1
|
Wang J, He Y, Wang G, Li R, Niu Y, Liu K, Zhang J, Tang Z, Lyu J, Xie J, Wu Y, Yu J. Exogenous 5-aminolevulinic acid promotes carotenoid accumulation in tomato fruits by regulating ethylene biosynthesis and signaling. PHYSIOLOGIA PLANTARUM 2024; 176:e14648. [PMID: 39639852 DOI: 10.1111/ppl.14648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
5-Aminolevulinic acid (ALA) can not only improve fruit yield and quality, but also increase the lycopene content in tomato fruits. Furthermore, ALA has been shown to promote system-2 ethylene production in tomato fruits. However, the specific interactions between ALA and ethylene during fruit ripening remain unclear. In this study, we treated tomato fruits with ALA, 1-aminocyclopropane-1-carboxylic acid (ACC), aminooxyacetic acid (AOA) + AgNO3, and AOA + AgNO3 + ALA and analyzed ethylene emissions, carotenoid contents, and the relative gene expression levels related to fruit ripening, carotenoid contents, ethylene synthesis, and signal transduction. The ALA treatment significantly enhanced ethylene bursts and carotenoid accumulation, and significantly upregulated the expression of ethylene and carotenoid-related genes, such as SlACS2, SlACS4, SlACO1, SlPSY1, and SlPDS. We also observed that the gene expression levels associated with carotenoid synthesis were downregulated in fruits treated with a combination of ethylene inhibitors (AOA + AgNO3). However, there was a significant upregulation in the gene expression levels associated with carotenoid synthesis and an increase in carotenoid content when fruits were treated with AOA + AgNO3 + ALA. After silencing SlACO1 expression, the total carotenoid content and SlPSY1 expression decreased significantly, while this effect was reversed after exogenous application of ALA. These results indicated that ALA promotes carotenoid accumulation in tomato fruits by promoting ethylene biosynthesis. In conclusion, our results highlighted the role of ALA in promoting carotenoid accumulation and ripening in tomato fruits by regulating ethylene synthesis, thereby providing a novel strategy for improving fruit quality.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Yu Y, Bao Z, Zhou Q, Wu W, Chen W, Yang Z, Wang L, Li X, Cao S, Shi L. EjWRKY6 Is Involved in the ABA-Induced Carotenoid Biosynthesis in Loquat Fruit during Ripening. Foods 2024; 13:2829. [PMID: 39272594 PMCID: PMC11395680 DOI: 10.3390/foods13172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The yellow-fleshed loquat is abundant in carotenoids, which determine the fruit's color, provide vitamin A, and offer anti-inflammatory and anti-cancer health benefits. In this research, the impact of abscisic acid (ABA), a plant hormone, on carotenoid metabolism and flesh pigmentation in ripening loquat fruits was determined. Results revealed that ABA treatment enhanced the overall content of carotenoids in loquat fruit, including major components like β-cryptoxanthin, lutein, and β-carotene, linked to the upregulation of most genes in the carotenoid biosynthesis pathway. Furthermore, a transcription factor, EjWRKY6, whose expression was induced by ABA, was identified and was thought to play a role in ABA-induced carotenoid acceleration. Transient overexpression of EjWRKY6 in Nicotiana benthamiana and stable genetic transformation in Nicotiana tabacum with EjWRKY6 indicated that both carotenoid production and genes related to carotenoid biosynthesis could be upregulated in transgenic plants. A dual-luciferase assay proposed a probable transcriptional control between EjWRKY6 and promoters of genes associated with carotenoid production. To sum up, pre-harvest ABA application could lead to carotenoid biosynthesis in loquat fruit through the EjWRKY6-induced carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yan Yu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zeyang Bao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Qihang Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Li Wang
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shifeng Cao
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
3
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Zhou J, Zhou S, Chen B, Sangsoy K, Luengwilai K, Albornoz K, Beckles DM. Integrative analysis of the methylome and transcriptome of tomato fruit ( Solanum lycopersicum L.) induced by postharvest handling. HORTICULTURE RESEARCH 2024; 11:uhae095. [PMID: 38840937 PMCID: PMC11151332 DOI: 10.1093/hr/uhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Tomato fruit ripening is triggered by the demethylation of key genes, which alters their transcriptional levels thereby initiating and propagating a cascade of physiological events. What is unknown is how these processes are altered when fruit are ripened using postharvest practices to extend shelf-life, as these practices often reduce fruit quality. To address this, postharvest handling-induced changes in the fruit DNA methylome and transcriptome, and how they correlate with ripening speed, and ripening indicators such as ethylene, abscisic acid, and carotenoids, were assessed. This study comprehensively connected changes in physiological events with dynamic molecular changes. Ripening fruit that reached 'Turning' (T) after dark storage at 20°C, 12.5°C, or 5°C chilling (followed by 20°C rewarming) were compared to fresh-harvest fruit 'FHT'. Fruit stored at 12.5°C had the biggest epigenetic marks and alterations in gene expression, exceeding changes induced by postharvest chilling. Fruit physiological and chronological age were uncoupled at 12.5°C, as the time-to-ripening was the longest. Fruit ripening to Turning at 12.5°C was not climacteric; there was no respiratory or ethylene burst, rather, fruit were high in abscisic acid. Clear differentiation between postharvest-ripened and 'FHT' was evident in the methylome and transcriptome. Higher expression of photosynthetic genes and chlorophyll levels in 'FHT' fruit pointed to light as influencing the molecular changes in fruit ripening. Finally, correlative analyses of the -omics data putatively identified genes regulated by DNA methylation. Collectively, these data improve our interpretation of how tomato fruit ripening patterns are altered by postharvest practices, and long-term are expected to help improve fruit quality.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| | - Sitian Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Biostatistics, School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Bixuan Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Germains Seed Technology, 8333 Swanston Lane, Gilroy, CA 95020, USA
| | - Kamonwan Sangsoy
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kietsuda Luengwilai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Karin Albornoz
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| |
Collapse
|
5
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
6
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
7
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
8
|
Wei Y, Meng N, Wang Y, Cheng J, Duan C, Pan Q. Transcription factor VvWRKY70 inhibits both norisoprenoid and flavonol biosynthesis in grape. PLANT PHYSIOLOGY 2023; 193:2055-2070. [PMID: 37471439 DOI: 10.1093/plphys/kiad423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Norisoprenoids and flavonols are important secondary metabolites in grape berries (Vitis vinifera L.). The former is a class of ubiquitous flavor and fragrance compounds produced by the cleavage of carotenoids, and the latter, which is derived from the flavonoid metabolic pathway, has been proposed as a general quality marker for red grapes. However, the transcriptional regulatory mechanisms underlying norisoprenoid and flavonol production are still not fully understood. In this study, we characterized a transcription factor, VvWRKY70, as a repressor of both norisoprenoid and flavonol biosynthesis in grape berries, and its expression was downregulated by light and high-temperature treatment. Overexpressing VvWRKY70 in grape calli reduced norisoprenoid and flavonol production, particularly under light exposure or at high temperature, by repressing the expression of several related genes in the isoprenoid and flavonoid metabolic pathways. VvWRKY70 downregulated β-CAROTENE HYDROXYLASE 2 (VvBCH2) and CHALCONE SYNTHASE 3 (VvCHS3) expression based on yeast 1-hybrid analysis combined with electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR. We discuss the role of VvWRKY70 in the coordinated regulatory network of isoprenoid and flavonoid metabolism. These findings provide a theoretical basis to improve flavor, color, and other comprehensive qualities of fruit crops and their processing products.
