1
|
Aditya, Neeraj, Bhatia JN, Jarial RS, Jarial K. Cultivation technology optimization and identification of secondary metabolites from elm oyster mushroom Hypsizygus ulmarius (Bull.) Redhead (Agaricomycetes) through GC-MS metabolomic profiling from India. Mycologia 2025; 117:347-373. [PMID: 40111001 DOI: 10.1080/00275514.2025.2452307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025]
Abstract
Hypsizygus ulmarius, a novel oyster mushroom species, offers potential scope due to its low-cost production, high biological efficiency, and notable nutritional, medicinal, and therapeutic properties. The present study standardized commercial cultivation technology for H. ulmarius in the Trans-Gangetic Plains of India. The mycelium grew well on potato dextrose agar and carrot extract broth at pH 8.0 and temperature 25 C. Wheat straw supplemented with the cotton seed hull at the rate of 10.0% dose, spawned with pearl millet grain spawn at the rate of 5.0% spawn dose, gave the highest mushroom yield (953.66 g/0.4 kg dry substrate) with biological efficiency (238.41%). The first flush sporocarps were freeze-dried for physicochemical characterization, revealing 16 strong peaks and 8 functional groups via Fourier transform infrared (FTIR) analysis. Particle size averaged 45.97 µm of mushroom powder, and scanning electron microscopy (SEM) analysis showed diverse surface textures. Gas chromatography-mass spectrometry metabolic profiling identified 20 key secondary metabolites each from hexane and methanolic extracts, with therapeutic uses that are valuable for pharmaceutical, nutraceutical, and food industry applications.
Collapse
Affiliation(s)
- Aditya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K; An Institute of National Importance of India), Kundli, Sonipat, Haryana 131028, India
| | - Neeraj
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K; An Institute of National Importance of India), Kundli, Sonipat, Haryana 131028, India
| | - J N Bhatia
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana 125004, India
| | - R S Jarial
- Department of Plant Pathology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry (Dr. YSP UHF), Nauni, Solan, Himachal Pradesh 173230, India
| | - K Jarial
- Department of Plant Pathology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry (Dr. YSP UHF), Nauni, Solan, Himachal Pradesh 173230, India
| |
Collapse
|
2
|
Zhou B, Garber JM, Butcher J, Muszynski A, Casey RL, Huynh S, Archer-hartmann S, Porfírio S, Rogers AM, Azadi P, Parker CT, Ng KKS, Hines KM, Stintzi A, Szymanski CM. Campylobacter jejuni resistance to human milk involves the acyl carrier protein AcpP. mBio 2025; 16:e0399724. [PMID: 39998218 PMCID: PMC11980577 DOI: 10.1128/mbio.03997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Campylobacter jejuni is a common foodborne pathogen worldwide that is associated with high rates of morbidity and mortality among infants in low- to middle-income countries (LMICs). Human milk provides infants with an important source of nutrients and contains antimicrobial components for protection against infection. However, recent studies, including our own, have found significantly higher levels of Campylobacter in diarrheal stool samples collected from breastfed infants compared to non-breastfed infants in LMICs. We hypothesized that C. jejuni has unique strategies to resist the antimicrobial properties of human milk. Transcriptional profiling found human milk exposure induces genes associated with ribosomal function, iron acquisition, and amino acid utilization in C. jejuni strains 81-176 and 11168. However, unidentified proteinaceous components of human milk prevent bacterial growth. Evolving both C. jejuni isolates to survive in human milk resulted in mutations in genes encoding the acyl carrier protein (AcpP) and the major outer membrane porin (PorA). Introduction of the PorA/AcpP amino acid changes into the parental backgrounds followed by electron microscopy showed distinct membrane architectures, and the AcpP changes not only significantly improved growth in human milk, but also yielded cells surrounded with outer membrane vesicles. Analyses of the phospholipid and lipooligosaccharide (LOS) compositions suggest an imbalance in acyl chain distributions. For strain 11168, these changes protect both evolved and 11168∆acpPG33R strains from bacteriophage infection and polymyxin killing. Taken together, this study provides insights into how C. jejuni may evolve to resist the bactericidal activity of human milk and flourish in the hostile environment of the gastrointestinal tract. IMPORTANCE In this study, we evolved C. jejuni strains which can grow in the presence of human milk and found that cell membrane alterations may be involved in resistance to the antimicrobial properties of human milk. These bacterial membrane changes are predominantly linked to amino acid substitutions within the acyl carrier protein, AcpP, although other bacterial components, including PorA, are likely involved. This study provides some insights into possible strategies for C. jejuni survival and propagation in the gastrointestinal tract of breastfed infants.
Collapse
Affiliation(s)
- Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M. Garber
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James Butcher
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Rebekah L. Casey
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | | | - Sara Porfírio
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ashley M. Rogers
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Alain Stintzi
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Alrabiah MA, Hassan AA, Mubaraki MA, Albarrag AM, Dkhil MA, Somily AM, Delic D, Hafiz TA. Unexpected Efficacy of Albumin-Bound Glycerol Monolaurate Against Multidrug-Resistant Bacterial Isolates: A Time-Kill Assay Study. Infect Drug Resist 2025; 18:1581-1593. [PMID: 40162033 PMCID: PMC11952064 DOI: 10.2147/idr.s502165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Background The rise of antibiotic resistance is a significant threat to global health, necessitating the exploration of novel antimicrobial agents. Glycerol monolaurate (GML) is known for its antimicrobial properties, primarily against Gram-positive bacteria, with limited evidence of efficacy against Gram-negative pathogens. Methods This study evaluated the antibacterial activity of GML alone and in combination with human serum albumin (HSA) against clinical isolates of carbapenem-resistant and vancomycin-resistant bacteria using MIC and time-kill assays. Results Contrary to previous reports, we demonstrate that GML exhibits significant antibacterial activity against Gram-negative bacteria, including strains resistant to conventional antibiotics. It inhibited carbapenem-resistant isolates with MIC values ranging from 25 to 100 μg/mL for E. coli, K. pneumoniae, and E. cloacae and showed bacteriostatic and bactericidal activity. The combination of HSA and GML enhanced this effect, showing potent bactericidal properties across all tested concentrations. Conclusion Current findings suggest that HSA-bound GML could be developed as a novel broad-spectrum antimicrobial agent targeting multidrug-resistant pathogens. Future research should focus on formulation optimization, in vivo efficacy studies, and preclinical evaluations to determine its therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Mona A Alrabiah
- Microbiology and Immunology Department, King Khaled University Hospital, Riyadh, 12372, Saudi Arabia
| | - Amina A Hassan
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ahmed M Albarrag
- Pathology Department, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ali M Somily
- Pathology Department, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Denis Delic
- Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| |
Collapse
|
4
|
Sola D, Tonello S, Casciaro GF, Rizzi E, D’Onghia D, Pirisi M, Caldera F, Rizzi M, Colangelo D, Del Duca N, Scacchi M, Amede E, Marradi D, Barberis E, Chiocchetti A, Manfredi M, Sainaghi PP. Higher Serum Monolaurin Is Associated with a Lower Risk of COVID-19: Results from a Prospective Observational Cohort Study. Int J Mol Sci 2025; 26:2452. [PMID: 40141096 PMCID: PMC11942340 DOI: 10.3390/ijms26062452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The COVID-19 pandemic has stimulated the search for effective preventive and therapeutic agents. In recent years, many studies have considered the effects of different nutrients. This study aimed to investigate the association between serum monolaurin levels and the risk of developing COVID-19 among healthcare workers. In this prospective observational cohort study, 2712 healthcare workers from the University Hospital "Maggiore della Carità" in Novara, Italy were enrolled. Participants underwent blood sampling and were followed up for six months to evaluate the protective role of serum monolaurin against COVID-19 infection. Monolaurin levels were quantified using targeted metabolomic analysis. The study cohort consisted of 1000 individuals with a mean age of 46.4 years, predominantly female. Higher serum monolaurin concentrations were significantly associated with a lower risk of SARS-CoV-2 infection at both 3- and 6-month follow-ups. The optimal cut-off value for serum monolaurin, which provides protective efficacy, was identified as 0.45 µg/mL. Higher serum monolaurin levels appear to be associated with a reduced risk of COVID-19, suggesting its potential as a protective dietary supplement against SARS-CoV-2 infection. This study contributes to the growing body of evidence supporting the role of dietary factors in the management and prevention of infectious diseases and highlights the potential of targeted metabolomics in identifying prophylactic biomarkers.
