1
|
de Freitas Oliveira-Tore C, de Moraes AG, Plácido HMBS, Signorini NMDL, Fontana PD, da Piedade Batista Godoy T, Boldt ABW, de Messias I. Non-canonical extracellular complement pathways and the complosome paradigm in cancer: a scoping review. Front Immunol 2025; 16:1519465. [PMID: 40370471 PMCID: PMC12075386 DOI: 10.3389/fimmu.2025.1519465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 05/16/2025] Open
Abstract
The Complement System (CS) comprises three catalytic pathways that can be activated by specific immune triggers. However, within the tumor microenvironment (TME), CS intracellular components, recently named as complosome, play roles that extend beyond the activation and regulation of its pathways. The interaction between TME elements and tumor cells alters the local immune response, leading to inflammation, cell proliferation, and tumor invasion. Our focus is on understanding the significance of complosome and non-canonical pathways in cancer. In this scoping review, we analyzed 45 articles that discussed the various roles of CS components in carcinogenesis. Many CS components, including C1q, C3a-C3aR, C5a-C5aR, factor H, and properdin, some of them at the intracellular level, may play a dual role in tumor progression, demonstrating either anti-tumor or pro-tumor activity independent of complement pathway activation. The specific function of each component can influence both the type and stage of tumor cells. There is a notable lack of studies on the role of the lectin pathway in tumor development, and this knowledge gap must be addressed to fully understand the role of complosome in cancer. Nevertheless, the activation of CS and the roles of its components in complosome pathways are crucial steps in tumor development.
Collapse
Affiliation(s)
- Camila de Freitas Oliveira-Tore
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Amarilis Giaretta de Moraes
- Laboratory Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Helena Musetti B. S. Plácido
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Nathalia M. D. L. Signorini
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Pamela Dias Fontana
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Tatiane da Piedade Batista Godoy
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara de Messias
- Laboratory Molecular Immunopathology, Postgraduate Program in Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
2
|
Preya UH, Sayed S, Nguyen NL, Kim JT. Potential role of CTSS in AMDImmune modulatory and anti-angiogenic effects of cathepsin S knockdown in ARPE-19 cells. Exp Eye Res 2024; 245:109981. [PMID: 38914301 DOI: 10.1016/j.exer.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
We aimed to determine the role of cathepsin S (CTSS) in modulating oxidative stress-induced immune and inflammatory reactions and angiogenesis in age-related macular degeneration. Human retinal pigment epithelium cells line ARPE-19 (immature) were maintained and treated with H2O2. The expression of CTSS, inflammatory cytokines, and complement factors induced by oxidative stress was compared between cells incubated without (control) and with CTSS knockdown (using small interfering ribonucleic acid; siRNA). To evaluate the role of CTSS in angiogenesis, we assayed tube formation using human umbilical vein endothelial cells and conditioned medium from ARPE-19 cells. We also used a mouse model of laser-induced choroidal neovascularization. CTSS levels were higher in ARPE-19 cells treated with H2O2 than in control cells. Oxidative stress-induced CTSS resulted in significantly elevated transcription of nuclear factor kappa B-dependent inflammatory cytokines, complement factors C3a and C5a, membrane attack complex (C5b-9), and C3a and C5a receptors. siRNA-mediated knockdown of CTSS reduced the number of inflammatory signals. Furthermore, oxidative stress-induced CTSS regulated the expression of peroxisome proliferator-activated receptor γ and vascular endothelial growth factor A/Akt serine/threonine kinase family signaling, which led to angiogenesis. Tube formation assays and mouse models of choroidal neovascularization revealed that CTSS knockdown ameliorated angiogenesis in vitro and in vivo. The present findings suggest that CTSS modulates the complement pathway, inflammatory reactions, and neovascularization, and that CTSS knockdown induces potent immunomodulatory effects. Hence, it could be a promising target for the prevention and treatment of early- and late-stage age-related macular degeneration.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Shithima Sayed
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Ngoc Lan Nguyen
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jee Taek Kim
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea; Chung-Ang University Hospital, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Haykin H, Avishai E, Krot M, Ghiringhelli M, Reshef M, Abboud Y, Melamed S, Merom S, Boshnak N, Azulay-Debby H, Ziv T, Gepstein L, Rolls A. Reward system activation improves recovery from acute myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:841-856. [PMID: 39196183 DOI: 10.1038/s44161-024-00491-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- H Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Ghiringhelli
