1
|
Yadav SK, Chen C, Dhib-Jalbut S, Ito K. The mechanism of disease progression by aging and age-related gut dysbiosis in multiple sclerosis. Neurobiol Dis 2025; 212:106956. [PMID: 40383164 DOI: 10.1016/j.nbd.2025.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease caused by a multifaceted interplay of genetic predispositions and environmental factors. Most patients initially experience the relapsing-remitting form of the disease (RRMS), which is characterized by episodes of neurological deficits followed by periods of symptom resolution. However, over time, many individuals with RRMS advance to a progressive form of the disease, known as secondary progressive MS (SPMS), marked by a gradual worsening of symptoms without periods of remission. The mechanisms underlying this transition remain largely unclear, and current disease-modifying therapies (DMTs) are partially effective in treating SPMS. Age is widely acknowledged as a risk factor for the transition from RRMS to SPMS. One factor associated with aging that may influence the progression of MS is gut dysbiosis. This review discusses how aging and age-related gut dysbiosis affect the progression of MS.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Claire Chen
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
2
|
Chen J, Chen X, Ma J. Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: a Mendelian randomization study. J Ovarian Res 2025; 18:54. [PMID: 40082983 PMCID: PMC11905533 DOI: 10.1186/s13048-025-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES The study aimed to investigate the causal relationships of gut microbiota (GM), ovarian cancer (OC), endometrial cancer (EC), and potential metabolite mediators using Mendelian randomization (MR) analysis. METHODS Bidirectional two-sample MR analysis and reverse MR analysis of GM on OC/EC were employed to determine the causal effects of GM on OC/EC and the mediating role of blood metabolites in the relationship between GM and OC/EC, with results validated through sensitivity analysis. RESULTS We identified 6 pathogenic bacterial taxa associated with OC, including Euryarchaeota, Escherichia-Shigella, FamilyXIIIAD3011group, Prevotella9, and two unknown genera. Christensenellaceae R.7group, Tyzzerella3, and Victivallaceae were found to be protective against OC. The increase in EC risk was positively associated with Erysipelotrichia, Erysipelotrichaceae, Erysipelotrichales, and FamilyXI. Dorea, RuminococcaceaeUCG014, and Turicibacter exhibited a negative correlation with the EC risk. A total of 26 and 19 blood metabolites related to GM were identified, showing significant correlations with OC and EC, respectively. Cytosine was found to be an intermediate metabolite greatly associated with EC and FamilyXI. In reverse MR analysis, the FamilyXIIIAD3011group exhibited a significant bidirectional causal relationship with OC. CONCLUSION Our study revealed causal relationships of GM and intermediate metabolites with OC/EC, providing new avenues for understanding OC/EC and developing effective treatment strategies.
Collapse
Affiliation(s)
- Jinyan Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Xuejun Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Jiong Ma
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Salas JR, Ryan KM, Trias AO, Chen BY, Guemes M, Galic Z, Schultz KA, Clark PM. Blocking Deoxycytidine Kinase in Activated Lymphocytes Depletes Deoxycytidine Triphosphate Pools and Alters Cell Cycle Kinetics to Yield Less Disease in a Mouse Multiple Sclerosis Model. Immunology 2025; 174:247-263. [PMID: 39710854 DOI: 10.1111/imm.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides. Deoxycytidine kinase (dCK) is the rate-limiting enzyme in the salvage pathway. In prior work, we showed that targeting dCK with the small molecule inhibitor TRE-515 limits clinical symptoms in two myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mouse models of MS and decreases the levels of activated CD4 T and B lymphocytes in vivo. However, whether targeting dCK limits disease in additional EAE models and how targeting dCK directly impacts activated and proliferating CD4 T and B cells has yet to be determined. Here, we show that dCK is activated in the lymph nodes and spleen in an EAE model induced by amino acids 139-151 of the proteolipid protein (PLP139-151) that is driven by CD4 T and B cells and is characterised by acute disease followed by disease remission. Treating this model with TRE-515 limits clinical symptoms and decreases the levels of activated CD4 T and B cells. In culture, CD4 T and B cells induce deoxyribonucleoside salvage following activation, and TRE-515 directly blocks CD4 T and B cell activation-induced proliferation and activation marker expression. TRE-515 decreases deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) pools and increases the length of time cells spend in S phase of the cell cycle without inducing a replication stress response in B cells. Our results suggest that dCK activity is required to supply needed dNTPs and to enable rapid cell division following lymphocyte activation against autoantigens in EAE mouse models.
Collapse
Affiliation(s)
- Jessica R Salas
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - K M Ryan
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Alyssa O Trias
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Bao Ying Chen
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, UCLA, Los Angeles, California, USA
| | - Zoran Galic
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Peter M Clark
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Baudron E, Docagne F, Vivien D, Bardou I. Early changes in intestinal lymphoid and myeloid populations in experimental autoimmune encephalomyelitis. Neuroscience 2025; 564:236-242. [PMID: 39581303 DOI: 10.1016/j.neuroscience.2024.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Intestinal immunity is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes. Recent evidence also suggests its implication in the pathogenesis of autoimmune diseases affecting the central nervous system, such as multiple sclerosis (MS). However, there is ongoing debate regarding which part of the intestinal tract contributes to the development of MS. Therefore, our study aimed to explore the early changes in lymphoid and myeloid immune cells populations in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We also sought to determine the roles of the colon and/or small intestine in the pathogenesis of EAE. By using flow cytometry, we revealed a transient increase in T and B lymphocytes in the ileal lamina propria of EAE mice just before the onset of motor symptoms. Additionally, we highlighted an increase in dendritic cells and monocytes/macrophages in the colonic lamina propria of EAE animals during the presymptomatic phase. Altogether, our findings indicate that both small intestine and colon are involved in the pathogenesis of EAE, despite engaging distinct immunological processes. This study provides new insights for understanding the roles of intestinal lymphoid and myeloid immune cells on the pathogenesis of MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Erwan Baudron
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Department of Clinical Research, CHU Côte de Nacre, Caen, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France.
| |
Collapse
|
5
|
Fan H, Shen R, Yan J, Bai Y, Fu Q, Shi X, Du G, Wang D. Pyroptosis the Emerging Link Between Gut Microbiota and Multiple Sclerosis. Drug Des Devel Ther 2024; 18:6145-6164. [PMID: 39717200 PMCID: PMC11665440 DOI: 10.2147/dddt.s489454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
This review elucidates the pivotal role of pyroptosis, triggered by gut microbiota, in the development of multiple sclerosis (MS), emphasizing its significance within the gut-brain axis. Our comprehensive analysis of recent literature reveals how dysbiosis in the gut microbiota of MS patients-characterized by reduced microbial diversity and shifts in bacterial populations-profoundly impacts immune regulation and the integrity of the central nervous system (CNS). Pyroptosis, an inflammatory form of programmed cell death, significantly exacerbates MS by promoting the release of inflammatory cytokines and causing substantial damage to CNS tissues. The gut microbiota facilitates this detrimental process through metabolites such as short-chain fatty acids and neuroactive compounds, or self-structural products like lipopolysaccharides (LPS), which modulate immune responses and influence neuronal survival. This review highlights the potential of modulating gut microbiota to regulate pyroptosis, thereby suggesting that targeting this pathway could be a promising therapeutic strategy to mitigate inflammatory responses and preserve neuronal integrity in patients with MS.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ruile Shen
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Yongjie Bai
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Xiaofei Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ganqin Du
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Dongmei Wang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| |
Collapse
|
6
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Baudron E, Martinez de Lizarrondo S, Gauberti M, Delaunay-Piednoir B, Fournier AP, Vivien D, Docagne F, Bardou I. Intestinal MAdCAM-1 imaging as biomarker for prognostic in murine models of multiple sclerosis. Brain Behav Immun 2024; 119:381-393. [PMID: 38604270 DOI: 10.1016/j.bbi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Recent evidence suggests that lymphocyte trafficking in the intestines could play a key role in its etiology. Nevertheless, it is not clear how intestinal tissue is involved in the disease onset nor its evolution. In the present study, we aimed to evaluate intestinal inflammation dynamic throughout the disease course and its potential impact on disease progression. METHODS We used tissue immunophenotyping (immunohistofluorescence and flow cytometry) and a recently described molecular magnetic resonance imaging (MRI) method targeting mucosal addressin cell adhesion molecule-1 (MAdCAM-1) to assess intestinal inflammation in vivo in two distinct animal models of MS (Experimental Autoimmune Encephalomyelitis - EAE) at several time points of disease progression. RESULTS We report a positive correlation between disease severity and MAdCAM-1 MRI signal in two EAE models. Moreover, high MAdCAM-1 MRI signal during the asymptomatic phase is associated with a delayed disease onset in progressive EAE and to a lower risk of conversion to a secondary-progressive form in relapsing-remitting EAE. During disease evolution, in line with a bi-directional immune communication between the gut and the central nervous system, we observed a decrease in T-CD4+ and B lymphocytes in the ileum concomitantly with their increase in the spinal cord. CONCLUSION Altogether, these data unveil a crosstalk between intestinal and central inflammation in EAE and support the use of molecular MRI of intestinal MAdCAM-1 as a new biomarker for prognostic in MS patients.