Collapse
Affiliation(s)
- Daniele Sola
- IRCCS Istituto Auxologico Italiano, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, 28824 Oggebbio, Italy; (D.S.); (N.D.D.); (M.S.)
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
| | - Giuseppe Francesco Casciaro
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Via Mazzini 18, 28100 Novara, Italy; (G.F.C.); (E.R.); (F.C.)
| | - Eleonora Rizzi
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Via Mazzini 18, 28100 Novara, Italy; (G.F.C.); (E.R.); (F.C.)
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Via Mazzini 18, 28100 Novara, Italy; (G.F.C.); (E.R.); (F.C.)
| | - Francesca Caldera
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Via Mazzini 18, 28100 Novara, Italy; (G.F.C.); (E.R.); (F.C.)
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (M.R.); (A.C.)
| | - Donato Colangelo
- Department of Health Sciences (Department of Excellence 2023–2027), Pharmacology, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Nicoletta Del Duca
- IRCCS Istituto Auxologico Italiano, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, 28824 Oggebbio, Italy; (D.S.); (N.D.D.); (M.S.)
| | - Massimo Scacchi
- IRCCS Istituto Auxologico Italiano, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, 28824 Oggebbio, Italy; (D.S.); (N.D.D.); (M.S.)
- Department of Clinical Sciences and Community Health, Università di Milano, 20122 Milan, Italy
| | - Elia Amede
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
| | - Denise Marradi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
| | - Elettra Barberis
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (M.R.); (A.C.)
| | - Marcello Manfredi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (D.D.); (M.P.); (E.A.); (D.M.); (M.M.)
- Department of Internal Medicine and COVID-19 Unit, AOU “Maggiore della Carità”, Via Mazzini 18, 28100 Novara, Italy; (G.F.C.); (E.R.); (F.C.)
| |
Collapse
|
5
|
Xiong L, Zhang Z, Dong S, Lin T, Yue X, Chen F, Guan W, Zhang S. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:387-403. [PMID: 40034459 PMCID: PMC11872655 DOI: 10.1016/j.aninu.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (P = 0.002), average daily gain of piglets (P = 0.048), and sow average daily feed intake (P = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; P = 0.022), C16:0 (P = 0.001), and total saturated fatty acids (P = 0.006) in colostrum as well as C12:0 in L21 milk (P = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (P < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and Parabacteroides; and decreased the harmful Proteobacteria of sows (P < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and Parabacteroides were positively correlated with IgA and IgG of sow plasma and milk (P < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Barra NG, Fang H, Bhatwa A, Schmidt AM, Syed SA, Steinberg GR, Morrison KM, Surette MG, Wade MG, Holloway AC, Schertzer JD. Food supply toxicants and additives alter the gut microbiota and risk of metabolic disease. Am J Physiol Endocrinol Metab 2025; 328:E337-E353. [PMID: 39871724 DOI: 10.1152/ajpendo.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Metabolic disease is rising along with both global industrialization and the use of new commercial, agricultural, and industrial chemicals and food additives. Exposure to these compounds may contribute to aspects of metabolic diseases such as obesity, diabetes, and fatty liver disease. Ingesting compounds in the food supply is a key route of human exposure, resulting in the interaction between toxicants or additives and the intestinal microbiota. Toxicants can influence the composition and function of the gut microbiota, and these microbes can metabolize and transform toxicants and food additives. Microbe-toxicant interactions in the intestine can alter host mucosal barrier function, immunity, and metabolism, which may contribute to the risk or severity of metabolic disease development. Targeting the connection between toxicants, food, and immunity in the gut using strategies such as fermentable fiber (i.e., inulin) may mitigate some of the effects of these compounds on host metabolism. Understanding causative factors in the microbe-host relationship that promote toxicant-induced dysmetabolism is an important goal. This review highlights the role of common toxicants (i.e., persistent organic pollutants, pesticides, and fungicides) and food additives (emulsifiers and artificial sweeteners) found in our food supply that alter the gut microbiota and promote metabolic disease development.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Angela M Schmidt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Li D, Yang M, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Wang J, Zhang Z, Wu Z, Lin T, Wu D, Lin Y. Glycerol Monolaurate Complex Improved Antioxidant, Anti-Inflammation, and Gut Microbiota Composition of Offspring in a Sow-Piglet Model. Vet Sci 2025; 12:24. [PMID: 39852899 PMCID: PMC11769162 DOI: 10.3390/vetsci12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
This study aimed to investigate the effects of maternal glycerol monolaurate complex (GML) and antibiotic (acetylisovaleryltylosin tartrate, ATLL) supplementation during late gestation and lactation on the reproductive performance of sows and the growth performance of piglets. In total, 64 pregnant sows were randomly divided into control, antibiotic, 0.1% GML, and 0.2% GML groups. The GML shortened their delivery interval and farrowing duration. The ATLL increased the level of malondialdehyde (MDA) in sows and piglets and enhanced glutathione peroxidase (GSH-Px) in piglets, while reducing the tumor necrosis factor-α (TNF-α) level in sows. The GML tended to increase milk protein in the colostrum and decreased the TNF-α of sows at lactation. Meanwhile, 0.2% GML increased the serum total superoxide dismutase (T-SOD) activity and interleukin-6 level in weaned piglets and decreased the TNF-α level in sows and weaned piglets. Furthermore, ATLL decreased the microbial diversity of sows, and GML tended to increase the microbial diversity of sows and piglets. The ATLL group had an increased relative abundance of Bacteroidota in weaned piglets. The GML decreased the relative abundance of Peptostreptococcales-Tissierellales, Proteobacteria, and the harmful bacteria Romboutsia in sows. Compared with the ATLL group, the 0.2% GML reduced the relative abundance of Bacteroidota in weaned piglets. Interestingly, both ATLL and GML supplementation decreased the relative abundance of harmful bacteria Peptostreptococcaceae in sows. Correlation analysis also found positive effects of ATLL and GML in anti-inflammatory and antioxidant aspects. In conclusion, GML enhanced reproductive and growth performance by improving antioxidant and anti-inflammatory status and maintaining intestinal flora balance, making it a promising alternative to ATLL in future applications.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China;
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - JiHhua Wang
- Calid Biotech (Wuhan) Co., Ltd., Wuhan 430073, China;
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zehui Wu
- Sichuan Qiaozhu’er Breeding Co., Ltd., Neijiang 641100, China;
| | - Tao Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| |
Collapse
|
8
|
Xu X, Ji B, Xi Y, Zhang Y, Cao X, Lu R, Nie G. Glycerol monolaurate enhances growth performance, lipid metabolism, and inflammatory response in common carp fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109988. [PMID: 39490910 DOI: 10.1016/j.fsi.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
A feeding trial was conducted to investigate the effects of glycerol monolaurate (GML) on growth performance, lipid metabolism, inflammation, and related gene expression in common carp fed a high lipid diet. Juvenile common carp were distributed into 18 cages and fed one of six isonitrogenous diets: a normal lipid diet (control diet, CT), a high lipid diet (HL), and high lipid diets supplemented with 0.5, 1, 2, and 4 g kg-1 GML (designated as GML-0.5, GML-1, GML-2, and GML-4, respectively), with three replicates per treatment. After 56 days of feeding, the results indicated that the final body weight (FBW) and specific growth rate (SGR) in the GML-1 and GML-2 groups were significantly higher than those observed in the CT, HL, and GML-4 groups (P < 0.05). The crude lipid content in the hepatopancreas of the GML-1 and GML-2 groups was significantly lower than that in the HL group (P < 0.05). Morphological analysis of the hepatopancreas revealed a reduction in vacuole presence with GML supplementation (P < 0.05). Additionally, GML supplementation significantly enhanced the development of intestinal structures of common carp. The inclusion of GML significantly influenced the quality of the fillet, as evidenced by notable increases in hardness, gumminess, chewiness, and shear force compared to the HL group (P < 0.05). Additionally, the dripping loss of raw fillets in the GML groups decreased than that observed in the HL group (P < 0.05). Furthermore, GML-1 and GML-2 groups exhibiting