1
|
Lorrain-Soligon L, Golven A, Agostini S, Millot A, Bauer A, Rigaud T, Decencière B, Puppo C, Goutte A. Acclimation and recovery dynamics of behavioral and coloration responses of a common fish (Squalius cephalus) to paracetamol exposure. CHEMOSPHERE 2025; 374:144225. [PMID: 39970764 DOI: 10.1016/j.chemosphere.2025.144225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Freshwater ecosystems are increasingly exposed to pharmaceutical contamination, impacting non-target species. Concentrations can vary over time and location, allowing for potential acclimation or recovery effects. Additionally, parasites might interfere with the absorption and adverse outcomes pathways of pollutants. We examined the combined effects of paracetamol and parasite on the behavior and coloration of the European chub (Squalius cephalus), a ubiquitous fish species, from natural populations. Fish were exposed in mesocosms to acute doses of paracetamol (16 μg g-1 once a day over two days), followed by lower doses during a long-term exposure (1.6 μg g-1 once a week over three weeks), followed by a three-week recovery phase. Acute exposure induced marginal decreases in behavioral activity, and changes in dorsal brightness, hue and UV luminance. Interestingly, the long-term phase alone did not yield notable results on behavior and coloration. However, some effects of the acute exposure persisted during the long-term phase, highlighting that the expression of biological responses may be delayed in relation to past high exposure. Parasitism did not attenuate acute impacts, suggesting parasites may not help mitigate effects of paracetamol on behavior and coloration, but alone increased activity levels slightly. No effects of pollutant exposure, either of the acute or long-term phase, were observed after a recovery phase, indicating ability for recovery dynamics. Overall, our findings emphasize that pollutants effects can be highly transient, with rapid recovery when pollutant exposure ceased. Considering different exposure phases is crucial when assessing the ecological consequences of environmental contaminants.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Sorbonne Université, Université PSL, EPHE, CNRS, Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols, METIS, Paris, France; Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS-UAR 3194, PSL University, 77140, Saint-Pierre-lès-Nemours, France.
| | - Alexis Golven
- Sorbonne Université, Université PSL, EPHE, CNRS, Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols, METIS, Paris, France
| | - Simon Agostini
- Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS-UAR 3194, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS-UAR 3194, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Alexandre Bauer
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Thierry Rigaud
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Beatriz Decencière
- Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS-UAR 3194, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Carine Puppo
- Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS-UAR 3194, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Aurélie Goutte
- Sorbonne Université, Université PSL, EPHE, CNRS, Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols, METIS, Paris, France; École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Paris, France
| |
Collapse
|
2
|
Błońska D, Tarkan AS, Andreou D, Bolland JD, Davies P, Dodd JR, Gillingham P, Roberts CG, Amat-Trigo F, Aksu S, Hindes A, Palder OJ, Yeldham M, Britton JR. Restoration of river connectivity enables long-distance spawning migrations in a potamodromous fish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124646. [PMID: 39987876 DOI: 10.1016/j.jenvman.2025.124646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Rivers across the world are increasingly fragmented due to anthropogenic barriers, with the restoration of connectivity often using fish passes. Fish passes are, however, usually designed for anadromous species, despite ecologically important non-anadromous species being present in the communities impacted by fragmentation. To assess the outcomes for non-anadromous fishes of the installation of multiple fish passes and weir modifications, the movements of the potamodromous European barbel Barbus barbus were evaluated in the lower River Severn basin, western Britain, which was fragmented by six weirs (two on a tributary, four on the Severn mainstem). Movements of individual fish were measured using long-life acoustic transmitters, with stable isotope analysis assisting the assessment of individual variability in movements. The movements of three tagging groups were measured: barbel tagged in 2015 (n = 19; no fish passes/modifications), 2018 (n = 19; tributary weirs modified), and 2020/21 (n = 20; all Severn mainstem weirs fitted with fish passes). No fish in the 2015 group passed the weirs on the Severn mainstem, despite approaches, and only one fish in the 2018 group passed the most downstream weir during high water conditions in winter. Following the opening of all fish passes in early 2021, individuals in the 2020/21 group moved above all the weirs via the fish passes between April and June (the spawning season). These fish then moved upstream for up to 110 km, and some were detected returning downstream. These spawning migrations potentially have high ecological and evolutionary significance, indicating that reconnection schemes designed for anadromous fishes also benefit potamodromous fishes.
Collapse
Affiliation(s)
- Dagmara Błońska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237, Lodz, Poland; Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom.
| | - Ali Serhan Tarkan
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Banacha 12/16, 90-237, Lodz, Poland; Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Demetra Andreou
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom
| | - Jonathan D Bolland
- University of Hull International Fisheries Institute, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Peter Davies
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom
| | - Jamie R Dodd
- University of Hull International Fisheries Institute, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Phillipa Gillingham
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom
| | - Catherine Gutmann Roberts
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom
| | - Fatima Amat-Trigo
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Andrew Hindes
- Fishtrack Ltd., 2 South End Farm Cottages, Beccles, NR34 8TG, United Kingdom
| | - O Jonas Palder
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom
| | - Mark Yeldham
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom; University of Hull International Fisheries Institute, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - J Robert Britton
- Fish Ecology and Conservation Research Cluster, Department of Life and Environmental Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom
| |
Collapse
|
3
|
Chiocchio A, de Rysky E, Carere C, Nascetti G, Bisconti R, Canestrelli D. Behavioural underpinning of mito-nuclear discordances: insights from fire salamanders. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241571. [PMID: 39665091 PMCID: PMC11631422 DOI: 10.1098/rsos.241571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Mito-nuclear discordances across secondary contact zones have been described in a wide range of organisms. They consist of a spatial mismatch between nuclear and mitochondrial genomes in terms of location and extension of the contact zone between distinct evolutionary lineages. Despite the evolutionary and biogeographic causes of mito-nuclear discordances having been extensively investigated, we still lack a clear understanding of their phenotypic underpinnings. Here, we test the hypothesis that mtDNA variation could be associated with behavioural variation and that such association could contribute to asymmetric mitochondrial introgression across a secondary contact zone. We analysed behavioural variation across the mtDNA secondary contact zone of the fire salamander Salamandra salamandra in central Italy, which is displaced 600 km from the nuclear contact zone. We found distinct behavioural profiles in the two mitotypes co-occurring in the contact zone. The introgressed mitotype was associated with a 'slow-thorough' dispersal profile, characterized by a less active but more cautious and accurate exploration strategy. This pattern was consistent across life stages and contexts: aquatic larvae and terrestrial juveniles, spontaneous activity and response to novelty. These results support the intriguing hypothesis that personality traits associated with distinct mitotypes could contribute to differential mitochondrial introgression and the formation of biogeographic patterns of mito-nuclear discordance.
Collapse
Affiliation(s)
- Andrea Chiocchio
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Erica de Rysky
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Claudio Carere
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Giuseppe Nascetti
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Roberta Bisconti
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Daniele Canestrelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
4
|
Lou Y, Zou Y, Fang Y, Sun Y. Exploratory behavior is associated with the cognitive speed in male chestnut thrushes. Curr Zool 2024; 70:707-713. [PMID: 39678824 PMCID: PMC11634674 DOI: 10.1093/cz/zoad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2023] [Indexed: 12/17/2024] Open
Abstract
Intra-individual variation in cognitive abilities has been widely reported in animals. Recent studies have found that individual cognitive performance varies with personality traits in a wide range of animal taxa, with a speed-accuracy trade-off between cognition and personality traits. Few studies investigated whether these relationships change depending on different contexts. Here we investigate whether the personality trait (as measured by exploratory behavior in a novel environment) is associated with cognition (novel skill learning and spatial memory) in wild male chestnut thrushes Turdus rubrocanus. Using an experimental novel skill-learning task set-up, we found that fast-exploring individuals explored the experimental device (a cardboard with 8 opaque cups) sooner than slow-exploring individuals. Exploratory behavior was not associated with individual spatial memory performances or an individual's capacity to learn the novel skill. Learning speed was positively associated with the difficulty of learning phases, and fast-exploring individuals used less trials to meet the learning criterion. In addition, fast-exploring individuals took less time to complete the 24-h spatial memory test, but the accuracy of the test was not significantly different between individuals who were more or less exploratory. We suggest that variation in personality traits associates with individual learning speed in cognitive tasks and that this relationship is context-dependent.