Collapse
Affiliation(s)
- Erwan Baudron
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Department of Diagnostic Imaging and Interventional Radiology, CHU Côte de Nacre, Caen, France
| | - Barbara Delaunay-Piednoir
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Antoine P Fournier
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Department of Clinical Research, CHU Côte de Nacre, Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Current address: INSERM, Département de l'information scientifique et de la communication (DISC), 75654 Paris Cedex 13, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France.
| |
Collapse
|
8
|
Xu D, Ren L, Zhang W, Wu S, Yu M, He X, Wei Z. Therapeutic effects and mechanisms of fecal microbiota transplantation on EAE partly through HPA axis-mediated neuroendocrine regulation. Heliyon 2024; 10:e33214. [PMID: 39021924 PMCID: PMC11252752 DOI: 10.1016/j.heliyon.2024.e33214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background The pathogenesis of multiple sclerosis (MS) may be closely related to immune regulation and inflammatory cytokines induced by specific flora. Repairing the intestinal flora may alter the immune response in MS patients, thus opening up novel approaches for the treatment of MS. Objective We aimed to test the therapeutic effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and the characteristics of intestinal microbiota composition changes, explore the potential mechanisms of FMT treatment. Methods EAE animals were treated with FMT, with the therapeutic effects were evaluated by observing neurological scores and measuring serum levels of cortisol, IL-17, and TLR-2. Fecal microbiome 16S rRNA sequencing was used to profile changes in microbiota composition, and adrenalectomy pretreatment was used to test whether FMT effects were dependent on HPA axis function. Results FMT improved neurological function and reduced serum IL-17 to levels that were close to the control group. FMT reestablished intestinal homeostasis by altering the structure of the intestinal flora, increasing the abundance of beneficial flora, and regulating intestinal metabolites. We found that the therapeutic effects of FMT depended partly on the efferent function of the HPA axis; surgical disruption of the HPA axis altered the abundance and diversity of the intestinal flora. Conclusion FMT showed a neuroprotective effect on EAE by increasing the abundance of the beneficial flora, rebuilding intestinal homeostasis, reducing IL-17 and cortisol serum levels, and promoting serum TLR-2; the therapeutic effect of FMT on EAE is partly dependent on the HPA axis.
Collapse
Affiliation(s)
- Danhong Xu
- Department of Critical Care Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Linxiang Ren
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Wenbin Zhang
- Department of Neurology, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, 518106, China
| | - Shaohua Wu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Minling Yu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Xingxiang He
- Department of Gastroenterology, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhisheng Wei
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| |
Collapse
|
9
|
Choi D, Jang SJ, Choi S, Park S, Kim WK, Lee G, Lee C, Ko G. Oral Administration of Limosilactobacillus reuteri KBL346 Ameliorates Influenza Virus A/PR8 Infection in Mouse. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10301-8. [PMID: 38949757 DOI: 10.1007/s12602-024-10301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Influenza virus infection is an important public-health concern because of its high transmissibility and potential for severe complications. To mitigate the severity and complications of influenza, probiotics containing Lactobacillus are used and generally recognized as safe. We evaluated the anti-influenza effect of Limosilactobacillus reuteri (L. reuteri) KBL346, isolated from the fecel sample of healthy South Koreans, in mice. BALB/c mice were orally administered live and heat-inactivated L. reuteri KBL346. After infection with influenza virus (A/Puerto Rico/8/34) 0.5 times the 50% lethal dose (LD50), body weight loss was improved and recovery was accelerated. Furthermore, L. reuteri KBL346 improved body weight loss and survival rate of mice infected with 4 times the LD50 of influenza virus. Heat-inactivated L. reuteri KBL346 reduced the viral titer in the lung and the plasma immunoglobulin G level. Expression levels of genes encoding inflammatory cytokines, such as interferon-γ and toll-like receptor 2 (Tlr2), were decreased in the lung tissues of mice administered L. reuteri KBL346. Live and heat-inactivated L. reuteri KBL346 increased the expression level of Adamts4, which promotes recovery after infection, and decreased that of Tlr2. The α-diversity of the gut microbiome was modulated by the administration of L. reuteri KBL346. In addition, the structure of the gut microbial community differed according to the degree of weight loss. L. reuteri KBL346 has the potential to alleviate disease severity and improve histopathological changes in mice infected with influenza A/PR8, suggesting its efficacy as a probiotic against influenza infection.
Collapse
Affiliation(s)
- Doseon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sung Jae Jang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- KoBioLabs, Inc, Seoul, Republic of Korea
| | - Sueun Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- KoBioLabs, Inc, Seoul, Republic of Korea
- N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- KoBioLabs, Inc, Seoul, Republic of Korea.
- N-Bio, Seoul National University, Seoul, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Kim YB, Park J, Lee HG, Song JY, Kim DH, Ji W, Joo SS, Kim M, Jung JY, Kim M, Lee KW. Dietary probiotic Lacticaseibacillus paracasei NSMJ56 modulates gut immunity and microbiota in laying hens. Poult Sci 2024; 103:103505. [PMID: 38359769 PMCID: PMC10877954 DOI: 10.1016/j.psj.2024.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.
Collapse
Affiliation(s)
- Yoo Bhin Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea; Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Jina Park
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyun-Gwan Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Ju-Yong Song
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Woonhak Ji
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Sang Seok Joo
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, South Korea; Institute for Future Earth, JYS Institute for Basic Science, Pusan National University, Busan 46241, South Korea
| | - Ji Young Jung
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, South Korea
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
11
|
Zelante T, Paolicelli G, Fallarino F, Gargaro M, Vascelli G, De Zuani M, Fric J, Laznickova P, Kohoutkova MH, Macchiarulo A, Dolciami D, Pieraccini G, Gaetani L, Scalisi G, Trevisan C, Frossi B, Pucillo C, De Luca A, Nunzi E, Spaccapelo R, Pariano M, Borghi M, Boscaro F, Romoli R, Mancini A, Gentili L, Renga G, Costantini C, Puccetti M, Giovagnoli S, Ricci M, Antonini M, Calabresi P, Puccetti P, Di Filippo M, Romani L. A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis. Sci Rep 2024; 14:6651. [PMID: 38509264 PMCID: PMC10954611 DOI: 10.1038/s41598-024-57400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy.