the lowest serum TG levels among all groups (P < 0.05). Conversely, serum high density lipoprotein cholesterol (HDL) levels significantly increased with GML supplementation, with the GML-2 group demonstrating the highest HDL content (P < 0.05). Key genes of lipid synthesis in the hepatopancreas were down-regulated, whereas genes involved in lipolysis were up-regulated in the GML-1 and GML-2 groups relative to the HL group (P < 0.05). KEGG functional annotation analysis of differentially expressed genes in the hepatopancreas of fish fed GML-supplemented diets revealed significant alterations in the PPAR signaling pathway. GML effectively enhanced the antioxidant enzyme activities of hepatopancreas, intestine, spleen, kidney, and serum following high lipid feeding accompanied with the significant up-regulation of antioxidant genes in the hepatopancreas and intestine of the GML-1 and GML-2 groups. Simultaneously, pro-inflammatory factors in these tissues were significantly down-regulated, while anti-inflammatory factors were markedly up-regulated in the GML-1 and GML-2 groups compared to the HL group (P < 0.05). In summary, common carp fed high lipid diets supplemented with 1-2 g kg-1 GML exhibited improved growth performance, enhanced fillet quality, regulated lipid metabolism, promoted intestinal structural development, and bolstered both antioxidant and immune capacities.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China; College of Life Sciences, Henan Normal University, 453000, Xinxiang, China
| | - Beibei Ji
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China
| | - Yue Xi
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, 453000, Xinxiang, China.
| |
Collapse
|
9
|
Savaş EH, Tümkaya MN, Semerci R, Eroğlu K. Comparison of the effect of natural products and breast milk for preventing and treating nipple trauma and pain in lactating women: A systematic review and meta-analysis. Explore (NY) 2024; 20:103019. [PMID: 38937192 DOI: 10.1016/j.explore.2024.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Prevention and management of nipple problems are crucial during the postpartum period for effective breastfeeding. Breastmilk is the most commonly recommended method for lactating women. However, insufficient studies have proven its superiority over other methods in the current literature. This study aims to determine the effects of natural products compared to breast milk in preventing and treating nipple trauma and pain in lactating women. METHODS In this review, we investigated studies from PubMed, Web of Science, Cochrane Library, MEDLINE, CINAHL, Scopus, and Google Scholar databases that met the inclusion criteria. We also assessed the studies' methodological quality with the Cochrane and JBI checklists. This study was performed based on the Guidelines of Systematic Reporting of Examination presented in the PRISMA checklist. The search protocol has been registered at the PROSPERO International Prospective Register of Systematic Reviews. RESULTS A total of ten published studies, including 1139 lactating women, were included in this review. The meta-analysis results showed a significant effect of natural product intervention on nipple trauma (Hedge's g -0.702, Q = 81,154, I2 =91,374 %, p < 0.001), soreness (Hedge's g =-0.648, Q = 7,092, I2 =71,801 %, p < 0.001), and pain levels (Hedge's g =-0.613, Q = 25,058, I2 =76,056 %, p < 0.001) experienced by lactating women. CONCLUSION The findings showed that natural products have greater potential than breast milk in managing nipple pain, trauma, and soreness. However, the evidence for these interventions is low or very low quality. Further research is needed to determine the most effective treatment for nipple trauma in lactating women.
Collapse
Affiliation(s)
- Eyşan Hanzade Savaş
- Koç University, Graduated School of Health Sciences, Davutpaşa St. No: 4, 34010, Topkapı, Istanbul, Türkiye.
| | - Maide Nur Tümkaya
- Halic University Faculty of Health Sciences, 5th Levent District, 15 Temmuz Sehitler St., No: 14/12, 34060 Eyüpsultan, Istanbul, Türkiye
| | - Remziye Semerci
- Koç University, School of Nursing, Davutpaşa St. No: 4, Koç University School of Nursing, 34010, Topkapı, Istanbul, Türkiye
| | - Kafiye Eroğlu
- Atlas University, School of Nursing, Hamidiye, Anadolu St. No:40, 34408, 34403 Kagithane, Istanbul, Türkiye
| |
Collapse
|
10
|
Vassilopoulou E, Agostoni C, Feketea G, Alberti I, Gianni ML, Milani GP. The Role of Breastfeeding in Acute Respiratory Infections in Infancy. Pediatr Infect Dis J 2024; 43:1090-1099. [PMID: 38986006 DOI: 10.1097/inf.0000000000004454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute respiratory infections (ARIs) affect the respiratory tract, are often caused by viruses such as respiratory syncytial virus and rhinovirus, and present symptoms such as coughing, fever, respiratory distress, and breathing difficulty. The global adherence to exclusive breastfeeding (BF) for the first 6 months of life has reached 44%, supported by the World Health Organization and United Nations International Children's Emergency Fund efforts. BF provides vital nutrients and contributes to infant immune system development, protecting against infections. The role of BF in preventing and reducing complications of ARIs in infants is gaining attention, prompting a review of current data and future research needs. This review aims to summarize the evidence on the role of BF in reducing the risk and severity of ARIs in infants, elucidate the adaptations in breast milk composition during infections, and identify relevant research needs. METHODS AND RESULTS Human milk (HM) is rich in immunoglobulins, antimicrobial peptides, and immunomodulatory factors that protect against various pathogens, including respiratory viruses. Several studies have demonstrated that BF is associated with a significant reduction in hospitalization, oxygen requirements, and mortality in infants with ARIs. The effectiveness of BF varies according to the specific respiratory virus, and a longer duration of exclusive BF appears to enhance its protective effect. It is documented that the composition of HM adjusts dynamically in response to infections, fortifying the infant's immune defenses. Specific immunological components of HM, including leukocytes and immunoglobulins, increase in response to infection in the infant, contributing to the enhancement of the immune defense in infants. Immune-boosting microRNAs enhance immune transfer to the infants and promote early gut maturation, and the HM microbiome along with other factors modifies the infant's gut microbiome and immune system. CONCLUSIONS BF defends infants from respiratory infections, and the investigation of the microRNAs in HM offers new insights into its antiviral properties. The promotion of BF, especially in vulnerable communities, is of paramount importance in alleviating the global burden of ARIs in infancy.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carlo Agostoni
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gavriela Feketea
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, Greece
| | - Ilaria Alberti
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Lorella Gianni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Gregorio Paolo Milani
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Shao Y, Garcia-Mauriño C, Clare S, Dawson NJR, Mu A, Adoum A, Harcourt K, Liu J, Browne HP, Stares MD, Rodger A, Brocklehurst P, Field N, Lawley TD. Primary succession of Bifidobacteria drives pathogen resistance in neonatal microbiota assembly. Nat Microbiol 2024; 9:2570-2582. [PMID: 39242817 PMCID: PMC11445081 DOI: 10.1038/s41564-024-01804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Human microbiota assembly commences at birth, seeded by both maternal and environmental microorganisms. Ecological theory postulates that primary colonizers dictate microbial community assembly outcomes, yet such microbial priority effects in the human gut remain underexplored. Here using longitudinal faecal metagenomics, we characterized neonatal microbiota assembly for a cohort of 1,288 neonates from the UK. We show that the pioneering neonatal gut microbiota can be stratified into one of three distinct community states, each dominated by a single microbial species and influenced by clinical and host factors, such as maternal age, ethnicity and parity. A community state dominated by Enterococcus faecalis displayed stochastic microbiota assembly with persistent high pathogen loads into infancy. In contrast, community states dominated by Bifidobacterium, specifically B. longum and particularly B. breve, exhibited a stable assembly trajectory and long-term pathogen colonization resistance, probably due to strain-specific functional adaptions to a breast milk-rich neonatal diet. Consistent with our human cohort observation, B. breve demonstrated priority effects and conferred pathogen colonization resistance in a germ-free mouse model. Our findings solidify the crucial role of Bifidobacteria as primary colonizers in shaping the microbiota assembly and functions in early life.