Collapse
Affiliation(s)
- Yingqiang Lou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuqi Zou
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Yun Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
5
|
Amat-Trigo F, Andreou D, Gillingham PK, Britton JR. Individual phenotypic variability in the behaviour of an aggregative riverine fish is structured along a reactive-proactive axis. PLoS One 2024; 19:e0312187. [PMID: 39565817 PMCID: PMC11578482 DOI: 10.1371/journal.pone.0312187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024] Open
Abstract
High phenotypic diversity should provide populations with resilience to environmental change by increasing their capacity to respond to changing conditions. The aim of this study was to identify whether there is consistency in individual behaviours on a reactive-proactive axis in European barbel Barbus barbus ("barbel"), a riverine and aggregatory fish that expresses individual differences in its behaviours in nature. This was tested using three sequential experiments in ex-situ conditions that required individuals to leave a shelter and then explore new habitats ('open-field test'), respond to social stimuli ('mirror-image stimulation test') and forage ('foraging behaviour test'; assessing exploratory traits). Each suite of experiments was replicated three times per individual (46 hours minimum time between replicates). There was high variability in behaviours both within and among individuals. The most repeatable behaviours were latency to exit the shelter, active time in the shelter, and the number of food items consumed. Principal component scores did, however, indicate a range of consistent behavioural phenotypes across the individuals, distributing them along a reactive-proactive axis in which most of individuals were more reactive phenotypes (shyer, less exploratory, less social). These results suggest that within controlled conditions, there is considerable phenotypic diversity among individuals in their behaviours, suggesting their populations will have some adaptive capacity to environmental change.
Collapse
Affiliation(s)
- Fatima Amat-Trigo
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| |
Collapse
|
6
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes are not underscored by different gut microbiomes. Ecol Evol 2024; 14:e70237. [PMID: 39219576 PMCID: PMC11362613 DOI: 10.1002/ece3.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Although bold and shy behavioral phenotypes in zebrafish (Danio rerio) have been selectively bred and maintained over multiple generations, it is unclear if they are underscored by different gut microbiota. Using the microbiota-gut-brain concept, we examined the relationship between gut microbiota and the behavioral phenotypes within this model animal system to assess possible gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced 16S rRNA gene amplicons from the guts of bold and shy zebrafish individuals using the Illumina Miseq platform. We did not record any significant differences in within-group microbial diversity nor between-group community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiome profiles between the two phenotypes would suggest that in this species, there might exist a stable core gut microbiome, regardless of behavioral phenotypes, and possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This study characterized the gut microbiomes of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and did not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A. Ayayee
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | - Ryan Y. Wong
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
7
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes not underscored by different gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596447. [PMID: 38853862 PMCID: PMC11160693 DOI: 10.1101/2024.05.29.596447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Different animal behavioral phenotypes maintained and selectively bred over multiple generations may be underscored by dissimilar gut microbial community compositions or not have any significant dissimilarity in community composition. Operating within the microbiota-gut-brain axis framework, we anticipated differences in gut microbiome profiles between zebrafish (Danio rerio) selectively bred to display the bold and shy personality types. This would highlight gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced a fragment of the 16S rRNA gene from the guts of bold and shy zebrafish individuals (n=10) via Miseq. We uncovered no significant difference in within-group microbial diversity nor between-group microbial community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiota profiles between the two phenotypes would suggest that in this species, there might exist a stable "core" gut microbiome, regardless of behavioral phenotypes, and or possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This is the first study to characterize the gut microbial community of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
8
|
Lucon-Xiccato T, Savaşçı BB, Merola C, Benedetti E, Caioni G, Aliko V, Bertolucci C, Perugini M. Environmentally relevant concentrations of triclocarban affect behaviour, learning, and brain gene expression in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166717. [PMID: 37657536 DOI: 10.1016/j.scitotenv.2023.166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Many chemicals spilled in aquatic ecosystems can interfere with cognitive abilities and brain functions that control fitness-related behaviour. Hence, their harmful potential may be substantially underestimated. Triclocarban (TCC), one of the most common aquatic contaminants, is known to disrupt hormonal activity, but the consequences of this action on behaviour and its underlying cognitive mechanisms are unclear. We tried to fill this knowledge gap by analysing behaviour, cognitive abilities, and brain gene expression in zebrafish larvae exposed to TCC sublethal concentrations. TCC exposure substantially decreased exploratory behaviour and response to stimulation, while it increased sociability. Additionally, TCC reduced the cognitive performance of zebrafish in a habituation learning task. In the brain of TCC-exposed zebrafish, we found upregulation of c-fos, a gene involved in neural activity, and downregulation of bdnf, a gene that influences behavioural and cognitive traits such as activity, learning, and memory. Overall, our experiments highlight consistent effects of non-lethal TCC concentrations on behaviour, cognitive abilities, and brain functioning in a teleost fish, suggesting critical fitness consequences of these compounds in aquatic ecosystems as well as the potential to affect human health.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Lunn R, Baumhardt PE, Blackwell BF, Freyssinier JP, Fernández-Juricic E. Light wavelength and pulsing frequency affect avoidance responses of Canada geese. PeerJ 2023; 11:e16379. [PMID: 38025716 PMCID: PMC10668863 DOI: 10.7717/peerj.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Collisions between birds and aircraft cause bird mortality, economic damage, and aviation safety hazards. One proposed solution to increasing the distance at which birds detect and move away from an approaching aircraft, ultimately mitigating the probability of collision, is through onboard lighting systems. Lights in vehicles have been shown to lead to earlier reactions in some bird species but they could also generate attraction, potentially increasing the probability of collision. Using information on the visual system of the Canada goose (Branta canadensis), we developed light stimuli of high chromatic contrast to their eyes. We then conducted a controlled behavioral experiment (i.e., single-choice test) to assess the avoidance or attraction responses of Canada geese to LED lights of different wavelengths (blue, 483 nm; red, 631 nm) and pulsing frequencies (steady, pulsing at 2 Hz). Overall, Canada geese tended to avoid the blue light and move towards the red light; however, these responses depended heavily on light exposure order. At the beginning of the experiment, geese tended to avoid the red light. After further exposure the birds developed an attraction to the red light, consistent with the mere exposure effect. The response to the blue light generally followed a U-shape relationship (avoidance, attraction, avoidance) with increasing number of exposures, again consistent with the mere exposure effect, but followed by the satiation effect. Lights pulsing at 2 Hz enhanced avoidance responses under high ambient light conditions; whereas steady lights enhanced avoidance responses under dim ambient light conditions. Our results have implications for the design of lighting systems aimed at mitigating collisions between birds and human objects. LED lights in the blue portion of the spectrum are good candidates for deterrents and lights in the red portion of the spectrum may be counterproductive given the attraction effects with increasing exposure. Additionally, consideration should be given to systems that automatically modify pulsing of the light depending on ambient light intensity to enhance avoidance.
Collapse
Affiliation(s)
- Ryan Lunn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Patrice E. Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health and Inspection Services, National Wildlife Research Center, Sandusky, OH, United States of America
| | - Jean Paul Freyssinier
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | | |
Collapse
|
10
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
11
|
Leeper A, Sauphar C, Berlizot B, Ladurée G, Koppe W, Knobloch S, Skírnisdóttir S, Björnsdóttir R, Øverland M, Benhaïm D. Enhancement of Soybean Meal Alters Gut Microbiome and Influences Behavior of Farmed Atlantic Salmon ( Salmo salar). Animals (Basel) 2023; 13:2591. [PMID: 37627382 PMCID: PMC10451335 DOI: 10.3390/ani13162591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Atlantic salmon (Salmo salar) is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal (SBM), and soy protein concentrate (SPC) in certain combinations can impact gut health, which has consequences for immunity and welfare, limiting the use of soy products in salmonid feeds. This study sought to address this challenge by evaluating two gut health-targeted enhancements of SBM for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). This study took a multi-disciplinary approach, investigating the effect on growth performance, gut microbiome, and behaviors relevant to welfare in aquaculture. This study suggests that both enhancements of SBM provide benefits for growth performance compared with conventional SBM. Both SBM treatments altered fish gut microbiomes and in the case of ETS, increased the presence of the lactic acid bacteria Enterococcus. For the first time, the effects of marine protein sources and plant protein sources on the coping style of salmon were demonstrated. Fish fed SBM showed a tendency for more reactive behavior compared with those fed the FM-based control. All fish had a similar low response to elicited stress, although ETS-fed fish responded more actively than US-fed fish for a single swimming measure. Furthermore, SBM-fed fish displayed lower repeatability of behavior, which may indicate diminished welfare for intensively farmed fish. The implications of these findings for commercial salmonid aquaculture are discussed.
