1
|
Nouri M, Nasiri F, Sharif S, Abbaszadegan MR. Unraveling extracellular vesicle DNA: Biogenesis, functions, and clinical implications. Pathol Res Pract 2025; 269:155937. [PMID: 40199015 DOI: 10.1016/j.prp.2025.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Extracellular Vesicles (EVs) have emerged as essential carriers of molecular biomarkers and mediators of intercellular communication. While previous studies have predominantly focused on EV proteins, lipids, and RNA, the role of EV-derived DNA (EV-DNA) remains relatively unexplored. Understanding EV-DNA is crucial, given its association with nearly all EV populations. This review aims to comprehensively summarize existing EV-DNA research, emphasizing its functional significance and potential as a disease biomarker. By bridging the gap in our understanding, we shed light on the origins, structure, localization, and distribution of EV-DNA. We analyze a wide range of studies, investigating EV-DNA across various pathological conditions. Our review encompasses experimental methods, theoretical approaches, and clinical observations, providing a holistic view of EV-DNA research. We discuss the biogenesis mechanisms of different EV subtypes, the available isolation methods for these subtypes, and consider their origins and variability under different conditions. EV-DNA exhibits remarkable stability and reflects genomic alterations, making it a promising candidate for liquid biopsy applications. From cancer diagnostics to treatment monitoring, EV-DNA holds significant potential. The findings underscore the importance of EV-DNA as an innovative biomarker. As research continues, EV-DNA may revolutionize disease detection, prognosis, and therapeutic strategies.
Collapse
Affiliation(s)
- Mehraneh Nouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateme Nasiri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Martinez LM, Ribeiro LCSL, Guidi RG, de Moraes CMT, Lyra CR, Liebl B, Guimarães VHA, de Lima RD, de Almeida LS, Suartz CV, Nahas WC, Ribeiro-Filho LA. Cell-free Tumor DNA: a Promising Technology for Diagnosis, Surveillance and Therapeutic Decision in Urothelial Carcinoma of the Bladder. Curr Oncol Rep 2025; 27:225-235. [PMID: 39937352 DOI: 10.1007/s11912-025-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW This narrative review aims to discuss the latest evidence for cell-free tumor DNA (ctDNA) use in bladder cancer, future perspectives and challenges in implementing this technology in clinical practice. RECENT FINDINGS Recent papers describe promising findings regarding ctDNA analysis in blood samples and in urine of bladder cancer patients. This biomarker can be used as a diagnostic tool, in prognostic evaluation and as additional data for treatment indication and surveillance.
Collapse
Affiliation(s)
- Lucas Motta Martinez
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Rodrigo Gilles Guidi
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | | | - Bruno Liebl
- Federal University of Paraná, Curitiba, Brazil
| | | | - Richard Dobrucki de Lima
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Lucas Schenk de Almeida
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Caio Vinicius Suartz
- Urology Department, Northern Ontario School of Medicine, Thunder Bay, ON, Canada
- CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - William Carlos Nahas
- Division of Urology, Institute of Cancer of São Paulo, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Wan X, Wang D, Zhang X, Xu M, Huang Y, Qin W, Chen S. Unleashing the power of urine‑based biomarkers in diagnosis, prognosis and monitoring of bladder cancer (Review). Int J Oncol 2025; 66:18. [PMID: 39917986 PMCID: PMC11837902 DOI: 10.3892/ijo.2025.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Bladder cancer (BCa) is a prevalent malignant neoplasm of the urinary tract with high incidence rate, frequent recurrence and rapid disease progression. Conventional approaches for diagnosing, prognosticating and monitoring BCa often rely on invasive procedures such as cystoscopy and tissue biopsy, which are associated with high costs and low patient compliance for follow‑up. Liquid biopsies have advantages, such as being non‑invasive, real‑time, and reproducible, in obtaining diverse biomarkers derived from cellular, molecular, proteomic and genetic signatures in urine or plasma samples. Although plasma‑based biomarkers have been clinically validated, urine provides greater specificity for directly assessing biological materials from urological sources. The present review summarizes advancements and current limitations in urinary protein, genetic and epigenetic biomarkers for disease progression and treatment response of BC, compares performance and application scenarios of urine and blood biomarkers and explores how urinary biomarkers may serve as an alternative or complementary tool to traditional diagnostic methods. The integration of urine‑based or plasma‑based biomarkers into existing diagnostic workflows offers promising avenues for improving accuracy and efficiency of diagnosis in the management of BCa. Notably, the emergence of synthetic biomarkers and urine metabolites, combined with artificial intelligence or bioinformatic technologies, has promise in the screening of potential targets. Continued research and validation efforts are needed to translate these findings into routine clinical practice, ultimately improving patient outcomes and decreasing the burden of BCa.
Collapse
Affiliation(s)
- Xuebin Wan
- Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
- Department of Research and Development, HaploX Biotechnology, Co., Ltd., Shenzhen, Guangdong 518057, P.R. China
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen D-37077, Germany
| | - Xiaoni Zhang
- Department of Research and Development, HaploX Biotechnology, Co., Ltd., Shenzhen, Guangdong 518057, P.R. China
| | - Mingyan Xu
- Department of Research and Development, HaploX Biotechnology, Co., Ltd., Shenzhen, Guangdong 518057, P.R. China
| | - Yuying Huang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Wenjian Qin
- Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Shifu Chen
- Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
- Department of Research and Development, HaploX Biotechnology, Co., Ltd., Shenzhen, Guangdong 518057, P.R. China
| |
Collapse
|
4
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Linscott JA, Miyagi H, Murthy PB, Yao S, Grass GD, Vosoughi A, Xu H, Wang X, Yu X, Yu A, Zemp L, Gilbert SM, Poch MA, Sexton WJ, Spiess PE, Li R. From Detection to Cure - Emerging Roles for Urinary Tumor DNA (utDNA) in Bladder Cancer. Curr Oncol Rep 2024; 26:945-958. [PMID: 38837106 DOI: 10.1007/s11912-024-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.
Collapse
Affiliation(s)
- Joshua A Linscott
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hiroko Miyagi
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Prithvi B Murthy
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hongzhi Xu
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alice Yu
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Logan Zemp
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Scott M Gilbert
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Poch
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
6
|
Seok J, Kwak Y, Kim S, Kim EM, Kim A. Advances in Liquid Biopsy for Diagnosis of Bladder Cancer. Int Neurourol J 2024; 28:83-95. [PMID: 38956768 PMCID: PMC11222820 DOI: 10.5213/inj.2448198.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 07/04/2024] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system. It has a high recurrence rate and requires longterm follow-up. Significant advances in BCa research have been made in recent years; however, the initial diagnosis and follow-up of BCa relies on cystoscopy, which is an invasive and expensive procedure. Over the past decade, liquid biopsies (e.g., blood and urine) have proven to be highly efficient methods for the discovery of BCa biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into body fluids and enables serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers have been studied extensively and have shown promising results in the clinical applications of BCa, including early detection, microscopic residual disease detection, recurrence prediction, and treatment response. Therefore, this review aims to provide an update on various new liquid biopsy markers and the advantages and current limitations of liquid biopsy in the diagnosis of BCa.