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy.
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco De Zuani
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20, Prague, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petra Laznickova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Lorenzo Gaetani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Caterina Trevisan
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Andrea Mancini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Lucia Gentili
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Martina Antonini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Paolo Calabresi
- Unità di Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Massimiliano Di Filippo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
12
|
Zhu F, Zhao Y, Arnold DL, Bar‐Or A, Bernstein CN, Bonner C, Graham M, Hart J, Knox N, Marrie RA, Mirza AI, O'Mahony J, Van Domselaar G, Yeh EA, Banwell B, Waubant E, Tremlett H, US Network of Pediatric MS Centers, the Canadian Pediatric Demyelinating Disease Network. A cross-sectional study of MRI features and the gut microbiome in pediatric-onset multiple sclerosis. Ann Clin Transl Neurol 2024; 11:486-496. [PMID: 38130033 PMCID: PMC10863907 DOI: 10.1002/acn3.51970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE To identify gut microbiome features associated with MRI lesion burden in persons with pediatric-onset multiple sclerosis (symptom onset <18 years). METHODS A cross-sectional study involving the Canadian Paediatric Demyelinating Disease Network study participants. Gut microbiome features (alpha diversity, phylum- and genus-level taxa) were derived using 16S rRNA sequencing from stool samples. T1- and T2-weighted lesion volumes were measured on brain MRI obtained within 6 months of stool sample procurement. Associations between the gut microbiota and MRI metrics (cube-root-transformed) were assessed using standard and Lasso regression models. RESULTS Thirty-four participants were included; mean ages at symptom onset and MRI were 15.1 and 19.0 years, respectively, and 79% were female. The T1- and T2-weighted lesion volumes were not significantly associated with alpha diversity (age and sex-adjusted p > 0.08). At the phylum level, high Tenericutes (relative abundance) was associated with higher T1 and T2 volumes (β coefficient = 0.25, 0.37) and high Firmicutes, Patescibacteria or Actinobacteria with lower lesion volumes (β coefficient = -0.30 to -0.07). At the genus level, high Ruminiclostridium, whereas low Coprococcus 3 and low Erysipelatoclostridium were associated with higher lesion volumes. INTERPRETATION Our study characterized the gut microbiota features associated with MRI lesion burden in pediatric-onset MS, shedding light onto possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yinshan Zhao
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Douglas L. Arnold
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Amit Bar‐Or
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charles N. Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Inflammatory Bowel Disease Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Christine Bonner
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
| | - Morag Graham
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Janace Hart
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Natalie Knox
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ali I. Mirza
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Julia O'Mahony
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Gary Van Domselaar
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - E. Ann Yeh
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Brenda Banwell
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Emmanuelle Waubant
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Helen Tremlett
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | | |
Collapse
|
13
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
16
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
17
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
18
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
19
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Barateiro A, Barros C, Pinto MV, Ribeiro AR, Alberro A, Fernandes A. Women in the field of multiple sclerosis: How they contributed to paradigm shifts. Front Mol Neurosci 2023; 16:1087745. [PMID: 36818652 PMCID: PMC9937661 DOI: 10.3389/fnmol.2023.1087745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
History is full of women who made enormous contributions to science. While there is little to no imbalance at the early career stage, a decreasing proportion of women is found as seniority increases. In the multiple sclerosis (MS) field, 44% of first authors and only 35% of senior authors were female. So, in this review, we highlight ground-breaking research done by women in the field of MS, focusing mostly on their work as principal investigators. MS is an autoimmune disorder of the central nervous system (CNS), with evident paradigm shifts in the understating of its pathophysiology. It is known that the immune system becomes overactivated and attacks myelin sheath surrounding axons. The resulting demyelination disrupts the communication signals to and from the CNS, which causes unpredictable symptoms, depending on the neurons that are affected. Classically, MS was reported to cause mostly physical and motor disabilities. However, it is now recognized that cognitive impairment affects more than 50% of the MS patients. Another shifting paradigm was the involvement of gray matter in MS pathology, formerly considered to be a white matter disease. Additionally, the identification of different T cell immune subsets and the mechanisms underlying the involvement of B cells and peripheral macrophages provided a better understanding of the immunopathophysiological processes present in MS. Relevantly, the gut-brain axis, recognized as a bi-directional communication system between the CNS and the gut, was found to be crucial in MS. Indeed, gut microbiota influences not only different susceptibilities to MS pathology, but it can also be modulated in order to positively act in MS course. Also, after the identification of the first microRNA in 1993, the role of microRNAs has been investigated in MS, either as potential biomarkers or therapeutic agents. Finally, concerning MS therapeutical approaches, remyelination-based studies have arisen on the spotlight aiming to repair myelin loss/neuronal connectivity. Altogether, here we emphasize the new insights of remarkable women that have voiced the impact of cognitive impairment, white and gray matter pathology, immune response, and that of the CNS-peripheral interplay on MS diagnosis, progression, and/or therapy efficacy, leading to huge breakthroughs in the MS field.
Collapse
Affiliation(s)
- Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Andreia Barateiro,
| | - Catarina Barros
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. Pinto
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Ribeiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Alberro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Multiple Sclerosis Group, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,*Correspondence: Adelaide Fernandes,
| |
Collapse
|
21
|
Alvarez-Sanchez N, Dunn SE. Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 2023; 14:1175874. [PMID: 37122747 PMCID: PMC10140530 DOI: 10.3389/fimmu.2023.1175874] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin sheath of central nervous system (CNS) neurons leading to axon injury, neuronal death, and neurological progression. Though women are more highly susceptible to developing MS, men that develop this disease exhibit greater cognitive impairment and accumulate disability more rapidly than women. Magnetic resonance imaging and pathology studies have revealed that the greater neurological progression seen in males correlates with chronic immune activation and increased iron accumulation at the rims of chronic white matter lesions as well as more intensive whole brain and grey matter atrophy and axon loss. Studies in humans and in animal models of MS suggest that male aged microglia do not have a higher propensity for inflammation, but may become more re-active at the rim of white matter lesions as a result of the presence of pro-inflammatory T cells, greater astrocyte activation or iron release from oligodendrocytes in the males. There is also evidence that remyelination is more efficient in aged female than aged male rodents and that male neurons are more susceptible to oxidative and nitrosative stress. Both sex chromosome complement and sex hormones contribute to these sex differences in biology.