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Reshef
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Abboud
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Merom
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Gepstein
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - A Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Ingangi V, De Chiara A, Ferrara G, Gallo M, Catapano A, Fazioli F, Di Carluccio G, Peranzoni E, Marigo I, Carriero MV, Minopoli M. Emerging Treatments Targeting the Tumor Microenvironment for Advanced Chondrosarcoma. Cells 2024; 13:977. [PMID: 38891109 PMCID: PMC11171855 DOI: 10.3390/cells13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chondrosarcoma (ChS), a malignant cartilage-producing tumor, is the second most frequently diagnosed osseous sarcoma after osteosarcoma. It represents a very heterogeneous group of malignant chemo- and radiation-resistant neoplasms, accounting for approximately 20% of all bone sarcomas. The majority of ChS patients have a good prognosis after a complete surgical resection, as these tumors grow slowly and rarely metastasize. Conversely, patients with inoperable disease, due to the tumor location, size, or metastases, represent a great clinical challenge. Despite several genetic and epigenetic alterations that have been described in distinct ChS subtypes, very few therapeutic options are currently available for ChS patients. Therefore, new prognostic factors for tumor progression as well as new treatment options have to be explored, especially for patients with unresectable or metastatic disease. Recent studies have shown that a correlation between immune infiltrate composition, tumor aggressiveness, and survival does exist in ChS patients. In addition, the intra-tumor microvessel density has been proven to be associated with aggressive clinical behavior and a high metastatic potential in ChS. This review will provide an insight into the ChS microenvironment, since immunotherapy and antiangiogenic agents are emerging as interesting therapeutic options for ChS patients.
Collapse
Affiliation(s)
- Vincenzo Ingangi
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Annarosaria De Chiara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Gerardo Ferrara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Michele Gallo
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Antonio Catapano
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Flavio Fazioli
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Elisa Peranzoni
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
| | - Ilaria Marigo
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| |
Collapse
|
5
|
Abu-Humaidan AH, Ismail MA, Ahmad FM, Al Shboul S, Barham R, Tadros JS, Alhesa A, El-Sadoni M, Alotaibi MR, Ababneh NA, Saleh T. Therapy-induced senescent cancer cells exhibit complement activation and increased complement regulatory protein expression. Immunol Cell Biol 2024; 102:240-255. [PMID: 38265162 DOI: 10.1111/imcb.12727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Therapy-induced senescence (TIS) is a primary response to chemotherapy, contributing to untoward treatment outcomes such as evasion of immunosurveillance. Despite the established role of the complement system in the immune response to cancer, the role of complement in mediating the immune response against senescent tumor cells remains poorly understood. To explore this relationship, we exposed lung adenocarcinoma (A549), breast adenocarcinoma (MCF7) and pancreatic carcinoma (Panc-1) cell lines to sublethal doses of either etoposide or doxorubicin to trigger TIS. Identification of TIS was based on morphological changes, upregulation of the senescence-associated β-galactosidase, p21Cip1 induction and lamin B1 downregulation. Using immunofluorescence microscopy, quantitative PCR, ELISA of conditioned media and in silico analysis, we investigated complement activation, complement protein expression, C3 levels in the conditioned media of senescent cells and secreted complement proteins as part of the senescence-associated secretory phenotype (SASP), respectively. In cell lines undergoing TIS, complement-related changes included (i) activation of the terminal pathway, evidenced by the deposition of C5b-9 on senescent cells; (ii) an increase in the expression of CD59 and complement factor H and (iii) in A549 cells, an elevation in the expression of C3 with its secretion into the medium. In addition, increased C3 expression was observed in breast cancer samples expressing TIS hallmarks following exposure to neoadjuvant chemotherapy. In conclusion, TIS led to the activation of complement, upregulation of complement regulatory proteins and increased C3 expression. Complement appears to play a role in shaping the cancer microenvironment upon senescence induction.
