1
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Ding F, Zhou M, Ren Y, Li Y, Xiang J, Li Y, Yu J, Hong Y, Fu Z, Li H, Pan Z, Liu B. Mitochondrial Extracellular Vesicles: A Promising Avenue for Diagnosing and Treating Lung Diseases. ACS NANO 2024; 18:25372-25404. [PMID: 39225081 DOI: 10.1021/acsnano.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mitochondria, pivotal organelles governing cellular biosynthesis, energy metabolism, and signal transduction, maintain dynamic equilibrium through processes such as biogenesis, fusion, fission, and mitophagy. Growing evidence implicates mitochondrial dysfunction in a spectrum of respiratory diseases including acute lung injury/acute respiratory distress syndrome, bronchial asthma, pulmonary fibrosis, chronic obstructive pulmonary disease, and lung cancer. Consequently, identifying methods capable of ameliorating damaged mitochondrial function is crucial for the treatment of pulmonary diseases. Extracellular vesicles (EVs), nanosized membrane vesicles released by cells into the extracellular space, facilitate intercellular communication by transferring bioactive substances or signals between cells or organs. Recent studies have identified abundant mitochondrial components within specific subsets of EVs, termed mitochondrial extracellular vesicles (mitoEVs), whose contents and compositions vary with disease progression. Moreover, mitoEVs have demonstrated reparative mitochondrial functions in injured recipient cells. However, a comprehensive understanding of mitoEVs is currently lacking, limiting their clinical translation prospects. This Review explores the biogenesis, classification, functional mitochondrial cargo, and biological effects of mitoEVs, with a focus on their role in pulmonary diseases. Emphasis is placed on their potential as biological markers and innovative therapeutic strategies in pulmonary diseases, offering fresh insights for mechanistic studies and drug development in various pulmonary disorders.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinying Ren
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinying Xiang
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuehan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Ying Hong
- Infection, Immunity, Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Zhou Fu
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongbo Li
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
4
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Sanford TC, Tweten RK, Abrahamsen HL. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response. Curr Opin Infect Dis 2024; 37:164-169. [PMID: 38527455 PMCID: PMC11042984 DOI: 10.1097/qco.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Many cholesterol-dependent cytolysin (CDC)-producing pathogens pose a significant threat to human health. Herein, we review the pore-dependent and -independent properties CDCs possess to assist pathogens in evading the host immune response. RECENT FINDINGS Within the last 5 years, exciting new research suggests CDCs can act to inhibit important immune functions, disrupt critical cell signaling pathways, and have tissue-specific effects. Additionally, recent studies have identified a key region of CDCs that generates robust immunity, providing resources for the development of CDC-based vaccines. SUMMARY This review provides new information on how CDCs alter host immune responses to aid bacteria in pathogenesis. These studies can assist in the design of more efficient vaccines and therapeutics against CDCs that will enhance the immune response to CDC-producing pathogens while mitigating the dampening effects CDCs have on the host immune response.
Collapse
Affiliation(s)
- Tristan C. Sanford
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Rodney K. Tweten
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Hunter L. Abrahamsen
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| |
Collapse
|
6
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
7
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Zhou X, Liu S, Lu Y, Wan M, Cheng J, Liu J. MitoEVs: A new player in multiple disease pathology and treatment. J Extracell Vesicles 2023; 12:e12320. [PMID: 37002588 PMCID: PMC10065981 DOI: 10.1002/jev2.12320] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Mitochondrial damage plays vital roles in the pathology of many diseases, such as cancers, neurodegenerative diseases, aging, metabolic diseases and many types of organ injury. However, the regulatory mechanism of mitochondrial functions among different cells or organs in vivo is still unclear, and efficient therapies for attenuating mitochondrial damage are urgently needed. Extracellular vesicles (EVs) are cell-derived nanovesicles that can deliver bioactive cargoes among cells or organs. Interestingly, recent evidence shows that diverse mitochondrial contents are enriched in certain EV subpopulations, and such mitoEVs can deliver mitochondrial components to affect the functions of recipient cells under different conditions, which has emerged as a hot topic in this field. However, the overview and many essential questions with respect to this event remain elusive. In this review, we provide a global view of mitoEVs biology and mainly focus on the detailed sorting mechanisms, functional mitochondrial contents, and diverse biological effects of mitoEVs. We also discuss the pathogenic or therapeutic roles of mitoEVs in different diseases and highlight their potential as disease biomarkers or therapies in clinical translation. This review will provide insights into the pathology and drug development for various mitochondrial injury-related diseases.