Collapse
Affiliation(s)
- Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
| | - Shannon E. Dunn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- *Correspondence: Shannon E. Dunn,
| |
Collapse
|
22
|
Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, Lai A, Melis M, Loi E, Loviselli A, Manzin A, Velluzzi F. Dynamics of Gut Microbiota and Clinical Variables after Ketogenic and Mediterranean Diets in Drug-Naïve Patients with Type 2 Diabetes Mellitus and Obesity. Metabolites 2022; 12:1092. [PMID: 36355175 PMCID: PMC9693465 DOI: 10.3390/metabo12111092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a progressive chronic metabolic disease that has increasingly spread worldwide, enhancing the mortality rate, particularly from cardiovascular diseases (CVD). Lifestyle improvement through diet and physical activity is, together with drug treatment, the cornerstone of T2DM management. The Mediterranean diet (MD), which favors a prevalence of unprocessed vegetable foods and a reduction in red meats and industrial foods, without excluding any food category, is usually recommended. Recently, scientific societies have promoted a very low-calorie ketogenic diet (VLCKD), a multiphasic protocol that limits carbohydrates and then gradually re-introduces them, with a favorable outcome on body weight and metabolic parameters. Indeed, gut microbiota (GM) modifications have been linked to overweight/obesity and metabolic alterations typical of T2DM. Diet is known to affect GM largely, but only a few studies have investigated the effects of VLCKD on GM, especially in T2DM. In this study, we have compared anthropometric, biochemical, lifestyle parameters, the quality of life, and the GM of eleven patients with recently diagnosed T2DM and overweight or obesity, randomly assigned to two groups of six and five patients who followed the VLCKD (KETO) or hypocaloric MD (MEDI) respectively; parameters were recorded at baseline (T0) and after two (T2) and three months (T3). The results showed that VLCKD had more significant beneficial effects than MD on anthropometric parameters, while biochemical improvements did not statistically differ. As for the GM, despite the lack of significant results regarding the alpha and beta diversity, and the Firmicutes/Bacteroidota ratio between the two groups, in the KETO group, a significant increase in beneficial microbial taxa such as Verrucomicrobiota phylum with its members Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia, Christensenellaceae family, Eubacterium spp., and a reduction in microbial taxa previously associated with obesity (Firmicutes and Actinobacteriota) or other diseases (Alistipes) was observed both at T2 and T3. With regards to the MEDI group, variations were limited to a significant increase in Actinobacteroidota phylum at T2 and T3 and Firmicutes phylum at T3. Moreover, a metagenomic alteration linked to some metabolic pathways was found exclusively in the KETO group. In conclusion, both dietary approaches allowed patients to improve their state of health, but VLCKD has shown better results on body composition as well as on GM profile.
Collapse
Affiliation(s)
- Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy
| | - Marietta Melis
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Elisabetta Loi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
23
|
Bianchimano P, Britton GJ, Wallach DS, Smith EM, Cox LM, Liu S, Iwanowski K, Weiner HL, Faith JJ, Clemente JC, Tankou SK. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. MICROBIOME 2022; 10:174. [PMID: 36253847 PMCID: PMC9575236 DOI: 10.1186/s40168-022-01364-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. RESULTS Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORγt+ regulatory T cells in the mesenteric lymph nodes. CONCLUSIONS We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David S Wallach
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Present address: Department of Medical Oncology, Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Lee Y, Kang JS, Ham OJ, Son MY, Lee MO. Gut metabolite trimethylamine N-oxide induces aging-associated phenotype of midbrain organoids for the induced pluripotent stem cell-based modeling of late-onset disease. Front Aging Neurosci 2022; 14:925227. [PMID: 36051303 PMCID: PMC9426463 DOI: 10.3389/fnagi.2022.925227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Brain organoids are valuable research models for human development and disease since they mimic the various cell compositions and structures of the human brain; however, they have challenges in presenting aging phenotypes for degenerative diseases. This study analyzed the association between aging and the gut metabolite trimethylamine N-oxide (TMAO), which is highly found in the midbrain of elderly and Parkinson’s disease (PD) patients. TMAO treatment in midbrain organoid induced aging-associated molecular changes, including increased senescence marker expression (P21, P16), p53 accumulation, and epigenetic alterations. In addition, TMAO-treated midbrain organoids have shown parts of neurodegeneration phenotypes, including impaired brain-derived neurotrophic factor (BDNF) signaling, loss of dopaminergic neurons, astrocyte activation, and neuromelanin accumulation. Moreover, we found TMAO treatment-induced pathophysiological phosphorylation of α-synuclein protein at Ser-129 residues and Tau protein at Ser202/Thr205. These results suggest a role of TMAO in the aging and pathogenesis of the midbrain and provide insight into how intestinal dysfunction increases the risk of PD. Furthermore, this system can be utilized as a novel aging model for induced pluripotent stem cell (iPSC)-based modeling of late-onset diseases.
Collapse
Affiliation(s)
- Youngsun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Ji Su Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - On-Ju Ham
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- Mi-Young Son,
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- *Correspondence: Mi-Ok Lee,
| |
Collapse
|
25
|
Ascanelli S, Bombardini C, Chimisso L, Carcoforo P, Turroni S, D’Amico F, Caniati ML, Baldi E, Tugnoli V, Morotti C, Valpiani G, Bazzocchi G. Trans-anal irrigation in patients with multiple sclerosis: Efficacy in treating disease-related bowel dysfunctions and impact on the gut microbiota: A monocentric prospective study. Mult Scler J Exp Transl Clin 2022; 8:20552173221109771. [PMID: 35832690 PMCID: PMC9272186 DOI: 10.1177/20552173221109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Constipation and faecal incontinence are not so uncommon in patients with multiple sclerosis, impairing quality of life. The gut microbiota is altered in multiple sclerosis patients and likely contributes to disease pathogenesis. Trans-anal irrigation has been proven to allow treatment of neurogenic bowel dysfunction and may affect gut microbiota. Objectives The primary outcome was trans-anal irrigation effectiveness on constipation and faecal incontinence. The secondary outcome was gut microbiota profiling compared to healthy subjects and during trans-anal irrigation adoption. Methods We conducted a prospective cohort study on multiple sclerosis patients, screened with Patient Assessment of Constipation Quality of Life questionnaire before undergoing constipation and faecal incontinence scoring, abdomen X-ray for intestinal transit time, compilation of food and evacuation diaries and faecal sample collection for gut microbiota analysis before and after 4 weeks of trans-anal irrigation. Results and Conclusions Eighty patients were screened of which nearly half had intestinal symptoms. The included population (n = 37) was predominantly composed of women with significantly longer disease duration, higher mean age and disability than the excluded one ( p < 0.05). Twelve patients completed the trans-anal irrigation phase, which led to significant improvement of bowel dysfunction symptom-related quality of life, increase in gut microbiota diversity and reduction of the proportions of pro-inflammatory taxa ( p < 0.05). Trans-anal irrigation was safe, satisfactory and could help counteract multiple sclerosis-related dysbiosis.
Collapse
Affiliation(s)
| | | | | | - Paolo Carcoforo
- Department of Morphology, Surgery and Experimental Medicine, Colorectal Unit, Section General Surgery, University Hospital of Ferrara, Ferrara, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federica D’Amico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Valeria Tugnoli
- Department of Neuroscience Rehabilitation, Multiple Sclerosis Center, Unit of Neurology, University Hospital of Ferrara, Ferrara, Italy
| | | | - Giorgia Valpiani
- Accreditation Office Quality Research Innovation, University Hospital of Ferrara, Ferrara, Italy
| | - Gabriele Bazzocchi
- Montecatone Rehabilitation Institute, University of Bologna, Imola, Italy
| |
Collapse
|
26
|
Ortíz GG, Briones-Torres AL, Benitez-King G, González-Ortíz LJ, Palacios-Magaña CV, Pacheco-Moisés FP. Beneficial Effect of Melatonin Alone or in Combination with Glatiramer Acetate and Interferon β-1b on Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27134217. [PMID: 35807462 PMCID: PMC9268121 DOI: 10.3390/molecules27134217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon β-1b (IFNβ-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNβ-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNβ-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.
Collapse
Affiliation(s)
- Genaro Gabriel Ortíz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Briones-Torres
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Gloria Benitez-King
- National Institute of Psychiatry Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Luis Javier González-Ortíz
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Claudia Verónica Palacios-Magaña
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
- Correspondence:
| |
Collapse
|
27
|
Nicholson JS, Landry KS. Oral Dysbiosis and Neurodegenerative Diseases: Correlations and Potential Causations. Microorganisms 2022; 10:microorganisms10071326. [PMID: 35889043 PMCID: PMC9317272 DOI: 10.3390/microorganisms10071326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are a heterogenous complex community of vegetative cells and extracellular polymeric substances that can adhere to various surfaces and are responsible for a variety of chronic and acute diseases. The impact of bacterial biofilms on oral and intestinal health is well studied, but the correlation and causations of biofilms and neurodegenerative diseases are still in their infancy. However, the correlations between biofilms and diseases such as Alzheimer’s Disease, Multiple Sclerosis, and even Parkinson’s Disease are starting to demonstrate the role bacterial biofilms have in promoting and exasperating various illnesses. The review article provides insight into the role bacterial biofilms may have on the development and progression of various neurodegenerative diseases and hopefully shine a light on this very important area of research.