Collapse
Affiliation(s)
- Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | | | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas J R Dawson
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Anne Adoum
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Katherine Harcourt
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Junyan Liu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
12
|
Ge Y, Liu H, Peng S, Zhou L, McClements DJ, Liu W, Luo J. Formation, stability, and antimicrobial efficacy of eutectic nanoemulsions containing thymol and glycerin monolaurate. Food Chem 2024; 453:139689. [PMID: 38781902 DOI: 10.1016/j.foodchem.2024.139689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.
Collapse
Affiliation(s)
- Yaojin Ge
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Hang Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shengfeng Peng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Jun Luo
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
13
|
Tran LC, Marousez L, Micours E, De Lamballerie M, Thys L, Gottrand F, Ley D, Lesage J, Titécat M. High hydrostatic pressure is similar to Holder pasteurization in preserving donor milk antimicrobial activity. Pediatr Res 2024; 95:1749-1753. [PMID: 38280953 DOI: 10.1038/s41390-024-03022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND The microbiological safety of donor milk (DM) is commonly ensured by Holder pasteurization (HoP, 62.5 °C for 30 min) in human milk banks despite its detrimental effects on bioactive factors. We compared the antimicrobial properties of DM after Holder pasteurization treatment or High Hydrostatic Pressure processing (HHP, 350 MPa at 38 °C), a non-thermal substitute for DM sterilization. METHODS We assessed lactoferrin and lysozyme concentrations in raw, HHP- and HoP-treated pools of DM (n = 8). The impact of both treatments was evaluated on the growth of Escherichia coli and Group B Streptococcus in comparison with control media (n = 4). We also addressed the effect of storage of HHP treated DM over a 6-month period (n = 15). RESULTS HHP milk demonstrated similar concentrations of lactoferrin compared with raw milk, while it was significantly decreased by HoP. Lysozyme concentrations remained stable regardless of the condition. Although a bacteriostatic effect was observed against Escherichia coli at early timepoints, a sharp bactericidal effect was observed against Group B Streptococcus. Unlike HoP, these results were significant for HHP compared to controls. Stored DM was well and safely preserved by HHP. CONCLUSION Our study demonstrates that this alternative sterilization method shows promise for use with DM in human milk banks. IMPACT Antimicrobial activity of donor milk after High Hydrostatic Pressure treatment has not been clearly evaluated. Donor milk lactoferrin is better preserved by High Hydrostatic Pressure than conventional Holder pasteurization, while lysozyme concentration is not affected by either treatment. As with Holder pasteurization, High Hydrostatic Pressure preserves donor milk bacteriostatic activity against E. coli in addition to bactericidal activity against Group B Streptococcus. Donor milk treated by High Hydrostatic Pressure can be stored safely for 6 months.
Collapse
Affiliation(s)
- Léa Chantal Tran
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France.
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000, Lille, France.
| | - Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Edwina Micours
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | | | - Lou Thys
- Laboratory of Bacteriology, Institute of Microbiology, CHU Lille, Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000, Lille, France
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000, Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
- Laboratory of Bacteriology, Institute of Microbiology, CHU Lille, Lille, France
| |
Collapse
|
14
|
Wang Q, Li B, Wen Y, Liu Q, Xia Z, Liu H, He L, Zhang X, Deng Q, Miao Z, He Y. Effects of dietary supplementation of glycerol monolaurate on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. Poult Sci 2024; 103:103644. [PMID: 38507830 PMCID: PMC10966087 DOI: 10.1016/j.psj.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk. The results showed that dietary inclusion of GML increased the ADFI in the entire experimental period and the average egg weight in wk 5 to 8 and wk 1 to 8 of the experiment (linear, P < 0.05). Dietary GML addition linearly increased albumen height, Haugh unit and yolk color, and quadratically increased eggshell thickness (P < 0.05). The serum SOD activity, T-AOC and IgG concentrations in the 200 mg/kg GML group, and GSH-Px activity in 200 and 300 mg/kg GML groups were increased, while the MDA concentration in 200 and 300 mg/kg GML groups was decreased than those in the control group (P < 0.05). The jejunal villus height and villus height: crypt depth in 300 mg/kg GML group were higher than that in the control group (P < 0.05). The mRNA expression of TLR4, IL-1β and TNF-α in spleen and jejunum decreased with the increase of dietary GML concentration (linear, P < 0.05). In conclusion, dietary GML supplementation could improve egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens, and dietary 300 mg/kg GML inclusion is suggested.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Li
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yihang Wen
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qifan Liu
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyuan Xia
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Huimin Liu
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Liyuan He
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xinyun Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qingqing Deng
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yonghui He
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
15
|
Bettle G, Bell DP, Bakewell SJ. A Novel Comprehensive Therapeutic Approach to the Challenges of Chronic Wounds: A Brief Review and Clinical Experience Report. Adv Ther 2024; 41:492-508. [PMID: 38104037 PMCID: PMC10838851 DOI: 10.1007/s12325-023-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Following the clinical perspective and concept that a healthy body will not develop chronic wounds, the central approach for the treatment described here is based on an understanding of how the body transforms the wound microenvironment from a non-healing to a healing state. As part of a comprehensive treatment regimen that includes OCM™ (complete matrix), wound preparation, and skin protectant formulations, the OCM contains components for complete wound healing by attending to the individual needs required to promote the closure of each unique chronic wound. During application of the comprehensive treatment regimen in independent investigator-led trials, the total wound percentage average reduction over the first 4 weeks of treatment was 60% across multiple wound types; median time to total wound closure was 6.9 weeks. Safety testing of the OCM formulation shows no potential allergenicity, no potential sensitization, and no known product-related adverse events. Clinical trials evaluating the OCM formulation as part of the comprehensive treatment regimen of multiple wound types are underway. Results of clinical trials and real-world experiences will expand current knowledge of the wound-healing potential of this novel product.
Collapse
Affiliation(s)
- Griscom Bettle
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Desmond P Bell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Suzanne J Bakewell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA.
| |
Collapse
|
16
|
Vennard T, Meredith NA, Maria SD, Brink L, Shah N, Morrow AL, Simmons R, Gray MA, Phillips SC. A novel LC-MS/MS method to characterize the antimicrobial lipid glycerol monolaurate in global human milk. J Pharm Biomed Anal 2024; 238:115817. [PMID: 37939550 DOI: 10.1016/j.jpba.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Glycerol monolaurate (GML), a monoglyceride found in human milk (HM), has antimicrobial properties against a broad spectrum of bacteria, viruses, and fungi. In this study, an LC-MS/MS method was developed and validated for quantifying GML in HM based on quantification of two distinct isomers, 1-monolaurin and 2-monolaurin. The method validation included assessments of selectivity (no interferences), linearity (r2 range of 0.9954- 0.9985 and 96 of 98 individual points having residual <15%), accuracy (average recovery of 96.4% across both isomers and a range of spiked levels), and precision (total GML repeatability 6.6% RSD and intermediate precision 9.7% RSD). This validated method was used to measure the concentration of GML in unpasteurized HM from 60 mothers and compared geographical locations (Cincinnati and Shanghai), lactation time (weeks 2 and 26), and self-reported maternal allergy status (yes or no). Our findings suggest GML concentration in unpasteurized HM is considerably lower than previously reported in a study characterizing pasteurized HM. The data reported here highlights a novel, validated method used to quantify GML in HM and identified no differences in total GML concentrations when comparing HM from different geographical locations, lactation times, and mother's allergy status.