Collapse
Affiliation(s)
- Xiyue Zhou
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Yanrong Lu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital, Sichuan UniversityChengduChina
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
11
|
The Caenorhabditis elegans ARIP-4 DNA helicase couples mitochondrial surveillance to immune, detoxification, and antiviral pathways. Proc Natl Acad Sci U S A 2022; 119:e2215966119. [PMID: 36445965 PMCID: PMC9894117 DOI: 10.1073/pnas.2215966119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Surveillance of Caenorhabditis elegans mitochondrial status is coupled to defense responses such as drug detoxification, immunity, antiviral RNA interference (RNAi), and regulation of life span. A cytochrome p540 detoxification gene, cyp-14A4, is specifically activated by mitochondrial dysfunction. The nuclear hormone receptor NHR-45 and the transcriptional Mediator component MDT-15/MED15 are required for the transcriptional activation of cyp-14A4 by mitochondrial mutations, gene inactivations, or toxins. A genetic screen for mutations that fail to activate this cytochrome p450 gene upon drug or mutation-induced mitochondrial dysfunction identified a DNA helicase ARIP-4 that functions in concert with the NHR-45 transcriptional regulatory cascade. In response to mitochondrial dysfunction, ARIP-4 and NHR-45 protein interaction is enhanced, and they relocalize from the nuclear periphery to the interior of intestinal nuclei. NHR-45/ARIP-4 also regulates the transcriptional activation of the eol-1 gene that encodes a decapping enzyme required for enhanced RNAi and transgene silencing of mitochondrial mutants. In the absence of arip-4, animals were more susceptible to the mitochondrial inhibitor antimycin. Thus, ARIP-4 serves as a transcriptional coactivator of NHR-45 to promote this defense response. A null mutation in arip-4 extends the life span and health span of both wild type and a mitochondrial mutant, suggesting that the activation of detoxification pathways is deleterious to health when the mitochondrial dysfunction is caused by mutation that cannot be cytochrome p450-detoxified. Thus, arip-4 acts in a pathway that couples mitochondrial surveillance to the activation of downstream immunity, detoxification, and RNAi responses.
Collapse
|
12
|
Mitochondrial ROS production by neutrophils is required for host antimicrobial function against Streptococcus pneumoniae and is controlled by A2B adenosine receptor signaling. PLoS Pathog 2022; 18:e1010700. [DOI: 10.1371/journal.ppat.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Polymorphonuclear cells (PMNs) control Streptococcus pneumoniae (pneumococcus) infection through various antimicrobial activities. We previously found that reactive oxygen species (ROS) were required for optimal antibacterial function, however, the NADPH oxidase is known to be dispensable for the ability of PMNs to kill pneumococci. In this study, we explored the role of ROS produced by the mitochondria in PMN antimicrobial defense against pneumococci. We found that the mitochondria are an important source of overall intracellular ROS produced by murine PMNs in response to infection. We investigated the host and bacterial factors involved and found that mitochondrial ROS (MitROS) are produced independent of bacterial capsule or pneumolysin but presence of live bacteria that are in direct contact with PMNs enhanced the response. We further found that MyD88-/- PMNs produced less MitROS in response to pneumococcal infection suggesting that released bacterial products acting as TLR ligands are sufficient for inducing MitROS production in PMNs. To test the role of MitROS in PMN function, we used an opsonophagocytic killing assay and found that MitROS were required for the ability of PMNs to kill pneumococci. We then investigated the role of MitROS in host resistance and found that MitROS are produced by PMNs in response to pneumococcal infection. Importantly, treatment of mice with a MitROS scavenger prior to systemic challenge resulted in reduced survival of infected hosts. In exploring host pathways that control MitROS, we focused on extracellular adenosine, which is known to control PMN anti-pneumococcal activity, and found that signaling through the A2B adenosine receptor inhibits MitROS production by PMNs. A2BR-/- mice produced more MitROS and were significantly more resistant to infection. Finally, we verified the clinical relevance of our findings using human PMNs. In summary, we identified a novel pathway that controls MitROS production by PMNs, shaping host resistance against S. pneumoniae.
Collapse
|
13
|
Long G, Gong R, Wang Q, Zhang D, Huang C. Role of released mitochondrial DNA in acute lung injury. Front Immunol 2022; 13:973089. [PMID: 36059472 PMCID: PMC9433898 DOI: 10.3389/fimmu.2022.973089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of acute-onset hypoxemic respiratory failure characterised by an acute, diffuse, inflammatory lung injury, and increased alveolar-capillary permeability, which is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant mitochondria and mitochondrial DNA(mtDNA) level are associated with the development of ALI/ARDS, and plasma mtDNA level shows the potential to be a promising biomarker for clinical diagnosis and evaluation of lung injury severity. In mechanism, the mtDNA and its oxidised form, which are released from impaired mitochondria, play a crucial role in the inflammatory response and histopathological changes in the lung. In this review, we discuss mitochondrial outer membrane permeabilisation (MOMP), mitochondrial permeability transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs), and passive release as the principal mechanisms for the release of mitochondrial DNA into the cytoplasm and extracellular compartments respectively. Further, we explain how the released mtDNA and its oxidised form can induce inflammatory cytokine production and aggravate lung injury through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of interferon genes (STING) signalling (cGAS-STING) pathway, and inflammasomes activation. Additionally, we propose targeting mtDNA-mediated inflammatory pathways as a novel therapeutic approach for treating ALI/ARDS.