Collapse
Affiliation(s)
- Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yachen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
9
|
Fang X, Li S, Zhu Z, Zhang X, Xiong C, Wang X, Luan F, Liu S. Clorf Encodes Carotenoid Isomerase and Regulates Orange Flesh Color in Watermelon ( Citrullus lanatus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15445-15455. [PMID: 37815876 DOI: 10.1021/acs.jafc.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Flesh color is a significant characteristic of watermelon. Although various flesh-color genes have been identified, the inheritance and molecular basis of the orange flesh trait remain relatively unexplored. In the present study, the genetic analysis of six generations derived from W1-1 (red flesh) and W1-61 (orange flesh) revealed that the orange flesh color trait was regulated by a single recessive gene, Clorf (orange flesh). Bulk segregant analysis (BSA) locked the range to ∼4.66 Mb, and initial mapping situated the Clorf locus within a 688.35-kb region of watermelon chromosome 10. Another 1,026 F2 plants narrowed the Clorf locus to a 304.62-kb region containing 32 candidate genes. Subsequently, genome sequence variations in this 304.62-kb region were extracted for in silico BSA strategy among 11 resequenced lines (one orange flesh and ten nonorange flesh) and finally narrowed the Clorf locus into an 82.51-kb region containing nine candidate genes. Sequence variation analysis of coding regions and gene expression levels supports Cla97C10G200950 as the most possible candidate for Clorf, which encodes carotenoid isomerase (Crtiso). This study provides a genetic resource for investigating the orange flesh color of watermelon, with Clorf malfunction resulting in low lycopene accumulation and, thus, orange flesh.
Collapse
Affiliation(s)
- Xufeng Fang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shenglong Li
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xian Zhang
- College of Horticulture, Northwest of A&F University, Yangling 712100, China
| | - Cheng Xiong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xuezheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Yue Q, Yang X, Cheng P, He J, Shen W, Li Y, Ma F, Niu C, Guan Q. Heterologous Overexpression of Apple MdKING1 Promotes Fruit Ripening in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2848. [PMID: 37571003 PMCID: PMC10421076 DOI: 10.3390/plants12152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Fruit ripening is governed by a complex regulatory network, and ethylene plays an important role in this process. MdKING1 is a γ subunit of SNF1-related protein kinases (SnRKs), but the function was unclear. Here, we characterized the role of MdKING1 during fruit ripening, which can promote fruit ripening through the ethylene pathway. Our findings reveal that MdKING1 has higher expression in early-ripening cultivars than late-ripening during the early stage of apple fruit development, and its transcription level significantly increased during apple fruit ripening. Overexpression of MdKING1 (MdKING1 OE) in tomatoes could promote early ripening of fruits, with the increase in ethylene content and the loss of fruit firmness. Ethylene inhibitor treatment could delay the fruit ripening of both MdKING1 OE and WT fruits. However, MdKING1 OE fruits turned fruit ripe faster, with an increase in carotenoid content compared with WT. In addition, the expression of genes involved in ethylene biosynthesis (SlACO1, SlACS2, and SlACS4), carotenoid biosynthesis (SlPSY1 and SlGgpps2a), and fruit firmness regulation (SlPG2a, SlPL, and SlCEL2) was also increased in the fruits of MdKING1 OE plants. In conclusion, our results suggest that MdKING1 plays a key role in promoting tomato fruit ripening, thus providing a theoretical basis for apple fruit quality improvement by genetic engineering in the future.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Yixuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Chundong Niu
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Qingmei Guan
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| |
Collapse
|
11
|
Tran MT, Son GH, Song YJ, Nguyen NT, Park S, Thach TV, Kim J, Sung YW, Das S, Pramanik D, Lee J, Son KH, Kim SH, Vu TV, Kim JY. CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1186932. [PMID: 37255559 PMCID: PMC10225705 DOI: 10.3389/fpls.2023.1186932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance. In this study, we characterized the edited lines under several abiotic and biotic stresses to examine the possibility of multiple stress tolerance. Our data reveal that the 8CM removal variants of HK and the KO alleles of both HK and 15T01 cultivars exhibited moderate heat stress tolerance. Similarly, plants carrying either the domains of the PRD removal variant (PR1v1) or 8CM removal variants (PR2v2 and PR2v3) showed better germination under osmosis stress (up to 200 mM mannitol) compared to the WT control. Moreover, the PR1v1 line continuously grew after 5 days of water cutoff. When the edited lines were challenged with pathogenic bacteria of Pseudomonas syringae pv. tomato (Pto) DC3000, the growth of the bacterium was significantly reduced by 2.0- to 2.5-fold compared to that in WT plants. However, the edited alleles enhanced susceptibility against Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt. CRISPR-Cas9-based precise domain editing of the SlHyPRP1 gene generated multi-stress-tolerant alleles that could be used as genetic materials for tomato breeding.