Collapse
Affiliation(s)
- Thomas Vennard
- Reckitt/Mead Johnson Nutrition Institute, 2400 West Lloyd Expressway, Evansville, IN 47721, USA.
| | - Nathan A Meredith
- Reckitt/Mead Johnson Nutrition Institute, 2400 West Lloyd Expressway, Evansville, IN 47721, USA
| | - Sarah D Maria
- Reckitt/Mead Johnson Nutrition Institute, 2400 West Lloyd Expressway, Evansville, IN 47721, USA
| | - Lauren Brink
- Reckitt, 399 Interpace Parkway, Parsippany, NJ 07054-0225, USA
| | - Neil Shah
- Reckitt, Turner House, 103-105 Bath Road, Slough, Berkshire SL1 3UH, UK
| | - Ardythe L Morrow
- University of Cincinnati Medical Center, College of Medicine, Cincinnati, OH 45229, USA
| | - Ruth Simmons
- Reckitt, Turner House, 103-105 Bath Road, Slough, Berkshire SL1 3UH, UK
| | - Michael A Gray
- Reckitt/Mead Johnson Nutrition Institute, 2400 West Lloyd Expressway, Evansville, IN 47721, USA
| | - Shay C Phillips
- Reckitt/Mead Johnson Nutrition Institute, 2400 West Lloyd Expressway, Evansville, IN 47721, USA
| |
Collapse
|
17
|
Kong L, Cai Y, Pan X, Xiao C, Song Z. Glycerol monolaurate improves intestinal morphology and antioxidant status by suppressing inflammatory responses and nuclear factor kappa-B signaling in lipopolysaccharide-exposed chicken embryos. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:297-306. [PMID: 38033609 PMCID: PMC10684993 DOI: 10.1016/j.aninu.2023.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 12/02/2023]
Abstract
Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals. The effects of glycerol monolaurate (GML) on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model. Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups. On embryonic day 17.5, the broiler embryos were administered with 9 mg of GML, which was followed by a 12-h incubation period and a 12-h challenge with 32 μg of lipopolysaccharide (LPS). On embryonic day 18.5, the jejunum and ileum were harvested. Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2 (P < 0.05). GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity (P < 0.05). GML alleviated LPS-stimulated intestinal secretion of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) (P < 0.05). GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4, nuclear factor kappa-B p65 (NF-κB p65), cyclooxygenase-2, NOD-like receptor protein 3, IL-18, zonula occludens 1, and occludin (P < 0.05). GML enhanced as well the expression of AMP-activated protein kinase α1 and claudin 1 (P < 0.05). In conclusion, GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.
Collapse
Affiliation(s)
- Linglian Kong
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
18
|
Upton EM, Schlievert PM, Zhang Y, Rauckhorst AJ, Taylor EB, Radoshevich L. Glycerol monolaurate inhibits Francisella novicida growth and is produced intracellularly in an ISG15-dependent manner. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000905. [PMID: 37954520 PMCID: PMC10638595 DOI: 10.17912/micropub.biology.000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid monoester with antimicrobial properties. Francisella tularensis is an agent of bioterrorism known for its unique lipopolysaccharide structure and low immunogenicity. Here we assessed whether exogenous GML would inhibit the growth of Francisella novicida . GML potently impeded Francisella growth and survival in vitro . To appraise the metabolic response to infection, we used GC-MS to survey the metabolome, and surprisingly, observed intracellular GML production following Francisella infection. Notably, the ubiquitin-like protein ISG15 was necessary for increased GML levels induced by bacterial infection, and enhanced ISG15 conjugation correlated with GML levels following serum starvation.
Collapse
Affiliation(s)
- Ellen M. Upton
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Diao X, Sun W, Jia R, Wang Y, Liu D, Guan H. Preparation and characterization of diacylglycerol via ultrasound-assisted enzyme-catalyzed transesterification of lard with glycerol monolaurate. ULTRASONICS SONOCHEMISTRY 2023; 95:106354. [PMID: 36898248 PMCID: PMC10020118 DOI: 10.1016/j.ultsonch.2023.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The study aimed to evaluate the effect of ultrasonic pretreatment on the transesterification of lard with glycerol monolaurate (GML) using Lipozyme TL IM to synthesize diacylglycerol (DAG), and the physicochemical properties of lard, GML, ultrasonic-treated diacylglycerol (named U-DAG), purified ultrasonic-treated diacylglycerol obtained by molecular distillation (named P-U-DAG), and without ultrasonic-treated diacylglycerol (named N-U-DAG) were analyzed. The optimized ultrasonic pretreatment conditions were: lard to GML mole ratio 3:1, enzyme dosage 6 %, ultrasonic temperature 80 °C, time 9 min, power 315 W. After ultrasonic pretreatment, the mixtures reacted for 4 h in a water bath at 60 °C, the content of DAG reached 40.59 %. No significant variations were observed between U-DAG and N-U-DAG in fatty acids compositions and iodine value, while P-U-DAG had lower unsaturated fatty acids than U-DAG. Differential scanning calorimetry analysis showed that the melting and crystallization properties of DAGs prepared by ultrasonic pretreatment significantly differed from lard. FTIR spectra noted transesterification reaction from lard and GML with and without ultrasonic pretreatment would not change the structure of lard. However, thermogravimetric analysis proved that N-U-DAG, U-DAG, and P-U-DAG had lower oxidation stability than lard. The higher the content of DAG, the faster the oxidation speed.
Collapse
Affiliation(s)
- Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Weiting Sun
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruixin Jia
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ying Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Haining Guan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
20
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
21
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
22
|
Subroto E, Andoyo R, Indiarto R, Lembong E, Rahmani F. Physicochemical properties, sensory acceptability, and antioxidant activity of chocolate bar fortified by solid lipid nanoparticles of gallic acid. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Fani Rahmani
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
23
|
Li X, Yi Y, Wu J, Yang Q, Tan B, Chi S. Effects of Plant-Derived Glycerol Monolaurate (GML) Additive on the Antioxidant Capacity, Anti-Inflammatory Ability, Muscle Nutritional Value, and Intestinal Flora of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Metabolites 2022; 12:metabo12111089. [PMID: 36355172 PMCID: PMC9692394 DOI: 10.3390/metabo12111089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In a context where the search for plant-derived additives is a hot topic, glycerol monolaurate (GML) was chosen as our subject to study its effect on grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven gradient levels of GML (0, 600, 1200, 1800, 2400, 3000, and 3600 mg/kg) were used for the experiment. Based on our experiments, 1800 mg/kg GML significantly increased the final body weight (FBW) and weight gain rate (WGR). GML increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased malondialdehyde (MDA). Adding 1800 mg/kg GML also significantly increased the levels of lauric acid (C12:0) (LA), n-3 polyunsaturated fatty acids (PFA), and the n-6 PFA-to-n-3/n-6 ratio, while significantly decreasing the levels of saturated fatty acids (SFA). Dietary supplementation with GML significantly inhibited the expression of pro-inflammatory factors and reduced the occurrence of inflammation. GML improved intestinal flora and the abundance of beneficial bacteria (Bacillus, Psychrobacter, Acinetobacter, Acinetobacter, Stenotrophomonas, and Glutamicibacter). It provides a theoretical basis for the application of GML in aquafeed and greatly enhances the possibility of using GML in aquafeed. Based on the above experimental results, the optimum level of GML in grouper feed is 1800 mg/kg.