Collapse
Affiliation(s)
- Alexandra Leeper
- Department of Research and Innovation, Iceland Ocean Cluster, Grandagardur 16, 101 Reykjavik, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Clara Sauphar
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Benoit Berlizot
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Gabrielle Ladurée
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Wolfgang Koppe
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Stephen Knobloch
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Food Technology, Fulda University of Applied Sciences, 36037 Fulda, Germany
| | | | - Rannveig Björnsdóttir
- Faculty of Natural Resource Sciences, University of Akureyi, Nordurslod, 600 Akureyi, Iceland
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| |
Collapse
|
12
|
Sanllehi J, Signaroli M, Pons A, Martorell-Barceló M, Mulet J, Lana A, Barcelo-Serra M, Aspillaga E, Grau A, Catalán IA, Viver T, Alós J. Disparate behavioral types in wild and reared juveniles of gilthead seabream. Sci Rep 2023; 13:11226. [PMID: 37433868 DOI: 10.1038/s41598-023-37554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Fish differ consistently in behavior within the same species and population, reflecting distinct behavioral types (BTs). Comparing the behavior of wild and reared individuals provides an excellent opportunity to delve into the ecological and evolutionary consequences of BTs. In this work, we evaluated the behavioral variation of wild and reared juvenile gilthead seabreams, Sparus aurata, a highly relevant species for aquaculture and fisheries. We quantified behavioral variation along the five major axes of fish behavioral traits (exploration-avoidance, aggressiveness, sociability, shyness-boldness, and activity) using standardized behavioral tests and a deep learning tracking algorithm for behavioral annotation. Results revealed significant repeatability in all five behavior traits, suggesting high consistency of individual behavioral variation across the different axes in this species. We found reared fish to be more aggressive, social and active compared to their wild conspecifics. Reared individuals also presented less variance in their aggressiveness, lacking very aggressive and very tame individuals. Phenotypic correlation decomposition between behavioral types revealed two different behavioral syndromes: exploration-sociability and exploration-activity. Our work establishes the first baseline of repeatability scores in wild and reared gilthead seabreams, providing novel insight into the behavior of this important commercial species with implications for fisheries and aquaculture.
Collapse
Affiliation(s)
- Javier Sanllehi
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Marco Signaroli
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Aina Pons
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain.
| | - Martina Martorell-Barceló
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Júlia Mulet
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Arancha Lana
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Margarida Barcelo-Serra
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Amalia Grau
- Laboratori d'Investigacions Marines i Aqüicultura d'Andratx, LIMIA (IRFAP), Avinguda de Gabriel Roca i Garcías, 69, 07157, Andratx, Illes Balears, Spain
| | - Ignacio A Catalán
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Tomeu Viver
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| |
Collapse
|
13
|
Zhu B, Wang X, Ren Z, Zhang H, Liu D, Wang F. Each Personality Performs Its Own Function: Boldness and Exploration Lead to Differences in the Territoriality of Swimming Crabs ( Portunus trituberculatus). BIOLOGY 2023; 12:883. [PMID: 37372167 DOI: 10.3390/biology12060883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The boldness and exploration of animals are closely related to their territoriality, with relevant studies having important applications in wildlife conservation. The present study establishes a behavior observation system measuring the boldness and exploration of swimming crabs (Portunus trituberculatus) to clarify the relationship between boldness, exploration, and territoriality, as well as to provide a behavioral basis for the construction of marine ranching. The behavioral tests of crabs in a safe environment (predator absence), a dangerous environment (predator presence), and habitat selection (complex and simple habitat) are analyzed. A territorial behavior score is calculated as an evaluation index of territoriality. The correlation between the swimming crabs' boldness, exploration, and territoriality is analyzed. The results show that there is no boldness-exploratory behavioral syndrome. In predator absence or presence environments, boldness is dominant in territorial behavior and positively correlates with territoriality. Exploration plays a vital role in habitat selection tests but has no significant correlation with territoriality. The experimental results preliminarily show that boldness and exploration jointly develop the difference in the space utilization ability of crabs with different personalities, improving the adaptability of swimming crabs in different conditions. The results of this study supplement the behavior rules of the dominant species of typical fishery resources in marine ranches, providing a basis for achieving animal behavior management function in marine ranches.
Collapse
Affiliation(s)
- Boshan Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Wang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Ziwen Ren
- Shandong Yellow River Delta Marine Technology Co., Ltd., Dongying 257000, China
| | - Hanzun Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Dapeng Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
14
|
Ferreira CSS, Soares SC, Kille P, Oliveira M. Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. CHEMOSPHERE 2023; 335:139124. [PMID: 37285976 DOI: 10.1016/j.chemosphere.2023.139124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra C Soares
- William James Center for Research (WJRC), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Dos Santos CP, de Oliveira MN, Silva PF, Luchiari AC. Relationship between boldness and exploratory behavior in adult zebrafish. Behav Processes 2023; 209:104885. [PMID: 37150335 DOI: 10.1016/j.beproc.2023.104885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Behavioral responses vary between individuals and may be repeated in different contexts over time. When a behavioral response set is linked and present regardless of the context, it characterizes a behavioral syndrome. By evaluating how bold and shy (profiles related to risk-taking) individuals perform about exploration and anxiety, we can predict relationships of behavioral syndromes and better understand how different axis of personality is formed. Here we classified the profiles by risk-taking and evaluated their exploration behavior in the open field test. In this context, the two groups showed significant differences in thigmotaxis behavior: bold individuals habituate faster and show decreased thigmotaxis (less anxiety), while shy ones are less prone to leave the security of the side areas of the open tank and present higher anxiety. We emphasized the importance of further investigating the behavior of these profiles in other contexts and the importance of each one for the evolution and fitness of the species, in addition to a better understanding of which behaviors are involved in the behavioral syndromes in zebrafish.
Collapse
Affiliation(s)
| | - Matheus Neves de Oliveira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Priscila Fernandes Silva
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
16
|
Agues-Barbosa T, de Souza AM, de Lima JNG, Luchiari AC. Long-term behavioral alterations following embryonic alcohol exposure in three zebrafish populations. Neurotoxicology 2023; 96:174-183. [PMID: 37120037 DOI: 10.1016/j.neuro.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Fetal alcohol exposure may lead to a condition known as fetal alcohol spectrum disorder (FASD), which comprises a set of consequences, including cognitive and behavioral impairments. Although zebrafish has been applied as a reliable model for studying FASD, there is no approach to the disorder's ontogeny and population differences. Here, we evaluated the behavioral outcomes of AB, Outbred (OB), and Tübingen (TU) zebrafish populations embryonically exposed to alcohol throughout the development to the adult stage. We exposed 24hpf eggs to 0%, 0.5%, or 1.0% alcohol for 2h. Fish were let grow and locomotor and anxiety-like behaviors were tested in a novel tank at larval - 6dpf, juvenile - 45dpf, and adult- 90dpf stages. At 6dpf, both AB and OB treated with 1.0% alcohol showed hyperactivity, while 0.5% and 1.0% TU fish exhibited hypolocomotion. At 45dpf, AB and TU fish maintained the larval pattern of locomotion. At the adult stage - 90dpf, both AB and TU populations showed increased locomotor activity and anxiogenic responses, while the OB population did not show altered behavior. Our results show for the first time that zebrafish populations exhibit behavioral differences in response to embryonic alcohol exposure and that it varies along animals' ontogeny. AB fish showed the most consistent behavioral pattern through developmental stages, TU fish showed behavioral changes only in adulthood, and OB population showed high interindividual variability. These data reinforce that different populations of zebrafish are better adapted to translational studies, offering reliable results in contrast to domesticated OB populations obtained from farms, which exhibit more variable genomes.