Collapse
Affiliation(s)
- Anas Ha Abu-Humaidan
- Department of Pathology, Microbiology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Fatima M Ahmad
- Department of Pathology, Microbiology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of the Clinical Laboratory Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Raghad Barham
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Joud S Tadros
- Department of Pathology, Microbiology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
6
|
Nording H, Baron L, Sauter M, Lübken A, Rawish E, Szepanowski R, von Esebeck J, Sun Y, Emami H, Meusel M, Saraei R, Schanze N, Gorantla SP, von Bubnoff N, Geisler T, von Hundelshausen P, Stellos K, Marquardt J, Sadik CD, Köhl J, Duerschmied D, Kleinschnitz C, Langer HF. Platelets regulate ischemia-induced revascularization and angiogenesis by secretion of growth factor-modulating factors. Blood Adv 2023; 7:6411-6427. [PMID: 37257194 PMCID: PMC10598500 DOI: 10.1182/bloodadvances.2021006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/02/2023] Open
Abstract
In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Szepanowski
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Saraei
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Tobias Geisler
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Marquardt
- First Department of Medicine, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Schleswig-Holstein, Lübeck, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Zhang Y, Chen K, Wang L, Chen J, Lin Z, Chen Y, Chen J, Lin Y, Xu Y, Peng H. Identification and validation of a prognostic signature of cuproptosis-related genes for esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:8993-9021. [PMID: 37665670 PMCID: PMC10522377 DOI: 10.18632/aging.205012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly lethal form of cancer. Cuproptosis is a recently discovered form of regulated cell death. However, its significance in ESCC remains largely unknown. In this study, we observed significant expression differences in most of the 12 cuproptosis-related genes (CRGs) in the TCGA-ESCC dataset, which was validated using GSE20347, GSE38129, and individual ESCC datasets. We were able to divide patients in the TCGA-ESCC cohort into two subgroups based on disease, and found significant differences in survivor outcomes and biological functions between these subgroups. Additionally, we identified 11 prognosis-related genes from the 12 CRGs using LASSO COX regression analysis and constructed a CRGs signature for ESCC. Patients were categorized into high- and low-risk subgroups based on their median risk score, with those in the high-risk subgroup having significantly worse overall survival than those in the low-risk subgroup. The CRGs signature was also highly accurate in predicting prognosis and survival outcomes. Univariate and multivariate Cox regression analyses revealed that 8 of the 11 CRGs were independent prognostic factors for predicting survival in ESCC patients. Furthermore, our nomogram performed well and could serve as a useful tool for predicting prognosis. Finally, our risk model was found to be relevant to the sensitivity of targeted agents and immune infiltration. Functional enrichment analysis demonstrated that the risk model was associated with biological pathways of tumor migration and invasion. In summary, our study may provide a promising prognostic signature based on CRGs and offers potential targets for personalized therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Kebing Chen
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Liyan Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Juhui Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Zhizhong Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Junqiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yu Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Haiyan Peng
- Department of Clinical Laboratory, The School of Clinical Medicine, Fujian Medical University, The First Hospital of Putian, Putian 351199, China
| |
Collapse
|
8
|
A Novel Blood Proteomic Signature for Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041051. [PMID: 36831393 PMCID: PMC9954127 DOI: 10.3390/cancers15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prostate cancer is the most common malignant tumour in men. Improved testing for diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass spectrometry combined with machine learning. A highly predictive signature was derived, which was associated with relevant pathways, including the coagulation, complement, and clotting cascades, as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91. Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis of patients with localised prostate cancer, with the further potential for assessing risk of future development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484.
Collapse
|
9
|
Macrophage Repolarization as a Therapeutic Strategy for Osteosarcoma. Int J Mol Sci 2023; 24:ijms24032858. [PMID: 36769180 PMCID: PMC9917837 DOI: 10.3390/ijms24032858] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.
Collapse
|
10
|
Hattinger CM, Salaroglio IC, Fantoni L, Godel M, Casotti C, Kopecka J, Scotlandi K, Ibrahim T, Riganti C, Serra M. Strategies to Overcome Resistance to Immune-Based Therapies in Osteosarcoma. Int J Mol Sci 2023; 24:ijms24010799. [PMID: 36614241 PMCID: PMC9821333 DOI: 10.3390/ijms24010799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Martina Godel
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Casotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
- Correspondence: (C.R.); (M.S.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (C.R.); (M.S.)