Collapse
Affiliation(s)
- Mil Thi Tran
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Seonyeong Park
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Thanh Vu Thach
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Ho Son
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
12
|
Yang YL, Cushman SA, Wang SC, Wang F, Li Q, Liu HL, Li Y. Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses. Genetica 2023; 151:153-165. [PMID: 36853516 PMCID: PMC9973247 DOI: 10.1007/s10709-023-00184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Weeping forsythia is a wide-spread shrub in China with important ornamental, medicinal and ecological values. It is widely distributed in China's warm temperate zone. In plants, WRKY transcription factors play important regulatory roles in seed germination, flower development, fruit ripening and coloring, and biotic and abiotic stress response. To date, WRKY transcription factors have not been systematically studied in weeping forsythia. In this study, we identified 79 WRKY genes in weeping forsythia and classified them according to their naming rules in Arabidopsis thaliana. Phylogenetic tree analysis showed that, except for IIe subfamily, whose clustering was inconsistent with A. thaliana clustering, other subfamily clustering groups were consistent. Cis-element analysis showed that WRKY genes related to pathogen resistance in weeping forsythia might be related to methyl jasmonate and salicylic acid-mediated signaling pathways. Combining cis-element and expression pattern analyses of WRKY genes showed that more than half of WRKY genes were involved in light-dependent development and morphogenesis in different tissues. The gene expression results showed that 13 WRKY genes were involved in drought response, most of which might be related to the abscisic acid signaling pathway, and a few of which might be regulated by MYB transcription factors. The gene expression results under cold stress showed that 17 WRKY genes were involved in low temperature response, and 9 of them had low temperature responsiveness cis-elements. Our study of WRKY family in weeping forsythia provided useful resources for molecular breeding and important clues for their functional verification.
Collapse
Affiliation(s)
- Ya-Lin Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Shu-Chen Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Fan Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Qian Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Hong-Li Liu
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China. .,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
13
|
Diao Q, Tian S, Cao Y, Yao D, Fan H, Zhang Y. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. Sci Rep 2023; 13:5004. [PMID: 36973323 PMCID: PMC10043268 DOI: 10.1038/s41598-023-31432-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractFlesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Collapse
|
14
|
Kim JY, Kim JH, Jang YH, Yu J, Bae S, Kim MS, Cho YG, Jung YJ, Kang KK. Transcriptome and Metabolite Profiling of Tomato SGR-Knockout Null Lines Using the CRISPR/Cas9 System. Int J Mol Sci 2022; 24:ijms24010109. [PMID: 36613549 PMCID: PMC9820150 DOI: 10.3390/ijms24010109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Stay-green 1 (SGR1) protein is a critical regulator of chlorophyll degradation and senescence in plant leaves; however, the functions of tomato SGR1 remain ambiguous. Here, we generated an SGR1-knockout (KO) null line via clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated gene editing and conducted RNA sequencing and gas chromatography−tandem mass spectrometry analysis to identify the differentially expressed genes (DEGs). Solanum lycopersicum SGR1 (SlSGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid levels than those in the wild-type (WT) fruit. Differential gene expression analysis revealed 728 DEGs between WT and sgr#1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, with fold-change >2 and adjusted p-value < 0.05. Most of the DEGs have functions related to photosynthesis, chloroplasts, and carotenoid biosynthesis. The strong changes in pigment and carotenoid content resulted in the accumulation of key primary metabolites, such as sucrose and its derivatives (fructose, galactinol, and raffinose), glycolytic intermediates (glucose, glucose-6-phosphate, and fructose-6-phosphate), and tricarboxylic acid cycle intermediates (malate and fumarate) in the leaves and fruit of the SGR-KO null lines. Overall, the SGR1-KO null lines developed here provide new evidence for the mechanisms underlying the roles of SGR1 as well as the molecular pathways involved in photosynthesis, chloroplasts, and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Hee Jang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (Y.J.J.); (K.K.K.); Tel.: +82-31-670-5101 (Y.J.J.); +82-31-670-5104 (K.K.K.)
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (Y.J.J.); (K.K.K.); Tel.: +82-31-670-5101 (Y.J.J.); +82-31-670-5104 (K.K.K.)
| |
Collapse
|
15
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
16
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
17
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Zhu F, Jadhav SS, Tohge T, Salem MA, Lee JM, Giovannoni JJ, Cheng Y, Alseekh S, Fernie AR. A comparative transcriptomics and eQTL approach identifies SlWD40 as a tomato fruit ripening regulator. PLANT PHYSIOLOGY 2022; 190:250-266. [PMID: 35512210 PMCID: PMC9434188 DOI: 10.1093/plphys/kiac200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
Although multiple vital genes with strong effects on the tomato (Solanum lycopersicum) ripening process have been identified via the positional cloning of ripening mutants and cloning of ripening-related transcription factors (TFs), recent studies suggest that it is unlikely that we have fully characterized the gene regulatory networks underpinning this process. Here, combining comparative transcriptomics and expression QTLs, we identified 16 candidate genes involved in tomato fruit ripening and validated them through virus-induced gene silencing analysis. To further confirm the accuracy of the approach, one potential ripening regulator, SlWD40 (WD-40 repeats), was chosen for in-depth analysis. Co-expression network analysis indicated that master regulators such as RIN (ripening inhibitor) and NOR (nonripening) as well as vital TFs including FUL1 (FRUITFUL1), SlNAC4 (NAM, ATAF1,2, and CUC2 4), and AP2a (Activating enhancer binding Protein 2 alpha) strongly co-expressed with SlWD40. Furthermore, SlWD40 overexpression and RNAi lines exhibited substantially accelerated and delayed ripening phenotypes compared with the wild type, respectively. Moreover, transcriptome analysis of these transgenics revealed that expression patterns of ethylene biosynthesis genes, phytoene synthase, pectate lyase, and branched chain amino transferase 2, in SlWD40-RNAi lines were similar to those of rin and nor fruits, which further demonstrated that SlWD40 may act as an important ripening regulator in conjunction with RIN and NOR. These results are discussed in the context of current models of ripening and in terms of the use of comparative genomics and transcriptomics as an effective route for isolating causal genes underlying differences in genotypes.
