1
|
MacQueen SA, Stanley DA, Yearsley JM. Thermal limits of bumblebees and honeybees are modulated by different functional traits: predictions of a mechanistic model. PLoS One 2025; 20:e0320038. [PMID: 40327724 PMCID: PMC12054886 DOI: 10.1371/journal.pone.0320038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2025] [Indexed: 05/08/2025] Open
Abstract
Local weather conditions are expected to have species specific effects on the activity of insect pollinators. However, the relationship between changing weather patterns and pollinator activity has not been well studied. We develop a thermodynamic model for insect thorax temperature that provides a mechanistic link between local weather conditions and functional traits (e.g. body mass, flight speed) and flight activity. We show that behavioural warming and cooling adaptations are essential for temperate bumblebees and the western honeybee, and that the maximum air temperature for sustained flight depends primarily on flight speed for honeybees, whereas for bumblebees it depends upon both flight speed and thorax mass. Our results suggest that the activity of these two pollinator groups will respond differently to climate change, and that different bee groups may provide a compensatory role for each other in different weather conditions. Thus, both are important for sustained crop pollination under future change.
Collapse
Affiliation(s)
- Sarah A. MacQueen
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Dara A. Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Jon M. Yearsley
- Earth Institute, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Naeem M, Rani A, Lyu W, Zhao H, Riasat M, Abbas S, Hussain S, Bashir NH, Li Q, Chen H. Temperature-Related Bioclimatic Variables Play a Greater Role in the Spatial Distribution of Bumblebee Species in Northern Pakistan. INSECTS 2024; 16:1. [PMID: 39859582 PMCID: PMC11765756 DOI: 10.3390/insects16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
Bumblebee species are vital wild pollinators, providing essential pollination services for various crops, fruits, and vegetables. However, their biodiversity is vulnerable to decline due to climate change, particularly in regions like northern Pakistan. Despite this, no research has yet been conducted on the distribution patterns of bumblebee species in this region. The current study aimed to model the spatial distribution of three important bumblebee species: Bombus haemorrhoidalis, B. rufofasciatus, and B. subtypicus in northern Pakistan. Habitat suitability and the contribution of bioclimatic variables to the spatial distribution of species were assessed using the MaxEnt approach. Current and future bioclimatic variables, along with presence-only records of three bumblebee species, were incorporated into the species distribution model. The results indicated that nearly 96% of the area (43 out of 45 cities in northern Pakistan) showed habitat suitability for all three species in the current scenario. Among these 43 cities, five exhibited a 100% overlap in suitable areas for the three species. However, this overlap area is expected to decrease in the future, particularly by the middle of the 21st century, highlighting these regions as prime candidates for conservation. In terms of bioclimatic factors influencing spatial distribution, the study found that temperature-related variables played a more significant role than precipitation-related ones in current and future scenarios. Specifically, bio3 (isothermality) contributed 48% to B. haemorrhoidalis and 43% to B. rufofasciatus, while bio2 (mean diurnal range) was the most influential factor for B. subtypicus. Temperature-related variables accounted for more than 80%, 69.4%, and 78.3% of the spatial variation in B. haemorrhoidalis, B. rufofasciatus, and B. subtypicus, respectively. This study demonstrates the critical influence of temperature on the spatial distribution of bumblebee species in northern Pakistan, underscoring the need for climate-focused conservation strategies to protect these important wild pollinators.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (M.N.); (N.H.B.)
- Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Arzoo Rani
- Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Weiyao Lyu
- Qilin District Livestock Improvement Station, Qujing 655000, China
| | - Huaibo Zhao
- Qilin District Livestock Improvement Station, Qujing 655000, China
| | - Maryam Riasat
- Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Saail Abbas
- Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Sabir Hussain
- Insect Pest Management Program, Institute of Plant & Environmental Protection, National Agricultural Research Centre, Islamabad 45500, Pakistan;
| | - Nawaz Haider Bashir
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (M.N.); (N.H.B.)
| | - Qiang Li
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (M.N.); (N.H.B.)
| | - Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (M.N.); (N.H.B.)
| |
Collapse
|
3
|
Gonzalez VH, Rancher W, Vigil R, Garino-Heisey I, Oyen K, Tscheulin T, Petanidou T, Hranitz JM, Barthell JF. Bees remain heat tolerant after acute exposure to desiccation and starvation. J Exp Biol 2024; 227:jeb249216. [PMID: 39699535 PMCID: PMC11698041 DOI: 10.1242/jeb.249216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Wesley Rancher
- Department of Geography, University of Oregon, 1321 Kincaid St., Eugene, OR 97401, USA
| | - Rylee Vigil
- Samford University, 800 Lakeshore Drive, Birmingham, AL 35229, USA
| | | | - Kennan Oyen
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit & Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - John M. Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, PA 17815, USA
| | - John F. Barthell
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| |
Collapse
|
4
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
Hatten TD, Griswold T, Gibbs J. Spatiotemporal variability and foraging behavior of bee visitors to a rare long-lived iteroparous forb, Silene spaldingii (Caryophyllaceae). Sci Rep 2024; 14:24667. [PMID: 39433920 PMCID: PMC11494118 DOI: 10.1038/s41598-024-75836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Silene spaldingii S Watson is a rare long-lived forb (Caryophyllaceae) found primarily in open native grasslands of the Inland Pacific Northwest and is putatively pollinated by one key bumble bee pollinator, Bombus fervidus (Fabricius). However, populations of bumble bees and their visitation patterns can vary dramatically, and some species are in decline including B. fervidus. Understanding the role of co-pollinators such as sweat bees (Halictidae) could be crucial as the plight of rare plants and pollinators intensifies. We collected data across three seasons (2015-2017) on the Bombus-S. spaldingii pollination system, focusing on three Key Conservation Areas in the Channeled Scablands of eastern Washington. Bee visitors to S. spaldingii were monitored and the pool-of-pollinators was surveyed with blue vane traps. Nine species of bees were observed foraging on the plant, while 2211 bees comprised of five families, 22 genera and 81 taxa were captured in blue vane traps, meaning only 11.1% of species in the pollinator pool visited S. spaldingii. Halictus tripartitus Cockerell, a sweat bee, was a common visitor to the plant, but this was the first record of visitation for several other species, including Lasioglossum buccale (Pérez) which has never before been recorded in the Americas. These sweat bees appear to vector S. spaldingii pollen, suggesting they are co-pollinators of the plant. Weather and patch characteristics affected visitation patterns and the pool-of-pollinators. We conclude that sweat bees are likely co-pollinators of S. spaldingii and that they could become increasingly important if B. fervidus populations continue to decline.