Collapse
Affiliation(s)
- Justine S. Nicholson
- Delavie Sciences, Worcester, MA 01605, USA;
- Department of Neurobiology, Columbia University, New York, NY 10027, USA
| | - Kyle S. Landry
- Delavie Sciences, Worcester, MA 01605, USA;
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
- Correspondence: or
| |
Collapse
|
28
|
Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38:223-244. [PMID: 35572407 PMCID: PMC9091761 DOI: 10.1016/j.jare.2021.09.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent research on the implications of gut microbiota on brain functions has helped to gather important information on the relationship between them. Pathogenesis of neurological disorders is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to be directly associated with the increase in reactive oxygen species levels, one of the most important risk factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to play a significant role in reducing the onset of these life-threatening brain disorders. Aim of Review Studies done in the recent past raises two most important link between gut microbiota and the brain: "gut microbiota-oxidative stress-neurodegeneration" and gut microbiota-antioxidant-neuroprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focusing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on those studies showing the involvement of gut microbiota and their metabolites in neuroprotection. Key Scientific Concepts of Review This review is focused on three main key concepts. Firstly, the mounting evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in Alzheimer's and Parkinson's disease. Secondly, contributing roles of gut microbiota has been observed in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary metabolites and, also modulation in gut microbiota population with antioxidative and anti-inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus providing fascinating perspective and promising new avenues for therapeutic options.
Collapse
Affiliation(s)
- Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Sandeep Kumar
- Department of Biochemistry, International Institute of Veterinary Education and Research, Haryana, India
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, Helsinki 00180, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, India
| | | | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
29
|
Yadav M, Ali S, Shrode RL, Shahi SK, Jensen SN, Hoang J, Cassidy S, Olalde H, Guseva N, Paullus M, Cherwin C, Wang K, Cho T, Kamholz J, Mangalam AK. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. PLoS One 2022; 17:e0264556. [PMID: 35472144 PMCID: PMC9041819 DOI: 10.1371/journal.pone.0264556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Trillions of microbes such as bacteria, fungi, and viruses exist in the healthy human gut microbiome. Although gut bacterial dysbiosis has been extensively studied in multiple sclerosis (MS), the significance of the fungal microbiome (mycobiome) is an understudied and neglected part of the intestinal microbiome in MS. The aim of this study was to characterize the gut mycobiome of patients with relapsing-remitting multiple sclerosis (RRMS), compare it to healthy controls, and examine its association with changes in the bacterial microbiome. We characterized and compared the mycobiome of 20 RRMS patients and 33 healthy controls (HC) using Internal Transcribed Spacer 2 (ITS2) and compared mycobiome interactions with the bacterial microbiome using 16S rRNA sequencing. Our results demonstrate an altered mycobiome in RRMS patients compared with HC. RRMS patients showed an increased abundance of Basidiomycota and decreased Ascomycota at the phylum level with an increased abundance of Candida and Epicoccum genera along with a decreased abundance of Saccharomyces compared to HC. We also observed an increased ITS2/16S ratio, altered fungal and bacterial associations, and altered fungal functional profiles in MS patients compared to HC. This study demonstrates that RRMS patients had a distinct mycobiome with associated changes in the bacterial microbiome compared to HC. There is an increased fungal to bacterial ratio as well as more diverse fungal-bacterial interactions in RRMS patients compared to HC. Our study is the first step towards future studies in delineating the mechanisms through which the fungal microbiome can influence MS disease.
Collapse
Affiliation(s)
- Meeta Yadav
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- University of Iowa College of Dentistry, Iowa City, IA, United States of America
| | - Soham Ali
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Rachel L. Shrode
- Informatics Graduate Program, University of Iowa, Iowa City, IA, United States of America
| | - Shailesh K. Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Samantha N. Jensen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Jemmie Hoang
- College of Nursing University of Iowa, Iowa City, IA, United States of America
| | - Samuel Cassidy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Heena Olalde
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Natalya Guseva
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Mishelle Paullus
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Catherine Cherwin
- College of Nursing University of Iowa, Iowa City, IA, United States of America
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States of America
| | - Tracey Cho
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - John Kamholz
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Ashutosh K. Mangalam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Informatics Graduate Program, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
- Iowa City VA Health System, Iowa City, IA, United States of America
| |
Collapse
|
30
|
Sato F, Nakamura Y, Katsuki A, Khadka S, Ahmad I, Omura S, Martinez NE, Tsunoda I. Curdlan, a Microbial β-Glucan, Has Contrasting Effects on Autoimmune and Viral Models of Multiple Sclerosis. Front Cell Infect Microbiol 2022; 12:805302. [PMID: 35198458 PMCID: PMC8859099 DOI: 10.3389/fcimb.2022.805302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-β-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ijaz Ahmad
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| |
Collapse
|
31
|
Cantoni C, Dorsett Y, Fontana L, Zhou Y, Piccio L. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2022; 235:108575. [PMID: 32822833 PMCID: PMC7889763 DOI: 10.1016/j.clim.2020.108575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system (CNS) autoimmune disease. It is due to the interplay of genetic and environmental factors. Current opinion is that diet could play a pathogenic role in disease onset and development. Dietary restriction (DR) without malnutrition markedly improves health and increases lifespan in multiple model organisms. DR regimens that utilize continuous or intermittent food restriction can induce anti-inflammatory, immuno-modulatory and neuroendocrine adaptations promoting health. These adaptations exert neuroprotective effects in the main MS animal model, experimental autoimmune encephalomyelitis (EAE). This review summarizes the current knowledge on DR-induced changes in gut microbial composition and metabolite production and its impact on underlying functional mechanisms. Studies demonstrating the protective effects of DR regimens on EAE and people with MS are also presented. This is a rapidly developing research field with important clinical implications for personalized dietary interventions in MS prevention and treatment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia,Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.,Corresponding author: Laura Piccio, MD PhD, 1) Brain and Mind Centre, University of Sydney, 94 Mallett St Camperdown, NSW, 2050, Australia, , 2) Washington University School of Medicine, Dept. of Neurology, Campus Box 8111; 660 S. Euclid Avenue, St. Louis, MO 63110; USA, Phone: (314) 747-4591; Fax: (314) 747-1345;
| |
Collapse
|
32
|
Huntemann N, Vogelsang A, Groeneweg L, Willison A, Herrmann AM, Meuth SG, Eichler S. An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods 2022; 367:109443. [PMID: 34920025 DOI: 10.1016/j.jneumeth.2021.109443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (EAE) is the most commonly used animal model of multiple sclerosis. However, variations in the induction protocol can affect EAE progression, and may reduce the comparability of data. OPTIMIZED METHOD In the present study, we investigated the influence of the different components used for EAE induction in C57BL/6J mice on disease progression. In the present study, MOG35-55-induced chronic EAE in C57BL/6J mice has been applied as a model to challenge optimal pertussis toxin (PTx) dosing, while considering variations in batch potency. RESULTS We demonstrate that the dosage of PTx, adjusted to its potency, influences EAE development in a dose-dependent manner. Our data show that with our protocol, which considers PTx potency, C57BL/6J mice consistently develop symptoms of EAE. The mice show a typical chronic course with symptom onset after 10.5 ± 1.08 days and maximum severity around day 16 postimmunization followed by a mild remission of symptoms. COMPARISON WITH EXISTING METHODS Previously studies reveal that alterations in PTx dosing directly modify EAE progression. Our present study highlights that PTx batches differ in potency, resulting in inconsistent EAE induction. We also provide a clear protocol that allows a reduction in the number of mice used in EAE experiments, while maintaining consistent results. CONCLUSION Higher standards for comparability and reproducibility are needed to ensure and maximize the generation of reliable EAE data. Specifically, consideration of PTx potency. With our method of establishing consistent EAE pathogenesis, improved animal welfare standards and a reduction of mice used in experimentation can be achieved.