Collapse
Affiliation(s)
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Menoufia 32511, Egypt
| | | | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | | | | |
Collapse
|
19
|
Zhao Y, Duan X, Wang L, Gao G, Xu C, Qi H. Transcription Factor CmNAC34 Regulated CmLCYB-Mediated β-Carotene Accumulation during Oriental Melon Fruit Ripening. Int J Mol Sci 2022; 23:9805. [PMID: 36077205 PMCID: PMC9455964 DOI: 10.3390/ijms23179805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Ripened oriental melon (Cucumis melo) with orange-colored flesh is rich in β-carotene. Lycopene β-cyclase (LCYB) is the synthetic enzyme that directly controls the massive accumulation of β-carotene. However, the regulatory mechanism underlying the CmLCYB-mediated β-carotene accumulation in oriental melon is fairly unknown. Here, we screened and identified a transcription factor, CmNAC34, by combining bioinformatics analysis and yeast one-hybrid screen with CmLCYB promoter. CmNAC34 was located in the nucleus and acted as a transcriptional activator. The expression profile of CmNAC34 was consistent with that of CmLCYB during the fruit ripening. Additionally, the transient overexpression of CmNAC34 in oriental melon fruit promoted the expression of CmLCYB and enhanced β-carotene concentration, while transient silence of CmNAC34 in fruit was an opposite trend, which indicated CmNAC34 could modulate CmLCYB-mediated β-carotene biosynthesis in oriental melon. Finally, the yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), β-glucuronidase (GUS) analysis assay, and luciferase reporter (LUC) assay indicated that CmNAC34 could bind to the promoter of CmLCYB and positively regulated the CmLCYB transcription level. These findings suggested that CmNAC34 acted as an activator to regulate β-carotene accumulation by directly binding the promoter of CmLCYB, which provides new insight into the regulatory mechanism of carotenoid metabolism during the development and ripening of oriental melon.
Collapse
Affiliation(s)
| | | | | | | | - Chuanqiang Xu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
20
|
Dey SS, Sharma PK, Munshi AD, Jaiswal S, Behera TK, Kumari K, G. B, Iquebal MA, Bhattacharya RC, Rai A, Kumar D. Genome wide identification of lncRNAs and circRNAs having regulatory role in fruit shelf life in health crop cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884476. [PMID: 35991462 PMCID: PMC9383263 DOI: 10.3389/fpls.2022.884476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Cucumber is an extremely perishable vegetable; however, under room conditions, the fruits become unfit for consumption 2-3 days after harvesting. One natural variant, DC-48 with an extended shelf-life was identified, fruits of which can be stored up to 10-15 days under room temperature. The genes involved in this economically important trait are regulated by non-coding RNAs. The study aims to identify the long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) by taking two contrasting genotypes, DC-48 and DC-83, at two different fruit developmental stages. The upper epidermis of the fruits was collected at 5 days and 10 days after pollination (DAP) for high throughput RNA sequencing. The differential expression analysis was performed to identify differentially expressed (DE) lncRNAs and circRNAs along with the network analysis of lncRNA, miRNA, circRNA, and mRNA interactions. A total of 97 DElncRNAs were identified where 18 were common under both the developmental stages (8 down regulated and 10 upregulated). Based on the back-spliced reads, 238 circRNAs were found to be distributed uniformly throughout the cucumber genomes with the highest numbers (71) in chromosome 4. The majority of the circRNAs (49%) were exonic in origin followed by inter-genic (47%) and intronic (4%) origin. The genes related to fruit firmness, namely, polygalacturonase, expansin, pectate lyase, and xyloglucan glycosyltransferase were present in the target sites and co-localized networks indicating the role of the lncRNA and circRNAs in their regulation. Genes related to fruit ripening, namely, trehalose-6-phosphate synthase, squamosa promoter binding protein, WRKY domain transcription factors, MADS box proteins, abscisic stress ripening inhibitors, and different classes of heat shock proteins (HSPs) were also found to be regulated by the identified lncRNA and circRNAs. Besides, ethylene biosynthesis and chlorophyll metabolisms were also found to be regulated by DElncRNAs and circRNAs. A total of 17 transcripts were also successfully validated through RT PCR data. These results would help the breeders to identify the complex molecular network and regulatory role of the lncRNAs and circRNAs in determining the shelf-life of cucumbers.
Collapse
Affiliation(s)
- Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T. K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Boopalakrishnan G.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
21
|
Alseekh S, Zhu F, Vallarino JG, Sokolowska EM, Yoshida T, Bergmann S, Wendenburg R, Bolze A, Skirycz A, Avin-Wittenberg T, Fernie AR. Autophagy modulates the metabolism and growth of tomato fruit during development. HORTICULTURE RESEARCH 2022; 9:uhac129. [PMID: 35928403 PMCID: PMC9343920 DOI: 10.1093/hr/uhac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Although autophagy is a conserved mechanism operating across eukaryotes, its effects on crops and especially their metabolism has received relatively little attention. Indeed, whilst a few recent studies have used systems biology tools to look at the consequences of lack of autophagy in maize these focused on leaf tissues rather than the kernels. Here we utilized RNA interference (RNAi) to generate tomato plants that were deficient in the autophagy-regulating protease ATG4. Plants displayed an early senescence phenotype yet relatively mild changes in the foliar metabolome and were characterized by a reduced fruit yield phenotype. Metabolite profiling indicated that metabolites of ATG4-RNAi tomato leaves just exhibited minor alterations while that of fruit displayed bigger difference compared to the WT. In detail, many primary metabolites exhibited decreases in the ATG4-RNAi lines, such as proline, tryptophan and phenylalanine, while the representative secondary metabolites (quinic acid and 3-trans-caffeoylquinic acid) were present at substantially higher levels in ATG4-RNAi green fruits than in WT. Moreover, transcriptome analysis indicated that the most prominent differences were in the significant upregulation of organelle degradation genes involved in the proteasome or chloroplast vesiculation pathways, which was further confirmed by the reduced levels of chloroplastic proteins in the proteomics data. Furthermore, integration analysis of the metabolome, transcriptome and proteome data indicated that ATG4 significantly affected the lipid metabolism, chlorophyll binding proteins and chloroplast biosynthesis. These data collectively lead us to propose a more sophisticated model to explain the cellular co-ordination of the process of autophagy.