Collapse
Affiliation(s)
- Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Sewhan Kim
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan, Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Irvine, CA, USA
| |
Collapse
|
7
|
Hemenway G, Anker JF, Riviere P, Rose BS, Galsky MD, Ghatalia P. Advancements in Urothelial Cancer Care: Optimizing Treatment for Your Patient. Am Soc Clin Oncol Educ Book 2024; 44:e432054. [PMID: 38771987 DOI: 10.1200/edbk_432054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The standard treatment paradigm for muscle invasive bladder cancer has been neoadjuvant cisplatin-based chemotherapy followed by radical cystectomy. However, efforts are ongoing to personalize treatment by incorporating biomarkers to better guide treatment selection. In addition, bladder preservation strategies are aimed at avoiding cystectomy in well-selected patients. Similarly, in the metastatic urothelial cancer space, the standard frontline treatment option of platinum-based chemotherapy has changed with the availability of data from EV-302 trial, making the combination of enfortumab vedotin (EV) and pembrolizumab the preferred first-line treatment option. Here, we examine the optimization of treatment intensity and sequencing, focusing on the challenges and opportunities associated with EV/pembrolizumab therapy, including managing toxicities and exploring alternative dosing approaches. Together, these articles provide a comprehensive overview of contemporary strategies in bladder cancer management, highlighting the importance of individualized treatment approaches, ongoing research, and multidisciplinary collaboration to improve patient outcomes in this complex disease landscape.
Collapse
Affiliation(s)
| | - Jonathan F Anker
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Riviere
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Brent S Rose
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Matthew D Galsky
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
8
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
9
|
Lin SY, Xia W, Kim AK, Chen D, Schleyer S, Choi L, Wang Z, Hamilton JP, Luu H, Hann HW, Chang TT, Hu CT, Woodard A, Gade TP, Su YH. Novel urine cell-free DNA methylation markers for hepatocellular carcinoma. Sci Rep 2023; 13:21585. [PMID: 38062093 PMCID: PMC10703769 DOI: 10.1038/s41598-023-48500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
An optimized hepatocellular carcinoma (HCC)-targeted methylation next generation sequencing assay was developed to discover HCC-associated methylation markers directly from urine for HCC screening. Urine cell-free DNA (ucfDNA) isolated from a discovery cohort of 31 non-HCC and 30 HCC was used for biomarker discovery, identifying 29 genes with differentially methylated regions (DMRs). Methylation-specific qPCR (MSqPCR) assays were developed to verify the selected DMRs corresponding to 8 genes (GRASP, CCND2, HOXA9, BMP4, VIM, EMX1, SFRP1, and ECE). Using archived ucfDNA, methylation of GRASP, HOXA9, BMP4, and ECE1, were found to be significantly different (p < 0.05) between HCC and non-HCC patients. The four markers together with previously reported GSTP1 and RASSF1A markers were assessed as a 6-marker panel in an independent training cohort of 87 non-HCC and 78 HCC using logistic regression modeling. AUROC of 0.908 (95% CI, 0.8656-0.9252) was identified for the 6-marker panel with AFP, which was significantly higher than AFP-alone (AUROC 0.841 (95% CI, 0.778-0.904), p = 0.0026). Applying backward selection method, a 4-marker panel was found to exhibit similar performance to the 6-marker panel with AFP having 80% sensitivity compared to 29.5% by AFP-alone at a specificity of 85%. This study supports the potential use of methylated transrenal ucfDNA for HCC screening.
Collapse
Affiliation(s)
| | - Wei Xia
- JBS Science, Inc., Doylestown, PA, USA
| | - Amy K Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dion Chen
- JBS Science, Inc., Doylestown, PA, USA
- ClinPharma Consulting, Inc., Phoenixville, PA, USA
| | | | - Lin Choi
- JBS Science, Inc., Doylestown, PA, USA
| | | | - James P Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry Luu
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hie-Won Hann
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Tan Hu
- Division of Gastroenterology, Department of Internal Medicine, Hualien Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, Hualien, Taiwan
| | - Abashai Woodard
- Department of Radiology, University of Pennsylvania College of Medicine, Philadelphia, PA, USA
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania College of Medicine, Philadelphia, PA, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Institute, 805 Old Easton Rd, Doylestown, PA, USA.
| |
Collapse
|
10
|
Rose KM, Huelster HL, Meeks JJ, Faltas BM, Sonpavde GP, Lerner SP, Ross JS, Spiess PE, Grass GD, Jain RK, Kamat AM, Vosoughi A, Wang L, Wang X, Li R. Circulating and urinary tumour DNA in urothelial carcinoma - upper tract, lower tract and metastatic disease. Nat Rev Urol 2023; 20:406-419. [PMID: 36977797 DOI: 10.1038/s41585-023-00725-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Precision medicine has transformed the way urothelial carcinoma is managed. However, current practices are limited by the availability of tissue samples for genomic profiling and the spatial and temporal molecular heterogeneity observed in many studies. Among rapidly advancing genomic sequencing technologies, non-invasive liquid biopsy has emerged as a promising diagnostic tool to reproduce tumour genomics, and has shown potential to be integrated in several aspects of clinical care. In urothelial carcinoma, liquid biopsies such as plasma circulating tumour DNA (ctDNA) and urinary tumour DNA (utDNA) have been investigated as a surrogates for tumour biopsies and might bridge many shortfalls currently faced by clinicians. Both ctDNA and utDNA seem really promising in urothelial carcinoma diagnosis, staging and prognosis, response to therapy monitoring, detection of minimal residual disease and surveillance. The use of liquid biopsies in patients with urothelial carcinoma could further advance precision medicine in this population, facilitating personalized patient monitoring through non-invasive assays.
Collapse
Affiliation(s)
- Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA
- Departments of Urology and Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Aram Vosoughi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
11
|
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, Santos JH, Rizvi I. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers (Basel) 2023; 15:2564. [PMID: 37174030 PMCID: PMC10177605 DOI: 10.3390/cancers15092564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
| | - Vesna A. Chappell
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tina Thuy Nguyen Hoang
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Shi Y, Mathis BJ, He Y, Yang X. The Current Progress and Future Options of Multiple Therapy and Potential Biomarkers for Muscle-Invasive Bladder Cancer. Biomedicines 2023; 11:biomedicines11020539. [PMID: 36831075 PMCID: PMC9953154 DOI: 10.3390/biomedicines11020539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Bladder cancer is a common disease in men and the elderly. Current treatment paradigms include radical resection of the bladder and lymph nodes or transurethral resection, both supported by chemotherapy and/or radiation. New modalities, such as illumination-based therapies are also being translationally pursued. However, while survival rates have increased due to combined therapies (particularly chemotherapy, radiation, immune checkpoint inhibitors, and surgery), a lack of diagnostic markers leads clinical professionals to rely on frequently invasive and expensive means of monitoring, such as magnetic resonance imaging or bladder cystoscopy. To improve real-time diagnostic capabilities, biomarkers that reflect both the metabolic and metastatic potential of tumor cells are needed. Furthermore, indicators of therapy resistance would allow for rapid changes in treatment to optimize survival outcomes. Fortunately, the presence of nanoscale extracellular vesicles in the blood, urine, and other peripheral fluids allow for proteomic, genomic, and transcriptomic analyses while limiting the invasiveness of frequent sampling. This review provides an overview of the pathogenesis and progression of bladder cancer, standard treatments and outcomes, some novel treatment studies, and the current status of biomarker and therapy development featuring exosome-based analysis and engineering.