Collapse
Affiliation(s)
- Thaís Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
17
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
18
|
Lahat A, Perlman M, Howe N, Recchia HE, Bukowski WM, Santo JB, Luo Z, Ross H. Change over time in interactions between unfamiliar toddlers. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2023; 47:21-34. [PMID: 36582414 PMCID: PMC9791325 DOI: 10.1177/01650254221121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The frequency and length of games, conflicts, and contingency sequences that took place between toddlers as they got to know one another were studied using archival data. The sample consisted of 28 unfamiliar 20- and 30-month-old toddlers (predominantly White, 16 males) who met separately with each of two other toddlers for 18 play dates. The frequency of games increased over time, while the frequency of conflict and contingency sequences decreased. The length of games increased over time while the length of conflicts and contingency sequences were stable. Age and language ability predicted changes in frequency and length of the different types of sequences. Thus, toddlers engage in less structured interactions when they first meet; their interactions become increasingly more organized and positive as the relationship evolves.
Collapse
Affiliation(s)
- Ayelet Lahat
- University of Toronto, Canada,Ayelet Lahat, OISE, University of Toronto, 252 Bloor Street West, Toronto, ON M5S 1A1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lucon-Xiccato T, Tomain M, D’Aniello S, Bertolucci C. bdnf loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav Brain Res 2023; 436:114115. [DOI: 10.1016/j.bbr.2022.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
20
|
DePasquale C, Franklin K, Jia Z, Jhaveri K, Buderman FE. The effects of exploratory behavior on physical activity in a common animal model of human disease, zebrafish ( Danio rerio). Front Behav Neurosci 2022; 16:1020837. [PMID: 36425283 PMCID: PMC9679429 DOI: 10.3389/fnbeh.2022.1020837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Zebrafish (Danio rerio) are widely accepted as a multidisciplinary vertebrate model for neurobehavioral and clinical studies, and more recently have become established as a model for exercise physiology and behavior. Individual differences in activity level (e.g., exploration) have been characterized in zebrafish, however, how different levels of exploration correspond to differences in motivation to engage in swimming behavior has not yet been explored. We screened individual zebrafish in two tests of exploration: the open field and novel tank diving tests. The fish were then exposed to a tank in which they could choose to enter a compartment with a flow of water (as a means of testing voluntary motivation to exercise). After a 2-day habituation period, behavioral observations were conducted. We used correlative analyses to investigate the robustness of the different exploration tests. Due to the complexity of dependent behavioral variables, we used machine learning to determine the personality variables that were best at predicting swimming behavior. Our results show that contrary to our predictions, the correlation between novel tank diving test variables and open field test variables was relatively weak. Novel tank diving variables were more correlated with themselves than open field variables were to each other. Males exhibited stronger relationships between behavioral variables than did females. In terms of swimming behavior, fish that spent more time in the swimming zone spent more time actively swimming, however, swimming behavior was inconsistent across the time of the study. All relationships between swimming variables and exploration tests were relatively weak, though novel tank diving test variables had stronger correlations. Machine learning showed that three novel tank diving variables (entries top/bottom, movement rate, average top entry duration) and one open field variable (proportion of time spent frozen) were the best predictors of swimming behavior, demonstrating that the novel tank diving test is a powerful tool to investigate exploration. Increased knowledge about how individual differences in exploration may play a role in swimming behavior in zebrafish is fundamental to their utility as a model of exercise physiology and behavior.
Collapse
Affiliation(s)
- Cairsty DePasquale
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kristina Franklin
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Zhaohan Jia
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kavya Jhaveri
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Frances E. Buderman
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
21
|
Lahat A, Lou Z, Perlman M, Howe N, Santo JB, Recchia HE, Bukowski WM, Ross HS. Positive and negative actions early in the relationship predict later interactions among toddlers. PLoS One 2022; 17:e0276932. [PMID: 36327252 PMCID: PMC9632877 DOI: 10.1371/journal.pone.0276932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Very little is known about the role of early interactions in the development of peer relationships among toddlers. The present study examined whether behaviors early in the formation of toddler relationships predict interactions later in their relationships. Twenty-eight unfamiliar 20- and 30-month-old toddlers from a predominately European background met separately with each of two other toddlers for 18 playdates. Both positive and negative behaviors at the beginning of the relationship predicted a higher frequency of games later in the relationship. Positive behaviors at the beginning of the relationship predicted fewer conflicts later in the relationship. Negative behaviors at the beginning predicted more conflicts later in the relationship. These findings suggest that toddlers’ behaviors, when they initially meet, underlie the pathway in which their relationship develops.
Collapse
Affiliation(s)
| | | | | | - Nina Howe
- Concordia University, Montreal, Canada
| | | | | | | | | |
Collapse
|
22
|
Anwer H, O'Dea RE, Mason D, Zajitschek S, Klinke A, Reid M, Hesselson D, Noble DWA, Morris MJ, Lagisz M, Nakagawa S. The effects of an obesogenic diet on behavior and cognition in zebrafish ( Danio rerio): Trait average, variability, repeatability, and behavioral syndromes. Ecol Evol 2022; 12:e9511. [PMID: 36407899 PMCID: PMC9666915 DOI: 10.1002/ece3.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The obesity epidemic, largely driven by the accessibility of ultra-processed high-energy foods, is one of the most pressing public health challenges of the 21st century. Consequently, there is increasing concern about the impacts of diet-induced obesity on behavior and cognition. While research on this matter continues, to date, no study has explicitly investigated the effect of obesogenic diet on variance and covariance (correlation) in behavioral traits. Here, we examined how an obesogenic versus control diet impacts means and (co-)variances of traits associated with body condition, behavior, and cognition in a laboratory population of ~160 adult zebrafish (Danio rerio). Overall, an obesogenic diet increased variation in several zebrafish traits. Zebrafish on an obesogenic diet were significantly heavier and displayed higher body weight variability; fasting blood glucose levels were similar between control and treatment zebrafish. During behavioral assays, zebrafish on the obesogenic diet displayed more exploratory behavior and were less reactive to video stimuli with conspecifics during a personality test, but these significant differences were sex-specific. Zebrafish on an obesogenic diet also displayed repeatable responses in aversive learning tests whereas control zebrafish did not, suggesting an obesogenic diet resulted in more consistent, yet impaired, behavioral responses. Where behavioral syndromes existed (inter-class correlations between personality traits), they did not differ between obesogenic and control zebrafish groups. By integrating a multifaceted, holistic approach that incorporates components of (co-)variances, future studies will greatly benefit by quantifying neglected dimensions of obesogenic diets on behavioral changes.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Rose E. O'Dea
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dominic Mason
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Susanne Zajitschek
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Liverpool John Moores UniversitySchool of Biological and Environmental SciencesLiverpoolUK
| | - Annabell Klinke
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Madeleine Reid
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Daniel Hesselson
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centenary Institute and Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| |
Collapse
|
23
|
Razali K, Mohd Nasir MH, Othman N, Doolaanea AA, Kumar J, Nabeel Ibrahim W, Mohamed WMY. Characterization of neurobehavioral pattern in a zebrafish 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model: A 96-hour behavioral study. PLoS One 2022; 17:e0274844. [PMID: 36190968 PMCID: PMC9529090 DOI: 10.1371/journal.pone.0274844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson’s disease (PD) is the most common brain motor disorder, characterized by a substantial loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Motor impairments, such as dyskinesia, bradykinesia, and resting tremors, are the hallmarks of PD. Despite ongoing research, the exact PD pathogenesis remains elusive due to the disease intricacy and difficulty in conducting human studies. Zebrafish (Danio rerio) has emerged as an ideal model for researching PD pathophysiology. Even though 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been used to induce PD in zebrafish, behavioural findings are frequently limited to a single time point (24 hours post-injection). In this sense, we aim to demonstrate the effects of MPTP on zebrafish swimming behaviour at multiple time points. We administered a single dosage of MPTP (200μg/g bw) via intraperitoneal injection (i/p) and assessed the locomotor activity and swimming pattern at 0h, 24h, and 96h post-injection through an open field test. Analysis of the behaviour revealed significant reductions in swimming velocity (cm/s) and distance travelled (cm), concurrent with an increase in freezing maintenance (duration and bouts) in zebrafish injected with MPTP. In addition, the MPTP-injected zebrafish exhibited complex swimming patterns, as measured by the turn angle, meander, and angular velocity, and showed abnormal swimming phenotypes, including freezing, looping, and erratic movement. To conclude, MPTP administration into adult zebrafish induced hypolocomotion and elicited motor incoordination. Plus, the effects of MPTP were observable 24 hours after the injection and still detectable 96 hours later. These findings contribute to the understanding of MPTP effects on adult zebrafish, particularly in terms of swimming behaviours, and may pave the way for a better understanding of the establishment of PD animal models in the future.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