Collapse
Affiliation(s)
- Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| |
Collapse
|
14
|
Aghapour M, Tulen CBM, Abdi Sarabi M, Weinert S, Müsken M, Relja B, van Schooten FJ, Jeron A, Braun-Dullaeus R, Remels AH, Bruder D. Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci. Cells 2022; 11:1771. [PMID: 35681466 PMCID: PMC9179351 DOI: 10.3390/cells11111771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial functionality is crucial for the execution of physiologic functions of metabolically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke is known to impair mitochondrial function in AECs. However, the potential contribution of mitochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract (CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition, expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with indices of mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Sönke Weinert
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, 39120 Magdeburg, Germany;
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rüdiger Braun-Dullaeus
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
15
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
17
|
Marchi S, Morroni G, Pinton P, Galluzzi L. Control of host mitochondria by bacterial pathogens. Trends Microbiol 2021; 30:452-465. [PMID: 34656395 DOI: 10.1016/j.tim.2021.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Mitochondria control various processes that are integral to cellular and organismal homeostasis, including Ca2+ fluxes, bioenergetic metabolism, and cell death. Perhaps not surprisingly, multiple pathogenic bacteria have evolved strategies to subvert mitochondrial functions in support of their survival and dissemination. Here, we discuss nonimmunological pathogenic mechanisms that converge on the ability of bacteria to control the mitochondrial compartment of host cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Gianluca Morroni
- Department of Biomedical Sciences & Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
18
|
Mitochondrial DNA in innate immune responses against infectious diseases. Biochem Soc Trans 2021; 48:2823-2838. [PMID: 33155647 DOI: 10.1042/bst20200687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.
Collapse
|
19
|
de Torre-Minguela C, Gómez AI, Couillin I, Pelegrín P. Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. FASEB J 2021; 35:e21757. [PMID: 34233045 DOI: 10.1096/fj.202100085r] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
Pyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern.
Collapse
Affiliation(s)
- Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Ana I Gómez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics, CNRS, UMR7355, University of Orleans, Orleans, France
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
20
|
Letsiou E, Teixeira Alves LG, Fatykhova D, Felten M, Mitchell TJ, Müller-Redetzky HC, Hocke AC, Witzenrath M. Microvesicles released from pneumolysin-stimulated lung epithelial cells carry mitochondrial cargo and suppress neutrophil oxidative burst. Sci Rep 2021; 11:9529. [PMID: 33953279 PMCID: PMC8100145 DOI: 10.1038/s41598-021-88897-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Microvesicles (MVs) are cell-derived extracellular vesicles that have emerged as markers and mediators of acute lung injury (ALI). One of the most common pathogens in pneumonia-induced ALI is Streptococcus pneumoniae (Spn), but the role of MVs during Spn lung infection is largely unknown. In the first line of defense against Spn and its major virulence factor, pneumolysin (PLY), are the alveolar epithelial cells (AEC). In this study, we aim to characterize MVs shed from PLY-stimulated AEC and explore their contribution in mediating crosstalk with neutrophils. Using in vitro cell and ex vivo (human lung tissue) models, we demonstrated that Spn in a PLY-dependent manner stimulates AEC to release increased numbers of MVs. Spn infected mice also had higher levels of epithelial-derived MVs in their alveolar compartment compared to control. Furthermore, MVs released from PLY-stimulated AEC contain mitochondrial content and can be taken up by neutrophils. These MVs then suppress the ability of neutrophils to produce reactive oxygen species, a critical host-defense mechanism. Taken together, our results demonstrate that AEC in response to pneumococcal PLY release MVs that carry mitochondrial cargo and suggest that these MVs regulate innate immune responses during lung injury.
Collapse
Affiliation(s)
- E Letsiou
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany. .,Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - L G Teixeira Alves
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - D Fatykhova
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - M Felten
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - T J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - H C Müller-Redetzky
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - A C Hocke
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.,German Center for Lung Research, (DZL), Berlin, Germany
| | - M Witzenrath
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.,German Center for Lung Research, (DZL), Berlin, Germany
| |
Collapse
|
21
|
Lv H, Fang T, Kong F, Wang J, Deng X, Yu Q, Sun M, Liang X. Dryocrassin ABBA ameliorates Streptococcus pneumoniae-induced infection in vitro through inhibiting Streptococcus pneumoniae growth and neutralizing pneumolysin activity. Microb Pathog 2020; 150:104683. [PMID: 33309685 DOI: 10.1016/j.micpath.2020.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
To explore the role of dryocrassin ABBA (ABBA) in the prevention and treatment of Streptococcus pneumoniae (S. pneumoniae) infections in vitro, a minimal inhibitory concentration test, growth curve assay, hemolysis assay, BacLight LIVE/DEAD staining experiments, oligomerization inhibition assay, time-killing test, LDH release detection assay and cytotoxicity test were performed to evaluate the efficacy of ABBA against S. pneumoniae infections in vitro. The results indicated that ABBA treatment exists bactericidal effect on S. pneumoniae at a concentration of less than 8 μg/ml. Furthermore, ABBA was effective at inhibiting the oligomerization of pneumolysin (PLY) from reducing its hemolytic activity. Meanwhile, ABBA could ameliorate cell injury by neutralizing the biological activity of PLY without cytotoxicity. In summary, ABBA was a leading compound against S. pneumoniae infections through bactericidal effect and neutralizing PLY activity.