Collapse
Affiliation(s)
- Ying Shi
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
| | - Yayun He
- Department of Urology, The Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan 430082, China
| | - Xiong Yang
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
13
|
Feasibility of Leukemia-Derived Exosome Enrichment and Co-isolated dsDNA Sequencing in Acute Myeloid Leukemia Patients: A Proof of Concept for New Leukemia Biomarkers Detection. Cancers (Basel) 2022; 14:cancers14184504. [PMID: 36139664 PMCID: PMC9497185 DOI: 10.3390/cancers14184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present pilot study aimed at investigating the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA target re-sequencing for adult Acute Myeloid Leukemias (AML) marker detection. To our knowledge, this is the first time that a proof-of-concept combining a leukemia-derived exosome enrichment strategy based on a commercial CE-IVD kit and next-generation sequencing was applied in a cohort of adult AML patients. The reported approach is easy, quick and user friendly and gives the possibility of obtaining a good quantity of exosomal dsDNA (composed of exosomal cargo and surrounding DNA) suitable for further analysis. The time-effective procedure opens up future effective clinical applications. This pilot study presents the potential of a proof-of-concept based on exosome analysis to be applied in clinical practice, as well as the feasibility of this kind of investigations using a certified kit, avoiding many additional analyses. It may encourage further studies regarding extracellular vesicles in myeloid neoplasia. Abstract Exosomes are extracellular vesicles playing a pivotal role in the intercellular communication. They shuttle different cargoes, including nucleic acids from their cell of origin. For this reason, they have been studied as carriers of tumor markers in different liquid biopsy approaches, in particular for solid tumors. Few data are available concerning exosomes as markers of myeloid neoplasia. To better understand their real potential and the best approach to investigate leukemic exosomes, we present the results of a pilot feasibility study evaluating the application of next-generation sequencing analysis of dsDNA derived from exosomes isolated in 14 adult patients affected by acute myeloid leukemias. In particular, leukemia-derived exosome fractions have been analyzed. The concentration of dsDNA co-extracted with exosomes and the number and types of mutations detected were considered and compared with ones identified in the Bone Marrow (BM) and Peripheral Blood (PB) cells. Exosomal DNA concentration, both considering the cargo and the DNA surrounding the lipid membrane resulted in a linear correlation with leukemic burden. Moreover, exosomal DNA mutation status presented 86.5% of homology with BM and 75% with PB. The results of this pilot study confirmed the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA NGS analysis for AML biomarker detection. These data point to the use of liquid biopsy in myeloid neoplasia for the detection of active leukemic cells resident in the BM via a painless procedure.
Collapse
|
14
|
Sedej I, Štalekar M, Tušek Žnidarič M, Goričar K, Kojc N, Kogovšek P, Dolžan V, Arnol M, Lenassi M. Extracellular vesicle-bound DNA in urine is indicative of kidney allograft injury. J Extracell Vesicles 2022; 11:e12268. [PMID: 36149031 PMCID: PMC9503341 DOI: 10.1002/jev2.12268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
Extracellular vesicle‐bound DNA (evDNA) is an understudied extracellular vesicle (EV) cargo, particularly in cancer‐unrelated research. Although evDNA has been detected in urine, little is known about its characteristics, localization, and biomarker potential for kidney pathologies. To address this, we enriched EVs from urine of well‐characterized kidney transplant recipients undergoing allograft biopsy, characterized their evDNA and its association to allograft injury. The SEC‐based method enriched pure EVs from urine of kidney transplant recipients, regardless of the allograft injury. Urinary evDNA represented up to 29.2 ± 8% (mean ± SD) of cell‐free DNA (cfDNA) and correlated with cfDNA in several characteristics but was less fragmented (P < 0.001). Importantly, using DNase treatment and immunogold labelling TEM, we demonstrated that evDNA was bound to the surface of urinary EVs. Normalised evDNA yield (P = 0.042) and evDNA copy number (P = 0.027) significantly differed between patients with normal histology, rejection injury and non‐rejection injury, the later groups having significantly larger uEVs (mean diameter, P = 0.045) and more DNA bound per uEV. ddDNA is detectable in uEV samples of kidney allograft recipients, but its quantity is highly variable. In a proof‐of‐principle study, several evDNA characteristics correlated with clinical and histological parameters (P = 0.040), supporting that the potential of evDNA as a biomarker for kidney allograft injury should be further investigated.
Collapse
Affiliation(s)
- Ivana Sedej
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Štalekar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Ghanam J, Chetty VK, Barthel L, Reinhardt D, Hoyer PF, Thakur BK. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022; 12:37. [PMID: 35346363 PMCID: PMC8961894 DOI: 10.1186/s13578-022-00771-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution. Protecting DNA in membrane vesicles seems to be a conserved phenomenon for the horizontal genetic flux between prokaryotes and lower eukaryotes. Capturing and analyzing this vesicular DNA enables quick and non-invasive monitoring of natural ecosystems. Cancer-derived extracellular vesicles containing DNA open up novel directions in cell-to-cell communication and therefore disease monitoring. Complex and fluctuating conditions of the tumor microenvironment, mimicking natural ecosystems, could favor EV-DNA release, mediating tumor multi-clonal evolution and providing survival benefits.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Venkatesh Kumar Chetty
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Peter-Friedrich Hoyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
16
|
Zhou X, Kurywchak P, Wolf-Dennen K, Che SP, Sulakhe D, D’Souza M, Xie B, Maltsev N, Gilliam TC, Wu CC, McAndrews KM, LeBleu VS, McConkey DJ, Volpert OV, Pretzsch SM, Czerniak BA, Dinney CP, Kalluri R. Unique somatic variants in DNA from urine exosomes of individuals with bladder cancer. Mol Ther Methods Clin Dev 2021; 22:360-376. [PMID: 34514028 PMCID: PMC8408559 DOI: 10.1016/j.omtm.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Kurywchak
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kerri Wolf-Dennen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara P.Y. Che
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mark D’Souza
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - T. Conrad Gilliam
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanna M. Pretzsch
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan A. Czerniak
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P. Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Extracellular Vesicles: New Tools for Early Diagnosis of Breast and Genitourinary Cancers. Int J Mol Sci 2021; 22:ijms22168430. [PMID: 34445131 PMCID: PMC8395117 DOI: 10.3390/ijms22168430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancers and cancers of the genitourinary tract are the most common malignancies among men and women and are still characterized by high mortality rates. In order to improve the outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed from the surface of almost all cell types, including cancer cells. Subcellular structures contained in EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since they directly stem from parental cells. Furthermore, it is becoming even more evident that different body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation and characterization methods are described. Moreover, the potential contribution of EV cargo for diagnostic discovery purposes is described for each tumor.
Collapse
|
18
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
19
|
Extracellular Vesicle-Derived DNA vs. CfDNA as a Biomarker for the Detection of Colon Cancer. Genes (Basel) 2021; 12:genes12081171. [PMID: 34440345 PMCID: PMC8393490 DOI: 10.3390/genes12081171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has emerged as a promising non-invasive way to diagnose tumor and monitor its progression. Different types of liquid biopsies have different advantages and limitations. In the present research, we compared the use of two types of liquid biopsy, extracellular vesicle-derived DNA (EV-DNA) and cell-free DNA (cfDNA) for identifying tumor mutations in patients with colon carcinoma. Method: DNA was extracted from the tumor tissue of 33 patients diagnosed with colon carcinoma. Targeted NGS panel, based on the hotspots panel, was used to identify tumor mutations. Pre-surgery serum and plasma were taken from the patients in which mutation was found in the tumor tissue. Extracellular vesicles were isolated from the serum followed by the extraction of EV-DNA. CfDNA was extracted from the plasma. The mutations found in the tumor were used to detect the circulating tumor DNA using ultra-deep sequencing. We compared the sensitivity of mutation detection and allele frequency obtained in EV-DNA and cfDNA. Results: The sensitivity of mutation detection in EV-DNA and cfDNA was 61.90% and 66.67%, respectively. We obtained almost identical sensitivity of mutation detection in EV-DNA and cfDNA in each of the four stages of colon carcinoma. The total DNA concentration and number mutant copies were higher in cfDNA vs. EV-DNA (p value = 0.002 and 0.003, respectively). Conclusion: Both cfDNA and EV-DNA can serve as tumor biomarkers. The use of EV-DNA did not lead to improved sensitivity or better detection of tumor DNA in the circulation.