Collapse
Affiliation(s)
| | - Terry Griswold
- USDA ARS Pollinating Insects Research Unit, Old Main Hill, Logan, UT, 5310, 84322, USA
| | - Jason Gibbs
- University of Manitoba, 12 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
6
|
Nie P, Cao R, Yang R, Feng J. Future range dynamics of Asian yellow-legged hornets (Vespa velutina) and their range overlap with Western honey bees (Apis mellifera) reveal major challenges for bee conservation in Europe. PEST MANAGEMENT SCIENCE 2024; 80:2785-2795. [PMID: 38415910 DOI: 10.1002/ps.7987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The invasion of Asian yellow-legged hornets (Vespa velutina) has significantly affected Western honey bees (Apis mellifera) and apiculture in Europe. However, the range dynamics of this hornet and its range overlap with the bees under future change scenarios have not yet been clarified. Using land-use, climate, and topographical datasets, we projected the range dynamics of this hornet and Western honey bees in Europe and the future overlap of their ranges. RESULTS We found that climatic factors had stronger effects on the potential ranges of the hornets compared with land-use and topographical factors. A considerable range expansion of this hornet was predicted, and an increase in the overlap between this pest and the bees was primarily caused by future decreases in temperature seasonality. Additionally, we detected future range expansions of the hornet in the UK and France; future range overlap between this pest and Western honey bees in the UK, Ireland, Portugal, and France; and future overlap between the ranges of this pest and bees but not under recent conditions was mainly projected in Germany, Denmark, and the UK. CONCLUSION Mitigating future climate change might effectively control the proliferation of the hornets and their effects on the bees. Strategies for preventing the invasion of this pest and developing European apiculture should be developed and implemented in these regions where future range overlap between them was projected. Given that climate-change scenarios may result in uncertainty in our projections, further investigation is needed to clarify future range changes of our target species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peixiao Nie
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Runyao Cao
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Rujing Yang
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| | - Jianmeng Feng
- Department of Ecology, College of Agriculture and Biological Science, Dali University, Dali, China
| |
Collapse
|
7
|
Qian Q, Xu D, Liao W, Zhuo Z. Predicting the current and future suitable distribution range of Trilocha varians (Walker, 1855) (Lepidoptera: Bombycidae) in China. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:317-326. [PMID: 38699862 DOI: 10.1017/s0007485324000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13'E-122°08'E, 18°17'N-31°55'N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.
Collapse
Affiliation(s)
- Qianqian Qian
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Wenkai Liao
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
8
|
MacPhail VJ, Hatfield R, Colla SR. Bumble Bee Watch community science program increases scientific understanding of an important pollinator group across Canada and the USA. PLoS One 2024; 19:e0303335. [PMID: 38776282 PMCID: PMC11111064 DOI: 10.1371/journal.pone.0303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
In a time of increasing threats to bumble bees (Hymenoptera: Apidae: Bombus), it is important to understand their ecology and distribution. As experts are limited in resources to conduct field surveys, there is potential for community scientists to help. The Bumble Bee Watch (BBW) community science program involves volunteers taking photos of bumble bees in Canada and the USA and submitting them, along with geographic and optional plant information, to a website or through an app. Taxon experts then verify the bee species identification. The Bumble Bees of North America database (BBNA) stores data (no photographs) collected and identified by more traditional scientific methods over the same range. Here we compared BBW data to BBNA data over all years and just 2010-2020 to understand the scientific contribution of community scientists to the state of the knowledge about native bumble bees. We found that BBW had similar geographic and species coverage as BBNA. It had records from all 63 provinces, states, and territories where bumble bees occur (including four more than BBNA in 2010-2020), and represented 41 of the 48 species in BBNA (with ten more species than BBNA in 2010-2020). While BBW contributed only 8.50% of records overall, it contributed 25.06% of all records over 2010-2020. BBW confirmed the persistence of species and identified new locations of species, both inside and outside of the previously known extent of occurrences. BBW also contributed a wealth of ecological information, such as unique plant genera and species data for almost all the bee species. Thus, while BBW had fewer bee records than the BBNA database overall, it helped to fill in data gaps and provided novel information, complementing the traditional methods. This community science program is valuable in helping to inform conservation management for bumble bee species.
Collapse
Affiliation(s)
- Victoria J MacPhail
- Faculty of Environmental and Urban Change, York University, Toronto, Ontario, Canada
| | - Richard Hatfield
- The Xerces Society for Invertebrate Conservation, Portland, Oregan, United States of America
| | - Sheila R Colla
- Faculty of Environmental and Urban Change, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Filazzola A, Johnson MTJ, Barrett K, Hayes S, Shrestha N, Timms L, MacIvor JS. The great urban shift: Climate change is predicted to drive mass species turnover in cities. PLoS One 2024; 19:e0299217. [PMID: 38536797 PMCID: PMC10971775 DOI: 10.1371/journal.pone.0299217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/06/2024] [Indexed: 05/01/2024] Open
Abstract
Human experiences with nature are important for our culture, economy, and health. Anthropogenically-driven climate change is causing widespread shifts in biodiversity and resident urban wildlife are no exception. We modelled over 2,000 animal species to predict how climate change will impact terrestrial wildlife within 60 Canadian and American cities. We found evidence of an impending great urban shift where thousands of species will disappear across the selected cities, being replaced by new species, or not replaced at all. Effects were largely species-specific, with the most negatively impacted taxa being amphibians, canines, and loons. These predicted shifts were consistent across scenarios of greenhouse gas emissions, but our results show that the severity of change will be defined by our action or inaction to mitigate climate change. An impending massive shift in urban wildlife will impact the cultural experiences of human residents, the delivery of ecosystem services, and our relationship with nature.
Collapse
Affiliation(s)
- Alessandro Filazzola
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Apex Resource Management Solutions, Ottawa, Ontario, Canada
| | - Marc T. J. Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Sue Hayes
- Toronto and Region Conservation Authority, Concord, ON, Canada
| | | | - Laura Timms
- Department of Watershed Knowledge, Credit Valley Conservation, Mississauga, Ontario, Canada
| | - James Scott MacIvor
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario Canada
| |
Collapse
|
10
|
White SA, Dillon ME. Climate warming and bumble bee declines: the need to consider sub-lethal heat, carry-over effects, and colony compensation. Front Physiol 2023; 14:1251235. [PMID: 38028807 PMCID: PMC10644220 DOI: 10.3389/fphys.2023.1251235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Global declines in abundance and diversity of insects are now well-documented and increasingly concerning given the critical and diverse roles insects play in all ecosystems. Habitat loss, invasive species, and anthropogenic chemicals are all clearly detrimental to insect populations, but mounting evidence implicates climate change as a key driver of insect declines globally. Warming temperatures combined with increased variability may expose organisms to extreme heat that exceeds tolerance, potentially driving local extirpations. In this context, heat tolerance limits (e.g., critical thermal maximum, CTmax) have been measured for many invertebrates and are often closely linked to climate regions where animals are found. However, temperatures well below CTmax may also have pronounced effects on insects, but have been relatively less studied. Additionally, many insects with out-sized ecological and economic footprints are colonial (e.g., ants, social bees, termites) such that effects of heat on individuals may propagate through or be compensated by the colony. For colonial organisms, measuring direct effects on individuals may therefore reveal little about population-level impacts of changing climates. Here, we use bumble bees (genus Bombus) as a case study to highlight how a limited understanding of heat effects below CTmax and of colonial impacts and responses both likely hinder our ability to explain past and predict future climate change impacts. Insights from bumble bees suggest that, for diverse invertebrates, predicting climate change impacts will require a more nuanced understanding of the effects of heat exposure and additional studies of carry-over effects and compensatory responses by colonies.