| |
Collapse
|
11
|
Jimenez-Duran G, Kozole J, Peltier-Heap R, Dickinson ER, Kwiatkowski CR, Zappacosta F, Annan RS, Galwey NW, Nichols EM, Modis LK, Triantafilou M, Triantafilou K, Booty LM. Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages. Front Immunol 2022; 13:918551. [PMID: 36248901 PMCID: PMC9554752 DOI: 10.3389/fimmu.2022.918551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Joseph Kozole
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Rachel Peltier-Heap
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | - Eleanor R. Dickinson
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | | | - Francesca Zappacosta
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Roland S. Annan
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Nicholas W. Galwey
- Research Statistics, Development Biostatistics, GSK, Stevenage, United Kingdom
| | | | | | - Martha Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kathy Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| | - Lee M. Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| |
Collapse
|
12
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
13
|
Association of C5a/C5aR pathway to activate ERK1/2 and p38 MAPK in acute kidney injury – a mouse model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Acute inflammation is accompanied by complement system activation and inflammatory cell accumulation. Acute kidney injury (AKI) is one of the common clinical symptoms, it is not clear whether complement system-mediated signaling pathway is involved. This study demonstrated that the expressions of complement C5a and C5a receptor (C5aR) protein in a mouse model with glycerol induced AKI were significantly increased, and the expression of inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, were significantly higher than those in the blank control group. While C5aR antagonist (C5aRa) was added, western analyses for C5a and C5aR were reduced, meanwhile, qPCR and ELISA data showed that inflammatory cytokines also decreased significantly. In addition, preliminarily explored, the Mitogen-activated protein kinases (MAPKs) can be activated by the C5a/C5aR pathway in an AKI mouse model which showed that the C5a/C5aR pathway in a mouse model group activated ERK1/2 and p38, and the protein expression decreased when C5aRa was added. In conclusion, these results indicate that the C5a/C5aR pathway promotes renal pathogenesis by activating ERK1/2 and p38 expression and then affects the disease process, which has certain guiding significance for the subsequent clinical trial.
Collapse
|
14
|
Chen LH, Liu JF, Lu Y, He XY, Zhang C, Zhou HH. Complement C1q (C1qA, C1qB, and C1qC) May Be a Potential Prognostic Factor and an Index of Tumor Microenvironment Remodeling in Osteosarcoma. Front Oncol 2021; 11:642144. [PMID: 34079754 PMCID: PMC8166322 DOI: 10.3389/fonc.2021.642144] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) has important effects on the tumorigenesis and development of osteosarcoma (OS). However, the dynamic mechanism regulating TME immune and matrix components remains unclear. In this study, we collected quantitative data on the gene expression of 88 OS samples from The Cancer Genome Atlas (TCGA) database and downloaded relevant clinical cases of OS from the TARGET database. The proportions of tumor-infiltrating immune cells (TICs) and the numbers of immune and matrix components were determined by CIBERSORT and ESTIMATE calculation methods. Protein-protein interaction (PPI) network construction and Cox regression analysis were conducted to analyze differentially expressed genes (DEGs). The complement components C1qA, C1qB and C1qC were then determined to be predictive factors through univariate Cox analysis and PPI cross analysis. Further analysis found that the levels of C1qA, C1qB and C1qC expression were positively linked to OS patient survival time and negatively correlated with the clinicopathological feature percent necrosis at definitive surgery. The results of gene set enrichment analysis (GSEA) demonstrated that genes related to immune functions were significantly enriched in the high C1qA, C1qB and C1qC expression groups. Proportion analysis of TICs by CIBERSORT showed that the levels of C1qA, C1qB and C1qC expression were positively related to M1 and M2 macrophages and CD8+ cells and negatively correlated with M0 macrophages. These results further support the influence of the levels of C1qA, C1qB and C1qC expression on the immune activity of the TME. Therefore, C1qA, C1qB and C1qC may be potential indicators of remodeling in the OS TME, which is helpful to predict the prognosis of patients with OS and provide new ideas for immunotherapy for OS.