Collapse
|
20
|
Hur JY, Lee KY. Characteristics and Clinical Application of Extracellular Vesicle-Derived DNA. Cancers (Basel) 2021; 13:3827. [PMID: 34359729 PMCID: PMC8345206 DOI: 10.3390/cancers13153827] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) carry RNA, proteins, lipids, and diverse biomolecules for intercellular communication. Recent studies have reported that EVs contain double-stranded DNA (dsDNA) and oncogenic mutant DNA. The advantage of EV-derived DNA (EV DNA) over cell-free DNA (cfDNA) is the stability achieved through the encapsulation in the lipid bilayer of EVs, which protects EV DNA from degradation by external factors. The existence of DNA and its stability make EVs a useful source of biomarkers. However, fundamental research on EV DNA remains limited, and many aspects of EV DNA are poorly understood. This review examines the known characteristics of EV DNA, biogenesis of DNA-containing EVs, methylation, and next-generation sequencing (NGS) analysis using EV DNA for biomarker detection. On the basis of this knowledge, this review explores how EV DNA can be incorporated into diagnosis and prognosis in clinical settings, as well as gene transfer of EV DNA and its therapeutic potential.
Collapse
Affiliation(s)
- Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea;
- Department of Pathology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea;
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|
21
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
22
|
Goričar K, Dolžan V, Lenassi M. Extracellular Vesicles: A Novel Tool Facilitating Personalized Medicine and Pharmacogenomics in Oncology. Front Pharmacol 2021; 12:671298. [PMID: 33995103 PMCID: PMC8120271 DOI: 10.3389/fphar.2021.671298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Biomarkers that can guide cancer therapy based on patients' individual cancer molecular signature can enable a more effective treatment with fewer adverse events. Data on actionable somatic mutations and germline genetic variants, studied by personalized medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples. As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes, liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles (EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a heterogeneous population of membrane bound particles, which are released from all cells and accumulate into body fluids. They contain various proteins, lipids, nucleic acids (miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and concentration are changed. Tumor EVs can promote the remodeling of the tumor microenvironment and pre-metastatic niche formation, and contribute to transfer of oncogenic potential or drug resistance during chemotherapy. This makes them a promising source of minimally invasive biomarkers. A limited number of clinical studies investigated EVs to monitor cancer progression, tumor evolution or drug resistance and several putative EV-bound protein and RNA biomarkers were identified. This review is focused on EVs as novel biomarker source for personalized medicine and pharmacogenomics in oncology. As several pharmacogenes and genes associated with targeted therapy, chemotherapy or hormonal therapy were already detected in EVs, they might be used for fine-tuning personalized cancer treatment.
Collapse
Affiliation(s)
| | | | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Hayashi Y, Fujita K. Toward urinary cell-free DNA-based treatment of urothelial carcinoma: a narrative review. Transl Androl Urol 2021; 10:1865-1877. [PMID: 33968675 PMCID: PMC8100839 DOI: 10.21037/tau-20-1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy technique targeting urinary cell-free DNA (cfDNA) is getting a lot of attention to overcome limitations of the present treatment strategy for urothelial carcinoma, including urothelial bladder carcinoma (UBC) and upper tract urothelial carcinoma (UTUC). Analysis of tumor-derived DNA in urine focusing either on genomic or epigenomic alterations, holds great potential as a noninvasive method for the detection of urothelial carcinoma with high accuracy. It is also predictive of prognosis and response to drugs, and reveals the underlying characteristics of different stages of urothelial carcinoma. Although cfDNA methylation analyses based on a combination of several methylation profiles have demonstrated high sensitivity for UBC diagnosis, there have been few reports involving epigenomic studies of urinary cfDNA. In mutational analyses, frequent gene mutations (TERT promoter, TP53, FGFR3, PIK3CA, RAS, etc.) have been detected in urine supernatant by using remarkable technological innovations such as next-generation sequencing and droplet digital PCR. These methods allow highly sensitive detection of rare mutation alleles while minimizing artifacts. In this review, we summarize the current insights into the clinical applications of urinary cfDNA from patients with urothelial carcinoma. Although it is necessary to conduct prospective multi-institutional clinical trials, noninvasive urine biopsy is expected to play an important role in the realization of precision medicine in patients with urothelial carcinoma in the near future.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
24
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
25
|
Herranz R, Oto J, Plana E, Fernández-Pardo Á, Cana F, Martínez-Sarmiento M, Vera-Donoso CD, España F, Medina P. Circulating Cell-Free DNA in Liquid Biopsies as Potential Biomarker for Bladder Cancer: A Systematic Review. Cancers (Basel) 2021; 13:1448. [PMID: 33810039 PMCID: PMC8005001 DOI: 10.3390/cancers13061448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is among the most frequent cancer types in the world and is the most lethal urological malignancy. Presently, diagnostic and follow-up methods for BC are expensive and invasive. Thus, the identification of novel predictive biomarkers for diagnosis, progression, and prognosis of BC is of paramount importance. To date, several studies have evidenced that cell-free DNA (cfDNA) found in liquid biopsies such as blood and urine may play a role in the particular scenario of urologic tumors, and its analysis may improve BC diagnosis report about cancer progression or even evaluate the effectiveness of a specific treatment or anticipate whether a treatment would be useful for a specific patient depending on the tumor characteristics. In the present review, we have summarized the up-to-date studies evaluating the value of cfDNA as potential diagnostic, prognostic, or monitoring biomarker for BC in several biofluids.
Collapse
Affiliation(s)
- Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Manuel Martínez-Sarmiento
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - César D. Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - Francisco España
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| |
Collapse
|
26
|
Cai YX, Yang X, Lin S, Xu YW, Zhu SW, Fan DM, Zhao M, Zhang YB, Yang XX, Li X. Low-Coverage Sequencing of Urine Sediment DNA for Detection of Copy Number Aberrations in Bladder Cancer. Cancer Manag Res 2021; 13:1943-1953. [PMID: 33664588 PMCID: PMC7924115 DOI: 10.2147/cmar.s295675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose Chromosomal copy number aberrations (CNAs) are a hallmark of bladder cancer and a useful target for diagnostic explorations. Here we constructed a low-coverage whole-genome sequencing method for the detection of CNAs in urine sediment DNA from patients with bladder cancer. Patients and Methods We conducted a prospective study using urine sediment samples from 65 patients with bladder tumors, including 54 patients with bladder cancer and 11 patients with benign bladder tumors. Forty-three healthy individuals were included as normal controls. DNA was extracted from urine sediments and analyzed by low-coverage whole-genome sequencing to compare differences in CNAs among these three groups. CNAs are defined by arbitrary R values (normal range ± 2). When these values exceed ± 0.2 of normal range, gain/duplication or loss/deletion are suspected. Results With this method, CNAs were detected in 39 of 51 patients with bladder cancer, 2 of 10 patients with benign bladder tumors, and 8 of 39 normal controls. The lengths of DNA deletion and duplication were significantly larger in patients with bladder cancer than in patients with benign tumors or normal controls (P < 0.05). Bladder cancer duplicate CNAs mainly occurred on chromosomes 1q, 5p, 6p, 7p, 8q, and 13q, while deletions mainly occurred on 2q, 8p, 9q, 9p, and 11p. Those regions contained bladder cancer tumor-related genes, such as STK3, COX6C, SPAG1, CDKAL1, C9orf53, CDKN2A, CDKN2B, MIR31, and IFNA1. The number of CNAs detected in urine sediment DNA during the follow-up period was significantly reduced. Conclusion Our sequencing method is highly sensitive and can detect a minimal chromosome repeat/microdeletion change of 0.15 Mb. The use of 0.1~0.3× low-coverage whole-genome sequencing can be used to detect bladder cancer CNAs in urine sediment DNA. This method provides a promising method for noninvasive diagnosis of bladder cancer, but still needs further verification in a larger sample size.