Collapse
Affiliation(s)
| | | | - José G Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Susan Bergmann
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Antje Bolze
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Boyce Thompson Institute, 14850, Ithaca, US
| | | | | |
Collapse
|
22
|
Effect of transportation temperature on tomato fruit quality: chilling injury and relationship between mass loss and a*values. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
24
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
25
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
26
|
Identification of yield-related genes through genome-wide association: case study of weeping forsythia, an emerging medicinal crop. Genes Genomics 2022; 44:145-154. [PMID: 34767154 PMCID: PMC8586636 DOI: 10.1007/s13258-021-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022]
Abstract
KEY MESSAGE This study identified candidate genes related to fruit yield for an emerging medicinal crop, weeping forsythia. BACKGROUND The genetic basis of crop yield is an agricultural research hotspot. Identifying the genes related to yield traits is the key to increase the yield. Weeping forsythia is an emerging medicinal crop that currently lacks excellent varieties. The genes related to fruit yield in weeping forsythia have not been identified. OBJECTIVE Thus, we aimed to screen the candidate genes related to fruit yield of weeping forsythia by using genome-wide association analysis. METHODS Here, 60 samples from the same field and source of weeping forsythia were collected to identify its yield-related candidate genes. Association analysis was performed on the variant loci and the traits related to yield, i.e., fruit length, width, thickness, and weight. RESULTS Results from admixture, neighbor-joining, and kinship matrix analyses supported the non-significant genetic differentiation of these samples. Significant association was found between 2 variant loci and fruit length, 8 loci and fruit width, 24 loci and fruit thickness, and 13 loci and fruit weight. Further search on the 20 kb up/downstream of these variant loci revealed 1 gene related to fruit length, 16 genes related to fruit width, 12 genes related to fruit thickness, and 13 genes related to fruit weight. Among which, 4 genes, namely, WRKY transcription factor 35, salicylic acid-binding protein, auxin response factor 6, and alpha-mannosidase were highly related to the fruit development of weeping forsythia. CONCLUSION This study identify four candidate genes related to fruit development, which will provide useful information for the subsequent molecular-assisted and genetic breeding of weeping forsythia.
Collapse
|
27
|
Ma L, Zeng N, Cheng K, Li J, Wang K, Zhang C, Zhu H. Changes in fruit pigment accumulation, chloroplast development, and transcriptome analysis in the CRISPR/Cas9-mediated knockout of Stay-green 1 (slsgr1) mutant. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The green-flesh (gf) mutant of the tomato fruit ripen to a muddy brown color and has been demonstrated previously to be a loss-of-function mutant. Here, we provide more evidence to support this view that SlSGR1 is involved in color change in ripening tomato fruits. Knocking out SlSGR1 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy showed obviously a muddy brown color with significantly higher chlorophyll and carotenoid content compared with wild-type (WT) fruits. To further verify the role of SlSGR1 in fruit color change, we performed transcriptome deep sequencing (RNA-seq) analysis, where a total of 354 differentially expressed genes (124/230 downregulated/upregulated) were identified between WT and slsgr1. Additionally, the expression of numerous genes associated with photosynthesis and chloroplast function changed significantly when SlSGR1 was knocked out. Taken together, these results indicate that SlSGR1 is involved in color change in ripening fruit via chlorophyll degradation and carotenoid biosynthesis.
Collapse
|
28
|
Jing W, Zhao Q, Zhang S, Zeng D, Xu J, Zhou H, Wang F, Liu Y, Li Y. RhWRKY33 Positively Regulates Onset of Floral Senescence by Responding to Wounding- and Ethylene-Signaling in Rose Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:726797. [PMID: 34804083 PMCID: PMC8602865 DOI: 10.3389/fpls.2021.726797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Rose plants are one of the most important horticultural crops, whose commercial value mainly depends on long-distance transportation, and wounding and ethylene are the main factors leading to their quality decline and accelerated senescence in the process. However, underlying molecular mechanisms of crosstalk between wounding and ethylene in the regulation of flower senescence remain poorly understood. In relation to this, transcriptome analysis was performed on rose flowers subjected to various treatments, including control, wounding, ethylene, and wounding- and ethylene- (EW) dual treatment. A large number of differentially expressed genes (DEGs) were identified, ranging from 2,442 between the ethylene- and control-treated groups to 4,055 between the EW- and control-treated groups. Using weighted gene co-expression network analysis (WGCNA), we identified a hub gene RhWRKY33 (rchiobhmchr5g0071811), accumulated in the nucleus, where it may function as a transcription factor. Moreover, quantitative reverse transcription PCR (RT-qPCR) results showed that the expression of RhWRKY33 was higher in the wounding-, ethylene, and EW-treated petals than in the control-treated petals. We also functionally characterized the RhWRKY33 gene through virus-induced gene silencing (VIGS). The silencing of RhWRKY33 significantly delayed the senescence process in the different treatments (control, wounding, ethylene, and EW). Meanwhile, we found that the effect of RhWRKY33-silenced petals under ethylene and EW dual-treatment were stronger than those under wounding treatment in delaying the petal senescence process, implying that RhWRKY33 is closely involved with ethylene and wounding mediated petal senescence. Overall, the results indicate that RhWRKY33 positively regulates the onset of floral senescence mediated by both ethylene and wounding signaling, but relies heavily on ethylene signaling.
Collapse
Affiliation(s)
- Weikun Jing
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Qingcui Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Shuai Zhang
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Daxing Zeng
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Jiehua Xu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yang Liu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
29
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
30
|
Extension of Solanaceae Food Crops Shelf Life by the Use of Elicitors and Sustainable Practices During Postharvest Phase. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02713-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li R, Shi CL, Wang X, Meng Y, Cheng L, Jiang CZ, Qi M, Xu T, Li T. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. PLANT PHYSIOLOGY 2021; 186:1288-1301. [PMID: 33711162 PMCID: PMC8195514 DOI: 10.1093/plphys/kiab121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
In many fruiting plant species, flower abscission is induced by low light stress. Here, we elucidated how signaling mediated by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls low light-induced flower drop in tomato (Solanum lycopersicum). We analyzed the expression patterns of an IDA-Like gene (SlIDL6) during low light-induced flower abscission, and used tandem mass spectrometry to identify and characterize the mature SlIDL6 peptide. Tomato knockout lines were created to investigate the in vivo function of SlIDL6. In addition, yeast one-hybrid assays were used to investigate the binding of the SlWRKY17 transcription factor to the SlIDL6 promoter, and silencing of SlWRKY17 expression delayed low light-induced flower abscission. SlIDL6 was specifically expressed in the abscission zone and at high levels during low light-induced abscission and ethylene treatment. SlIDL6 knockout lines showed delayed low light-induced flower drop, and the application of SlIDL6 peptide accelerated abscission. Overexpression of SlIDL6 rescued the ida mutant phenotype in Arabidopsis (Arabidopsis thaliana), suggesting functional conservation between species. SlIDL6-mediated abscission was via an ethylene-independent pathway. We report a SlWRKY17-SlIDL6 regulatory module that functions in low light promoted abscission by increasing the expression of enzymes involved in cell wall remodeling and disassembly.