Collapse
Affiliation(s)
- Sabrina A. White
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, United States
| | | |
Collapse
|
11
|
Choi JH, Namgung H, Lim SJ, Kim EK, Oh Y, Park YC. Predicting Suitable Areas for African Swine Fever Outbreaks in Wild Boars in South Korea and Their Implications for Managing High-Risk Pig Farms. Animals (Basel) 2023; 13:2148. [PMID: 37443946 DOI: 10.3390/ani13132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
African swine fever (ASF) is a highly contagious disease affecting domestic pigs and wild boars, with no effective vaccine or treatment available. In South Korea, extensive measures have been implemented to prevent ASF transmission between wild boars and ASF spillover from wild boars to pig farm sectors, including the search for ASF-infected carcasses in mountainous forests and the installation of fences across wide areas of these forests. To determine the priority search range for infected carcasses and establish pig farm-centered quarantine measures, it is necessary to predict the specific path of ASF outbreaks in wild boars and identify pig farms at high risk of ASF spillover from wild boars. Here, we aimed to predict suitable areas and geographical paths for ASF outbreaks in wild boars using the MaxEnt model and shortest-path betweenness centrality analysis. The analysis identified a high frequency of ASF outbreaks in areas with a suitability value ≥0.4 on the suitability map and in areas within a 1.8 km range from the path on the shortest-path map, indicating these areas were high-risk zones for ASF outbreaks. Among the 5063 pig farms analyzed, 37 were in the high-risk zone on the suitability map, 499 were in the high-risk zone on the shortest-path map, and 9 were in both risk zones. Of the 51 pig farm sectors with a dense distribution of pig farms (kernel density ≥ 8), 25 sectors were in contact with or partially overlapped the high risk zone on the suitability map, 18 sectors were located within the high risk zone on the shortest-path map, and 14 sectors were located within both risk zones. These findings aided in determining the priority range for searches for wild boar carcasses and enabled the establishment of preemptive ASF prevention measures around the pig farming sectors that are at risk of ASF spillover from wild boars.
Collapse
Affiliation(s)
- Ju Hui Choi
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hun Namgung
- Ecological Survey Division, Korea National Park Research Institute, Wonju 26441, Republic of Korea
| | - Sang Jin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eui Kyeong Kim
- Ecological Survey Division, Korea National Park Research Institute, Wonju 26441, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yung Chul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Kuo Y, Lu YH, Lin YH, Lin YC, Wu YL. Elevated temperature affects energy metabolism and behavior of bumblebees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103932. [PMID: 36921734 DOI: 10.1016/j.ibmb.2023.103932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Bumblebees (Bombus eximius) are one of the most prominent pollinators in the agricultural industry because of their adaptation to temperate climates and pollination behavior (buzz pollination). Several studies have explained the need to increase conservation efforts for bumblebees due to climate change, but studies on the impact of climate change on pollination behavior of bumblebees have been limited. The present study investigated the effect of elevated temperatures on the survival and physiology of bumblebees. The behavioral changes in flight ability and pollen collection were also determined. We found that elevated temperature affects the survival rate and appetite of bumblebees. Gene expression analysis suggested that the energy metabolic pathway tends to involve anaerobic respiration during heat stress. The energy produced is mainly used to maintain essential physiological functions, such as expression of heat shock proteins and conversion of peroxides to harmless molecules. Energy distributed to flight muscles is reduced during heat stress, resulting in lower wing beating frequency. In addition, the flight path of bumblebees is shortened during heat stress, thereby further contributing to reduced pollen collection. These results demonstrate that elevated temperatures cause detrimental effects to bumblebees and can also potentially reduce crop production.
Collapse
Affiliation(s)
- Yun Kuo
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Yu-Chun Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Leroy C, Brunet JL, Henry M, Alaux C. Using physiology to better support wild bee conservation. CONSERVATION PHYSIOLOGY 2023; 11:coac076. [PMID: 36632323 PMCID: PMC9825782 DOI: 10.1093/conphys/coac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.
Collapse
Affiliation(s)
| | - Jean-Luc Brunet
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Mickael Henry
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| |
Collapse
|
14
|
Manlik O, Mundra S, Schmid‐Hempel R, Schmid‐Hempel P. Impact of climate change on parasite infection of an important pollinator depends on host genotypes. GLOBAL CHANGE BIOLOGY 2023; 29:69-80. [PMID: 36176231 PMCID: PMC10092497 DOI: 10.1111/gcb.16460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 05/20/2023]
Abstract
Climate change is predicted to affect host-parasite interactions, and for some hosts, parasite infection is expected to increase with rising temperatures. Global population declines of important pollinators already have been attributed to climate change and parasitism. However, the role of climate in driving parasite infection and the genetic basis for pollinator hosts to respond often remain obscure. Based on decade-long field data, we investigated the association between climate and Nosema bombi (Microsporidia) infection of buffed-tailed bumblebees (Bombus terrestris), and whether host genotypes play a role. For this, we genotyped 876 wild bumblebee queens and screened for N. bombi infection of those queens between 2000 and 2010. We recorded seven climate parameters during those 11 years and tested for correlations between climate and infection prevalence. Here we show that climatic factors drive N. bombi infection and that the impact of climate depends on mitochondrial DNA cytochrome oxidase I (COI) haplotypes of the host. Infection prevalence was correlated with climatic variables during the time when queens emerge from hibernation. Remarkably, COI haplotypes best predict this association between climatic factors and infection. In particular, two host haplotypes ("A" and "B") displayed phenotypic plasticity in response to climatic variation: Temperature was positively correlated with infection of host haplotype B, but not haplotype A. The likelihood of infection of haplotype A was associated with moisture, conferring greater resistance to parasite infection during wetter years. In contrast, infection of haplotype B was unrelated to moisture. To the best of our knowledge, this is the first study that identifies specific host genotypes that confer differential parasite resistance under variable climatic conditions. Our results underscore the importance of mitochondrial haplotypes to ward off parasites in a changing climate. More broadly, this also suggests that COI may play a pertinent role in climate change adaptations of insect pollinators.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Sunil Mundra
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Regula Schmid‐Hempel
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Paul Schmid‐Hempel
- ETH Zurich, Institute of Integrative Biology (IBZ), ETH‐Zentrum CHNZurichSwitzerland
| |
Collapse
|
15
|
Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees. Ecol Evol 2022; 12:e9560. [PMID: 36479027 PMCID: PMC9720000 DOI: 10.1002/ece3.9560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Kennan Oyen
- Department of Biological Sciences, McMicken College of Arts and SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Andres Herrera
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | | - Rodulfo Ospina
- Laboratorio de Investigaciones en AbejasUniversidad Nacional de ColombiaSanta Fé de BogotáColombia
| |
Collapse
|
16
|
Gérard M, Cariou B, Henrion M, Descamps C, Baird E. Exposure to elevated temperature during development affects bumblebee foraging behavior. Behav Ecol 2022; 33:816-824. [PMID: 35812365 PMCID: PMC9262166 DOI: 10.1093/beheco/arac045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
Bee foraging behavior provides a pollination service that has both ecological and economic benefits. However, bee population decline could directly affect the efficiency of this interaction. Among the drivers of this decline, global warming has been implicated as an emerging threat but exactly how increasing temperatures affect bee foraging behavior remains unexplored. Here, we assessed how exposure to elevated temperatures during development affects the foraging behavior and morphology of workers from commercial and wild Bombus terrestris colonies. Workers reared at 33 °C had a higher visiting rate and shorter visiting time than those reared at 27°C. In addition, far fewer workers reared at 33 °C engaged in foraging activities and this is potentially related to the drastic reduction in the number of individuals produced in colonies exposed to 33 °C. The impact of elevated developmental temperature on wild colonies was even stronger as none of the workers from these colonies performed any foraging trips. We also found that rearing temperature affected wing size and shape. Our results provide the first evidence that colony temperature can have striking effects on bumblebee foraging behavior. Of particular importance is the drastic reduction in the number of workers performing foraging trips, and the total number of foraging trips made by workers reared in high temperatures. Further studies should explore if, ultimately, these observed effects of exposure to elevated temperature during development lead to a reduction in pollination efficiency.