- * E-mail:
| |
Collapse
|
24
|
Rajput N, Parikh K, Kenney JW. Beyond bold versus shy: Zebrafish exploratory behavior falls into several behavioral clusters and is influenced by strain and sex. Biol Open 2022; 11:276471. [PMID: 36039864 PMCID: PMC9450886 DOI: 10.1242/bio.059443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Individual differences in exploratory behavior have been found across a range of taxa and are thought to contribute to evolutionary fitness. Animals that explore more of a novel environment and visit areas of high predation risk are considered bold, whereas animals with the opposite behavioral pattern are shy. Here, we determined whether this bimodal characterization of bold versus shy adequately captures the breadth of behavioral variation in zebrafish or if there are more than these two subtypes. To identify behavioral categories, we applied unsupervised machine to three-dimensional swim traces from over 400 adult zebrafish across four strains (AB, TL, TU, and WIK) and both sexes. We found that behavior stratified into four distinct clusters: previously described bold and shy behavior and two new behavioral types we call wall-huggers and active explorers. Clusters were stable across time and influenced by strain and sex where we found that TLs were shy, female TU fish were bold, male TU fish were active explorers, and male ABs were wall-huggers. Our work suggests that zebrafish exploratory behavior has greater complexity than previously recognized and lays the groundwork for the use of zebrafish in understanding the biological basis of individual differences in behavior. Summary: Prior work described individual differences in zebrafish exploratory behavior as bold or shy. Here, we find four categories better describe their behavior: bold, shy, active explorers, and wall-huggers.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
25
|
Aimon C, Lebigre C, Le Floch S, Claireaux G. Effects of dispersant-treated oil upon behavioural and metabolic parameters of the anti-predator response in juvenile European sea bass (Dicentrarchus labrax). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155430. [PMID: 35461926 DOI: 10.1016/j.scitotenv.2022.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Acute exposure to oil and oil dispersants can cause a wide range of physiological dysfunctions in marine fish species and evidences for consequences on behaviour are also increasing. In response to the presence of predators or to food availability, the modulation of locomotor activity and schools' behaviour enable fish to maximize their survival rates. However, the degree to which this regulatory process is affected by exposure to oil and/or dispersants is yet unknown. Here we investigated the effect of a 62-h experimental exposure to dispersant-treated oil on the behavioural (shoal cohesion, spontaneous activity) and metabolic (oxygen consumption) responses to simulated predation in juvenile European sea bass, Dicentrarchus labrax L. Our results suggest that exposure to petroleum hydrocarbons may affect negatively individual fitness through impaired ability to respond to predation. Shoal cohesion was not affected, but fish swimming activity was higher than control individuals under predation pressure and the amplitude of their metabolic response was significantly reduced. Fish recovered from alteration of their metabolic response 7 days post-exposure. Additionally, a strong habituation component was observed in C fish and the absence of such pattern in E fish suggest altered capacity to habituate over time to the surrounding environment and possible impairments of the related cognitive performances. Altogether, our data show that juvenile sea bass exposed to oil exhibit transient physiological dysfunctions and impairments of complex behaviours that may have major population-level consequences.
Collapse
Affiliation(s)
- C Aimon
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, 29280 Plouzané, France; CEDRE, Research Department, 715 rue Alain Colas, CS 41836, Brest 29218-Cedex 2, France.
| | - C Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - S Le Floch
- CEDRE, Research Department, 715 rue Alain Colas, CS 41836, Brest 29218-Cedex 2, France
| | - G Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, 29280 Plouzané, France
| |
Collapse
|
26
|
Makowicz AM, Bierbach D, Richardson C, Hughes KA. Cascading indirect genetic effects in a clonal vertebrate. Proc Biol Sci 2022; 289:20220731. [PMID: 35858068 PMCID: PMC9277275 DOI: 10.1098/rspb.2022.0731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly (Poecilia formosa), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission-fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments.
Collapse
Affiliation(s)
- Amber M. Makowicz
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany,Excellence Cluster ‘Science of Intelligence,’ Technische Universität Berlin, Marchstraße 23, 10587 Berlin, Germany,Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Christian Richardson
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - Kimberly A. Hughes
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| |
Collapse
|
27
|
Vossen LE, Brunberg R, Rådén P, Winberg S, Roman E. The zebrafish Multivariate Concentric Square Field: A Standardized Test for Behavioral Profiling of Zebrafish ( Danio rerio). Front Behav Neurosci 2022; 16:744533. [PMID: 35368300 PMCID: PMC8968638 DOI: 10.3389/fnbeh.2022.744533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is an important model organism in the study of the neurobiological basis of human mental disorders. Yet the utility of this species is limited by the quality of the phenotypical characterization tools available. Here, we present a complex testing environment for the quantification of explorative behavior in adult zebrafish, the zebrafish Multivariate Concentric Square Field™ (zMCSF), adapted from the rodent equivalent that has been used in > 40 studies. The apparatus consists of a central open area which is surrounded by a dark corner with a roof (DCR), corridors, and an inclined ramp. These areas differ in illumination, water depth, and are sheltered or exposed to different degrees. We quantified behavior of male and female wild-caught and AB strain zebrafish in the zMCSF (day 1) and cross-validated these results using the novel tank diving test (NTDT) (day 2). To assess the effect of repeated testing, AB zebrafish we tested a second time in both tests 1 week later (on days 7 and 8). We detected strong differences between the strains, with wild zebrafish swimming faster and spending more time in the corridors and on the ramp, while they avoided the open area in the center. AB zebrafish were less hesitant to enter the center but avoided the ramp, and often left one or more zones unexplored. No major sex differences in exploratory behavior were detected in either strain, except for a slightly higher velocity of AB males which has been reported before. Importantly, the zMCSF was largely resilient to repeated testing. The diving test revealed only one difference confined to one sex; wild females paid more visits to the top third than AB females. In isolation, this finding could lead to the conclusion that wild zebrafish are more risk-taking, which is incorrect given this strain's avoidance of open areas. To conclude, our results suggest that the zMCSF presents a sophisticated behavioral tool that can distinguish between different magnitudes and types of risk, allowing the user to create an intricate behavioral profile of individual adult zebrafish.
Collapse
Affiliation(s)
- Laura E. Vossen
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronja Brunberg
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pontus Rådén
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Behavioral Neuroendocrinology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Behavioral Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Daniel DK, Bhat A. Sex and Population Drive Interindividual Variations in a Cognitive Task Across Three Populations of Wild Zebrafish. Front Psychol 2022; 13:786486. [PMID: 35310218 PMCID: PMC8931718 DOI: 10.3389/fpsyg.2022.786486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Animal personality refers to the consistency of variation in behavior among individuals which may be the driving force behind variations in complex behaviors as well. Individual personality could predict how well an organism would perform in behavior and cognition related tasks, as well as survive and thrive in its environment. Therefore, we would expect inter-individual variations in many behaviors, which would persist even if habituation to the experimental setup occurs, which generally results in convergence of behavior (i.e., the difference between individuals becomes less pronounced). Our study used wild-caught zebrafish (Danio rerio) from three natural habitats with differing ecological regimes, to understand how consistency and repeatability in specific traits such as boldness, exploration, and spatial ability varies across and within populations even when habituation causes change in behavior. We found that the extent of individual variation differs between populations, with dynamic habitats showing similar repeatability. This indicates that habitat conditions are important drivers of individual variation in addition to other factors, such as sex or size of individuals within populations. Although we found that sex and size played an important role within some populations for some behaviors, in others, the variation was likely caused by other factors (for example, ecological factors such as vegetation and/or resource availability), for which we have not accounted. This study underlines the importance of studying inter-individual differences as the phenomenon that underpins multiple behavioral traits and explains the possible role of environmental and inherent factors that drive these differences.