Collapse
Affiliation(s)
- Hongfa Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Tianqi Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Fanrong Kong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China.
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Guo Y, Gu R, Gan D, Hu F, Li G, Xu G. Mitochondrial DNA drives noncanonical inflammation activation via cGAS-STING signaling pathway in retinal microvascular endothelial cells. Cell Commun Signal 2020; 18:172. [PMID: 33115500 PMCID: PMC7592595 DOI: 10.1186/s12964-020-00637-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathological stimuli cause mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol, as demonstrated in many cell types. The cytosolic mtDNA then drives the activation of noninfectious inflammation. Retinal microvascular endothelial cells (RMECs) play an important role in the inner endothelial blood-retinal barrier (BRB). RMEC dysfunction frequently occurs in posterior-segment eye diseases, causing loss of vision. In this study, we investigated the involvement of cytosolic mtDNA in noninfectious immune inflammation in RMECs under pathological stimuli. METHODS RMECs were stimulated with 100 ng/ml lipopolysaccharide (LPS), 200 μM hydrogen peroxide (H2O2), or 25 mM D-glucose. After 24 h, immunofluorescent staining was used to detect the opening of the mitochondrial permeability transition pore (MPTP). Cytosolic mtDNA was detected with immunofluorescent staining and PCR after stimulation. mtDNA was then isolated and used to transfect RMECs in vitro, and the protein levels of cGAS were evaluated with western blotting. Real-time PCR was used to examine cGAS mRNA expression levels at different time points after mtDNA stimulation. The activation of STING was detected with immunofluorescent staining 6 h after mtDNA stimulation. Western blotting was used to determine the expression of STING and IFNβ, the phosphorylation status of TBK1, IRF3, and nuclear factor-κB (NF-κB) P65, and the nuclear translocation of IRF3 and NF-κB P65 at 0, 3, 6, 12, and 24 h. The mRNA expression of proinflammatory cytokines CCL4, CXCL10, and IFNB1, and transcription factor IRF1 were determined with real-time PCR, together with the concentrations of intercellular adhesion molecule 1 (ICAM-1) mRNA. RESULTS Pathological stimuli caused mtDNA to leak into the cytosol by opening the MPTP in RMECs after 24 h. Cytosolic mtDNA regulated the expression of cGAS and the distribution of STING in RMECs. It promoted ICAM-1, STING and IFNβ expression, TBK1, IRF3, and NF-κB phosphorylation and the nuclear translocation in RMECs at 12 and 24 h after its transfection. The mRNAs of proinflammatory cytokines CCL4, CXCL10, and IFNB1, and transcription factor IRF1 were significantly elevated at 12 and 24 h after mtDNA stimulation. CONCLUSIONS Pathological stimulation induces mtDNA escape into the cytosol of RMECs. This cytoplasmic mtDNA is recognized by the DNA sensor cGAS, increasing the expression of inflammatory cytokines through the STING-TBK1 signaling pathway. Video Abstract. (MP4 37490 kb).
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Dekang Gan
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Gang Li
- Eye Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China. .,Key Laboratory of Myopia of State Health Ministry, Shanghai, 200031, China.
| |
Collapse
|
23
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
24
|
Nerlich A, von Wunsch Teruel I, Mieth M, Hönzke K, Rückert JC, Mitchell TJ, Suttorp N, Hippenstiel S, Hocke AC. Reversion of Pneumolysin-Induced Executioner Caspase Activation Redirects Cells to Survival. J Infect Dis 2020; 223:1973-1983. [PMID: 33045080 DOI: 10.1093/infdis/jiaa639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/06/2020] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is an indispensable mechanism for eliminating infected cells and activation of executioner caspases is considered to be a point of no return. Streptococcus pneumoniae, the most common bacterial pathogen causing community-acquired pneumonia, induces apoptosis via its pore-forming toxin pneumolysin, leading to rapid influxes of mitochondrial calcium [Ca2+]m as well as fragmentation, and loss of motility and membrane potential, which is accompanied by caspase-3/7 activation. Using machine-learning and quantitative live-cell microscopy, we identified a significant number of alveolar epithelial cells surviving such executioner caspase activation after pneumolysin attack. Precise single-cell analysis revealed the [Ca2+]m amplitude and efflux rate as decisive parameters for survival and death, which was verified by pharmacological inhibition of [Ca2+]m efflux shifting the surviving cells towards the dying fraction. Taken together, we identified the regulation of [Ca2+]m as critical for controlling the cellular fate under pneumolysin attack, which might be useful for therapeutic intervention during pneumococcal infection.