Collapse
Affiliation(s)
- Long-Hao Chen
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Jin-Fu Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yan- Lu
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Xin-Yu He
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Chi- Zhang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Hong-Hai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
15
|
Activation of the Complement System on Human Endothelial Cells by Urban Particulate Matter Triggers Inflammation-Related Protein Production. Int J Mol Sci 2021; 22:ijms22073336. [PMID: 33805189 PMCID: PMC8038114 DOI: 10.3390/ijms22073336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to particulate matter (PM) is becoming a major global health issue. The amount and time of exposure to PM are known to be closely associated with cardiovascular diseases. However, the mechanism through which PM affects the vascular system is still not clear. Endothelial cells line the interior surface of blood vessels and actively interact with plasma proteins, including the complement system. Unregulated complement activation caused by invaders, such as pollutants, may promote endothelial inflammation. In the present study, we sought to investigate whether urban PM (UPM) acts on the endothelial environment via the complement system. UPM-treated human endothelial cells with normal human serum showed the deposition of membrane attack complexes (MACs) on the cell surface via the alternative pathway of the complement system. Despite the formation of MACs, cell death was not observed, and cell proliferation was increased in UPM-mediated complement activation. Furthermore, complement activation on endothelial cells stimulated the production of inflammation-related proteins. Our results revealed that UPM could activate the complement system in human endothelial cells and that complement activation regulated inflammatory reaction in microenvironment. These findings provide clues with regard to the role of the complement system in pathophysiologic events of vascular disease elicited by air pollution.
Collapse
|
16
|
Modulation of complement activation by pentraxin-3 in prostate cancer. Sci Rep 2020; 10:18400. [PMID: 33110136 PMCID: PMC7591881 DOI: 10.1038/s41598-020-75376-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Pentraxin 3 (PTX3) is an essential component of the innate immune system and a recognized modulator of Complement cascade. The role of Complement system in the pathogenesis of prostate cancer has been largely underestimated. The aim of our study was to investigate the role of PTX3 as possible modulator of Complement activation in the development of this neoplasia. We performed a single center cohort study; from January 2017 through December 2018, serum and prostate tissue samples were obtained from 620 patients undergoing prostate biopsy. A group of patients with benign prostatic hyperplasia (BPH) underwent a second biopsy within 12–36 months demonstrating the presence of a prostate cancer (Group A, n = 40) or confirming the diagnosis of BPH (Group B, N = 40). We measured tissue PTX3 protein expression together with complement activation by confocal microscopy in the first and second biopsy in group A and B patients. We confirmed that that PTX3 tissue expression in the first biopsy was increased in group A compared to group B patients. C1q deposits were extensively present in group A patients co-localizing and significantly correlating with PTX3 deposits; on the contrary, C1q/PTX3 deposits were negative in group B. Moreover, we found a significantly increased expression of C3a and C5a receptors within resident cells in group A patient. Interestingly, C1q/PTX3 deposits were not associated with activation of the terminal Complement complex C5b-9; moreover, we found a significant increase of Complement inhibitor CD59 in cancer tissue. Our data indicate that PTX3 might play a significant pathogenic role in the development of this neoplasia through recruitment of the early components of Complement cascade with hampered activation of terminal Complement pathway associated with the upregulation of CD59. This alteration might lead to the PTX3-mediated promotion of cellular proliferation, angiogenesis and insensitivity to apoptosis possible leading to cancer cell invasion and migration.
Collapse
|
17
|
Jeon H, Kang SK, Lee MS. Effects of different separation methods on the physical and functional properties of extracellular vesicles. PLoS One 2020; 15:e0235793. [PMID: 32634162 PMCID: PMC7340315 DOI: 10.1371/journal.pone.0235793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles secreted from cells. They have crucial biological functions in intercellular communications and may even be biomarkers for cancer. The various methods used to isolate EVs from body fluid and cell culture supernatant have been compared in prior studies, which determined that the component yield and physical properties of isolated EVs depend largely on the isolation method used. Several novel and combined methods have been recently developed, which have not yet been compared to the established methods. Therefore, the purpose of this study is to compare the physical and functional differences in EVs isolated using a differential centrifugation method, the precipitation-based Invitrogen kit, the ExoLutE kit, and the Exodisc, of which the latter two were recently developed. We