Collapse
Affiliation(s)
- Maxence Gérard
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Bérénice Cariou
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Sorbonne Université, Faculté des Sciences et Ingénierie, 5 place Jussieu, 75005 Paris, France
| | - Maxime Henrion
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Ecole Normale Supérieure de Lyon, 15 parvis René Descartes, Lyon, France, and
| | - Charlotte Descamps
- Earth and Life Institute-Agrotnomy, UCLouvain, Croix du Sud 2, box L7.05.14, 1348 Louvain-la-Neuve, Belgium
| | - Emily Baird
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| |
Collapse
|
17
|
Jackson HM, Johnson SA, Morandin LA, Richardson LL, Guzman LM, M’Gonigle LK. Climate change winners and losers among North American bumblebees. Biol Lett 2022; 18:20210551. [PMID: 35728617 PMCID: PMC9213113 DOI: 10.1098/rsbl.2021.0551] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
Mounting evidence suggests that climate change, agricultural intensification and disease are impacting bumblebee health and contributing to species' declines. Identifying how these factors impact insect communities at large spatial and temporal scales is difficult, partly because species may respond in different ways. Further, the necessary data must span large spatial and temporal scales, which usually means they comprise aggregated, presence-only records collected using numerous methods (e.g. diversity surveys, educational collections, citizen-science projects, standardized ecological surveys). Here, we use occupancy models, which explicitly correct for biases in the species observation process, to quantify the effect of changes in temperature, precipitation and floral resources on bumblebee site occupancy over the past 12 decades in North America. We find no evidence of genus-wide declines in site occupancy, but do find that occupancy is strongly related to temperature, and is only weakly related to precipitation or floral resources. We also find that more species are likely to be climate change 'losers' than 'winners' and that this effect is primarily associated with changing temperature. Importantly, all trends were highly species-specific, highlighting that genus or community-wide measures may not reflect diverse species-specific patterns that are critical in guiding allocation of conservation resources.
Collapse
Affiliation(s)
- Hanna M. Jackson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Sarah A. Johnson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Lora A. Morandin
- Pollinator Partnership, 600 Montgomery Street, Suite 440, San Francisco, CA 94111, USA
| | - Leif L. Richardson
- Xerces Society for Invertebrate Conservation, 628 NE Broadway, Ste. 200, Portland, OR 97232, USA
| | - Laura Melissa Guzman
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- Marine and Environmental Biology section at the Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089-0371, USA
| | - Leithen K. M’Gonigle
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
18
|
Eriksson M, Rafajlović M. The role of phenotypic plasticity in the establishment of range margins. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210012. [PMID: 35067091 PMCID: PMC8784930 DOI: 10.1098/rstb.2021.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: how does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Martin Eriksson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Fisher K, Watrous KM, Williams NM, Richardson LL, Woodard SH. A contemporary survey of bumble bee diversity across the state of California. Ecol Evol 2022; 12:e8505. [PMID: 35342613 PMCID: PMC8933253 DOI: 10.1002/ece3.8505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/02/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
Bumble bees (genus Bombus) are important pollinators with more than 260 species found worldwide, many of which are in decline. Twenty-five species occur in California with the highest species abundance and diversity found in coastal, northern, and montane regions. No recent studies have examined California bumble bee diversity across large spatial scales nor explored contemporary community composition patterns across the state. To fill these gaps, we collected 1740 bumble bee individuals, representing 17 species from 17 sites (~100 bees per site) in California, using an assemblage monitoring framework. This framework is intended to provide an accurate estimate of relative abundance of more common species without negatively impacting populations through overcollection. Our sites were distributed across six ecoregions, with an emphasis on those that historically hosted high bumble bee diversity. We compared bumble bee composition among these sites to provide a snapshot of California bumble bee biodiversity in a single year. Overall, the assemblage monitoring framework that we employed successfully captured estimated relative abundance of species for most sites, but not all. This shortcoming suggests that bumble bee biodiversity monitoring in California might require multiple monitoring approaches, including greater depth of sampling in some regions, given the variable patterns in bumble bee abundance and richness throughout the state. Our study sheds light on the current status of bumble bee diversity in California, identifies some areas where greater sampling effort and conservation action should be focused in the future, and performs the first assessment of an assembly monitoring framework for bumble bee communities in the state.
Collapse
Affiliation(s)
- Kaleigh Fisher
- Department of EntomologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Kristal M. Watrous
- Department of EntomologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Neal M. Williams
- Department of Entomology and NematologyUniversity of California, DavisDavisCaliforniaUSA
| | | | - Sarah Hollis Woodard
- Department of EntomologyUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
20
|
Sirois-Delisle C, Kerr JT. Climate change aggravates non-target effects of pesticides on dragonflies at macroecological scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2494. [PMID: 34783410 DOI: 10.1002/eap.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence of 104 odonate species between two time periods (1980-2002 and 2008-2018) within 100 × 100 km quadrats across the USA using phylogenetic mixed models. Non-target effects of pesticides interacted with higher maximum temperatures to contribute to odonate declines. Closely related species responded similarly to global change drivers, indicating a potential role of inherited traits in species' persistence or decline. Species shifting their range to higher latitudes were more robust to negative impacts of global change drivers generally. Inherited traits related to dispersal abilities and establishment in new places may govern both species' acclimation to global change and their abilities to expand their range limits, respectively. This work is among the first to assess effects of climate change, land use change, and land use intensification together on Odonata, a significant step that improves understanding of multispecies effects of global change on invertebrates, and further identifies conditions contributing to global insect loss.
Collapse
Affiliation(s)
- Catherine Sirois-Delisle
- Canadian Facility for Ecoinformatics Research, Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Jeremy T Kerr
- Canadian Facility for Ecoinformatics Research, Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
21
|
Prado A, Brunet JL, Peruzzi M, Bonnet M, Bordier C, Crauser D, Le Conte Y, Alaux C. Warmer winters are associated with lower levels of the cryoprotectant glycerol, a slower decrease in vitellogenin expression and reduced virus infections in winter honeybees. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104348. [PMID: 34906562 DOI: 10.1016/j.jinsphys.2021.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Within the context of climate change, winter temperatures at high latitudes are predicted to rise faster than summer temperatures. This phenomenon is expected to negatively affect the diapause performance and survival of insects, since they largely rely on low temperatures to lower their metabolism and preserve energy. However, some insects like honeybees, remain relatively active during the winter and elevate their metabolic rate to produce endothermic heat when temperatures drop. Warming winters are thus expected to improve overwintering performance of honeybees. In order to verify this hypothesis, for two consecutive years, we exposed honeybee colonies to either a mild or cold winter. We then monitored the influence of wintering conditions on several parameters of honeybee overwintering physiology, such as levels of the cryoprotectant glycerol, expression levels of immune and antioxidant genes, and genes encoding multifunctional proteins, including vitellogenin, which promotes bee longevity. Winter conditions had no effect on the expression of antioxidant genes, and genes related to immunity were not consistently affected. However, mild winters were consistently associated with a lower investment in glycerol synthesis and a higher expression of fat body genes, especially apidaecin and vitellogenin. Finally, while we found that viral loads generally decreased through the winter, this trend was more pronounced under mild winter conditions. In conclusion, and without considering how warming temperatures might affect other aspects of honeybee biology before overwintering, our data suggest that warming temperatures will likely benefit honeybee vitality by notably reducing their viral loads over the winter.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Mexico
| | | | | | - Marc Bonnet
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Celia Bordier
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | | | - Yves Le Conte
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles & Environnement, 84914 Avignon, France.