Collapse
Affiliation(s)
| | - Anuradha Bhat
- *Correspondence: Anuradha Bhat, , orcid.org/0000-0002-7447-2380
| |
Collapse
|
29
|
Harrison LM, Noble DWA, Jennions MD. A meta-analysis of sex differences in animal personality: no evidence for the greater male variability hypothesis. Biol Rev Camb Philos Soc 2021; 97:679-707. [PMID: 34908228 DOI: 10.1111/brv.12818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
The notion that men are more variable than women has become embedded into scientific thinking. For mental traits like personality, greater male variability has been partly attributed to biology, underpinned by claims that there is generally greater variation among males than females in non-human animals due to stronger sexual selection on males. However, evidence for greater male variability is limited to morphological traits, and there is little information regarding sex differences in personality-like behaviours for non-human animals. Here, we meta-analysed sex differences in means and variances for over 2100 effects (204 studies) from 220 species (covering five broad taxonomic groups) across five personality traits: boldness, aggression, activity, sociality and exploration. We also tested if sexual size dimorphism, a proxy for sex-specific sexual selection, explains variation in the magnitude of sex differences in personality. We found no significant differences in personality between the sexes. In addition, sexual size dimorphism did not explain variation in the magnitude of the observed sex differences in the mean or variance in personality for any taxonomic group. In sum, we find no evidence for widespread sex differences in variability in non-human animal personality.
Collapse
Affiliation(s)
- Lauren M Harrison
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
30
|
Mensinger MA, Brehm AM, Mortelliti A, Blomberg EJ, Zydlewski JD. American eel personality and body length influence passage success in an experimental fishway. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Matthew A. Mensinger
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono ME USA
| | - Allison M. Brehm
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono ME USA
| | - Alessio Mortelliti
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono ME USA
| | - Erik J. Blomberg
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono ME USA
| | - Joseph D. Zydlewski
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono ME USA
- Maine Cooperative Fish and Wildlife Research Unit U.S. Geological Survey University of Maine Orono ME USA
| |
Collapse
|
31
|
Impact of chronic sub-lethal methylparaben exposure on cardiac hypoxia and alterations in neuroendocrine factors in zebrafish model. Mol Biol Rep 2021; 49:331-340. [PMID: 34716506 DOI: 10.1007/s11033-021-06878-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals have been shown to cause toxicity in different systems of the body including the endocrine, cardiovascular and nervous systems. This study aims to analyze the adverse effects of Methylparaben (MP) on cardiac functions, neurodevelopment, and behavior of zebrafish. METHODS AND RESULTS Adult male and female zebrafish were exposed to MP for 30 days to study the toxicity effects. Zebrafish were grouped into control, solvent control, 1/10th (110 ppb), 1/100th, and 1/1000th (1 ppb) lethal concentration 50 of MP. Neurobehavioral assays, acetylcholinesterase (AChE) activity, serotonin levels, and expression of genes-Hypoxia-inducible factor 1 alpha, Neurotrophic Receptor Tyrosine Kinase, Paired box protein Pax-6, and tnnt2 were investigated in zebrafish. Results of the study showed more anxiety-like behavior in MP-treated female zebrafish when compared to males on chronic exposure. There was a dose-dependent reduction of AChE activity in both male and female zebrafish. Female zebrafish showed a dose-dependent increase in serotonin level on MP exposure while male zebrafish showed a dose-independent decrease in serotonin level. On MP exposure, there was also a dose-dependent dysregulation in the expression of cardiac hypoxia and neuronal differentiation-related genes in female zebrafish while a dose-independent change was observed in male zebrafish. CONCLUSION Chronic MP exposure affects cardiac functions, neuronal functions, and behavior of zebrafish by exhibiting changes in AChE activity, serotonin levels, and altering the expression of genes related to cardiac hypoxia and neuronal differentiation even at sub-lethal doses.
Collapse
|
32
|
Tapper S, Nocera JJ, Burness G. Body temperature is a repeatable trait in a free-ranging passerine bird. J Exp Biol 2021; 224:272129. [PMID: 34498672 DOI: 10.1242/jeb.243057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Body temperature (Tb) affects animal function through its influence on rates of biochemical and biophysical reactions, the molecular structures of proteins and tissues, and, ultimately, organismal performance. Despite its importance in driving physiological processes, there are few data on how much variation in Tb exists within populations of organisms, and whether this variation consistently differs among individuals over time (i.e. repeatability of a trait). Here, using thermal radio-frequency identification implants, we quantified the repeatability of Tb, both in the context of a fixed average environment (∼21°C) and across ambient temperatures (6-31°C), in a free-living population of tree swallows (Tachycineta bicolor, n=16). By experimentally trimming the ventral plumage of a subset of female swallows (n=8), we also asked whether the repeatability of Tb is influenced by the capacity to dissipate body heat. We found that both female and male tree swallow Tb was repeatable at 21°C (R=0.89-92), but female Tb was less repeatable than male Tb across ambient temperature (Rfemale=0.10, Rmale=0.58), which may be due to differences in parental investment. Trimmed birds had on average lower Tb than control birds (by ∼0.5°C), but the repeatability of female Tb did not differ as a function of heat dissipation capacity. This suggests that trimmed individuals adjusted their Tb to account for the effects of heat loss on Tb. Our study provides a first critical step toward understanding whether Tb is responsive to natural selection, and for predicting how animal populations will respond to climatic warming.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Department, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| | - Joseph J Nocera
- Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, Canada, E3B 5A3
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
33
|
Buenhombre J, Daza-Cardona EA, Sousa P, Gouveia A. Different influences of anxiety models, environmental enrichment, standard conditions and intraspecies variation (sex, personality and strain) on stress and quality of life in adult and juvenile zebrafish: A systematic review. Neurosci Biobehav Rev 2021; 131:765-791. [PMID: 34592257 DOI: 10.1016/j.neubiorev.2021.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Antagonist and long-lasting environmental manipulations (EM) have successfully induced or reduced the stress responses and quality of life of zebrafish. For instance, environmental enrichment (EE) generally reduces anxiety-related behaviours and improves immunity, while unpredictable chronic stress (UCS) and aquarium-related stressors generate the opposite effects. However, there is an absence of consistency in outcomes for some EM, such as acute exposure to stressors, social enrichment and some items of structural enrichment. Therefore, considering intraspecies variation (sex, personality, and strain), increasing intervention complexity while improving standardisation of protocols and contemplating the possibility that EE may act as a mild stressor on a spectrum between too much (UCS) and too little (standard conditions) stress intensity or stimulation, would reduce the inconsistencies of these outcomes. It would also help explore the mechanism behind stress resilience and to standardise EM protocols. Thus, this review critically analyses and compares knowledge existing over the last decade concerning environmental manipulations for zebrafish and the influences that sex, strain, and personality may have on behavioural, physiological, and fitness-related responses.