Collapse
Affiliation(s)
- Andreas Nerlich
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Iris von Wunsch Teruel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren Mieth
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katja Hönzke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens C Rückert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Qi Z, Guo Y, Zhang H, Yu Q, Zhang P. Betulin attenuates pneumolysin-induced cell injury and DNA damage. J Appl Microbiol 2020; 130:843-851. [PMID: 32621771 DOI: 10.1111/jam.14769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS Pneumolysin, a pore-forming toxin, is an important virulence factor of Streptococcus pneumoniae with multiple biological activity, such as cell lysis and DNA damage. Thus, targeting this toxin is alternative strategy for the treatment of S. pneumoniae infection. METHODS AND RESULTS Haemolysin assay was performed to identify the potential PLY inhibitor. The mechanism by which betulin, a natural compound from birch bark, against PLY was determined via MICs determination, western blot analysis and oligomerization analysis. Cytotoxicity and Immunofluorescence assays were further used to evaluate the protection of betulin against PLY-induced cell injury and DNA damage. Here, betulin, a natural compound from birch bark, was indentified as an effective inhibitor of PLY. Importantly, at the concentrations required for such inhibition, betulin has no influence on S. pneumoniae viability or PLY production. The interaction of betulin with PLY restrict the olgomerizaiton of this toxin and, thus, directly neutralizing the activity of PLY. Additionally, betulin treatment alleviate PLY induced cells injury and DNA damage in the co-culture system of PLY and A549 cells. CONCLUSIONS Betulin could be used as a promising leading compound against S. pneumoniae virulence by directly targeting PLY without antibacterial activity. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented in this work provided a novel strategy and candidate for S. pneumoniae infection.
Collapse
Affiliation(s)
- Z Qi
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Y Guo
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - H Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Q Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - P Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Dimasuay KG, Schaunaman N, Martin RJ, Pavelka N, Kolakowski C, Gottlieb RA, Holguin F, Chu HW. Parkin, an E3 ubiquitin ligase, enhances airway mitochondrial DNA release and inflammation. Thorax 2020; 75:717-724. [PMID: 32499407 DOI: 10.1136/thoraxjnl-2019-214158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Parkin (Park2), an E3 ubiquitin ligase, is critical to maintain mitochondrial function by regulating mitochondrial biogenesis and degradation (mitophagy), but recent evidence suggests the involvement of Parkin in promoting inflammation. In the present study, we determined if Parkin regulates airway mitochondrial DNA (mtDNA) release and inflammatory responses to type 2 cytokine interleukin (IL)-13 and allergens. METHODS We measured Parkin mRNA expression in brushed bronchial epithelial cells and mtDNA release in the paired bronchoalveolar lavage fluid (BALF) from normal subjects and asthmatics. Parkin-deficient primary human tracheobronchial epithelial (HTBE) cells generated using the CRISPR-Cas9 system were stimulated with IL-13. To determine the in vivo function of Parkin, Parkin knockout (PKO) and wild-type (WT) mice were treated with IL-13 or allergen (house dust mite, HDM) in the presence or absence of mtDNA isolated from normal mouse lungs. RESULTS Parkin mRNA expression in asthmatic airway epithelium was upregulated, which positively correlated with the levels of released mtDNA in BALF. IL-13-stimulated HTBE cells increased Parkin expression. Moreover, IL-13 induced mtDNA release in Parkin-sufficient, but not in Parkin-deficient HTBE cells. PKO (vs WT) mice attenuated airway mtDNA release and inflammation following IL-13 or HDM treatments. mtDNA amplified airway inflammation in mice treated with IL-13 or HDM. Notably, Parkin also mediated mtDNA-induced exacerbation of airway inflammation. CONCLUSION Our research findings suggest that Parkin promotes mtDNA release and inflammation in airways, thus improving our understanding of the complex role of Parkin and mitochondrial dysfunction in asthma pathogenesis.