Collapse
Affiliation(s)
- Yun-Xi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Sheng Lin
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, 518040, People's Republic of China
| | - Ya-Wen Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People's Republic of China
| | - Shan-Wen Zhu
- Reproductive Medicine Center, Huizhou Central People's Hospital, Huizhou, 516000, People's Republic of China
| | - Dong-Mei Fan
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, People's Republic of China
| | - Yuan-Bin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xue-Xi Yang
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| |
Collapse
|
27
|
Low-coverage whole-genome sequencing of extracellular vesicle-associated DNA in patients with metastatic cancer. Sci Rep 2021; 11:4016. [PMID: 33597619 PMCID: PMC7889887 DOI: 10.1038/s41598-021-83436-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Low-coverage whole-genome sequencing (LC-WGS) can provide insight into oncogenic molecular changes. Serum extracellular vesicles (EV) represent a novel liquid biopsy source of tumoral DNA. This study compared copy number alteration (CNA) profiles generated from LC-WGS of formalin-fixed paraffin-embedded (FFPE) tumoral DNA and EV-DNA obtained from cancer patients. Patients with squamous cell carcinoma of the base of tongue (n = 3) and cutaneous squamous cell carcinoma (n = 2) were included. LC-WGS (0.5-1X coverage) was performed on FFPE-DNA and serum EV-DNA. Similarity between CNA profiles was analysed using QDNAseq. FFPE samples had a mean CNA of 31 (range 17–50) over 1.9 × 109 (range 1.0–2.6 × 109) bp in length, and EV samples had a mean CNA value of 17 (range 7–19) over 7.6 × 108 (range 2.9–15 × 108) bp in length. A mean of 8 (range 0–21) CNA over 5.9 × 108 (range 1.6–14 × 108) bp in length was found to overlap between EV and FFPE-derived samples per patient. Although the mean correlation efficient between samples was r = 0.34 (range − .08 to 0.99), this was not statistically significant (p > 0.05). Regions of highest deletion and duplication in FFPE samples were not well reflected in the EV-DNA. Selected CNA regions in EV-associated DNA were reflective of the primary tumor, however appreciation of global CNA and areas of most significant change was lost. The utility of LC-WGS of EV-derived DNA is likely limited to molecular alterations of known interest.
Collapse
|
28
|
Amintas S, Vendrely V, Dupin C, Buscail L, Laurent C, Bournet B, Merlio JP, Bedel A, Moreau-Gaudry F, Boutin J, Dabernat S, Buscail E. Next-Generation Cancer Biomarkers: Extracellular Vesicle DNA as a Circulating Surrogate of Tumor DNA. Front Cell Dev Biol 2021; 8:622048. [PMID: 33604335 PMCID: PMC7884755 DOI: 10.3389/fcell.2020.622048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by healthy tissues and tumor cells and are released in various bodily fluids, including blood. They are limited by bilayer phospholipidic membranes, and they carry a rich content in biomolecules. Their release cleanses the cells of their waste or serves as functional local and distant cell-cell communication and molecular exchange particles. This rich and heterogeneous content has been given intense attention in cancer physiopathology because EVs support cancer control and progression. Because of their specific active cargo, they are being evaluated as carriers of liquid biopsy biomarkers. Compared to soluble circulating biomarkers, their complexity might provide rich information on tumor and metastases status. Thanks to the acquired genomic changes commonly observed in oncogenic processes, double-stranded DNA (dsDNA) in EVs might be the latest most promising biomarker of tumor presence and complexity. This review will focus on the recent knowledge on the DNA inclusion in vesicles, the technical aspects of EV-DNA detection and quantification, and the use of EV-DNA as a clinical biomarker.
Collapse
Affiliation(s)
- Samuel Amintas
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Véronique Vendrely
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Charles Dupin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Louis Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Christophe Laurent
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Barbara Bournet
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jean-Philippe Merlio
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
- INSERM U1053, Bordeaux, France
| | - Aurélie Bedel
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Julian Boutin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM, UMR-1220, IRSD, University of Toulouse III, Toulouse, France
| |
Collapse
|
29
|
Emerging Roles of Urine-Derived Components for the Management of Bladder Cancer: One Man's Trash Is Another Man's Treasure. Cancers (Basel) 2021; 13:cancers13030422. [PMID: 33498666 PMCID: PMC7865365 DOI: 10.3390/cancers13030422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Urinary bladder cancer (UBC) is one of the most common and deadly cancers worldwide, with many patients not responding to chemotherapy, or presenting with serious adverse effects after chemotherapy. Yet, current bench side assays provide limited accuracy for predicting therapeutic response to chemotherapeutic drugs. The aim of this review is to demonstrate the potential of urinary-derived extracellular vesicles and UBC-organoids to serve as predictive biomarkers for this cancer. Specifically, molecular subtyping of urine-derived extracellular vesicles has the potential to provide insights into the molecular stratification of the tumor, while urinary organoids will allow for individualized chemotherapy testing in the context of precision medicine. Abstract Urinary bladder cancer (UBC) is the most common malignancy of the urinary tract in humans, with an estimated global prevalence of 1.1 million cases over 5 years. Because of its high rates of recurrence and resistance to chemotherapy, UBC is one of the most expensive cancers to treat, resulting in significant health care costs. The development of innovative molecular and cellular tools is necessary to refine patient stratification and help predict response to treatment. Urine is an underused resource of biological components shed from bladder tumors, such as exfoliated cells and extracellular vesicles, that could serve as molecular fingerprints and provide valuable biological insights into tumor phenotype and mechanisms of resistance to chemotherapy. Additionally, characterization of urine-derived extracellular vesicles and cells could be used as reliable biomarkers for prediction of response to neoadjuvant therapy.
Collapse
|
30
|
García-Silva S, Gallardo M, Peinado H. DNA-Loaded Extracellular Vesicles in Liquid Biopsy: Tiny Players With Big Potential? Front Cell Dev Biol 2021; 8:622579. [PMID: 33575258 PMCID: PMC7872099 DOI: 10.3389/fcell.2020.622579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Miguel Gallardo
- H12O - CNIO Hematological Malignancies Clinical Research Unit, Clinical Research Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
31
|
Comparison of Circulating Tumour DNA and Extracellular Vesicle DNA by Low-Pass Whole-Genome Sequencing Reveals Molecular Drivers of Disease in a Breast Cancer Patient. Biomedicines 2020; 9:biomedicines9010014. [PMID: 33375577 PMCID: PMC7823926 DOI: 10.3390/biomedicines9010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
There is increasing recognition of circulating tumour DNA (ctDNA) as a non-invasive alternative to tumour tissue for the molecular characterisation and monitoring of disease. Recent evidence suggests that cancer-associated changes can also be detected in the DNA contained within extracellular vesicles (EVs). As yet, there has been limited investigation into the relationship between EV DNA and ctDNA, and no studies have examined the EV DNA of breast cancer patients. The aim of this study was to use low-pass whole-genome sequencing to identify copy number variants (CNVs) in serial samples of both ctDNA and EV DNA from a patient with breast cancer. Of the 52 CNVs identified in tumour DNA, 36 (69%) were detected in at least one ctDNA sample and 13 (25%) in at least one EV DNA sample. The number of detectable variants in ctDNA and EV DNA increased over the natural history of the patient’s disease, which was associated with progression to cerebral metastases. This case study demonstrates that, while CNVs are detectable in patient EV DNA, ctDNA has greater sensitivity than EV DNA for serial monitoring of breast cancer.