Collapse
Affiliation(s)
- Xuehe Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Yuanming Yi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Jiahua Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Correspondence:
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuyan Chi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
24
|
Jackman JA, Lavergne TA, Elrod CC. Antimicrobial monoglycerides for swine and poultry applications. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1019320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of natural, broadly acting antimicrobial solutions to combat viral and bacterial pathogens is a high priority for the livestock industry. Herein, we cover the latest progress in utilizing lipid-based monoglycerides as feed additives to address some of the biggest challenges in animal agriculture. The current industry needs for effective antimicrobial strategies are introduced before discussing why medium-chain monoglycerides are a promising solution due to attractive molecular features and biological functions. We then critically analyze recent application examples in which case monoglycerides demonstrated superior activity to prevent feed transmission of viruses in swine and to mitigate bacterial infections in poultry along with gut microbiome modulation capabilities. Future innovation strategies are also suggested to expand the range of application possibilities and to enable new monoglyceride delivery options.
Collapse
|
25
|
He KJ, Dong JH, Ouyang XM, Huo YN, Cheng XS, Lin Y, Li Y, Gong G, Liu J, Ren JL, Guleng B. Glycerol monolaurate ameliorates DSS-induced acute colitis by inhibiting infiltration of Th17, neutrophils, macrophages and altering the gut microbiota. Front Nutr 2022; 9:911315. [PMID: 36034889 PMCID: PMC9413164 DOI: 10.3389/fnut.2022.911315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Inflammatory bowel disease (IBD) places a heavy medical burden on countries and families due to repeated and prolonged attacks, and the incidence and prevalence of IBD are increasing worldwide. Therefore, finding an effective treatment is a matter of great urgency. Glycerol monolaurate (GML), which has a twelve-carbon chain, is a compound naturally found in human breast milk. Some studies have shown that GML has antibacterial and anti-inflammatory effects. However, the specific mechanism of action remains unclear. Methods Acute colitis was established in mice using 3% DSS, and glycerol monolaurate (500 mg·kg-1) was administered for two weeks. QPCR and western blotting were performed to examine the inflammatory status. Mice described were subjected to flow cytometry analysis for immune cell activation. Results GML treated alleviated macroscopic symptoms such as shortened colons, increased spleen weight, and caused weight loss in mice with DSS-induced colitis. In addition, GML decreased the expression of pro-inflammatory factors (NF-α, IL-1β and IL-1α) and increased the expression of anti-inflammatory factors (IL-10 and TGF-β). GML inhibited the activation of the MAPK and NF-κB signalling pathways, improved tissue damage, and increased the expression of intestinal tight junction proteins. In addition, LPMCs extracted from intestinal tissue via flow cytometry showed that GML treatment led to a decrease of Th17 cells, Neutrophils and Macrophages. 16S rDNA sequencing showed that GML increased the abundance of commensal bacterium such as Akkermansia and Lactobacillus murinus. Conclusions We showed that oral administration of GML ameliorated DSS-induced colitis by inhibiting infiltration of Th17 cells, Neutrophils, and Macrophages, protecting the intestinal mucosal barrier and altered the abundance of commensal bacterium. This study provides new insights into the biological function and therapeutic potential of GML in the treatment of IBD.
Collapse
Affiliation(s)
- Ke-Jie He
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Binhai County People's Hospital, Yancheng, China
| | - Jia-Hui Dong
- Binhai County People's Hospital, Yancheng, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoyu Gong
- Cancer Research Center and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
27
|
Shaaban MT, Abdelhamid RM, Zayed M, Ali SM. Evaluation of a new antimicrobial agent production (RSMM C3) by using metagenomics approaches from Egyptian marine biota. BIOTECHNOLOGY REPORTS 2022; 34:e00706. [PMID: 35686002 PMCID: PMC9171440 DOI: 10.1016/j.btre.2022.e00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Metagenomics technique has the ability for production of novel antimicrobial agents. Marine sediment samples from Alexandria used as a source for production of novel antimicrobial agents. Activity of the RSMM C3 antimicrobial agent was a wide spectrum towards different microorganisms. Molecular analysis and characterization of RSMM C3 antimicrobial agent ensure novelty.
Diseases and epidemics in the current days need new types of antibiotics in order to be able to eliminate them. The goal of this research is to use metagenomics to identify isolated utilitarian gene (s) as antimicrobial specialists. Collection of diverse locations from sea sediment samples from Alexandria and extraction of total DNA, restriction enzyme fragmentation, cloning into pUC19 vector, and expression of the isolated gene(s) in E. coli DH5α were all part of the process. Characterization of Antimicrobial agent was done for the best clone for antimicrobial agent's production to detect efficiency, optimum pH, thermal stability, pH stability, effect of different compounds on antimicrobial activity, and residual activity of product after preservation in room temperature. Amino acid sequence of RSMM C3 gene (1250 bp) was 72% identity with Herbaspirillum sp. The ideal temperature level of the RSMM C3 antimicrobial agent production was 36 °C. The antimicrobial agent RSMM C3′s stability was stable at -20 °Celsius for up to two months without thawing. The antibacterial agent RSMM C3 was stable at 4 °C for 14 days without loss in activity. The ideal pH level of the RSMM C3 antimicrobial agent was 6. Remain activity was gradually decreased at pH 5, 6, 6.5 and 7 (86.1, 96.9, 97.2 and 94.9%, respectively). On the other hand, residual activity was (92 and 84%) at (pH 7.5 and 8) for 8 days. The tested antimicrobial RSMM C3 was stable against 1 mM of different compounds (DMSO, Glycerol, NaCl, CaCl2, MgCl2, ZnCl2, FeSO4, MnSO4 and CuSO4). The research provides for the Metagenomics technique that has the ability for the production of novel antimicrobial agents produced by clone RSMM C3 which has a wide spectrum activity towards different microorganisms comparing to other antibiotics as Ampicillin and Tetracycline.
Collapse
Affiliation(s)
- Mohamed T Shaaban
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
| | - Reham M Abdelhamid
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
- Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Muhammad Zayed
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
| | - Safaa M Ali
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
28
|
Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy. SENSORS 2022; 22:s22103712. [PMID: 35632121 PMCID: PMC9148023 DOI: 10.3390/s22103712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
There is extensive interest in developing real-time biosensing strategies to characterize the membrane-disruptive properties of antimicrobial lipids and surfactants. Currently used biosensing strategies mainly focus on tracking membrane morphological changes such as budding and tubule formation, while there is an outstanding need to develop a label-free biosensing strategy to directly evaluate the molecular-level mechanistic details by which antimicrobial lipids and surfactants disrupt lipid membranes. Herein, using electrochemical impedance spectroscopy (EIS), we conducted label-free biosensing measurements to track the real-time interactions between three representative compounds—glycerol monolaurate (GML), lauric acid (LA), and sodium dodecyl sulfate (SDS)—and a tethered bilayer lipid membrane (tBLM) platform. The EIS measurements verified that all three compounds are mainly active above their respective critical micelle concentration (CMC) values, while also revealing that GML induces irreversible membrane damage whereas the membrane-disruptive effects of LA are largely reversible. In addition, SDS micelles caused membrane solubilization, while SDS monomers still caused membrane defect formation, shedding light on how antimicrobial lipids and surfactants can be active in, not only micellar form, but also as monomers in some cases. These findings expand our mechanistic knowledge of how antimicrobial lipids and surfactants disrupt lipid membranes and demonstrate the analytical merits of utilizing the EIS sensing approach to comparatively evaluate membrane-disruptive antimicrobial compounds.