| |
Collapse
|
22
|
Hatfield RG, Strange JP, Koch JB, Jepsen S, Stapleton I. Neonicotinoid Pesticides Cause Mass Fatalities of Native Bumble Bees: A Case Study From Wilsonville, Oregon, United States. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1095-1104. [PMID: 34145877 DOI: 10.1093/ee/nvab059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 05/28/2023]
Abstract
In June of 2013 an application of dinotefuran on an ornamental planting of European linden trees (Tilia cordata Mill. [Malvales: Malvalceae]) in a shopping mall parking lot in Wilsonville, Oregon provoked the largest documented pesticide kill of bumble bees in North America. Based on geographic information systems and population genetic analysis, we estimate that between 45,830 and 107,470 bumble bees originating from between 289 and 596 colonies were killed during this event. Dinotefuran is a neonicotinoid that is highly effective in exterminating and/or harming target pest insects and non-target beneficial insects. Analysis to detect the concentration of pesticides in flowers that received foliar application revealed that the minimum reported dinotefuran concentration of a sampled T. cordata flower was 7.4 ppm, or in excess of 737% above the LC50 of the beneficial pollinator, the honey bee (Apis mellifera Linnaeus, 1758 [Hymenoptera: Apidae]). Furthermore, sampled Vosnesensky bumble bees (Bombus vosnesenskii Radoskowski, 1862 [Hymenoptera: Apidae]) were found to have an average dinotefuran concentration of 0.92 ppm at the time of death, which exceeds the maximum LC50 of A. mellifera (0.884 ppm). Our study underscores the lethal impact of the neonicotinoid pesticide dinotefuran on pollinating insect populations in a suburban environment. To our knowledge, the documentation and impact of pesticide kills on wild populations of beneficial insects has not been widely reported in the scientific literature. It is likely that the vast majority of mass pesticide kills of beneficial insects across other environments go unnoticed and unreported.
Collapse
Affiliation(s)
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, OH, USA
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insect - Biology, Management, Systematics Research Unit, Logan, UT, USA
| | - Jonathan B Koch
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insect - Biology, Management, Systematics Research Unit, Logan, UT, USA
| | - Sarina Jepsen
- The Xerces Society for Invertebrate Conservation, Portland, OR, USA
| | | |
Collapse
|
23
|
Prestele R, Brown C, Polce C, Maes J, Whitehorn P. Large variability in response to projected climate and land-use changes among European bumblebee species. GLOBAL CHANGE BIOLOGY 2021; 27:4530-4545. [PMID: 34197031 DOI: 10.1111/gcb.15780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Bumblebees (Bombus ssp.) are among the most important wild pollinators, but many species have suffered from range declines. Land-use change, agricultural intensification, and the associated loss of habitat have been identified as drivers of the observed dynamics, amplifying pressures from a changing climate. However, these drivers are still underrepresented in continental-scale species distribution modeling. Here, we project the potential distribution of 47 European bumblebee species in 2050 and 2080 from existing European-scale distribution maps, based on a set of climate and land-use futures simulated through a regional integrated assessment model and consistent with the RCP-SSP scenario framework. We compare projections including (1) dynamic climate and constant land use (CLIM); (2) constant climate and dynamic land use (LU); and (3) dynamic climate and dynamic land use (COMB) to disentangle the effects of land use and climate change on future habitat suitability, providing the first rigorous continental-scale assessment of linked climate-land-use futures for bumblebees. We find that direct climate impacts, although variable across species, dominate responses for most species, especially under high-end climate change scenarios (up to 99% range loss). Land-use impacts are highly variable across species and scenarios, ranging from severe losses (up to 75% loss) to considerable gains (up to 68% gain) of suitable habitat extent. Rare species thereby tend to be disproportionally affected by both climate and land-use change. COMB projections reveal that land use may amplify, attenuate, or offset changes to suitable habitat extent expected from climate impact depending on species and scenario. Especially in low-end climate change scenarios, land use has the potential to become a game changer in determining the direction and magnitude of range changes, indicating substantial potential for targeted conservation management.
Collapse
Affiliation(s)
- Reinhard Prestele
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Calum Brown
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Chiara Polce
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Joachim Maes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Penelope Whitehorn
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| |
Collapse
|
24
|
Distant but related: genetic structure in the circum-boreal bumblebee Bombus jonellus (Kirby, 1802). Polar Biol 2021. [DOI: 10.1007/s00300-021-02937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Bumblebee resilience to climate change, through plastic and adaptive responses. GLOBAL CHANGE BIOLOGY 2021; 27:4223-4237. [PMID: 34118096 DOI: 10.1111/gcb.15751] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events. While some temperature extremes may be offset at the individual or colony level through temperature regulation, most bumblebees are expected to exhibit specific plastic responses, selection in various key traits, and/or range contractions under even the mildest climate change. In this review, we provide an in-depth and up-to-date review on the various ways by which bumblebees overcome the threats associated with current and future global change. We use examples relevant to the fields of bumblebee physiology, morphology, behaviour, phenology, and dispersal to illustrate and discuss the contours of this new theoretical framework. Furthermore, we speculate on the extent to which adaptive responses to climate change may be influenced by bumblebees' capacity to disperse and track suitable climate conditions. Closing the knowledge gap and improving our understanding of bumblebees' adaptability or avoidance behaviour to different climatic circumstances will be necessary to improve current species climate response models. These models are essential to make correct predictions of species vulnerability in the face of future climate change and human-induced environmental changes to unfold appropriate future conservation strategies.