Collapse
Affiliation(s)
- Jhon Buenhombre
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil.
| | | | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| | - Amauri Gouveia
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| |
Collapse
|
34
|
Monnet G, Rosenfeld JS, Richards JG. Behavioural variation between piscivore and insectivore rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2021; 99:955-963. [PMID: 33969488 DOI: 10.1111/jfb.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
A proactive-reactive continuum integrating multiple (i.e., 3+) dimensions of animal behaviour has been reported as a major axis of behavioural differentiation, but its stability along a biological hierarchy from individuals to populations remains speculative. Piscivore and insectivore rainbow trout (Oncorhynchus mykiss) represent closely related ecotypes with strong ecological divergence driven by selection for a large-bodied piscivorous lifestyle with fast juvenile growth vs. selection for smaller adult body size and lower growth associated with an insectivorous diet. To evaluate whether differences in behaviour between ecotypes are consistent with a proactive-reactive axis and consistent along a biological hierarchy, the authors examined variation in emergence time from a shelter, exploration, activity and predator inspection among individuals, populations and ecotypes of juvenile piscivore and insectivore rainbow trout O. mykiss. As expected, the faster-growing piscivore ecotype was more proactive (i.e., shorter emergence time, exploration and predator inspection) than the more reactive insectivore ecotype. This behavioural contrast was partly maintained across populations, although activity differences were most pronounced among populations, rather than emergence time. Insectivore fry showed substantial variation in behavioural expression among individuals within populations; by contrast, piscivores showed highly similar proactive behaviours with significantly lower inter-individual variation in behavioural expression, suggesting intense selection on behaviour supporting their faster growth. This work suggests that piscivore and insectivore O. mykiss broadly differ in behaviour along a proactive vs. reactive continuum, and highlights the greater multidimensionality of behavioural expression within the insectivore ecotype. Contrasting behaviours between ecotypes may result from differential selection for slow vs. fast juvenile growth and associated metabolism, and may contribute to adult trophic specialization.
Collapse
Affiliation(s)
- Gauthier Monnet
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan S Rosenfeld
- British Columbia Ministry of the Environment, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
36
|
Baker MR, Wong RY. Npas4a expression in the teleost forebrain is associated with stress coping style differences in fear learning. Sci Rep 2021; 11:12074. [PMID: 34103598 PMCID: PMC8187387 DOI: 10.1038/s41598-021-91495-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal's stress coping style (e.g. proactive-reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.
Collapse
Affiliation(s)
- Matthew R Baker
- Department of Biology, University of Nebraska at Omaha, Omaha, USA
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, USA.
- Department of Psychology, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE, 68182, USA.
| |
Collapse
|
37
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|
38
|
Pinheiro-da-Silva J, Araujo-Silva H, Luchiari AC. Does early ethanol exposure increase seeking-like behavior in zebrafish? Int J Dev Neurosci 2021; 81:416-427. [PMID: 33837569 DOI: 10.1002/jdn.10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 01/22/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common cause of birth defects. The severe variations are in fetal alcohol syndrome (FAS) but the most frequent cases are alcohol-related neurodevelopmental disorder (ARND), which is of a difficult diagnosis. ARND characteristics include impaired social behavior, anxiety and depression prevalence, cognitive deficits, and an increased chance for drug addiction. Here, we aimed to test whether early alcohol exposure leads to later alcohol preference. We hypothesize that early alcohol exposure increases the reinforcing effects on later experiences, raising the chance of addiction in adult life. Lately, the zebrafish has been a valuable model on alcohol research, allowing embryonic exposure and the study of the ontogenetic effects. For this, embryos were exposed to three different alcohol treatments: 0.0%, 0.25% and 0.5%, for 2 hr, at 24-hr post-fertilization. Then we evaluated the effects of embryonic alcohol exposure on conditioned place preference in two developmental stage: fry (10 days post-fertilization (dpf)) and young (90 dpf) zebrafish. Results show that control fish presented alcohol associative learning, which means, changes in place preference due to alcohol exposure, at both ontogenetic phases. However, zebrafish exposed to 0.25 and 0.5% alcohol during embryogenesis did not show conditioning response at any evaluated stage. These results suggest perception and cognitive deficits due to embryonic alcohol exposure that can alter alcohol responsiveness throughout a lifetime. Although low alcohol doses do not provoke malformation, it has been shown to induce several neurological and behavioral changes that are termed as Alcohol-Related Neurodevelopmental Disorders. These results may contribute to future investigations on how embryonic exposure affects the neurocircuitry related to perception and associative learning processing.
Collapse
Affiliation(s)
| | - Heloysa Araujo-Silva
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
39
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
40
|
Suurväli J, Whiteley AR, Zheng Y, Gharbi K, Leptin M, Wiehe T. The Laboratory Domestication of Zebrafish: From Diverse Populations to Inbred Substrains. Mol Biol Evol 2021; 37:1056-1069. [PMID: 31808937 PMCID: PMC7086173 DOI: 10.1093/molbev/msz289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We know from human genetic studies that practically all aspects of biology are strongly influenced by the genetic background, as reflected in the advent of “personalized medicine.” Yet, with few exceptions, this is not taken into account when using laboratory populations as animal model systems for research in these fields. Laboratory strains of zebrafish (Danio rerio) are widely used for research in vertebrate developmental biology, behavior, and physiology, for modeling diseases, and for testing pharmaceutic compounds in vivo. However, all of these strains are derived from artificial bottleneck events and therefore are likely to represent only a fraction of the genetic diversity present within the species. Here, we use restriction site-associated DNA sequencing to genetically characterize wild populations of zebrafish from India, Nepal, and Bangladesh, and to compare them to previously published data on four common laboratory strains. We measured nucleotide diversity, heterozygosity, and allele frequency spectra, and find that wild zebrafish are much more diverse than laboratory strains. Further, in wild zebrafish, there is a clear signal of GC-biased gene conversion that is missing in laboratory strains. We also find that zebrafish populations in Nepal and Bangladesh are most distinct from all other strains studied, making them an attractive subject for future studies of zebrafish population genetics and molecular ecology. Finally, isolates of the same strains kept in different laboratories show a pattern of ongoing differentiation into genetically distinct substrains. Together, our findings broaden the basis for future genetic, physiological, pharmaceutic, and evolutionary studies in Danio rerio.
Collapse
Affiliation(s)
- Jaanus Suurväli
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Andrew R Whiteley
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT
| | - Yichen Zheng
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom.,Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Thomas Wiehe
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Snekser JL, Itzkowitz M. Convict cichlid parents that stay with the same mate develop unique and consistent divisions of roles. PeerJ 2020; 8:e10534. [PMID: 33362975 PMCID: PMC7745672 DOI: 10.7717/peerj.10534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies, largely on avian species, have suggested that pairs that are permanently monogamous and have biparental care develop a coordination over time that enhances offspring survival. If this is the case, we predicted that a parent involved in biparental care would develop a pattern of biparental care specific to a particular mate and remain consistent in that pattern over time but would lose this pattern if it were to change mates. We tested this prediction with the convict cichlid fish (Amatitlania nigrofasciata) which has biparental care that is both complex and flexible. In this species, each parent can perform all parental roles but typically shows a division of labor in which males typically defend against offspring predators while the female typically provides direct care to the offspring. At various times, the parents briefly switch roles. Our experiments revealed that pairs that remained together for two consecutive broods were more consistent in their parental behaviors, including time they spent near the intruder and in the nest compared to pairs that were comprised of individuals that had previously mated with other partners. Also individuals that remained with the same partner were also more consistent as a parental unit, maintaining their sex-specific roles of males defending aggressively against an intruder and females spending more time directly caring for young. While our experiment clearly support our prediction that individuals do develop unique coordination with specific individuals, convict cichlids in nature appear to be largely serially monogamous in which they mate only once before changing partners. Thus, it is likely this coordination may be available in many species that have biparental care but become adaptive when repeated matings become common.