Collapse
Affiliation(s)
- Niklas Huntemann
- Department of Neurology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany; Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Anna Vogelsang
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany.
| | - Linda Groeneweg
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Alice Willison
- The Northern Foundation School, Newcastle-upon-Tyne University Hospitals, Newcastle-upon-Tyne, United Kingdom
| | - Alexander M Herrmann
- Department of Neurology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
33
|
Engelenburg HJ, Lucassen PJ, Sarafian JT, Parker W, Laman JD. Multiple sclerosis and the microbiota. Evol Med Public Health 2022; 10:277-294. [PMID: 35747061 PMCID: PMC9211007 DOI: 10.1093/emph/eoac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Multiple sclerosis (MS), a neurological autoimmune disorder, has recently been linked to neuro-inflammatory influences from the gut. In this review, we address the idea that evolutionary mismatches could affect the pathogenesis of MS via the gut microbiota. The evolution of symbiosis as well as the recent introduction of evolutionary mismatches is considered, and evidence regarding the impact of diet on the MS-associated microbiota is evaluated. Distinctive microbial community compositions associated with the gut microbiota of MS patients are difficult to identify, and substantial study-to-study variation and even larger variations between individual profiles of MS patients are observed. Furthermore, although some dietary changes impact the progression of MS, MS-associated features of microbiota were found to be not necessarily associated with diet per se. In addition, immune function in MS patients potentially drives changes in microbial composition directly, in at least some individuals. Finally, assessment of evolutionary histories of animals with their gut symbionts suggests that the impact of evolutionary mismatch on the microbiota is less concerning than mismatches affecting helminths and protists. These observations suggest that the benefits of an anti-inflammatory diet for patients with MS may not be mediated by the microbiota per se. Furthermore, any alteration of the microbiota found in association with MS may be an effect rather than a cause. This conclusion is consistent with other studies indicating that a loss of complex eukaryotic symbionts, including helminths and protists, is a pivotal evolutionary mismatch that potentiates the increased prevalence of autoimmunity within a population.
Collapse
Affiliation(s)
- Hendrik J Engelenburg
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | - Jon D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
34
|
Khadka S, Omura S, Sato F, Nishio K, Kakeya H, Tsunoda I. Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front Cell Infect Microbiol 2021; 11:772962. [PMID: 34926318 PMCID: PMC8677657 DOI: 10.3389/fcimb.2021.772962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
We developed a prodrug type of curcumin, curcumin monoglucuronide (CMG), whose intravenous/intraperitoneal injection achieves a high serum concentration of free-form curcumin. Although curcumin has been reported to alter the gut microbiota and immune responses, it is unclear whether the altered microbiota could be associated with inflammation in immune-mediated diseases, such as multiple sclerosis (MS). We aimed to determine whether CMG administration could affect the gut microbiota at three anatomical sites (feces, ileal contents, and the ileal mucosa), leading to suppression of inflammation in the central nervous system (CNS) in an autoimmune model for MS, experimental autoimmune encephalomyelitis (EAE). We injected EAE mice with CMG, harvested the brains and spinal cords for histological analyses, and conducted microbiome analyses using 16S rRNA sequencing. CMG administration modulated EAE clinically and histologically, and altered overall microbiota compositions in feces and ileal contents, but not the ileal mucosa. Principal component analysis (PCA) of the microbiome showed that principal component (PC) 1 values in ileal contents, but not in feces, correlated with the clinical and histological EAE scores. On the other hand, when we analyzed the individual bacteria of the microbiota, the EAE scores correlated with significant increases in the relative abundance of two bacterial species at each anatomical site: Ruminococcus bromii and Blautia (Ruminococcus) gnavus in feces, Turicibacter sp. and Alistipes finegoldii in ileal contents, and Burkholderia spp. and Azoarcus spp. in the ileal mucosa. Therefore, CMG administration could alter the gut microbiota at the three different sites differentially in not only the overall gut microbiome compositions but also the abundance of individual bacteria, each of which was associated with modulation of neuroinflammation.
Collapse
Affiliation(s)
- Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
35
|
Radojević D, Tomić S, Mihajlović D, Tolinački M, Pavlović B, Vučević D, Bojić S, Golić N, Čolić M, Đokić J. Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. Gut Microbes 2021; 13:1-20. [PMID: 33970783 PMCID: PMC8115579 DOI: 10.1080/19490976.2021.1921927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher α-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-α, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFNγ, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower α-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-α, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.
Collapse
Affiliation(s)
- Dušan Radojević
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | | | - Dragana Vučević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Golić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade11042, Serbia
| |
Collapse
|
36
|
Farshbafnadi M, Agah E, Rezaei N. The second brain: The connection between gut microbiota composition and multiple sclerosis. J Neuroimmunol 2021; 360:577700. [PMID: 34482269 DOI: 10.1016/j.jneuroim.2021.577700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 02/08/2023]
Abstract
Gut microbiota composition may affect the central nervous system (CNS) and immune function. Several studies have recently examined the possible link between gut microbiota composition and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Most of these studies agree that patients with MS suffer from dysbiosis. Moreover, an altered proportion of certain phyla of bacteria was detected in the digestive tracts of these patients compared to healthy individuals. This review article gathers information from research papers that have examined the relationship between gut microbiota composition and MS and its possible mechanisms.
Collapse
Affiliation(s)
| | - Elmira Agah
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Students' Scientific Research Center, Tehran University of Medical Sciences, NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
37
|
Molecular characterization of the gut microbiome in egyptian patients with remitting relapsing multiple sclerosis. Mult Scler Relat Disord 2021; 57:103354. [DOI: 10.1016/j.msard.2021.103354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
|
38
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
39
|
Influence of a High-Impact Multidimensional Rehabilitation Program on the Gut Microbiota of Patients with Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22137173. [PMID: 34281224 PMCID: PMC8268819 DOI: 10.3390/ijms22137173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative inflammatory condition mediated by autoreactive immune processes. Due to its potential to influence host immunity and gut-brain communication, the gut microbiota has been suggested to be involved in the onset and progression of MS. To date, there is no definitive cure for MS, and rehabilitation programs are of the utmost importance, especially in the later stages. However, only a few people generally participate due to poor support, knowledge, and motivation, and no information is available on gut microbiota changes. Herein we evaluated the potential of a brief high-impact multidimensional rehabilitation program (B-HIPE) in a leisure environment to affect the gut microbiota, mitigate MS symptoms and improve quality of life. B-HIPE resulted in modulation of the MS-typical dysbiosis, with reduced levels of pathobionts and the replenishment of beneficial short-chain fatty acid producers. This partial recovery of a eubiotic profile could help counteract the inflammatory tone typically observed in MS, as supported by reduced circulating lipopolysaccharide levels and decreased populations of pro-inflammatory lymphocytes. Improved physical performance and fatigue relief were also found. Our findings pave the way for integrating clinical practice with holistic approaches to mitigate MS symptoms and improve patients’ quality of life.