Collapse
Affiliation(s)
| | | | - Richard J Martin
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Nicole Pavelka
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Roberta A Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
27
|
Yan J, Liu W, Feng F, Chen L. VDAC oligomer pores: A mechanism in disease triggered by mtDNA release. Cell Biol Int 2020; 44:2178-2181. [PMID: 32716117 DOI: 10.1002/cbin.11427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/28/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022]
Abstract
A recent study suggests that voltage-dependent anion channel (VDAC) oligomer pores promote mitochondrial outer membrane permeabilization and allow mitochondrial DNA (mtDNA) to be released into the cytosol in live cells. It challenges the notion that only occurs in apoptotic cells via BAX/BAK macropores. Cytosolic mtDNA activates cyclic GMP-AMP synthase (cGAS)-stimulator of IFN gene (STING) pathway and triggers type I interferon (IFN) response thereafter, which ultimately causes systemic lupus erythematosus. Mechanistically, mtDNA can interact with three positively charged residues (Lys12, Arg15, and Lys20) at the N-terminus of VDAC1, thereby strengthening VDAC1 oligomerization and facilitating mtDNA release. In addition, there are other pathways that can mediate mtDNA release, such as BAX/BAK macropores and virus-derived pores. The mtDNA released into the cytosol also triggers type I IFN response via the generally accepted cGAS-STING-TANK-binding kinase 1-IFN regulatory factor 3 axis. Collectively, VDAC oligomer pores provide us an attractive direction for us to understand mtDNA release-related diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Feng
- School of Medicine, Shaoyang University, Shaoyang, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
28
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
29
|
Lee SF, Harris R, Stout-Delgado HW. Targeted antioxidants as therapeutics for treatment of pneumonia in the elderly. Transl Res 2020; 220:43-56. [PMID: 32268130 PMCID: PMC7989851 DOI: 10.1016/j.trsl.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
Community acquired pneumonia is a leading cause of mortality in the United States. Along with predisposing comorbid health status, age is an independent risk factor for determining the outcome of pneumonia. Research over the last few decades has contributed to better understanding the underlying immunodysregulation and imbalanced redox homeostasis tied to this aged population group that increases susceptibility to a wide range of pathologies. Major approaches include targeting oxidative stress by reducing ROS generation at its main sources of production which includes the mitochondrion. Mitochondria-targeted antioxidants have a number of molecular strategies that include targeting the biophysical properties of mitochondria, mitochondrial localization of catalytic enzymes, and mitigating mitochondrial membrane potential. Results of several antioxidant studies both in vitro and in vivo have demonstrated promising potential as a therapeutic in the treatment of pneumonia in the elderly. More human studies will need to be conducted to evaluate its efficacy in this clinical setting.
Collapse
Affiliation(s)
- Stefi F Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Rebecca Harris
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Heather W Stout-Delgado
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
30
|
Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med 2020; 152:455-461. [PMID: 31958498 DOI: 10.1016/j.freeradbiomed.2020.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial oxidant damage, including damage to mitochondrial DNA (mtDNA) is a feature of both severe microbial infections and inflammation arising from sterile (non-infectious) sources such as tissue trauma. Damaged mitochondria release intact or oxidized fragments of mtDNA into the cytoplasm, which represent oxidant injury, and the fragments promote a spontaneous innate immune response, exemplifying a modern frontier of immunological research. MtDNA and mitochondrial-derived oxidants are central factors in activating at least three innate immune pathways involving the TLR9 (Toll-like receptor 9), the NLRP3 (NACHT, LRR and PYD domains-containing protein-3) inflammasome, and the cGAS (cyclic AMP-GMP synthase) pathway. The events that allow mtDNA to escape from damaged mitochondria and from damaged cells are incompletely known, but the presence of cytoplasmic mtDNA and cell-free mtDNA as immune regulators are important for understanding the cell's capacity for protecting mitochondrial quality control (MQC) and cell viability during inflammatory states.
Collapse
|
31
|
Fang Y, Zhang X, Lu C, Yin Y, Hu X, Xu W, Liu Y, Wang H. Cytosolic mtDNA released from pneumolysin-damaged mitochondria triggers IFN-β production in epithelial cells. Can J Microbiol 2020; 66:435-445. [PMID: 32191844 DOI: 10.1139/cjm-2019-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumolysin (Ply) is a major virulence factor of Streptococcus pneumoniae. Ply-induced interferon-β (IFN-β) expression in host macrophages has been shown to be due to the accumulation of mitochondrial deoxyribonucleic acid (mtDNA) in the cytoplasm during S. pneumoniae infection. Our findings extend this work to show human bronchial epithelial cells that reside at the interface of inflammatory injury, BEAS-2B, adapt to local cues by altering mitochondrial states and releasing excess mtDNA. The results in this research showed that purified Ply induced the expression of IFN-β in human epithelial cells, which was accompanied by mitochondrial damage both in vivo and in vitro. The observations also were supported by the increased mtDNA concentrations in the bronchial lavage fluid of mice infected with S. pneumoniae. In summary, our study demonstrated that Ply triggered the production of IFN-β in epithelial cells, and this response was mediated by mtDNA released from Ply-damaged mitochondria. It displayed an impressive modulation of IFN-β response to S. pneumoniae in epithelial cells.
Collapse
Affiliation(s)
- Yuting Fang
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuemei Zhang
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chang Lu
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yibing Yin
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuexue Hu
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenchun Xu
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yusi Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Hong Wang
- School of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Pneumonia, an inflammatory disease, is the single largest infectious cause of death. Pneumonia has recently been established as an important contributing factor to major adverse cardiovascular events including heart failure. Developing an intermechanistic understanding of pneumonia and cardiovascular disease is crucial for successful future drug therapy and reducing healthcare expenditure. RECENT FINDINGS Up to 30% of patients admitted with pneumonia develop cardiovascular complications such as heart failure within 10 years of hospital discharge. Recent mechanistic studies have identified inflammation, pneumolysin, platelet activation, and thrombus formation at the center of cardiovascular disease progression. SUMMARY In this review, we will detail current knowledge of the mechanistic interaction between pneumonia and development of cardiovascular disease as well as discuss the current and potential drug therapy targets.