Collapse
Affiliation(s)
- Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Chun-Lin Shi
- Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yan Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, California 95616, USA
- Department of Plant Sciences, University of California, California 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Author for communication:
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
32
|
Cao Z, Wu P, Gao H, Xia N, Jiang Y, Tang N, Liu G, Chen Z. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence. Genes Genomics 2021; 44:219-235. [PMID: 34110609 DOI: 10.1007/s13258-021-01118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lonicera macranthoides is an important woody plant with high medicinal values widely cultivated in southern China. WRKY, one of the largest transcription factor families, participates in plant development, senescence, and stress responses. However, a comprehensive study of the WRKY family in L. macranthoides hasn't been reported previously. OBJECTIVE To establish an extensive overview of the WRKY family in L. macranthoides and identify senescence-responsive members of LmWRKYs. METHODS RNA-Seq and phylogenetic analysis were employed to identify the LmWRKYs and their evolutionary relationships. Quantitative real-time (qRT-PCR) and transgenic technology was utilized to investigate the roles of LmWRKYs in response to developmental-, cold-, and ethylene-induced senescence. RESULTS A total of 61 LmWRKY genes with a highly conserved motif WRKYGQK were identified. Phylogenetic analysis of LmWRKYs together with their orthologs from Arabidopsis classified them into three groups, with the number of 15, 39, and 7, respectively. 17 LmWRKYs were identified to be differentially expressed between young and aging leaves by RNA-Seq. Further qRT-PCR analysis showed 15 and 5 LmWRKY genes were significantly induced responding to tissue senescence in leaves and stems, respectively. What's more, five LmWRKYs, including LmWRKY4, LmWRKY5, LmWRKY6, LmWRKY11, and LmWRKY16 were dramatically upregulated under cold and ethylene treatment in both leaves and stems, indicating their involvements commonly in developmental- and stress-induced senescence. In addition, function analysis revealed LmWRKY16, a homolog of AtWRKY75, can accelerate plant senescence, as evidenced by leaf yellowing during reproductive growth in LmWRKY16-overexpressing tobaccos. CONCLUSION The results lay the foundation for molecular characterization of LmWRKYs in plant senescence.
Collapse
Affiliation(s)
- Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
33
|
Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4269-4282. [PMID: 33773493 DOI: 10.1093/jxb/erab113] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Fruit quality in most fleshy fruit crops is fundamentally linked to ripening-associated traits, including changes in colour. In many climacteric fruits, including tomato (Solanum lycopersicum), the phytohormone ethylene plays a key role in regulating ripening. Previous map-based cloning of YELLOW FRUITED-TOMATO 1 (YFT1) revealed that it encodes the EIN2 protein, a core component in ethylene signal transduction. A YFT1 allele with a genetic lesion was found to be down-regulated in the yft1 tomato mutant that has a yellow fruit phenotype and perturbed ethylene signalling. Based on bioinformatic analysis, yeast one hybrid assays and electrophoretic mobility shift assays, we report that transcription factor WRKY32 regulates tomato fruit colour formation. WRKY32 binds to W-box and W-box-like motifs in the regulatory region of the YFT1 promoter and induces its expression. In tomato fruits of WRKY32-RNAi generated lines, ethylene signalling was reduced, leading to a suppression in ethylene emission, a delay in chromoplast development, decreased carotenoid accumulation, and a yellow fruit phenotype. These results provide new insights into the regulatory networks that govern tomato fruit colour formation via ethylene signal transduction.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaozhu Fan
- Branch Institute of Horticulture, Harbin Academy of Agricultural Science, Harbin, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Kuang J, Wu C, Guo Y, Walther D, Shan W, Chen J, Chen L, Lu W. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:477-489. [PMID: 32920977 PMCID: PMC7955892 DOI: 10.1111/pbi.13477] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a critical phase in the production and marketing of fruits. Previous studies have indicated that fruit ripening is a highly coordinated process, mainly regulated at the transcriptional level, in which transcription factors play essential roles. Thus, identifying key transcription factors regulating fruit ripening as well as their associated regulatory networks promises to contribute to a better understanding of fruit ripening. In this study, temporal gene expression analyses were performed to investigate banana fruit ripening with the aim to discern the global architecture of gene regulatory networks underlying fruit ripening. Eight time points were profiled covering dynamic changes of phenotypes, the associated physiology and levels of known ripening marker genes. Combining results from a weighted gene co-expression network analysis (WGCNA) as well as cis-motif analysis and supported by EMSA, Y1H, tobacco-, banana-transactivation experimental results, the regulatory network of banana fruit ripening was constructed, from which 25 transcription factors were identified as prime candidates to regulate the ripening process by modulating different ripening-related pathways. Our study presents the first global view of the gene regulatory network involved in banana fruit ripening, which may provide the basis for a targeted manipulation of fruit ripening to attain higher banana and loss-reduced banana commercialization.