investigated the properties of EVs isolated from non-infected and Kaposi's sarcoma-associated herpesvirus-infected human umbilical vein endothelial cells using each method and determined the yields of DNA, RNA, and proteins using quantitative polymerase chain reaction and bicinchoninic acid assays. Additionally, we determined whether the biological activity of EVs correlated with the quantity or physical properties of the EVs isolated using different methods. We found that Exodisc was the most suitable method for obtaining large quantities of EVs, which might be useful for biomarker investigations, and that the EVs separated using Exodisc exhibited the highest complement activation activity. However, we also found that the functional properties of EVs were best maintained when differential centrifugation was used. Effective isolation is necessary to study EVs as tools for diagnosing cancer and our findings may have relevant implications in the field of oncology by providing researchers with data to assist their selection of a suitable isolation method.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|
18
|
Pan Q, Xiao H, Shi L, He Y, Cai J, Wu J, Li A, Ye L, Yang C, Liu HF. IgG4 Autoantibodies Attenuate Systemic Lupus Erythematosus Progression by Suppressing Complement Consumption and Inflammatory Cytokine Production. Front Immunol 2020; 11:1047. [PMID: 32625200 PMCID: PMC7311789 DOI: 10.3389/fimmu.2020.01047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
Pathogenic autoantibodies can cause inflammation and tissue injury in systemic lupus erythematosus (SLE). Although IgG4 is considered non-inflammatory owing to the unique structure of its hinge region, the role of IgG4 autoantibodies in SLE remains largely unknown. The titers of serum anti-nuclear-IgG antibodies (ANA-IgG) and anti-nuclear-IgG4 antibodies (ANA-IgG4) in newly diagnosed SLE patients were detected. The effects of IgG4 purified from SLE patients (SLE IgG4) and healthy controls on complement consumption and inflammatory cytokine production were evaluated in vitro. The therapeutic effects of mouse IgG1 (functionally resembles human IgG4) purified from lupus-prone MRL-lpr/lpr mice (lupus IgG1) and control mice on disease progression were examined in MRL-lpr/lpr mice. The results showed that SLE patients with equal titers of total serum ANA-IgG (1:3,200) were divided into group I with lower ANA-IgG4 titers (≤ 1:10) and group II with higher ANA-IgG4 titers (≥ 1:100), and disease activity, inflammatory cytokine production, complement consumption, and renal-function parameters in group I SLE patients were more severe than those in group II. Further, compared with control IgG4, SLE IgG4 inhibited complement consumption by autoantibody-autoantigen immune complexes, and also inhibited inflammatory cytokines production by SLE PBMCs in vitro. Moreover, compared with control IgG1, lupus IgG1 exhibited a therapeutic effect on lupus by attenuating disease progression in MRL-lpr/lpr mice. These findings, for the first time, suggest that IgG4 autoantibodies can attenuate SLE progression by suppressing complement consumption and inflammatory cytokine production. Hence, this study may provide novel therapeutic strategies against SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Lei Shi
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiming He
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Cai
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jing Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
19
|
Pilotti C, Greenwood J, Moss SE. Functional Evaluation of AMD-Associated Risk Variants of Complement Factor B. Invest Ophthalmol Vis Sci 2020; 61:19. [PMID: 32407521 PMCID: PMC7405614 DOI: 10.1167/iovs.61.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose The 32W and 32Q variants of complement factor B (CFB) are associated with reduced risk of developing neovascular age-related macular degeneration (AMD) compared with the common 32R allele. The objective of this study was to determine if the most protective R32Q variant affects the neovascular process in a manner consistent with the reported reduced disease association. Methods The 32R, 32W, and 32Q human CFB variants were expressed in human embryonic kidney 293T cells and purified from culture supernatant. The ex vivo mouse fetal metatarsal explant model was used to investigate the effect of these three human CFB variants on angiogenesis. Metatarsal bones were isolated from mouse embryos and cultured in the presence of the three CFB variants, and angiogenesis was measured following immunostaining of fixed samples. ELISAs were used to quantify C3 and VEGF protein levels in metatarsal culture and quantitative PCR to measure Cfb, C3, and Vegf expression. Results We show here that the three CFB variants have different biological activities in the mouse metatarsal assay, with CFBR32 exhibiting significantly greater angiogenic activity than CFBQ32 or CFBW32, which were broadly similar. We also observed differences in macrophage phenotype with these two variants that may contribute to their activities in this experimental model. Conclusions We have demonstrated that the biological activities of CFBR32, CFBW32, and CFBQ32 are consistent with their AMD risk association, and we provide functional evidence of roles for these variants in angiogenesis that may be relevant to the pathogenesis of the neovascular form of AMD.