Collapse
Affiliation(s)
- Jennifer L Snekser
- Department of Animal Behavior, Ecology, and Conservation, Canisius College, Buffalo, NY, United States of America
| | - Murray Itzkowitz
- Department of Biological Sciences, Lehigh Univervsity, Bethlehem, PA, United States of America
| |
Collapse
|
42
|
Goodman AC, Wong RY. Differential effects of ethanol on behavior and GABA A receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci Rep 2020; 10:13076. [PMID: 32753576 PMCID: PMC7403336 DOI: 10.1038/s41598-020-69980-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Variation in stress responses between individuals are linked to factors ranging from stress coping styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can increase stressor engagement through modulation of neurotransmitter systems and are used to investigate stress response mechanisms. There are two alternative suites of correlated behavioral and physiological responses to stressors (stress coping styles) that differ in exploration tendencies: proactive and reactive stress coping styles. By chronically treating individuals differing in stress coping style with ethanol, a GABA-acting drug, we assessed the role of the GABAergic system on the behavioral stress response. Specifically, we investigated resulting changes in stress-related behavior (i.e. exploratory behavior) and whole-brain GABAA receptor subunits (gabra1, gabra2, gabrd, & gabrg2) in response to a novelty stressor. We found that ethanol-treated proactive individuals showed lower stress-related behaviors than their reactive counterparts. Proactive individuals showed significantly higher expression of gabra1, gabra2, and gabrg2 compared to reactive individuals and ethanol treatment resulted in upregulation of gabra1 and gabrg2 in both stress coping styles. These results suggest that impacts of ethanol on stress-related behaviors vary by stress coping style and that expression of select GABAA receptor subunits may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander C Goodman
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
43
|
Pacheco XP. How consistently do personality attributes relate to an individual’s position within a social network: a comparison across groups of captive meerkats. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Thomson HR, Lamb SD, Besson AA, Johnson SL. Long‐term repeatability of behaviours in zebrafish (
Danio rerio
). Ethology 2020. [DOI: 10.1111/eth.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Simon D. Lamb
- Department of Zoology University of Otago Dunedin New Zealand
| | - Anne A. Besson
- Department of Zoology University of Otago Dunedin New Zealand
| | | |
Collapse
|
45
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
46
|
Souders CL, Davis RH, Qing H, Liang X, Febo M, Martyniuk CJ. The psychoactive cathinone derivative pyrovalerone alters locomotor activity and decreases dopamine receptor expression in zebrafish (Danio rerio). Brain Behav 2019; 9:e01420. [PMID: 31625691 PMCID: PMC6851804 DOI: 10.1002/brb3.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Pyrovalerone (4-methyl-β-keto-prolintane) is a synthetic cathinone (beta-keto-amphetamine) derivative. Cathinones are a concern as drugs of abuse, as related street drugs such as methylenedioxypyrovalerone have garnered significant attention. The primary mechanism of action of cathinones is to inhibit reuptake transporters (dopamine and norepinephrine) in reward centers of the central nervous system. METHODS We measured bioenergetic, behavioral, and molecular responses to pyrovalerone (nM-µM) in zebrafish to evaluate its potential for neurotoxicity and neurological impairment. RESULTS Pyrovalerone did not induce any mortality in zebrafish larvae over a 3- and 24-hr period; however, seizures were prevalent at the highest dose tested (100 µM). Oxidative phosphorylation was not affected in the embryos, and there was no change in superoxide dismutase 1 expression. Following a 3-hr treatment to pyrovalerone (1-100 µM), larval zebrafish (6d) showed a dose-dependent decrease (70%-90%) in total distance moved in a visual motor response (VMR) test. We interrogated potential mechanisms related to the hypoactivity, focusing on the expression of dopamine-related transcripts as cathinones can modulate the dopamine system. Pyrovalerone decreased the expression levels of dopamine receptor D1 (~60%) in larval zebrafish but did not affect the expression of tyrosine hydroxylase, dopamine active transporter, or any other dopamine receptor subunit examined, suggesting that pyrovalerone may regulate the expression of dopamine receptors in a specific manner. DISCUSSION Further studies using zebrafish are expected to reveal new insight into molecular mechanisms and behavioral responses to cathinone derivates, and zebrafish may be a useful model for understanding the relationship between the dopamine system and bath salts.
Collapse
Affiliation(s)
- Christopher Laurence Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Robert H Davis
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Qing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Marcelo Febo
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
White SL, Kline BC, Hitt NP, Wagner T. Individual behaviour and resource use of thermally stressed brook trout Salvelinus fontinalis portend the conservation potential of thermal refugia. JOURNAL OF FISH BIOLOGY 2019; 95:1061-1071. [PMID: 31309548 DOI: 10.1111/jfb.14099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Individual aggression and thermal refuge use were monitored in brook trout Salvelinus fontinalis in a controlled laboratory to determine how fish size and personality influence time spent in forage and thermal habitat patches during periods of thermal stress. On average, larger and more exploratory fish initiated more aggressive interactions and across all fish there was decreased aggression at warmer temperatures. Individual personality did not explain changes in aggression or habitat use with increased temperature; however, larger individuals initiated comparatively fewer aggressive interactions at warmer temperatures. Occupancy of forage patches generally declined as ambient stream temperatures approached critical maximum and fish increased thermal refuge use, with a steeper decline in forage patch occupancy observed in larger fish. These findings suggest that larger individuals may be more vulnerable to stream temperature rise. Importantly, even at thermally stressful temperatures, all fish periodically left the thermal refuge to forage. This indicates that the success of refugia at increasing population survival during periods of stream temperature rise may depend on the location of thermal refugia relative to forage locations within the larger habitat mosaic. These results provide insights into the potential for thermal refugia to improve population survival and can be used to inform predictions of population vulnerability to climate change.
Collapse
Affiliation(s)
- Shannon L White
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Benjamen C Kline
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nathaniel P Hitt
- U.S. Geological Survey, Leetown Science Center, Kearneysville, West Virginia, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
48
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
49
|
Contextual fear learning and memory differ between stress coping styles in zebrafish. Sci Rep 2019; 9:9935. [PMID: 31289317 PMCID: PMC6617452 DOI: 10.1038/s41598-019-46319-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
Animals frequently overcome stressors and the ability to learn and recall these salient experiences is essential to an individual’s survival. As part of an animal’s stress coping style, behavioral and physiological responses to stressors are often consistent across contexts and time. However, we are only beginning to understand how cognitive traits can be biased by different coping styles. Here we investigate learning and memory differences in zebrafish (Danio rerio) displaying proactive and reactive stress coping styles. We assessed learning rate and memory duration using an associative fear conditioning paradigm that trained zebrafish to associate a context with exposure to a natural olfactory alarm cue. Our results show that both proactive and reactive zebrafish learn and remember this fearful association. However, we note significant interaction effects between stress coping style and cognition. Zebrafish with the reactive stress coping style acquired the fear memory at a significantly faster rate than proactive fish. While both stress coping styles showed equal memory recall one day post-conditioning, reactive zebrafish showed significantly stronger recall of the conditioned context relative to proactive fish four days post-conditioning. Through understanding how stress coping strategies promote biases in processing salient information, we gain insight into mechanisms that can constrain adaptive behavioral responses.
Collapse
|
50
|
Wong RY, French J, Russ JB. Differences in stress reactivity between zebrafish with alternative stress coping styles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181797. [PMID: 31218026 PMCID: PMC6549991 DOI: 10.1098/rsos.181797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Animals experience stress in a variety of contexts and the behavioural and neuroendocrine responses to stress can vary among conspecifics. The responses across stressors often covary within an individual and are consistently different between individuals, which represent distinct stress coping styles (e.g. proactive and reactive). While studies have identified differences in peak glucocorticoid levels, less is known about how cortisol levels differ between stress coping styles at other time points of the glucocorticoid stress response. Here we quantified whole-body cortisol levels and stress-related behaviours (e.g. depth preference, movement) at time points representing the rise and recovery periods of the stress response in zebrafish lines selectively bred to display the proactive and reactive coping style. We found that cortisol levels and stress behaviours are significantly different between the lines, sexes and time points. Further, individuals from the reactive line showed significantly higher cortisol levels during the rising phase of the stress response compared with those from the proactive line. We also observed a significant correlation between individual variation of cortisol levels and depth preference but only in the reactive line. Our results show that differences in cortisol levels between the alternative stress coping styles extend to the rising phase of the endocrine stress response and that cortisol levels may explain variation in depth preferences in the reactive line. Differences in the timing and duration of cortisol levels may influence immediate behavioural displays and longer lasting neuromolecular mechanisms that modulate future responses.
Collapse
Affiliation(s)
- Ryan Y. Wong
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jeffrey French
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jacalyn B. Russ
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|