Collapse
Affiliation(s)
- Kevin Maebe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alex F Hart
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Kenna D, Pawar S, Gill RJ. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel Kenna
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Samraat Pawar
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Richard J. Gill
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| |
Collapse
|
27
|
Hu X, Liu J, Ding G, Naeem M, Li J, Ma F, Huang J, An J. An Evaluation of Habitat Uses and Their Implications for the Conservation of the Chinese Bumblebee Bombus pyrosoma (Hymenoptera: Apidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bumblebees are important pollinators for many wild plants and crops. However, the bumblebee populations are seriously declining in many parts of the world. Hence, the bumblebee conservation strategy should be urgently addressed, and the species distribution modeling approach can effectively evaluate the potentially suitable areas for their conservation. Here, one of the most abundant and endemic species of bumblebee in China, Bombus pyrosoma, was selected to assess current and future climates’ influence on its distribution with MaxEnt. Nine high-resolution bioclimatic/environmental variables with high contribution rates and low correlations were used. Four of the nine bioclimatic/environmental variables, min temperature of the coldest month (bio_06), annual mean temperature (bio_01), precipitation of wettest month (bio_13) and radiation of warmest quarter (bio_26), were found to be the most critical factors influencing the distribution of B. pyrosoma. The modeling results showed that the areas with high and moderate suitability for B. pyrosoma covered 141,858 and 186,198 km2 under the current climate conditions. More than 85% of the sampling sites in 2019 were found to be suitable under the current scenario. Under the future A1B and A2 scenarios in 2050 and 2100, the areas with low and moderate suitability for B. pyrosoma increased. However, alarmingly, the high suitability areas decreased under the future A1B and A2 scenarios in 2050 and 2100. Furthermore, regions covering seven provinces of northern China were the most crucial for developing nature reserves for B. pyrosoma, with the following order of suitable areas: Gansu, Shanxi, Ningxia, Qinghai, Shaanxi, Hebei and Beijing. Our study highlights the impact of future climate changes on the distribution of B. pyrosoma, and conservation strategies should mitigate the threats posed by environmental changes, particularly in the current high suitability areas.
Collapse
|
28
|
Martínez-López O, Koch JB, Martínez-Morales MA, Navarrete-Gutiérrez D, Enríquez E, Vandame R. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications. GLOBAL CHANGE BIOLOGY 2021; 27:1772-1787. [PMID: 33595918 DOI: 10.1111/gcb.15559] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bumble bees are an ecologically and economically important group of pollinating insects worldwide. Global climate change is predicted to affect bumble bee ecology including habitat suitability and geographic distribution. Our study aims to estimate the impact of projected climate change on 18 Mesoamerican bumble bee species. We used ecological niche modeling (ENM) using current and future climate emissions scenarios (representative concentration pathway 4.5, 6.0, and 8.5) and models (CCSM4, HadGEM2-AO, and MIROC-ESM-CHEM). Regardless of the scenario and model applied, our results suggest that all bumble bee species are predicted to undergo a reduction in their potential distribution and habitat suitability due to projected climate change. ENMs based on low emission scenarios predict a distribution loss ranging from 7% to 67% depending on the species for the year 2050. Furthermore, we discovered that the reduction of bumble bee geographic range shape will be more evident at the margins of their distribution. The reduction of suitable habitat is predicted to be accompanied by a 100-500 m upslope change in altitude and 1-581 km shift away from the current geographic centroid of a species' distribution. On average, protected natural areas in Mesoamerica cover ~14% of each species' current potential distribution, and this proportion is predicted to increase to ~23% in the high emission climate change scenarios. Our models predict that climate change will reduce Mesoamerican bumble bee habitat suitability, especially for rare species, by reducing their potential distribution ranges and suitability. The small proportion of current and future potential distribution falling in protected natural areas suggests that such areas will likely have marginal contribution to bumble bee habitat conservation. Our results have the capacity to inform stakeholders in designing effective landscape management for bumble bees, which may include developing restoration plans for montane pine oak forests habitats and native flowering plants.
Collapse
Affiliation(s)
- Oscar Martínez-López
- Departamento Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, México
- Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, Centro de Estudios Conservacionistas-CECON, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | - Jonathan B Koch
- United States Department of Agriculture - Agricultural Research Service - Pacific West Area - Pollinating Insects - Biology, Management, and Systematics Research Unit, Logan, UT, USA
| | - Miguel A Martínez-Morales
- Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, México
| | - Darío Navarrete-Gutiérrez
- Departamento de Observación y Estudio de la Tierra, la Atmósfera y el Océano, Grupo: Ecología, paisaje y sustentabilidad, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, México
| | - Eunice Enríquez
- Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, Centro de Estudios Conservacionistas-CECON, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | - Rémy Vandame
- Departamento Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, México
| |
Collapse
|
29
|
Carrasco L, Papeş M, Lochner EN, Ruiz BC, Williams AG, Wiggins GJ. Potential regional declines in species richness of tomato pollinators in North America under climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02259. [PMID: 33179379 DOI: 10.1002/eap.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
About 70% of the world's main crops depend on insect pollination. Climate change is already affecting the abundance and distribution of insects, which could cause geographical mismatches between crops and their pollinators. Crops that rely primarily on wild pollinators (e.g., crops that cannot be effectively pollinated by commercial colonies of honey bees) could be particularly in jeopardy. However, limited information on plant-pollinator associations and pollinator distributions complicate the assessment of climate change impacts on specific crops. To study the potential impacts of climate change on pollination of a specific crop in North America, we use the case of open-field tomato crops, which rely on buzz pollinators (species that use vibration to release pollen, such as bumble bees) to increase their production. We aimed to (1) assess potential changes in buzz pollinator distribution and richness, and (2) evaluate the overlap between areas with high densities of tomato crops and high potential decrease in richness. We used baseline (1961-1990) climate and future (2050s and 2080s) climatic projections in ecological niche models fitted with occurrences of wild bees, documented in the literature as pollinators of tomatoes, to estimate the baseline and future potential distribution of suitable climatic conditions of targeted species and to create maps of richness change across North America. We obtained reliable models for 15 species and found important potential decreases in the distribution of some pollinators (e.g., Lasioglossum pectorale and Augochlorella aurata). We observed geographical discrepancies in the projected change in species richness across North America, detecting important declines in the eastern United States (up to 11 species decrease for 2050s). After overlapping the maps of species richness change with a tomato crop map for the United States, we found spatial correspondence between richness declines and areas with high concentration of tomato crops. Disparities in the effects of climate change on the potential future distribution of different wild pollinators and geographical variation in richness highlight the importance of crop-specific studies. Our study also emphasizes the challenges of compiling and modeling crop-specific pollinator data and the need to improve our understanding of current distribution of pollinators and their community dynamics under climate change.
Collapse
Affiliation(s)
- Luis Carrasco
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Monica Papeş
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ellie N Lochner
- Department of Mathematics, University of Wisconsin, Eau Claire, Wisconsin, 54702, USA
| | - Brandyn C Ruiz
- Department of Mathematics, Arizona State University, Tempe, Arizona, 85281, USA
| | - Abigail G Williams
- Department of Mathematics, Salem College, Winston-Salem, North Carolina, 27101, USA
| | - Gregory J Wiggins
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
30
|
Saunders SP, Piper W, Farr MT, Bateman BL, Michel NL, Westerkam H, Wilsey CB. Interrelated impacts of climate and land-use change on a widespread waterbird. J Anim Ecol 2021; 90:1165-1176. [PMID: 33754380 DOI: 10.1111/1365-2656.13444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Together climate and land-use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone. We leveraged three long-term (1995-2019) datasets to develop a coupled integrated population model-Bayesian population viability analysis (IPM-BPVA) to project future survival and reproductive success for common loons Gavia immer in northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use. The winter North Atlantic Oscillation (NAO), a broad-scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population-level response to climate variability. We compared population viability under 12 future scenarios of annual land-use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non-breeding period of the annual cycle. Our results reveal that climate and land-use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic-induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.
Collapse
Affiliation(s)
| | - Walter Piper
- Schmid College of Science & Technology, Chapman University, Orange, CA, USA
| | - Matthew T Farr
- Department of Integrative Biology, Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
31
|
Kammerer M, Goslee SC, Douglas MR, Tooker JF, Grozinger CM. Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. GLOBAL CHANGE BIOLOGY 2021. [PMID: 33433964 DOI: 10.5061/dryad.kwh70rz2s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.