Collapse
|
40
|
Ghezzi L, Cantoni C, Pinget GV, Zhou Y, Piccio L. Targeting the gut to treat multiple sclerosis. J Clin Invest 2021; 131:e143774. [PMID: 34196310 DOI: 10.1172/jci143774] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The gut-brain axis (GBA) refers to the complex interactions between the gut microbiota and the nervous, immune, and endocrine systems, together linking brain and gut functions. Perturbations of the GBA have been reported in people with multiple sclerosis (pwMS), suggesting a possible role in disease pathogenesis and making it a potential therapeutic target. While research in the area is still in its infancy, a number of studies revealed that pwMS are more likely to exhibit altered microbiota, altered levels of short chain fatty acids and secondary bile products, and increased intestinal permeability. However, specific microbes and metabolites identified across studies and cohorts vary greatly. Small clinical and preclinical trials in pwMS and mouse models, in which microbial composition was manipulated through the use of antibiotics, fecal microbiota transplantation, and probiotic supplements, have provided promising outcomes in preventing CNS inflammation. However, results are not always consistent, and large-scale randomized controlled trials are lacking. Herein, we give an overview of how the GBA could contribute to MS pathogenesis, examine the different approaches tested to modulate the GBA, and discuss how they may impact neuroinflammation and demyelination in the CNS.
Collapse
Affiliation(s)
- Laura Ghezzi
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,University of Milan, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabriela V Pinget
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yanjiao Zhou
- Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Laura Piccio
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.,Hope Center for Neurological Disorders, Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus). Sci Rep 2021; 11:13218. [PMID: 34168170 PMCID: PMC8225879 DOI: 10.1038/s41598-021-89896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal, contagious, neurodegenerative prion disease affecting both free-ranging and captive cervid species. CWD is spread via direct or indirect contact or oral ingestion of prions. In the gastrointestinal tract, prions enter the body through microfold cells (M-cells), and the abundance of these cells can be influenced by the gut microbiota. To explore potential links between the gut microbiota and CWD, we collected fecal samples from farmed and free-ranging white-tailed deer (Odocoileus virginianus) around the Midwest, USA. Farmed deer originated from farms that were depopulated due to CWD. Free-ranging deer were sampled during annual deer harvests. All farmed deer were tested for CWD via ELISA and IHC, and we used 16S rRNA gene sequencing to characterize the gut microbiota. We report significant differences in gut microbiota by provenance (Farm 1, Farm 2, Free-ranging), sex, and CWD status. CWD-positive deer from Farm 1 and 2 had increased abundances of Akkermansia, Lachnospireacea UCG-010, and RF39 taxa. Overall, differences by provenance and sex appear to be driven by diet, while differences by CWD status may be linked to CWD pathogenesis.
Collapse
|
42
|
Perez-Muñoz ME, Sugden S, Harmsen HJM, 't Hart BA, Laman JD, Walter J. Nutritional and ecological perspectives of the interrelationships between diet and the gut microbiome in multiple sclerosis: Insights from marmosets. iScience 2021; 24:102709. [PMID: 34296070 PMCID: PMC8282968 DOI: 10.1016/j.isci.2021.102709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department Anatomy and Neuroscience, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Jens Walter
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork T12 YT20, Ireland
| |
Collapse
|
43
|
Polepole P, Bartenslager A, Liu Y, Petro TM, Fernando S, Zhang L. Epstein-Barr virus-immortalized B lymphocytes exacerbate experimental autoimmune encephalomyelitis in xenograft mice. J Med Virol 2021; 93:3813-3823. [PMID: 32543727 PMCID: PMC7738365 DOI: 10.1002/jmv.26188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is the most common autoimmune disorder affecting the central nervous system. Epstein-Barr virus (EBV) is a causative agent for infectious mononucleosis (IM) that is associated with MS pathogenesis. However, the exact mechanism by which EBV, specifically in IM, increases the risk for MS remains unknown. EBV immortalizes primary B lymphocytes in vitro and causes excessive B lymphocyte proliferation in IM in vivo. In asymptomatic carriers, EBV-infected B lymphocytes still proliferate to certain degrees, the process of which is tightly controlled by the host immune systems. Experimental autoimmune encephalomyelitis (EAE) mimics key features of MS in humans and is a well-established rodent model for human MS. We have found that xenografts of EBV-immortalized B lymphocytes, which partially resemble the hyperproliferation of EBV-infected cells in IM, exacerbate autoimmune responses in myelin oligodendrocyte glycoprotein-induced EAE in C57BL/6 mice. After remission, an additional challenge with EBV-immortalized cells induces a relapse in EAE. Moreover, xenografts with EBV-immortalized cells tighten the integrity of the blood-brain barrier (BBB) in the thalamus and hypothalamus areas of the mouse brains. Genomic sequences of prokaryotic 16S ribosomal RNA presented in the feces reveal that EBV-immortalized cells significantly change the diversities of microbial populations. Our data collectively suggest that EBV-mediated proliferation of B lymphocytes may be a risk factor for the exacerbation of MS, which are associated with gut microbiome changes and BBB modulations. Furthermore, multiple xenografts of EBV-immortalized cells into C57BL/6 mice could serve as a useful model for human relapsing-remitting MS with predictable severity and timing.
Collapse
Affiliation(s)
- Pascal Polepole
- Nebraska Center for Virology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Alison Bartenslager
- Department of Animal Science, University of Nebraska Medical Center, Omaha, NE 68198
| | - Yutong Liu
- University of Nebraska, Lincoln, NE 68583. Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Thomas M. Petro
- Dept. of Oral Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Samodha Fernando
- Department of Animal Science, University of Nebraska Medical Center, Omaha, NE 68198
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska Medical Center, Omaha, NE 68198
- School of Biological Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
44
|
Jenkins TP, Pritchard DI, Tanasescu R, Telford G, Papaiakovou M, Scotti R, Cortés A, Constantinescu CS, Cantacessi C. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol 2021; 19:74. [PMID: 33853585 PMCID: PMC8048248 DOI: 10.1186/s12915-021-01003-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Helminth-associated changes in gut microbiota composition have been hypothesised to contribute to the immune-suppressive properties of parasitic worms. Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system whose pathophysiology has been linked to imbalances in gut microbial communities. RESULTS In the present study, we investigated, for the first time, qualitative and quantitative changes in the faecal bacterial composition of human volunteers with remitting multiple sclerosis (RMS) prior to and following experimental infection with the human hookworm, Necator americanus (N+), and following anthelmintic treatment, and compared the findings with data obtained from a cohort of RMS patients subjected to placebo treatment (PBO). Bacterial 16S rRNA high-throughput sequencing data revealed significantly decreased alpha diversity in the faecal microbiota of PBO compared to N+ subjects over the course of the trial; additionally, we observed significant differences in the abundances of several bacterial taxa with putative immune-modulatory functions between study cohorts. Parabacteroides were significantly expanded in the faecal microbiota of N+ individuals for which no clinical and/or radiological relapses were recorded at the end of the trial. CONCLUSIONS Overall, our data lend support to the hypothesis of a contributory role of parasite-associated alterations in gut microbial composition to the immune-modulatory properties of hookworm parasites.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Present address: Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Radu Tanasescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Gary Telford
- Department of Pharmacy, University of Nottingham, Nottingham, UK
| | - Marina Papaiakovou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- National History Museum, London, UK
| | - Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, València, Spain
| | - Cris S. Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Gut Microbiome in a Russian Cohort of Pre- and Post-Cholecystectomy Female Patients. J Pers Med 2021; 11:jpm11040294. [PMID: 33921449 PMCID: PMC8070538 DOI: 10.3390/jpm11040294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.