Collapse
|
32
|
Kim IA, Hur JY, Kim HJ, Lee SE, Kim WS, Lee KY. Liquid biopsy using extracellular vesicle-derived DNA in lung adenocarcinoma. J Pathol Transl Med 2020; 54:453-461. [PMID: 33027851 PMCID: PMC7674759 DOI: 10.4132/jptm.2020.08.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Blood liquid biopsy has emerged as a way of overcoming the clinical limitations of repeat biopsy by testing for the presence of acquired resistance mutations to therapeutic agents. Despite its merits of repeatability and non-invasiveness, this method is currently only used as a supplemental test due to a relatively low sensitivity rate of 50%–60%, and cannot replace tissue biopsy. The circulating tumor DNAs used in blood liquid biopsies are passive products of fragmented DNA with a short half-life released following tumor cell death; the low sensitivity seen with liquid blood biopsy results from this instability, which makes increasing the sensitivity of this test fundamentally difficult. Extracellular vesicles (EVs) are ideal carriers of cancer biomarkers, as cancer cells secret an abundance of EVs, and the contents of tumor cell-originated EVs reflect the molecular and genetic composition of parental cells. In addition, EV-derived DNAs (EV DNAs) consist of large-sized genomic DNAs and tumor-specific oncogenic mutant DNAs. For these reasons, liquid biopsy using EV DNA has the potential to overcome issues arising from tissue shortages associated with small biopsies, which are often seen in lung cancer patients, and the biopsy product can be used in other diagnostic methods, such as epidermal growth factor receptor (EGFR) mutation testing and next-generation sequencing (NGS). A higher sensitivity can be achieved when EV DNAs obtained from bronchoalveolar lavage fluid (BALF) are used rather than those from blood. BALF, when obtained close to the tumor site, is a promising liquid biopsy tool, as it enables the gathering of both cellular and non-cellular fractions of the tumor microenvironment, and provides increased diagnostic sensitivity when compared to blood.
Collapse
Affiliation(s)
- In Ae Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Hee Joung Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 2020; 15:1701-1714. [PMID: 32767659 PMCID: PMC8169445 DOI: 10.1002/1878-0261.12777] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.
Collapse
Affiliation(s)
- Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Semira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
34
|
Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis 2020; 11:584. [PMID: 32719324 PMCID: PMC7385258 DOI: 10.1038/s41419-020-02803-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication. While most investigations have focused exclusively on the protein, lipid and RNA constituents of these extracellular entities, EV/EP DNA remains poorly understood, despite DNA being found in association with virtually all EV/EP populations. The functional potential of EV/EP DNA has been proposed in a number of pathological states, including malignancies and autoimmune diseases. Moreover, the effectiveness of cell-free DNA as the biomarker of choice in emerging liquid biopsy applications highlights the role that EV/EP DNA may play as a novel disease biomarker. In this review, we provide a comprehensive overview of EV/EP DNA studies conducted to date, with a particular focus on the roles of EV/EP DNA as a functional mediator and molecular biomarker in various pathologic states. We also review what is currently known about the origins, structure, localisation and distribution of EV/EP DNA, highlighting current controversies as well as opportunities for future investigation.
Collapse
Affiliation(s)
- Ethan Z Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
35
|
Ge G, Peng D, Guan B, Zhou Y, Gong Y, Shi Y, Hao X, Xu Z, Qi J, Lu H, Zhang X, Zhan Y, Li Y, Wu Y, Ding G, Shen Q, He Q, Li X, Zhou L, Ci W. Urothelial Carcinoma Detection Based on Copy Number Profiles of Urinary Cell-Free DNA by Shallow Whole-Genome Sequencing. Clin Chem 2020; 66:188-198. [PMID: 31811000 DOI: 10.1373/clinchem.2019.309633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Current noninvasive assays for urothelial carcinoma (UC) lack clinical sensitivity and specificity. Given the utility of plasma cell-free DNA (cfDNA) biomarkers, the development of urinary cfDNA biomarkers may improve the diagnostic sensitivity. METHODS We assessed copy number alterations (CNAs) by shallow genome-wide sequencing of urinary cfDNA in 95 cancer-free individuals and 65 patients with UC, 58 with kidney cancer, and 45 with prostate cancer. We used a support vector machine to develop a diagnostic classifier based on CNA profiles to detect UC (UCdetector). The model was further validated in an independent cohort (52 patients). Genome sequencing data of tumor specimens from 90 upper tract urothelial cancers (UTUCs) and CNA data for 410 urothelial carcinomas of bladder (UCBs) from The Cancer Genome Atlas were used to validate the classifier. Genome sequencing data for urine sediment from 32 patients with UC were compared with cfDNA. To monitor the treatment efficacy, we collected cfDNA from 7 posttreatment patients. RESULTS Urinary cfDNA was a more sensitive alternative to urinary sediment. The UCdetector could detect UC at a median clinical sensitivity of 86.5% and specificity of 94.7%. UCdetector performed well in an independent validation data set. Notably, the CNA features selected by UCdetector were specific markers for both UTUC and UCB. Moreover, CNA changes in cfDNA were consistent with the treatment effects. Meanwhile, the same strategy could localize genitourinary cancers to tissue of origin in 70.1% of patients. CONCLUSIONS Our findings underscore the potential utility of urinary cfDNA CNA profiles as a basis for noninvasive UC detection and surveillance.
Collapse
Affiliation(s)
- Guangzhe Ge
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ding Peng
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Bao Guan
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yuanyuan Zhou
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yue Shi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xueyu Hao
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhengzheng Xu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Zhang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yucai Wu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Guangpu Ding
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Qi Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Thakur IS, Roy D. Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases. Int J Mol Sci 2020; 21:ijms21144879. [PMID: 32664313 PMCID: PMC7402316 DOI: 10.3390/ijms21144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| |
Collapse
|
37
|
Ohannesian N, Gunawardhana L, Misbah I, Rakhshandehroo M, Lin SH, Shih WC. Commercial and emerging technologies for cancer diagnosis and prognosis based on circulating tumor exosomes. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab8699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Exosomes are nano-sized extracellular vesicles excreted by mammalian cells that circulate freely in the bloodstream of living organisms. Exosomes have a lipid bilayer that encloses genetic material used in intracellular communication (e.g. double-stranded DNA, micro-RNAs, and messenger RNA). Recent evidence suggests that dysregulation of this genetic content within exosomes has a major role in tumor progression in the surrounding microenvironment. Motivated by this discovery, we focused here on using exosomal biomarkers as a diagnostic and prognostic tool for cancer. In this review, we discuss recently discovered exosome-derived proteomic and genetic biomarkers used in cancer diagnosis and prognosis. Although several genetic biomarkers have been validated for their diagnostic values, proteomic biomarkers are still being actively pursued. We discuss both commercial technologies and emerging technologies for exosome isolation and analysis. Emerging technologies can be classified into optical and non-optical methods. The working principle of each method is briefly discussed as well as advantages and limitations.