Collapse
|
33
|
Mitochondrial DNA: A Key Regulator of Anti-Microbial Innate Immunity. Genes (Basel) 2020; 11:genes11010086. [PMID: 31940818 PMCID: PMC7017290 DOI: 10.3390/genes11010086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2′-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.
Collapse
|
34
|
Hu X, Peng X, Lu C, Zhang X, Gan L, Gao Y, Yang S, Xu W, Wang J, Yin Y, Wang H. Type I
IFN
expression is stimulated by cytosolic Mt
DNA
released from pneumolysin‐damaged mitochondria via the
STING
signaling pathway in macrophages. FEBS J 2019; 286:4754-4768. [DOI: 10.1111/febs.15001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xiaoqiong Peng
- Department of Ultrasound The First Affiliated Hospital of Chongqing Medical University China
| | - Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| |
Collapse
|
35
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
36
|
Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285:635-652. [PMID: 30584680 DOI: 10.1111/joim.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that cardiovascular events (CVE) occur quite commonly, both in the acute phase and in the long-term, in patients with community-acquired pneumonia (CAP). CVE have been noted in up to 30% of patients hospitalized with all-cause CAP. One systematic review and meta-analysis of hospitalized patients with all-cause CAP noted that the incidence rates for overall cardiac events were 17.7%, for incident heart failure were 14.1%, for acute coronary syndromes were 5.3% and for incident cardiac arrhythmias were 4.7%. In the case of pneumococcal CAP, almost 20% of patients studied had one or more of these cardiac events. Recent research has provided insights into the pathogenesis of the acute cardiac events occurring in pneumococcal infections. With respect to the former, key involvements of the major pneumococcal protein virulence factor, pneumolysin, are now well documented, whilst systemic platelet-driven neutrophil activation may also contribute. However, events involved in the pathogenesis of the long-term cardiovascular sequelae remain largely unexplored. Emerging evidence suggests that persistent antigenaemia may predispose to the development of a systemic pro-inflammatory/prothrombotic phenotype underpinning the risk of future cardiovascular events. The current manuscript briefly reviews the occurrence of cardiovascular events in patients with all-cause CAP, as well as in pneumococcal and influenza infections. It highlights the close interaction between influenza and pneumococcal pneumonia. It also includes a brief discussion of mechanisms of the acute cardiac events in CAP. However, the primary focus is on the prevalence, pathogenesis and prevention of the longer-term cardiac sequelae of severe pneumococcal disease, particularly in the context of persistent antigenaemia and associated inflammation.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - B Henriques-Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - R Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
Scozzi D, Ibrahim M, Liao F, Lin X, Hsiao HM, Hachem R, Tague LK, Ricci A, Kulkarni HS, Huang HJ, Sugimoto S, Krupnick AS, Kreisel D, Gelman AE. Mitochondrial damage-associated molecular patterns released by lung transplants are associated with primary graft dysfunction. Am J Transplant 2019; 19:1464-1477. [PMID: 30582269 PMCID: PMC6482093 DOI: 10.1111/ajt.15232] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/12/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
Primary graft dysfunction (PGD) is a major limitation in short- and long-term lung transplant survival. Recent work has shown that mitochondrial damage-associated molecular patterns (mtDAMPs) can promote solid organ injury, but whether they contribute to PGD severity remains unclear. We quantitated circulating plasma mitochondrial DNA (mtDNA) in 62 patients, before lung transplantation and shortly after arrival to the intensive care unit. Although all recipients released mtDNA, high levels were associated with severe PGD development. In a mouse orthotopic lung transplant model of PGD, we detected airway cell-free damaged mitochondria and mtDNA in the peripheral circulation. Pharmacologic inhibition or genetic deletion of formylated peptide receptor 1 (FPR1), a chemotaxis sensor for N-formylated peptides released by damaged mitochondria, inhibited graft injury. An analysis of intragraft neutrophil-trafficking patterns reveals that FPR1 enhances neutrophil transepithelial migration and retention within airways but does not control extravasation. Using donor lungs that express a mitochondria-targeted reporter protein, we also show that FPR1-mediated neutrophil trafficking is coupled with the engulfment of damaged mitochondria, which in turn triggers reactive oxygen species (ROS)-induced pulmonary edema. Therefore, our data demonstrate an association between mtDAMP release and PGD development and suggest that neutrophil trafficking and effector responses to damaged mitochondria are drivers of graft damage.