Collapse
Affiliation(s)
- Melanie Kammerer
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sarah C Goslee
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, USA
| | - Margaret R Douglas
- Department of Environmental Studies & Environmental Science, Dickinson College, Carlisle, PA, USA
| | - John F Tooker
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
32
|
Kammerer M, Goslee SC, Douglas MR, Tooker JF, Grozinger CM. Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. GLOBAL CHANGE BIOLOGY 2021; 27:1250-1265. [PMID: 33433964 PMCID: PMC7986353 DOI: 10.1111/gcb.15485] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.
Collapse
Affiliation(s)
- Melanie Kammerer
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
- Present address:
USDA‐ARS Pasture Systems and Watershed Management Research UnitUniversity ParkPA16802USA
- Present address:
USDA‐ARS Jornada Experimental RangeLas CrucesNM88003USA
| | - Sarah C. Goslee
- USDA‐ARS Pasture Systems and Watershed Management Research UnitUniversity ParkPAUSA
| | - Margaret R. Douglas
- Department of Environmental Studies & Environmental ScienceDickinson CollegeCarlislePAUSA
| | - John F. Tooker
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - Christina M. Grozinger
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPAUSA
- Department of EntomologyCenter for Pollinator ResearchHuck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
33
|
Rech AR, Ollerton J, Dalsgaard B, Ré Jorge L, Sandel B, Svenning J, Baronio GJ, Sazima M. Population‐level plant pollination mode is influenced by Quaternary climate and pollinators. Biotropica 2021. [DOI: 10.1111/btp.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- André Rodrigo Rech
- Programas de Pós‐graduação em Ciência Florestal e em Biologia Animal Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Brasil
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology University of Northampton Northampton UK
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Ø Denmark
| | - Leonardo Ré Jorge
- Department of Ecology Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Brody Sandel
- Department of Biology Santa Clara University Santa Clara CA USA
| | - Jens‐Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
- Departamento Section for Ecoinformatics & Biodiversity Department of Biology Aarhus University Aarhus C Denmark
| | - Gudryan J. Baronio
- Programas de Pós‐graduação em Ciência Florestal e em Biologia Animal Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Brasil
| | - Marlies Sazima
- Laboratório de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brasil
| |
Collapse
|
34
|
Kelemen EP, Rehan SM. Opposing pressures of climate and land-use change on a native bee. GLOBAL CHANGE BIOLOGY 2020; 27:1017-1026. [PMID: 33274535 DOI: 10.1111/gcb.15468] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities are rapidly changing the environment, and species that do not respond face a higher risk of extinction. Species may respond to environmental changes by modifying their behaviors, shifting their distributions, or changing their morphology. Recent morphological responses are often measured by changes in body size. Changes in body size are often attributed to climate change, but may instead be due to differences in available resources associated with changes in local land-use. The effects of temperature and land-use can be uncoupled in populations of the small carpenter bee Ceratina calcarata, which have experienced changes in agricultural and urban cover independent of climate change. We studied how the morphology of this bee has changed over the past 118 years (1902-2019) in relation to climate change and the past 45 years (1974-2019) in relation to agricultural and urban cover. Over this time, summer temperatures increased. We found that male and female size decreased with increasing temperature. Male size also decreased with agricultural expansion. Female size, however, increased with agricultural expansion. These results suggest that rising temperatures correlate with a decrease in female body size, while, opposite to predicted, agricultural land-use may select for increased female body size. These opposing pressures act concurrently and may result in bee extirpation from agricultural habitats if selection for large sizes is unsustainable as temperatures continue to increase. Furthermore, this study emphasizes the need to consider multiple environmental stressors when examining the effects of climate change due to their interactions.
Collapse
Affiliation(s)
- Evan P Kelemen
- Department of Biology, York University, Toronto, ON, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
35
|
Polidori C, Sánchez-Fernández D. Environmental niche and global potential distribution of the giant resin bee Megachile sculpturalis, a rapidly spreading invasive pollinator. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Kerr JT. Racing against change: understanding dispersal and persistence to improve species' conservation prospects. Proc Biol Sci 2020; 287:20202061. [PMID: 33234075 PMCID: PMC7739496 DOI: 10.1098/rspb.2020.2061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is contributing to the widespread redistribution, and increasingly the loss, of species. Geographical range shifts among many species were detected rapidly after predictions of the potential importance of climate change were specified 35 years ago: species are shifting their ranges towards the poles and often to higher elevations in mountainous areas. Early tests of these predictions were largely qualitative, though extraordinarily rapid and broadly based, and statistical tests distinguishing between climate change and other global change drivers provided quantitative evidence that climate change had already begun to cause species’ geographical ranges to shift. I review two mechanisms enabling this process, namely development of approaches for accounting for dispersal that contributes to range expansion, and identification of factors that alter persistence and lead to range loss. Dispersal in the context of range expansion depends on an array of processes, like population growth rates in novel environments, rates of individual species movements to new locations, and how quickly areas of climatically tolerable habitat shift. These factors can be tied together in well-understood mathematical frameworks or modelled statistically, leading to better prediction of extinction risk as climate changes. Yet, species' increasing exposures to novel climate conditions can exceed their tolerances and raise the likelihood of local extinction and consequent range losses. Such losses are the consequence of processes acting on individuals, driven by factors, such as the growing frequency and severity of extreme weather, that contribute local extinction risks for populations and species. Many mechanisms can govern how species respond to climate change, and rapid progress in global change research creates many opportunities to inform policy and improve conservation outcomes in the early stages of the sixth mass extinction.
Collapse
Affiliation(s)
- Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
37
|
Suzuki-Ohno Y, Yokoyama J, Nakashizuka T, Kawata M. Estimating possible bumblebee range shifts in response to climate and land cover changes. Sci Rep 2020; 10:19622. [PMID: 33184331 PMCID: PMC7661518 DOI: 10.1038/s41598-020-76164-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Wild bee decline has been reported worldwide. Some bumblebee species (Bombus spp.) have declined in Europe and North America, and their ranges have shrunk due to climate and land cover changes. In countries with limited historical and current occurrence data, it is often difficult to investigate bumblebee range shifts. Here we estimated the past/present distributions of six major bumblebee species in Japan with species distribution modeling using current occurrence data and past/present climate and land cover data. The differences identified between estimated past and present distributions indicate possible range shifts. The estimated ranges of B. diversus, B. hypocrita, B. ignitus, B. honshuensis, and B. beaticola shrank over the past 26 years, but that of B. ardens expanded. The lower altitudinal limits of the estimated ranges became higher as temperature increased. When focusing on the effects of land cover change, the estimated range of B. diversus slightly shrank due to an increase in forest area. Such increase in forest area may result from the abandonment of agricultural lands and the extension of the rotation time of planted coniferous forests and secondary forests. Managing old planted coniferous forests and secondary forests will be key to bumblebee conservation for adaptation to climate change.