Collapse
|
29
|
Glycerol monolaurate beyond an emulsifier: Synthesis, in vivo fate, food quality benefits and health efficacies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Virseda-Berdices A, Brochado-Kith O, Díez C, Hontañon V, Berenguer J, González-García J, Rojo D, Fernández-Rodríguez A, Ibañez-Samaniego L, Llop-Herrera E, Olveira A, Perez-Latorre L, Barbas C, Rava M, Resino S, Jiménez-Sousa MA. Blood microbiome is associated with changes in portal hypertension after successful direct-acting antiviral therapy in patients with HCV-related cirrhosis. J Antimicrob Chemother 2021; 77:719-726. [PMID: 34888660 DOI: 10.1093/jac/dkab444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with a significant decrease in hepatic venous pressure gradient (HVPG) have a considerable reduction of liver complications and higher survival after HCV eradication. OBJECTIVES To evaluate the association between the baseline blood microbiome and the changes in HVPG after successful direct-acting antiviral (DAA) therapy in patients with HCV-related cirrhosis. METHODS We performed a prospective study in 32 cirrhotic patients (21 HIV positive) with clinically significant portal hypertension (HVPG ≥10 mmHg). Patients were assessed at baseline and 48 weeks after HCV treatment completion. The clinical endpoint was a decrease in HVPG of ≥20% or HVPG <12 mmHg at the end of follow-up. Bacterial 16S ribosomal DNA was sequenced using MiSeq Illumina technology, inflammatory plasma biomarkers were investigated using ProcartaPlex immunoassays and the metabolome was investigated using GC-MS. RESULTS During the follow-up, 47% of patients reached the clinical endpoint. At baseline, those patients had a higher relative abundance of Corynebacteriales and Diplorickettsiales order, Diplorickettsiaceae family, Corynebacterium and Aquicella genus and Undibacterium parvum species organisms and a lower relative abundance of Oceanospirillales and Rhodospirillales order, Halomonadaceae family and Massilia genus organisms compared with those who did not achieve the clinical endpoint according to the LEfSe algorithm. Corynebacteriales and Massilia were consistently found within the 10 bacterial taxa with the highest differential abundance between groups. Additionally, the relative abundance of the Corynebacteriales order was inversely correlated with IFN-γ, IL-17A and TNF-α levels and the Massilia genus with glycerol and lauric acid. CONCLUSIONS Baseline-specific bacterial taxa are related to an HVPG decrease in patients with HCV-related cirrhosis after successful DAA therapy.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Ibañez-Samaniego
- Servicio de Aparato Digestivo, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Elba Llop-Herrera
- Departamento de Gastroenterología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - Antonio Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain
| | - Leire Perez-Latorre
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marta Rava
- Unidad de la Cohorte de la Red de Investigación en Sida (CoRIS), Centro Nacional de Epidemiologia (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
31
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
The Effect of α-Monolaurin and Butyrate Supplementation on Broiler Performance and Gut Health in the Absence and Presence of the Antibiotic Growth Promoter Zinc Bacitracin. Antibiotics (Basel) 2021; 10:antibiotics10060651. [PMID: 34072321 PMCID: PMC8228722 DOI: 10.3390/antibiotics10060651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
The use of antibiotic growth promoters (AGP) is common practice to improve broiler production and performance. The use of AGP is under discussion as it can induce bacterial resistance. The purpose of this study was to determine the impact of removing AGP from broiler feed and study the effect of feed additives. For those countries where in-feed AGP are still permitted, the effect of the products in the presence of AGP was evaluated. Half the number of male broilers received a diet free of AGP, whereas the other half received a diet supplemented with zinc bacitracin at 0.5 g/kg. Both diets were either without additional additives or combined with a coated sodium butyrate, α-monolaurin or a combination of these additives. Raised under optimal conditions, the incorporation of AGP had no effect on broiler performance, but negatively affected villi height and villi height to crypt depth (VH:CD) ratio in the duodenum. In the absence of AGP, butyric acid and α-monolaurin had a positive effect on villi height. In the presence of AGP, α-monolaurin resulted in the lowest feed conversion ratio and improved VH:CD ratio in the duodenum, jejunum and ileum. Both feed additives had minimal effect on performance parameters but showed small positive effects on gut health in the absence of AGP and could play a role in the strategy to replace AGP.
Collapse
|
33
|
Fosdick MG, Chheda PR, Tran PM, Wolff A, Peralta R, Zhang MY, Kerns R, Houtman JCD. Suppression of human T cell activation by derivatives of glycerol monolaurate. Sci Rep 2021; 11:8943. [PMID: 33903712 PMCID: PMC8076190 DOI: 10.1038/s41598-021-88584-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Glycerol monolaurate (GML), a naturally occurring monoglyceride, is widely used commercially for its antimicrobial properties. Interestingly, several studies have shown that GML not only has antimicrobial properties but is also an anti-inflammatory agent. GML inhibits peripheral blood mononuclear cell proliferation and inhibits T cell receptor (TCR)-induced signaling events. In this study, we perform an extensive structure activity relationship analysis to investigate the structural components of GML necessary for its suppression of human T cell activation. Human T cells were treated with analogs of GML, differing in acyl chain length, head group, linkage of acyl chain, and number of laurate groups. Treated cells were then tested for changes in membrane dynamics, LAT clustering, calcium signaling, and cytokine production. We found that an acyl chain with 12-14 carbons, a polar head group, an ester linkage, and a single laurate group at any position are all necessary for GML to inhibit protein clustering, calcium signaling, and cytokine production. Removing the glycerol head group or replacing the ester linkage with a nitrogen prevented derivative-mediated inhibition of protein cluster formation and calcium signaling, while still inhibiting TCR-induced cytokine production. These findings expand our current understanding of the mechanisms of action of GML and the of GML needed to function as a novel immunosuppressant.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Pratik Rajesh Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Phuong M Tran
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Alex Wolff
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Ronal Peralta
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Michael Y Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
34
|
An Effective Strategy for the Production of Lauric Acid-Enriched Monoacylglycerol via Enzymatic Glycerolysis from Black Soldier Fly (Hermetia illucens) Larvae (BSFL) Oil. Appl Biochem Biotechnol 2021; 193:2781-2792. [PMID: 33871767 DOI: 10.1007/s12010-021-03565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Here, we developed an efficient strategy for the production of lauric acid-enriched monoacylglycerol (MAG) via enzymatic glycerolysis using black soldier fly (Hermetia illucens) larvae (BSFL) oil. The effects of the substrate molar ratio, reaction temperature, type of immobilized lipase, and organic solvent on the MAG content and conversion degree of BSFL oil were optimized. The maximum substrate conversion rate (97.88%) and MAG content (70.84%) were obtained in a tert-butanol system at 50 °C with a glycerol/BSFL oil molar ratio of 4:1 by using immobilized MAS1 lipase as a catalyst. The MAG content in the purified product reached 97.7%, with lauric acid accounting for 50.2%. Improved oxidation stability was observed after glycerolysis. Overall, this study provides a new strategy for the preparation of lauric acid-enriched MAG from BSFL oil.