Collapse
Affiliation(s)
- Davide Scozzi
- Department of Surgery, Washington University School, St. Louis, Missouri
- Department of Clinical & Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Department of Surgery, Washington University School, St. Louis, Missouri
- Department Medical-Surgical Science & Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Fuyi Liao
- Department of Surgery, Washington University School, St. Louis, Missouri
| | - Xue Lin
- Department of Surgery, Washington University School, St. Louis, Missouri
| | - Hsi-Min Hsiao
- Department of Surgery, Washington University School, St. Louis, Missouri
| | - Ramsey Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Laneshia K Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alberto Ricci
- Department of Clinical & Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Hrishikesh S Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Howard J Huang
- Houston Methodist J. C. Walter Jr. Transplant Center, Houston, Texas
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Alexander S Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daniel Kreisel
- Department of Surgery, Washington University School, St. Louis, Missouri
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew E Gelman
- Department of Surgery, Washington University School, St. Louis, Missouri
- Department Medical-Surgical Science & Translational Medicine, Sapienza University of Rome, Rome, Italy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
38
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
39
|
Plataki M, Cho SJ, Harris RM, Huang HR, Yun HS, Schiffer KT, Stout-Delgado HW. Mitochondrial Dysfunction in Aged Macrophages and Lung during Primary Streptococcus pneumoniae Infection is Improved with Pirfenidone. Sci Rep 2019; 9:971. [PMID: 30700745 PMCID: PMC6353918 DOI: 10.1038/s41598-018-37438-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Pneumococcal infections remain a leading cause of death in older adults, with the most serious cases occurring in persons ≥65 years of age. There is an urgent need to investigate molecular pathways underlying these impairments and devise new therapeutics to modulate innate immunity. The goal of our current study is to understand the impact of chronological aging on mitochondrial function in response to Streptococcus pneumoniae, a causative agent of bacterial pneumonia. Using chronologically aged murine models, our findings demonstrate that decreased ATP production is associated with dysregulated mitochondrial complex expression, enhanced oxidative stress, diminished antioxidant responses, and decreased numbers of healthy mitochondria in aged adult macrophages and lung in response to S. pneumoniae. Pre-treatment of aged macrophages with pirfenidone, an anti-fibrotic drug with antioxidant and anti-inflammatory properties, improved mitochondrial function and decreased cellular oxidative stress responses. In vivo administration of pirfenidone decreased superoxide formation, increased healthy mitochondria number, improved ATP production, and decreased inflammatory cell recruitment and pulmonary oedema in aged mouse lung during infection. Taken together, our data shed light on the susceptibility of older persons to S. pneumoniae and provide a possible therapeutic to improve mitochondrial responses in this population.
Collapse
Affiliation(s)
- Maria Plataki
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Soo Jung Cho
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca M Harris
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Hua-Rong Huang
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ha Seon Yun
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Kristen T Schiffer
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Heather W Stout-Delgado
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
41
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
42
|
Letsiou E, Bauer N. Endothelial Extracellular Vesicles in Pulmonary Function and Disease. CURRENT TOPICS IN MEMBRANES 2018; 82:197-256. [PMID: 30360780 DOI: 10.1016/bs.ctm.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pulmonary vascular endothelium is involved in the pathogenesis of acute and chronic lung diseases. Endothelial cell (EC)-derived products such as extracellular vesicles (EVs) serve as EC messengers that mediate inflammatory as well as cytoprotective effects. EC-EVs are a broad term, which encompasses exosomes and microvesicles of endothelial origin. EVs are comprised of lipids, nucleic acids, and proteins that reflect not only the cellular origin but also the stimulus that triggered their biogenesis and secretion. This chapter presents an overview of the biology of EC-EVs and summarizes key findings regarding their characteristics, components, and functions. The role of EC-EVs is specifically delineated in pulmonary diseases characterized by endothelial dysfunction, including pulmonary hypertension, acute respiratory distress syndrome and associated conditions, chronic obstructive pulmonary disease, and obstructive sleep apnea.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalie Bauer
- Department of Pharmacology & Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States.
| |
Collapse
|
43
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
44
|
Mechanical ventilation and Streptococcus pneumoniae pneumonia alter mitochondrial homeostasis. Sci Rep 2018; 8:11718. [PMID: 30082877 PMCID: PMC6078986 DOI: 10.1038/s41598-018-30226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Required mechanical ventilation (MV) may contribute to bacterial dissemination in patients with Streptococcus pneumoniae pneumonia. Significant variations in plasma mitochondrial DNA (mtDNA) have been reported in sepsis according to the outcome. The impact of lung stretch during MV was addressed in a model of pneumonia. Healthy or S. pneumoniae infected rabbits were submitted to MV or kept spontaneously breathing (SB). Bacterial burden, cytokines release, mitochondrial DNA levels, integrity and transcription were assessed along with 48-hour mortality. Compared with infected SB rabbits, MV rabbits developed more severe pneumonia with greater concentrations of bacteria in the lungs, higher rates of systemic dissemination, higher levels of circulating inflammatory mediators and decreased survival. Pulmonary mtDNA levels were significantly lower in infected animals as compared to non-infected ones, whenever they were SB or MV. After a significant early drop, circulating mtDNA levels returned to baseline values in the infected SB rabbits, but remained low until death in the MV ones. Whole blood ex-vivo stimulation with Streptococcus pneumoniae resulted in a reduction of polymorphonuclear leukocytes mitochondrial density and plasma mtDNA concentrations. Thus, persistent mitochondrial depletion and dysfunction in the infected animals submitted to MV could account for their less efficient immune response against S. pneumoniae.
Collapse
|