Collapse
Affiliation(s)
- Jian‐Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Chao‐Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Fan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Dirk Walther
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
35
|
Zarid M, García-Carpintero V, Esteras C, Esteva J, Bueso MC, Cañizares J, Picó MB, Monforte AJ, Fernández-Trujillo JP. Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:754-777. [PMID: 32713003 DOI: 10.1002/jsfa.10688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A near-isogenic line (NIL) of melon (SC10-2) with introgression in linkage group X was studied from harvest (at firm-ripe stage of maturity) until day 18 of postharvest storage at 20.5 °C together with its parental control ('Piel de Sapo', PS). RESULTS SC10-2 showed higher flesh firmness and whole fruit hardness but lower juiciness than its parental. SC10-2 showed a decrease in respiration rate accompanied by a decrease in ethylene production during ripening, both of which fell to a greater extent than in PS. The introgression affected 11 volatile organic compounds (VOCs), the levels of which during ripening were generally higher in SC10-2 than in PS. Transcriptomic analysis from RNA-Seq revealed differentially expressed genes (DEGs) associated with the effects studied. For example, 909 DEGs were exclusive to the introgression, and only 23 DEGs were exclusive to postharvest ripening time. Major functions of the DEGs associated with introgression or ripening time were identified by cluster analysis. About 37 genes directly and/or indirectly affected the delay in ripening of SC10-2 compared with PS in general and, more particularly, the physiological and quality traits measured and, probably, the differential non-climacteric response. Of the former genes, we studied in more detail at least five that mapped in the introgression in linkage group (LG) X, and 32 outside it. CONCLUSION There is an apparent control of textural changes, VOCs and fruit ripening by an expression quantitative trait locus located in LG X together with a direct control on them due to genes presented in the introgression (CmTrpD, CmNADH1, CmTCP15, CmGDSL esterase/lipase, and CmHK4-like) and CmNAC18. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed Zarid
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
| | - Victor García-Carpintero
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Cristina Esteras
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Juan Esteva
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, CMN, UPCT, Cartagena, Spain
| | - Joaquín Cañizares
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - María B Picó
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC/Universidad Politécnica de Valencia (UPV), Ciudad Politécnica de la Innovación, Valencia, Spain
| | - J Pablo Fernández-Trujillo
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, CMN, UPCT, Cartagena, Spain
| |
Collapse
|
36
|
Pu H, Shan S, Wang Z, Duan W, Tian J, Zhang L, Li J, Song H, Xu X. Dynamic Changes of DNA Methylation Induced by Heat Treatment Were Involved in Ethylene Signal Transmission and Delayed the Postharvest Ripening of Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8976-8986. [PMID: 32686929 DOI: 10.1021/acs.jafc.0c02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation plays an important role in fruit ripening and senescence. Here, the role of DNA methylation of the CpG island of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 genes induced by heat treatment (37 °C) in postharvest ripening of tomato fruit was studied. After heat treatment, the firmness and vitamin C content showed higher levels, the loss of aldehydes in volatile components was delayed, and the activities of methylase and demethylase decreased in tomato fruit. Moreover, in heat-treated fruit, significant changes in DNA methylation of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 were induced, the expression of LeERT10 and LeEIN3 was inhibited, the expression of SlERF-A1 was increased, by which ethylene signal transmission might be suppressed and the postharvest ripening of tomato fruit was delayed. The present study provided valuable information for understanding the essential role of DNA methylation in the postharvest ripening of tomato fruit.
Collapse
Affiliation(s)
- Huili Pu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuangshuang Shan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenhui Duan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jixin Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Hongmiao Song
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangbin Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Sharma D, Koul A, Kaul S, Dhar MK. Tissue-specific transcriptional regulation and metabolite accumulation in tomato (Solanum lycopersicum L.). PROTOPLASMA 2020; 257:1093-1108. [PMID: 32152722 DOI: 10.1007/s00709-020-01492-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 05/02/2023]
Abstract
Tomato is an excellent model for studying fruit development, ripening, and other secondary metabolic pathways such as carotenoid biosynthetic pathway, flavonoid pathway, and many more. Tomato fruit development and ripening occurs under tight genetic control and involves the expression of thousands of genes affecting fruit quality and accumulation of pigments and metabolites. Here, we have described the development of a microarray platform that has allowed establishment of a framework for quantification of the expression of large number of genes and transcription factors possibly regulating various secondary metabolic pathways in tomato. To unravel the molecular mechanisms of fruit development and ripening, a tomato 60-mer oligonucleotide 44 K microarray along with the custom array for many genes and transcription factors was designed and validated in the fruit and leaf tissues. Comparative profiling of gene expression studies has allowed us to identify a large number of differentially expressed genes and transcription factors. Gene ontology revealed the involvement of these genes in various biological, cellular, and molecular processes like isoprenoid, terpenoid, pigment, ethylene biosynthesis, phytohormone signaling, and fruit ripening. Further, correlation, as well as differential expression studies, has revealed that several transcription factors like RIN, AGAMOUS, TAGL1, MYB, MADS-box etc. could be the possible regulators of various secondary metabolic pathways. The present study has identified various metabolites, their biosynthetic pathways and genes which may possibly be controlled by different transcription factors. The present findings have laid a base for understanding the transcriptional and metabolic shifts which occur in parallel during programmed fruit ripening and developmental processes in tomato.
Collapse
Affiliation(s)
- Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Archana Koul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
38
|
Gómez-Martín C, Capel C, González AM, Lebrón R, Yuste-Lisbona FJ, Hackenberg M, Oliver JL, Santalla M, Lozano R. Transcriptional Dynamics and Candidate Genes Involved in Pod Maturation of Common Bean ( Phaseolus vulgaris L.). PLANTS 2020; 9:plants9040545. [PMID: 32331491 PMCID: PMC7238275 DOI: 10.3390/plants9040545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023]
Abstract
Pod maturation of common bean relies upon complex gene expression changes, which in turn are crucial for seed formation and dispersal. Hence, dissecting the transcriptional regulation of pod maturation would be of great significance for breeding programs. In this study, a comprehensive characterization of expression changes has been performed in two common bean cultivars (ancient and modern) by analyzing the transcriptomes of five developmental pod stages, from fruit setting to maturation. RNA-seq analysis allowed for the identification of key genes shared by both accessions, which in turn were homologous to known Arabidopsis maturation genes and furthermore showed a similar expression pattern along the maturation process. Gene- expression changes suggested a role in promoting an accelerated breakdown of photosynthetic and ribosomal machinery associated with chlorophyll degradation and early activation of alpha-linolenic acid metabolism. A further study of transcription factors and their DNA binding sites revealed three candidate genes whose functions may play a dominant role in regulating pod maturation. Altogether, this research identifies the first maturation gene set reported in common bean so far and contributes to a better understanding of the dynamic mechanisms of pod maturation, providing potentially useful information for genomic-assisted breeding of common bean yield and pod quality attributes.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada. 18071 Granada, Spain; (C.G.-M.); (M.H.); (J.L.O.)