Collapse
|
38
|
Miguez ACK, Barros BDDF, de Souza JES, da Costa CML, Cunha IW, Barbosa PNVP, Apezzato MLP, de Souza SJ, Carraro DM. Assessment of somatic mutations in urine and plasma of Wilms tumor patients. Cancer Med 2020; 9:5948-5959. [PMID: 32592321 PMCID: PMC7433816 DOI: 10.1002/cam4.3236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/04/2022] Open
Abstract
Tumor DNA has been detected in body fluids of cancer patients. Somatic tumor mutations are being used as biomarkers in body fluids to monitor chemotherapy response as a minimally invasive tool. In this study, we evaluated the potential of tracking somatic mutations in free DNA of plasma and urine collected from Wilms tumor (WT) patients for monitoring treatment response. Wilms tumor is a pediatric renal tumor resulting from cell differentiation errors during nephrogenesis. Its mutational repertoire is not completely defined. Thus, for identifying somatic mutations from tumor tissue DNA, we screened matched tumor/leukocyte DNAs using either a panel containing 16 WT‐associated genes or whole‐exome sequencing (WES). The identified somatic tumor mutations were tracked in urine and plasma DNA collected before, during and after treatment. At least one somatic mutation was identified in five out of six WT tissue samples analyzed. Somatic mutations were detected in body fluids before treatment in all five patients (three patients in urine, three in plasma, and one in both body fluids). In all patients, a decrease of the variant allele fraction of somatic mutations was observed in body fluids during neoadjuvant chemotherapy. Interestingly, the persistence of somatic mutations in body fluids was in accordance with clinical parameters. For one patient who progressed to death, it persisted in high levels in serial body fluid samples during treatment. For three patients without disease progression, somatic mutations were not consistently detected in samples throughout monitoring. For one patient with bilateral disease, a somatic mutation was detected at low levels with no support of clinical manifestation. Our results demonstrated the potential of tracking somatic mutations in urine and plasma DNA as a minimally invasive tool for monitoring WT patients. Additional investigation is needed to check the clinical value of insistent somatic mutations in body fluids.
Collapse
Affiliation(s)
- Ana Carolina Kerekes Miguez
- Laboratory of Genomics and Molecular Biology, International Research Center/CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Bruna D de Figueiredo Barros
- Laboratory of Genomics and Molecular Biology, International Research Center/CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Jorge E S de Souza
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | - Sandro J de Souza
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.,National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| | - Dirce Maria Carraro
- Laboratory of Genomics and Molecular Biology, International Research Center/CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil.,National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
39
|
de Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers (Basel) 2020; 12:E1400. [PMID: 32485907 PMCID: PMC7352974 DOI: 10.3390/cancers12061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins constantly transferred between different cell types, contributing to autocrine and paracrine signaling. In recent years, they have been shown to play vital roles, not only in normal biological functions, but also in pathological conditions, such as cancer. In the multistep process of cancer progression, EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers. Importantly, their potential to overcome the current limitations or the present diagnostic procedures has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique, whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based biomarkers for BCa were found to overcome these limitations. Here, we review their potential advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa management was reviewed and discussed.
Collapse
Affiliation(s)
- Manuel Castanheira de Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria J. Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Avelino Fraga
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Laboratory of Genetics and Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
40
|
Kang JK, Heo S, Kim HP, Song SH, Yun H, Han SW, Kang GH, Bang D, Kim TY. Liquid biopsy-based tumor profiling for metastatic colorectal cancer patients with ultra-deep targeted sequencing. PLoS One 2020; 15:e0232754. [PMID: 32379795 PMCID: PMC7205246 DOI: 10.1371/journal.pone.0232754] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Analyzing cell-free DNA (cfDNA) as a source of circulating tumor DNA is useful for diagnosing or monitoring patients with cancer. However, the concordance between cfDNA within liquid biopsy and genomic DNA (gDNA) within tumor tissue biopsy is still under debate. To evaluate the concordance in a clinical setting, we enrolled 54 patients with metastatic colorectal cancer and analyzed their plasma cfDNA, gDNA from peripheral blood mononuclear cells (PBMC), and gDNA from available matched tumor tissues using ultra-deep sequencing targeting 10 genes (38-kb size) recurrently mutated in colorectal cancer. We first established a highly reliable cut-off value using reference material. The sensitivity of detecting KRAS hotspot mutations in plasma was calculated as 100%, according to digital droplet PCR. We could selectively detect clinically important somatic alterations with a variant allele frequency as low as 0.18%. We next compared somatic mutations of the 10 genes between cfDNA and genomic DNA from tumor tissues and observed an overall 93% concordance rate between the two types of samples. Additionally, the concordance rate of patients with the time interval between liquid biopsy and tumor tissue biopsy within 6 months and no prior exposure to chemotherapy was much higher than those without. The patients with KRAS mutant fragments in plasma had poor prognosis than those without the mutant fragments (33 months vs. 63 months; p<0.05). Consequently, the profiling with our method could achieve highly concordant results and may facilitate the surveillance of the tumor status with liquid biopsy in CRC patients.
Collapse
Affiliation(s)
- Jun-Kyu Kang
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sunghoon Heo
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- IMBDx Inc., Seoul, Republic of Korea
| | - Sang-Hyun Song
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Lee EY, Lee EJ, Yoon H, Lee DH, Kim KH. Comparison of Four Commercial Kits for Isolation of Urinary Cell-Free DNA and Sample Storage Conditions. Diagnostics (Basel) 2020; 10:diagnostics10040234. [PMID: 32325682 PMCID: PMC7236016 DOI: 10.3390/diagnostics10040234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Urinary cell-free DNA (cfDNA) is an attractive body fluid for liquid biopsy. In this study, we compared the efficiencies of four commercial kits for urinary cell-free DNA (cfDNA) isolation and of various sample storage conditions. Urinary cfDNA was isolated from 10 healthy individuals using four commercial kits: QIAamp Circulating Nucleic Acid Kit (QC; Qiagen), MagMAX™ Cell-Free DNA Isolation Kit (MM; Applied Biosystems), Urine Cell-Free Circulating DNA Purification Midi Kit (NU; Norgen Biotek), and Quick-DNA™ Urine Kit (ZQ; Zymo Research). To assess the isolation efficiency, an Agilent 2100 Bioanalyzer with High Sensitivity DNA chips was used, and cfDNA yield was defined as the amount of cfDNA obtained from 1 mL of urine. MM and QC provided the highest cfDNA yield in the 50–300 bp range, and MM and NU gave the highest cfDNA yield in the 50–100 bp range. In particular, the NU kit was efficient for isolation of more fragmented cfDNA in the range of 50–100 bp with the lowest cellular genomic DNA contamination. ZQ had the best cost-efficiency for isolating the same amount of urinary cfDNA. Samples stored at −70 °C with the addition of 10 mM EDTA resulted in the highest cfDNA yield 3 months after sample collection.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Urology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.Y.L.); (E.-J.L.); (H.Y.); (D.H.L.)
- Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Eun-Ju Lee
- Department of Urology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.Y.L.); (E.-J.L.); (H.Y.); (D.H.L.)
- Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Hana Yoon
- Department of Urology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.Y.L.); (E.-J.L.); (H.Y.); (D.H.L.)
| | - Dong Hyeon Lee
- Department of Urology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.Y.L.); (E.-J.L.); (H.Y.); (D.H.L.)
| | - Kwang Hyun Kim
- Department of Urology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (E.Y.L.); (E.-J.L.); (H.Y.); (D.H.L.)
