alpine, UMR 5553, Université Grenoble Alpes-CNRS, Grenoble, France
| |
Collapse
|
20
|
Cortés AJ, Garzón LN, Valencia JB, Madriñán S. On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. FRONTIERS IN PLANT SCIENCE 2018; 9:1700. [PMID: 30581444 PMCID: PMC6294130 DOI: 10.3389/fpls.2018.01700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/01/2018] [Indexed: 05/10/2023]
Abstract
How diversity arises and what is the relative role of allopatric and ecological divergence are among the most persistent questions in evolution and ecology. Here, we assessed whether ecological divergence has enhanced the diversification of the Neotropical alpine plant complex Espeletia, also known as frailejones. This genus has one of the highest diversification rates ever reported and is distributed in the world's fastest evolving biodiversity hotspot, the Páramo (Neotropical alpine grasslands at elevations of c. 2800-4700 m). Our goal was to determine whether ecology plays a role in divergence within the Espeletia complex by quantifying genome-wide patterns of ecological divergence. We characterized 162 samples of the three most common and contrasting ecotypes (distinct morphotypes occupying particular habitats) co-occurring in six localities in the northern Andes using Genotyping by Sequencing. Contrasting ecotypes were caulescent cloud forest populations, caulescent populations from wind-sheltered and well-irrigated depressions and acaulescent populations from wind-exposed drier slopes. We found high polymorphism with a total of 1,273 single nucleotide polymorphisms (SNPs) that defined the relationships among nine genetic clusters. We quantified allelic associations of these markers with localities and habitats using 18 different general and mixed-effects statistical models that accounted for phylogenetic distance. Despite that these models always yielded more SNPs associated with the localities, markers associated with the habitat types were recovered too. We found strong evidence for isolation-by-distance (IBD) across populations despite rampant gene flow, as expected for plant groups with limited seed dispersal. Contrasts between populations of different habitat types showed that an isolation-by-environment (IBE) trend emerged and masked the IBD signal. Maximum likelihood estimation of the number of migrants per generation (Nem) among ecotypes confirmed the IBE pattern. This result illustrates the importance of mountains' environmental variation at a local scale in generating rapid morphological radiations and maintaining multiple adaptations in a fast-evolving ecosystem like the Páramo.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Luz N. Garzón
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jhon B. Valencia
- Facultad de Ingeniera y Administracin, Universidad Nacional de Colombia - Sede Palmira, Palmira, Colombia
| | - Santiago Madriñán
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Jardín Botánico de Cartagena “Guillermo Piñeres”, Turbaco, Colombia
| |
Collapse
|
21
|
Gallon ME, Monge M, Casoti R, Da Costa FB, Semir J, Gobbo-Neto L. Metabolomic analysis applied to chemosystematics and evolution of megadiverse Brazilian Vernonieae (Asteraceae). PHYTOCHEMISTRY 2018; 150:93-105. [PMID: 29571150 DOI: 10.1016/j.phytochem.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Vernonia sensu lato is the largest and most complex genus of the tribe Vernonieae (Asteraceae). The tribe is chemically characterized by the presence of sesquiterpene lactones and flavonoids. Over the years, several taxonomic classifications have been proposed for Vernonia s.l. and for the tribe; however, there has been no consensus among the researches. According to traditional classification, Vernonia s.l. comprises more than 1000 species divided into sections, subsections and series (sensu Bentham). In a more recent classification, these species have been segregated into other genera and some subtribes were proposed, while the genus Vernonia sensu stricto was restricted to 22 species distributed mainly in North America (sensu Robinson). In this study, species from the subtribes Vernoniinae, Lepidaploinae and Rolandrinae were analyzed by UHPLC-UV-HRMS followed by multivariate statistical analysis. Data mining was performed using unsupervised (HCA and PCA) and supervised methods (OPLS-DA). The HCA showed the segregation of the species into four main groups. Comparing the HCA with taxonomical classifications of Vernonieae, we observed that the groups of the dendogram, based on metabolic profiling, were in accordance with the generic classification proposed by Robinson and with previous phylogenetic studies. The species of the genera Stenocephalum, Stilpnopappus, Strophopappus and Rolandra (Group 1) were revealed to be more related to the species of the genus Vernonanthura (Group 2), while the genera Cyrtocymura, Chrysolaena and Echinocoryne (Group 3) were chemically more similar to the genera Lessingianthus and Lepidaploa (Group 4). These findings indicated that the subtribes Vernoniinae and Lepidaploinae are non-chemically homogeneous groups and highlighted the application of untargeted metabolomic tools for taxonomy and as indicators of species evolution. Discriminant compounds for the groups obtained by OPLS-DA were determined. Groups 1 and 2 were characterized by the presence of 3',4'-dimethoxyluteolin, glaucolide A and 8-tigloyloxyglaucolide A. The species of Groups 3 and 4 were characterized by the presence of putative acacetin 7-O-rutinoside and glaucolide B. Therefore, untargeted metabolomic approach combined with multivariate statistical analysis, as proposed herein, allowed the identification of potential chemotaxonomic markers, helping in the taxonomic classifications.
Collapse
Affiliation(s)
- Marília Elias Gallon
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcelo Monge
- University of Campinas (UNICAMP), Institute of Biology, Cidade Universitária "Zeferino Vaz", 13083-970, Campinas, SP Brazil
| | - Rosana Casoti
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernando Batista Da Costa
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - João Semir
- University of Campinas (UNICAMP), Institute of Biology, Cidade Universitária "Zeferino Vaz", 13083-970, Campinas, SP Brazil
| | - Leonardo Gobbo-Neto
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|