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería. 04120 Almería, Spain; (C.C.); (F.J.Y.-L.)
| | - Ana M. González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia – CSIC. P.O. Box 28. 36080 Pontevedra, Spain; (A.M.G.); (M.S.)
| | - Ricardo Lebrón
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada. 18071 Granada, Spain; (C.G.-M.); (M.H.); (J.L.O.)
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería. 04120 Almería, Spain; (C.C.); (F.J.Y.-L.)
| | - Michael Hackenberg
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada. 18071 Granada, Spain; (C.G.-M.); (M.H.); (J.L.O.)
| | - José L. Oliver
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada. 18071 Granada, Spain; (C.G.-M.); (M.H.); (J.L.O.)
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia – CSIC. P.O. Box 28. 36080 Pontevedra, Spain; (A.M.G.); (M.S.)
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería. 04120 Almería, Spain; (C.C.); (F.J.Y.-L.)
- Correspondence: ; Tel.: +34-950015111
| |
Collapse
|
39
|
Song Y, Li J, Sui Y, Han G, Zhang Y, Guo S, Sui N. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:603-614. [PMID: 32052233 DOI: 10.1007/s11103-020-00966-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor family is involved in responding to biotic and abiotic stresses. Its members contain a typical WRKY domain and can regulate plant physiological responses by binding to W-boxes in the promoter regions of downstream target genes. We identified the sweet sorghum SbWRKY50 (Sb09g005700) gene, which encodes a typical class II of the WRKY family protein that localizes to the nucleus and has transcriptional activation activity. The expression of SbWRKY50 in sweet sorghum was reduced by salt stress, and its ectopic expression reduced the salt tolerance of Arabidopsis thaliana plants. Compared with the wild type, the germination rate, root length, biomass and potassium ion content of SbWRKY50 over-expression plants decreased significantly under salt-stress conditions, while the hydrogen peroxide, superoxide anion and sodium ion contents increased. Real-time PCR results showed that the expression levels of AtSOS1, AtHKT1 and genes related to osmotic and oxidative stresses in over-expression strains decreased under salt-stress conditions. Luciferase complementation imaging and yeast one-hybrid assays confirmed that SbWRKY50 could directly bind to the upstream promoter of the SOS1 gene in A. thaliana. However, in sweet sorghum, SbWRKY50 could directly bind to the upstream promoters of SOS1 and HKT1. These results suggest that the new WRKY transcription factor SbWRKY50 participates in plant salt response by controlling ion homeostasis. However, the regulatory mechanisms are different in sweet sorghum and Arabidopsis, which may explain their different salt tolerance levels. The data provide information that can be applied to genetically modifying salt tolerance in different crop varieties.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
40
|
Lv J, Zhang M, Bai L, Han X, Ge Y, Wang W, Li J. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage. Food Chem 2020; 308:125707. [DOI: 10.1016/j.foodchem.2019.125707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
|
41
|
Sun T, Li L. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110331. [PMID: 31779888 DOI: 10.1016/j.plantsci.2019.110331] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Carotenoids are essential pigments to plants and important natural products to humans. Carotenoids as both primary and specialized metabolites fulfill multifaceted functions in plants. As such, carotenoid accumulation (a net process of biosynthesis, degradation and sequestration) is subjected to complicated regulation throughout plant life cycle in response to developmental and environmental signals. Investigation of transcriptional regulation of carotenoid metabolic genes remains the focus in understanding the regulatory control of carotenoid accumulation. While discovery of bona fide carotenoid metabolic regulators is still challenging, the recent progress of identification of various transcription factors and regulators helps us to construct hierarchical regulatory network of carotenoid accumulation. The elucidation of carotenoid regulatory mechanisms at protein level and in chromoplast provides some insights into post-translational regulation of carotenogenic enzymes and carotenoid sequestration in plastid sink. This review briefly describes the pathways and main flux-controlling steps for carotenoid accumulation in plants. It highlights our recent understanding of the regulatory mechanisms underlying carotenoid accumulation at both transcriptional and post-translational levels. It also discusses the opportunities to expand toolbox for further shedding light upon the intrinsic regulation of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
42
|
Effect of operational conditions on photocatalytic ethylene degradation applied to control tomato ripening. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Zhou R, Xu L, Zhao L, Wang Y, Zhao T. Genome-wide identification of circRNAs involved in tomato fruit coloration. Biochem Biophys Res Commun 2018; 499:466-469. [PMID: 29580993 DOI: 10.1016/j.bbrc.2018.03.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are an emerging class of non-coding RNAs in plants. Our aim is to identify the circRNAs with different expression levels between tomato fruits from two cultivars ('Jinling Fenyu' and 'Jinling Moyu') at two different developmental stages. Following high-throughput sequencing, 3796 circRNAs were identified, and 243 circRNAs were shared in the four samples. As compared with the fruit at mature green stage, the expression levels of 273 and 89 circRNAs were significantly altered in the fruit at turning stage from 'Jinling Fenyu' and 'Jinling Moyu', respectively. Moreover, the parental genes of the circRNAs with significantly different expression level were mainly involved in metabolic, cellular and single-organism process and played roles in catalytic activity and binding based on GO (Gene Ontology) analysis. The results suggested that circRNAs were widespread in tomato and were generated from different chromosomes and diverse genomic regions. Some circRNAs were specific in tomato fruits at different developmental stages, which enriches the number of circRNAs in plants involved in fruit coloration and ripening. This study provides the first genome-wide profile of circRNAs involved in tomato fruit coloration and lays a foundation for studying the potential biological functions of circRNAs involved in fruit ripening.
Collapse
Affiliation(s)
- Rong Zhou
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Jiangsu, Nanjing, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu, Nanjing, China
| | - Liping Xu
- Institute of Vegetable Research in Xining, Qinghai, Xining, China
| | - Liping Zhao
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Jiangsu, Nanjing, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu, Nanjing, China
| | - Yinlei Wang
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Jiangsu, Nanjing, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu, Nanjing, China
| | - Tongmin Zhao
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Jiangsu, Nanjing, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu, Nanjing, China.
| |
Collapse
|