Collapse
Affiliation(s)
- Yukari Suzuki-Ohno
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Jun Yokoyama
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata-shi, Yamagata, 990-8560, Japan
| | - Tohru Nakashizuka
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan.,Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
38
|
Fijen TPM. Mass‐migrating bumblebees: An overlooked phenomenon with potential far‐reaching implications for bumblebee conservation. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thijs P. M. Fijen
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
39
|
Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Sci Rep 2020; 10:17063. [PMID: 33051510 PMCID: PMC7553916 DOI: 10.1038/s41598-020-73391-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kennan J Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - James D Herndon
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
- Department of Entomology, The Ohio State University, Columbus, OH, 44691, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
40
|
Ghisbain G, Williams PH, Michez D, Branstetter MG, Rasmont P. Contribution to the knowledge of the bumblebee fauna of Afghanistan (Hymenoptera, Apidae, Bombus Latreille). Zookeys 2020; 973:69-87. [PMID: 33110373 PMCID: PMC7550395 DOI: 10.3897/zookeys.973.54796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
Bumblebees (Hymenoptera: Apidae: genus Bombus Latreille, 1802) constitute an important group of pollinators for many wild plants and crops in north temperate regions and South America. Although knowledge of these insects has been increasing over the last decades, some geographic areas remain poorly studied and additions to the knowledge of their faunas are infrequent. Afghanistan is one example of a country that is currently underrepresented in the scientific literature despite its high species diversity. For this study, more than 420 new occurrence records were gathered for 17 bumblebee species belonging to all eight subgenera recorded in the country, including the first record of a species closely related to the Blongipennis group. Additionally, the first standardized database for Afghan bees is launched, which we hope will be enriched in the future to allow further assessments of population trends for the bumblebees of Afghanistan. Finally, the previously published species records for the country are discussed considering the most recent taxonomic revisions of the genus and key perspectives are highlighted for further work in this understudied country and neighboring regions.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons (UMONS), Mons, Belgium University of Mons Mons Belgium
| | - Paul H Williams
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Natural History Museum London United Kingdom
| | - Denis Michez
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons (UMONS), Mons, Belgium University of Mons Mons Belgium
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, Utah 84322, USA Utah State University Logan United States of America
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons (UMONS), Mons, Belgium University of Mons Mons Belgium
| |
Collapse
|
41
|
Saunders SP, Michel NL, Bateman BL, Wilsey CB, Dale K, LeBaron GS, Langham GM. Community science validates climate suitability projections from ecological niche modeling. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02128. [PMID: 32223029 DOI: 10.1002/eap.2128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Climate change poses an intensifying threat to many bird species and projections of future climate suitability provide insight into how species may shift their distributions in response. Climate suitability is characterized using ecological niche models (ENMs), which correlate species occurrence data with current environmental covariates and project future distributions using the modeled relationships together with climate predictions. Despite their widespread adoption, ENMs rely on several assumptions that are rarely validated in situ and can be highly sensitive to modeling decisions, precluding their reliability in conservation decision-making. Using data from a novel, large-scale community science program, we developed dynamic occupancy models to validate near-term climate suitability projections for bluebirds and nuthatches in summer and winter. We estimated occupancy, colonization, and extinction dynamics across species' ranges in the United States in relation to projected climate suitability in the 2020s, and used a Gibbs variable selection approach to quantify evidence of species-climate relationships. We also included a Bird Conservation Region strata-level random effect to examine among-strata variation in occupancy that may be attributable to land-use and ecoregional differences. Across species and seasons, we found strong evidence that initial occupancy and colonization were positively related to 2020 climate suitability, illustrating an independent validation of projections from ENMs across a large geographic area. Random strata effects revealed that occupancy probabilities were generally higher than average in core areas and lower than average in peripheral areas of species' ranges, and served as a first step in identifying spatial patterns of occupancy from these community science data. Our findings lend much-needed support to the use of ENM projections for addressing questions about potential climate-induced changes in species' occupancy dynamics. More broadly, our work highlights the value of community scientist observations for ground-truthing projections from statistical models and for refining our understanding of the processes shaping species' distributions under a changing climate.
Collapse
Affiliation(s)
- Sarah P Saunders
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Nicole L Michel
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Brooke L Bateman
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Chad B Wilsey
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Kathy Dale
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Geoffrey S LeBaron
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Gary M Langham
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| |
Collapse
|
42
|
Krechemer FDS, Marchioro CA. Past, present and future distributions of bumblebees in South America: Identifying priority species and areas for conservation. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cesar Augusto Marchioro
- Postgraduate Programme in Agricultural and Natural Ecosystems Department of Agriculture, Biodiversity and Forests Federal University of Santa Catarina Santa Catarina Brazil
| |
Collapse
|
43
|
Soroye P, Newbold T, Kerr J. Climate change contributes to widespread declines among bumble bees across continents. Science 2020; 367:685-688. [DOI: 10.1126/science.aax8591] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/13/2019] [Indexed: 01/03/2023]
Abstract
Climate change could increase species’ extinction risk as temperatures and precipitation begin to exceed species’ historically observed tolerances. Using long-term data for 66 bumble bee species across North America and Europe, we tested whether this mechanism altered likelihoods of bumble bee species’ extinction or colonization. Increasing frequency of hotter temperatures predicts species’ local extinction risk, chances of colonizing a new area, and changing species richness. Effects are independent of changing land uses. The method developed in this study permits spatially explicit predictions of climate change–related population extinction-colonization dynamics within species that explains observed patterns of geographical range loss and expansion across continents. Increasing frequencies of temperatures that exceed historically observed tolerances help explain widespread bumble bee species decline. This mechanism may also contribute to biodiversity loss more generally.
Collapse
Affiliation(s)
- Peter Soroye
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Jeremy Kerr
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
44
|
Nicholson CC, Egan PA. Natural hazard threats to pollinators and pollination. GLOBAL CHANGE BIOLOGY 2020; 26:380-391. [PMID: 31621147 DOI: 10.1111/gcb.14840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Natural hazards are naturally occurring physical events that can impact human welfare both directly and indirectly, via shocks to ecosystems and the services they provide. Animal-mediated pollination is critical for sustaining agricultural economies and biodiversity, yet stands to lose both from present exposure to natural hazards, and future climate-driven shifts in their distribution, frequency, and intensity. In contrast to the depth of knowledge available for anthropogenic-related threats, our understanding of how naturally occurring extreme events impact pollinators and pollination has not yet been synthesized. We performed a systematic review and meta-analysis to examine the potential impacts of natural hazards on pollinators and pollination in natural and cultivated systems. From a total of 117 studies (74% of which were observational), we found evidence of community and population-level impacts to plants and pollinators from seven hazard types, including climatological (extreme heat, fire, drought), hydrological (flooding), meteorological (hurricanes), and geophysical (volcanic activity, tsunamis). Plant and pollinator response depended on the type of natural hazard and level of biological organization observed; 19% of cases reported no significant impact, whereas the majority of hazards held consistent negative impacts. However, the effects of fire were mixed, but taxa specific; meta-analysis revealed that bee abundance and species richness tended to increase in response to fire, differing significantly from the mainly negative response of Lepidoptera. Building from this synthesis, we highlight important future directions for pollination-focused natural hazard research, including the need to: (a) advance climate change research beyond static "mean-level" changes by better incorporating "shock" events; (b) identify impacts at higher levels of organization, including ecological networks and co-evolutionary history; and (c) address the notable gap in crop pollination services research-particularly in developing regions of the world. We conclude by discussing implications for safeguarding pollination services in the face of global climate change.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
45
|
|