- Correspondence: ; Tel.: +82-2-6986-1685; Fax: +82-2-6986-3258
| |
Collapse
|
42
|
Nini A, Hoffmann MJ, Lampignano R, Große Siemer R, van Dalum G, Szarvas T, Cotarelo CL, Schulz WA, Niederacher D, Neubauer H, Stoecklein NH, Niegisch G. Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:355-367. [PMID: 32212383 DOI: 10.1002/cyto.b.21877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Detection of circulating tumor cells (CTC) by techniques based on epithelial cell adhesion molecule (EpCAM) is suboptimal in urothelial carcinoma (UC). As HER2 is thought to be broadly expressed in UC, we explored its utility for CTC detection. METHODS HER2 and EpCAM expression was analyzed in 18 UC cell lines (UCCs) by qRT-PCR, western blot and fluorescence-activated cell scanning (FACS) and compared to the strongly HER2-expressing breast cancer cell line SKBR3 and other controls. HER2 expression in UC patient tissues was measured by qRT PCR and correlated with data on survival and risk for metastasis. UCCs with high EpCAM and variable HER2 expression were used for spike-in experiments in the CellSearch system. Twenty-one blood samples from 13 metastatic UC patients were analyzed for HER2-positive CTCs with CellSearch. RESULTS HER2 mRNA and protein were broadly expressed in UCC, with some heterogeneity, but at least 10-fold lower than in the HER-2+ SKBR3 cells. Variations were unrelated to cellular phenotype or clinicopathological characteristics. EpCAM expression was essentially restricted to UCCs with epitheloid phenotypes. Heterogeneity of EpCAM and HER2 expression was observed also in spike-in experiments. The 7 of 21 blood samples from 6 of 13 patients were enumerated as CTC positive via EpCAM, but only one sample stained weakly positive (1+) for HER2. CONCLUSIONS Detection rate of CTCs by EpCAM in UC is poor, even in metastatic patients. Because of its widespread expression, particularly in patients with high risk of metastasis, detection of HER2 could improve identification of UC CTCs, which is why combined detection using antibodies for EpCAM and HER2 may be beneficial.
Collapse
Affiliation(s)
- Alessandro Nini
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Michèle Janine Hoffmann
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Rita Lampignano
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Robert Große Siemer
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Guus van Dalum
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tibor Szarvas
- Department of Urology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University Budapest, Budapest, Hungary
| | - Cristina Lopez Cotarelo
- Department of Pathology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Arthur Schulz
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Nikolas Hendrik Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
43
|
Baldacchino S, Grech G. Somatic copy number aberrations in metastatic patients: The promise of liquid biopsies. Semin Cancer Biol 2019; 60:302-310. [PMID: 31891778 DOI: 10.1016/j.semcancer.2019.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 01/14/2023]
Abstract
Cancer metastasis is the leading cause of cancer-related mortality. The metastatic process involves measurable cellular changes that confer migratory potential, proliferative advantage and the ability to colonise a distinct microenvironment. Accumulation of aberrations and clonal evolution add complexity to patient management and the assessment of the therapeutic sensitivity profile of malignancies. Liquid biopsy presents a repeatable and minimally invasive assessment tool to detect early metastasis, characterise tumour phenotype and detect minimal residual disease. The promise of liquid biopsies is to inform patient management and therapeutic decisions in a timely manner. Clinical translation requires robust methodologies with high sensitivity and tumour specificity. This can be achieved through technological advances but also through novel biologically informed approaches that harness existing knowledge on tumorigenesis. Here we present a review of copy number variations as potential biomarkers for early detection of metastatic potential and outline a biomarker validation process in the context of liquid biopsies.
Collapse
Affiliation(s)
- Shawn Baldacchino
- Applied Biotech Ltd, Cambridge, UK; Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Malta.
| | - Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Malta
| |
Collapse
|
44
|
Fernandes M, Teixeira AL, Medeiros R. The opportunistic effect of exosomes on Non-Hodgkin Lymphoma microenvironment modulation. Crit Rev Oncol Hematol 2019; 144:102825. [PMID: 31734546 DOI: 10.1016/j.critrevonc.2019.102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
There has been a shift in the paradigm of Non-Hodgkin lymphomas, changing from the classical genetic aberration-based model to a more complex and dynamic model involving tumor microenvironment interactions. In this instance, exosomes have emerged as important mediators in intercellular communication by providing survival and proliferation signals, licensing immune evasion and acquisition of drug resistance. The capability to transfer molecular cargo made exosomes a focus of research to understand cancer pathogenesis and its progression pathways. Several studies identified exosomes transporting tumor-released components in peripheral blood and focused on understanding their clinical relevance in the diagnosis, prognostic and in monitoring cancer progression. Moreover, due to their biophysical properties and physiological function, exosomes have drawn attention as potential therapeutic target and drug delivery vehicles. This review will discuss the function of exosomes in Non-Hodgkin lymphomagenesis, highlight their potential as diagnosis and prognosis biomarkers, and as new therapeutic opportunities in lymphoma management.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Research Department, LPCC-Portuguese League against Cancer- Northern Branch (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Research Department, LPCC-Portuguese League against Cancer- Northern Branch (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal.
| |
Collapse
|
45
|
Lau DK, Jenkins L, Weickhardt A. Mechanisms of acquired resistance to fibroblast growth factor receptor targeted therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:568-579. [PMID: 35582593 PMCID: PMC8992533 DOI: 10.20517/cdr.2019.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022]
Abstract
Oncogenic activation of the fibroblast growth factor receptor (FGFR) through mutations and fusions of the FGFR gene occur in a variety of different malignancies such as urothelial carcinoma and cholangiocarcinoma. Inhibition of the kinase domain of the FGFR with targeted oral FGFR inhibitors has been shown in both preclinical and early phase clinical trials to lead to meaningful reductions in tumour size and larger confirmatory randomized trials are underway. Acquired resistance to FGFR inhibition using a variety of mechanisms that includes, activation of alternate signaling pathways and expansion of tumour clones with gatekeeper mutations in the FGFR gene. This review summarizes the acquired resistance mechanisms to FGFR therapy and therapeutic approaches to circumventing resistance.
Collapse
Affiliation(s)
- David K. Lau
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Laura Jenkins
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Andrew Weickhardt
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
- Department of Medical Oncology, Austin Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
46
|
Oreskovic A, Brault ND, Panpradist N, Lai JJ, Lutz BR. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J Mol Diagn 2019; 21:1067-1078. [PMID: 31442674 DOI: 10.1016/j.jmoldx.2019.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Urine cell-free DNA (cfDNA) is a valuable noninvasive biomarker for cancer mutation detection, infectious disease diagnosis (eg, tuberculosis), organ transplantation monitoring, and prenatal screening. Conventional silica DNA extraction does not efficiently capture urine cfDNA, which is dilute (ng/mL) and highly fragmented [30 to 100 nucleotides (nt)]. The clinical sensitivity of urine cfDNA detection increases with decreasing target length, motivating use of sample preparation methods designed for short fragments. We compared the analytical performance of two published protocols (Wizard resin/guanidinium thiocyanate and Q Sepharose), three commercial kits (Norgen, QIAamp, and MagMAX), and an in-house sequence-specific hybridization capture technique. Dependence on fragment length (25 to 150 nt), performance at low concentrations (10 copies/mL), tolerance to variable urine conditions, and susceptibility to PCR inhibition were characterized. Hybridization capture and Q Sepharose performed best overall (60% to 90% recovery), although Q Sepharose had reduced recovery (<10%) of the shortest 25-nt fragment. Wizard resin/guanidinium thiocyanate recovery was dependent on pH and background DNA concentration and was limited to <35%, even under optimal conditions. The Norgen kit led to consistent PCR inhibition but had high recovery of short fragments. The QIAamp and MagMAX kits had minimal recovery of fragments <150 and <80 nt, respectively. Urine cfDNA extraction methods differ widely in ability to capture short, dilute cfDNA in urine; using suboptimal methods may profoundly impair clinical results.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Norman D Brault
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|