Collapse
|
35
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
36
|
Fernández-Pastor S, Castelló DS, López-Mendoza MC. Stability of the Antimicrobial Capacity of Human Milk Against Cronobacter Sakazakii During Handling. J Hum Lact 2021; 37:139-146. [PMID: 32579054 DOI: 10.1177/0890334420932574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neonatal infections with Cronobacter sakazakii have recently been associated with the consumption of expressed human milk. STUDY AIMS (1) To evaluate whether human milk has antimicrobial capacity against C. sakazakii and (2) to determine the stability of its capacity when it is subjected to various treatments. METHODS The antimicrobial capacity of human milk against C. sakazakii was evaluated using an observational, cross-sectional, comparative design. Mature human milk samples (N = 29) were subjected to different treatments. After incubation at 37°C for 72 hr, samples were compared with fresh milk on the stability of their antimicrobial capacity. Two-way analysis of variance (ANOVA) was performed. RESULTS In fresh milk, counts of C. sakazakii were reduced by 47.26% (SD = 6.74) compared to controls. In treated milk, reductions were: refrigeration at 4°C for 72 hr (M = 33.84, SD = 13.84), freezing at -20°C for 1, 2, and 3 months (M = 40.31, SD = 9.10; M = 35.96, SD = 9.39; M = 26.20, SD = 13.55, respectively), Holder pasteurization (M = 23.56, SD = 15.61), and human milk bank treatment with (M = 14.37, SD = 18.02) and without bovine fortifier (M = 3.70, SD = 23.83). There were significant differences (p < .05) between fresh and treated milk. CONCLUSIONS Human milk has antimicrobial capacity against C. sakazakii. However, its capacity is negatively influenced by common preservation and hygienization methods. Milk should be stored refrigerated for a maximum of 72 hr or frozen for a short period of time.
Collapse
Affiliation(s)
- Sandra Fernández-Pastor
- 16731 Department of Animal Production and Food Science and Technology, University CEU-Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - M C López-Mendoza
- 16731 Department of Animal Production and Food Science and Technology, University CEU-Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
37
|
Superior water stability and antimicrobial activity of electrospun gluten nanofibrous films incorporated with glycerol monolaurate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Effects of α-glyceryl monolaurate on growth, immune function, volatile fatty acids, and gut microbiota in broiler chickens. Poult Sci 2020; 100:100875. [PMID: 33516466 PMCID: PMC7936147 DOI: 10.1016/j.psj.2020.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to determine the effects of dietary addition of α-glyceryl monolaurate (α-GML) on growth performance, immune function, volatile fatty acids production and cecal microbiota in broiler chickens. A total of 480 1-day-old yellow-feathered broilers were randomly assigned in equal numbers to 4 dietary treatments: basal diet (NCO) or supplementations with 30 mg/kg bacitracin (ANT), 500 mg/kg α-GML, or 1,000 mg/kg α-GML (GML2). And, each treatment contained 8 replicates with 15 chickens per replicate. After supplementation with α-GML, the total BW gain and average daily weight gain of broilers increased significantly (P < 0.05) compared with the broilers on the NCO diet. Moreover, compared with the NCO group, higher levels of immune globulin M and immune globulin Y were observed in both GML groups and the ANT group. Concentrations of acetate, propionate, butyrate, valerate, and isovalerate in GML2 were significantly higher (P < 0.05) than those in the NCO group on day 28. However, acetate, propionate, valerate, and isovalerate concentrations were reduced to significantly (P < 0.05) lower than those in the NCO group on day 56. The abundance and diversity of microbiota were found to be improved in broilers that were supplemented with GML, using operational taxonomic unit and diversity analyses. Furthermore, the GML treatments increased favorable microbiota, particularly acid-producing bacteria, on day 28 and, also, reduced opportunistic pathogens, such as Alistipes tidjanibacter and Bacteroides dorei by day 56. These results suggest that α-GML supplementation modulates cecal microbiota and broiler immunity and improves volatile fatty acid levels during the early growth stages of broilers.
Collapse
|
39
|
Decolonization of Human Anterior Nares of Staphylococcus aureus with Use of a Glycerol Monolaurate Nonaqueous Gel. mSphere 2020; 5:5/4/e00552-20. [PMID: 32727862 PMCID: PMC7392545 DOI: 10.1128/msphere.00552-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this microflora study, we show that a 5% glycerol monolaurate nonaqueous gel is safe for use in the anterior nares. The gel was effective in reducing Staphylococcus aureus nasally, a highly significant hospital-associated pathogen. The gel may be a useful alternative or additive to mupirocin ointment for nasal use prior to surgery, noting that 80% of hospital-associated S. aureus infections are due to the same organism found in the nose. This gel also kills all enveloped viruses tested and should be considered for studies to reduce infection and transmission of coronaviruses and influenza viruses. Staphylococcus aureus is a highly significant infection problem in health care centers, particularly after surgery. It has been shown that nearly 80% of S. aureus infections following surgery are the same as those in the anterior nares of patients, suggesting that the anterior nares is the source of the infection strain. This has led to the use of mupirocin ointment being applied nasally to reduce infections; mupirocin resistance is being observed. This study was undertaken to determine whether gel composed of 5% glycerol monolaurate solubilized in a glycol-based, nonaqueous gel (5% GML gel) could be used as an alternative. In our study, 40 healthy human volunteers swabbed their anterior nares for 3 days with the 5% GML gel. Prior to swabbing and 8 to 12 h after swabbing, S. aureus and coagulase-negative staphylococcal CFU per milliliter were determined by plating the swabs on mannitol salt agar. Fourteen of the volunteers had S. aureus in their nares prior to 5% GML gel treatment, most persons with the organisms present in both nares; five had pure cultures of S. aureus. All participants without pure culture of S. aureus were cocolonized with S. aureus and coagulase-negative staphylococci. Five of the S. aureus strains produced the superantigens commonly associated with toxic shock syndrome, though none of the participants became ill. For both S. aureus and coagulase-negative staphylococci, the 5% GML gel treatment resulted in a 3-log-unit reduction in microorganisms. For S. aureus, the reduction persisted for 2 or 3 days. IMPORTANCE In this microflora study, we show that a 5% glycerol monolaurate nonaqueous gel is safe for use in the anterior nares. The gel was effective in reducing Staphylococcus aureus nasally, a highly significant hospital-associated pathogen. The gel may be a useful alternative or additive to mupirocin ointment for nasal use prior to surgery, noting that 80% of hospital-associated S. aureus infections are due to the same organism found in the nose. This gel also kills all enveloped viruses tested and should be considered for studies to reduce infection and transmission of coronaviruses and influenza viruses.
Collapse
|
40
|
Yoon BK, Park S, Ma GJ, Kolahdouzan K, Zhdanov VP, Jackman JA, Cho NJ. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. J Phys Chem Lett 2020; 11:4951-4957. [PMID: 32478524 DOI: 10.1021/acs.jpclett.0c01138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using quartz crystal microbalance-dissipation and time-lapse fluorescence microscopy, we demonstrate that adding mixtures of lauric acid (LA) and glycerol monolaurate (GML), two of the most biologically active antimicrobial fatty acids and monoglycerides, to a supported lipid bilayer triggers concurrent tubule and bud formation, which unexpectedly results in synergistic phospholipid membrane remodeling that far exceeds the effects of GML or LA alone. Together, GML and LA drive pearling instability, dynamic transformation of buds into tubules and vice versa, and extensive membrane lysis. The most pronounced effects occurred with equimolar concentrations of GML and LA, highlighting that synergistic membrane disruption arises from competition for the lipid supply to buds and tubules and an inability to relieve membrane strains. These findings offer a conceptually new model to explain how fatty acid and monoglyceride interactions can trigger phospholipid membrane remodeling events relevant to various biophysical and biological systems.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Gamaliel J Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Kavoos Kolahdouzan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| |
Collapse
|
41
|
Kapourchali FR, Cresci GAM. Early-Life Gut Microbiome-The Importance of Maternal and Infant Factors in Its Establishment. Nutr Clin Pract 2020; 35:386-405. [PMID: 32329544 DOI: 10.1002/ncp.10490] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The early-life microbiome is gaining appreciation as a major influencer in human development and long-term health. Multiple factors are known to influence the initial colonization, development, and function of the neonatal gut microbiome. In addition, alterations in early-life gut microbial composition is associated with several chronic health conditions such as obesity, asthma, and allergies. In this review, we focus on both maternal and infant factors known to influence early-life gut colonization. Also reviewed is the important role of infant feeding, including evidence-based strategies for maternal and infant supplementation with the goal to protect and/or restore the infant gut microbiome.
Collapse
Affiliation(s)
| | - Gail A M Cresci
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA.,Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|