Collapse
|
46
|
Fettig NM, Osborne LC. Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes Infect 2021; 23:104814. [PMID: 33775860 DOI: 10.1016/j.micinf.2021.104814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are highly influenced by changes in the microbiota and of microbiota-derived metabolites, including short chain fatty acids, bile acids, and tryptophan derivatives. This review will discuss the effects of microbiota-derived metabolites on neuroinflammation driven by central nervous system-resident cells and peripheral immune cells, and their influence on outcomes of EAE and MS.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
47
|
Hasegawa H, Mizoguchi I, Orii N, Inoue S, Katahira Y, Yoneto T, Xu M, Miyazaki T, Yoshimoto T. IL-23p19 and CD5 antigen-like form a possible novel heterodimeric cytokine and contribute to experimental autoimmune encephalomyelitis development. Sci Rep 2021; 11:5266. [PMID: 33664371 PMCID: PMC7933155 DOI: 10.1038/s41598-021-84624-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Among various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.
Collapse
Affiliation(s)
- Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Naoko Orii
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
48
|
Chopra S, Myers Z, Sekhon H, Dufour A. The Nerves to Conduct a Multiple Sclerosis Crime Investigation. Int J Mol Sci 2021; 22:2498. [PMID: 33801441 PMCID: PMC7958632 DOI: 10.3390/ijms22052498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.
Collapse
Affiliation(s)
- Sameeksha Chopra
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zoë Myers
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Henna Sekhon
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
49
|
Kozhieva M, Naumova N, Alikina T, Boyko A, Vlassov V, Kabilov MR. The Core of Gut Life: Firmicutes Profile in Patients with Relapsing-Remitting Multiple Sclerosis. Life (Basel) 2021; 11:life11010055. [PMID: 33466726 PMCID: PMC7828771 DOI: 10.3390/life11010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
The multiple sclerosis (MS) incidence rate has been increasing in Russia, but the information about the gut bacteriobiome in the MS-afflicted patients is scarce. Using the Illumina MiSeq sequencing of 16S rRNA gene amplicons, we aimed to analyze the Firmicutes phylum and its taxa in a cohort of Moscow patients with relapsing-remitting MS, assessing the effects of age, BMI, disease modifying therapy (DMT), disability (EDSS), and gender. Among 1252 identified bacterial OTUs, 857 represented Firmicutes. The phylum was the most abundant also in sequence reads, overall averaging 74 ± 13%. The general linear model (GLM) analysis implicated Firmicutes/Clostridia/Clostridiales/Lachospiraceae/Blautia/Blautia wexlerae as increasing with BMI, and only Lachospiraceae/Blautia/Blautia wexlerae as increasing with age. A marked DMT-related decrease in Firmicutes was observed in females at the phylum, class (Clostridia), and order (Clostridiales) levels. The results of our study implicate DMT and gender as factors shaping the fecal Firmicutes assemblages. Together with the gender-dependent differential MS incidence growth rate in the country, the results suggest the likely involvement of gender-specific pathoecological mechanisms underlying the occurrence of the disease, switching between its phenotypes and response to disease-modifying therapies. Overall, the presented profile of Firmicutes can be used as a reference for more detailed research aimed at elucidating the contribution of this core phylum and its lower taxa into the etiology and progression of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Madina Kozhieva
- Department of Neurology, Neurosurgery and Medical Genetics of the Pirogov Medical University, 117513 Moscow, Russia;
| | - Natalia Naumova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (T.A.); (V.V.); (M.R.K.)
- Correspondence: or
| | - Tatiana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (T.A.); (V.V.); (M.R.K.)
| | - Alexey Boyko
- Department of Neuroimmunology of the Federal Center of CVPI, 117513 Moscow, Russia;
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (T.A.); (V.V.); (M.R.K.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (T.A.); (V.V.); (M.R.K.)
| |
Collapse
|
50
|
Serrano J, Smith KR, Crouch AL, Sharma V, Yi F, Vargova V, LaMoia TE, Dupont LM, Serna V, Tang F, Gomes-Dias L, Blakeslee JJ, Hatzakis E, Peterson SN, Anderson M, Pratley RE, Kyriazis GA. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. MICROBIOME 2021; 9:11. [PMID: 33431052 PMCID: PMC7802287 DOI: 10.1186/s40168-020-00976-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Non-caloric artificial sweeteners (NCAS) are widely used as a substitute for dietary sugars to control body weight or glycemia. Paradoxically, some interventional studies in humans and rodents have shown unfavorable changes in glucose homeostasis in response to NCAS consumption. The causative mechanisms are largely unknown, but adverse changes in gut microbiota have been proposed to mediate these effects. These findings have raised concerns about NCAS safety and called into question their broad use, but further physiological and dietary considerations must be first addressed before these results are generalized. We also reasoned that, since NCAS are bona fide ligands for sweet taste receptors (STRs) expressed in the intestine, some metabolic effects associated with NCAS use could be attributed to a common mechanism involving the host. RESULTS We conducted a double-blind, placebo-controlled, parallel arm study exploring the effects of pure saccharin compound on gut microbiota and glucose tolerance in healthy men and women. Participants were randomized to placebo, saccharin, lactisole (STR inhibitor), or saccharin with lactisole administered in capsules twice daily to achieve the maximum acceptable daily intake for 2 weeks. In parallel, we performed a 10-week study administering pure saccharin at a high dose in the drinking water of chow-fed mice with genetic ablation of STRs (T1R2-KO) and wild-type (WT) littermate controls. In humans and mice, none of the interventions affected glucose or hormonal responses to an oral glucose tolerance test (OGTT) or glucose absorption in mice. Similarly, pure saccharin supplementation did not alter microbial diversity or composition at any taxonomic level in humans and mice alike. No treatment effects were also noted in readouts of microbial activity such as fecal metabolites or short-chain fatty acids (SCFA). However, compared to WT, T1R2-KO mice were protected from age-dependent increases in fecal SCFA and the development of glucose intolerance. CONCLUSIONS Short-term saccharin consumption at maximum acceptable levels is not sufficient to alter gut microbiota or induce glucose intolerance in apparently healthy humans and mice. TRIAL REGISTRATION Trial registration number NCT03032640 , registered on January 26, 2017. Video abstract.
Collapse
Affiliation(s)
- Joan Serrano
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Kathleen R. Smith
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Audra L. Crouch
- Department of Microbiology, College of Arts & Sciences, The Ohio State University, Columbus, OH USA
| | - Vandana Sharma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Advent-Health, Orlando, FL USA
| | - Veronika Vargova
- Translational Research Institute for Metabolism and Diabetes, Advent-Health, Orlando, FL USA
| | - Traci E. LaMoia
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Lydia M. Dupont
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Vanida Serna
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Fenfen Tang
- Department of Food Science and Technology, College of Food, Agricultural & Environmental Sciences, The Ohio State University, Columbus, OH USA
| | - Laisa Gomes-Dias
- Department of Horticulture and Crop Science, College of Food, Agricultural & Environmental Sciences, The Ohio State University, Columbus, OH USA
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop Science, College of Food, Agricultural & Environmental Sciences, The Ohio State University, Columbus, OH USA
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, College of Food, Agricultural & Environmental Sciences, The Ohio State University, Columbus, OH USA
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Matthew Anderson
- Department of Microbiology, College of Arts & Sciences, The Ohio State University, Columbus, OH USA
| | - Richard E. Pratley
- Translational Research Institute for Metabolism and Diabetes, Advent-Health, Orlando, FL USA
| | - George A. Kyriazis
- Department of Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|