Collapse
|
20
|
Kaposi's Sarcoma-Associated Herpesvirus and Host Interaction by the Complement System. Pathogens 2020; 9:pathogens9040260. [PMID: 32260199 PMCID: PMC7237997 DOI: 10.3390/pathogens9040260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates the immune response to allow the virus to establish persistent infection in the host and facilitate the development of KSHV-associated cancer. The complement system has a central role in the defense against pathogens. Hence, KSHV has adopted an evasion strategy for complement attack using the viral protein encoded by KSHV open reading frame 4. However, despite this defense mechanism, the complement system appears to become activated in KSHV-infected cells as well as in the region surrounding Kaposi’s sarcoma tumors. Given that the complement system can affect cell fate as well as the inflammatory microenvironment, complement activation is likely associated with KSHV pathogenesis. A better understanding of the interplay between KSHV and the complement system may, therefore, translate into the development of novel therapeutic interventions for KSHV-associated tumors. In this review, the mechanisms and functions of complement activation in KSHV-infected cells are discussed.
Collapse
|
21
|
Differential Expression of miRNAs and Behavioral Change in the Cuprizone-Induced Demyelination Mouse Model. Int J Mol Sci 2020; 21:ijms21020646. [PMID: 31963761 PMCID: PMC7014274 DOI: 10.3390/ijms21020646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
The demyelinating diseases of the central nervous system involve myelin abnormalities, oligodendrocyte damage, and consequent glia activation. Neurotoxicant cuprizone (CPZ) was used to establish a mouse model of demyelination. However, the effects of CPZ on microRNA (miRNA) expression and behavior have not been clearly reported. We analyzed the behavior of mice administered a diet containing 0.2% CPZ for 6 weeks, followed by 6 weeks of recovery. Rotarod analysis demonstrated that the treated group had poorer motor coordination than control animals. This effect was reversed after 6 weeks of CPZ withdrawal. Open-field tests showed that CPZ-treated mice exhibited significantly increased anxiety and decreased exploratory behavior. CPZ-induced demyelination was observed to be alleviated after 4 weeks of CPZ treatment, according to luxol fast blue (LFB) staining and myelin basic protein (MBP) expression. miRNA expression profiling showed that the expression of 240 miRNAs was significantly changed in CPZ-fed mice compared with controls. Furthermore, miR-155-5p and miR-20a-5p upregulations enhanced NgR induction through Smad 2 and Smad 4 suppression in demyelination. Taken together, our results demonstrate that CPZ-mediated demyelination induces behavioral deficits with apparent alterations in miRNA expression, suggesting that differences in miRNA expression in vivo may be new potential therapeutic targets for remyelination.
Collapse
|
22
|
Diverse Gene Expressions in the Prediction of Cuprizone-Induced Demyelination. Neurotox Res 2020; 37:732-742. [DOI: 10.1007/s12640-019-00154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
|
23
|
Vlaicu SI, Tatomir A, Rus V, Rus H. Role of C5b-9 and RGC-32 in Cancer. Front Immunol 2019; 10:1054. [PMID: 31156630 PMCID: PMC6530392 DOI: 10.3389/fimmu.2019.01054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alexandru Tatomir
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
24
|
Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, Lee MS. Extracellular Vesicles From KSHV-Infected Cells Stimulate Antiviral Immune Response Through Mitochondrial DNA. Front Immunol 2019; 10:876. [PMID: 31068945 PMCID: PMC6491682 DOI: 10.3389/fimmu.2019.00876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Kaposi's Sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, which is the most common cancer in acquired immune deficiency syndrome patients. KSHV contains a variety of immunoregulatory proteins. There have been many studies on the modulation of antiviral response by these immunoregulatory proteins of KSHV. However, the antiviral effects of extracellular vesicles (EVs) during de novo KSHV infection have not been investigated to our best knowledge. In this study, we showed that KSHV-infected cells induce interferon-stimulated genes (ISGs) response but not type I interferon in uninfected bystander cells using EVs. mRNA microarray analysis showed that ISGs and IRF-activating genes were prominently activated in EVs from KSHV-infected cells (KSHV EVs)-treated human endothelial cells, which were validated by RT-qPCR and western blot analysis. We also found that this response was not associated with cell death or apoptosis by virus infection. Mechanistically, the cGAS-STING pathway was linked with these KSHV EVs-mediated ISGs expressions, and mitochondrial DNA on the surface of KSHV EVs was one of the causative factors. Besides, KSHV EVs-treated cells showed lower infectivity for KSHV and viral replication activity than mock EVs-treated cells. Our results indicate that EVs from KSHV-infected cells could be an initiating factor for the innate immune response against viral infection, which may be critical to understanding the microenvironment of virus-infected cells.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Suhyuk Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Sang June Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|