1
|
Dong Y, Elgerbi A, Xie B, Choy JS, Sivasankar S. Actomyosin forces trigger a conformational change in desmoplakin within desmosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624364. [PMID: 39605443 PMCID: PMC11601634 DOI: 10.1101/2024.11.19.624364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Desmosomes are essential cell-cell adhesion organelles that enable tension-prone tissue, like the skin and heart, to withstand mechanical stress. Desmosomal anomalies are associated with numerous epidermal disorders and cardiomyopathies. Despite their critical role in maintaining tissue resilience, an understanding of how desmosomes sense and respond to mechanical stimuli is lacking. Here, we use a combination of super-resolution imaging, FRET-based tension sensors, atomistic computer simulations, and biochemical assays to demonstrate that actomyosin forces induce a conformational change in desmoplakin, a critical cytoplasmic desmosomal protein. We show that in human breast cancer MCF7 cells, actomyosin contractility reorients keratin intermediate filaments and directs force to desmoplakin along the keratin filament backbone. These forces induce a conformational change in the N-terminal plakin domain of desmoplakin, converting this domain from a folded (closed) to an extended (open) conformation. Our findings establish that desmoplakin is mechanosensitive and responds to changes in cellular load by undergoing a force-induced conformational change.
Collapse
|
2
|
Sandu A, Danilova S, Acton L, Cobley A, Gould P. Virucidal and Bactericidal Properties of Biocompatible Copper Textiles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400346. [PMID: 40071224 PMCID: PMC11891573 DOI: 10.1002/gch2.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/05/2025] [Indexed: 03/14/2025]
Abstract
The COVID-19 pandemic highlights the global threat posed by emerging viruses, emphasizing the critical need for effective strategies to combat pathogen transmission. Moreover, alongside emerging viruses, the increasing threat of antimicrobial resistance further reinforces the need to develop novel methods for infection control. Anti-pathogenic coatings on textiles offer a promising solution; in this study, three electroless copper-plated fabrics are evaluated for their antipathogenic properties following International Standards Organisation (ISO) standards. Prior to electroless plating, materials are activated either by immersion in a Pd catalyst solution (material A) or by ink-jet printing Cu/Ag catalyst along the weft (material B) or warp thread (material C). This study demonstrates that activation method influences the materials antipathogenic performance, with all materials achieving complete bactericidal/fungicidal neutralization within 30 min of incubation. Material B exhibits up to 4-log virucidal effects within 1 h against viruses such as coronavirus (OC43, 229E), Influenza A (H1N1), and Rotavirus A. Furthermore, biocompatibility testing indicates that material B exhibited low in vitro cytotoxicity. Textile B demonstrates strong antibacterial results even after one year of accelerated aging with no significant difference (P = 0.74) in efficiency against MRSA, highlighting promising applications for infection control in clinical settings reducing pathogen transmission, nosocomial infections and the associated economic burden.
Collapse
Affiliation(s)
| | - Sofya Danilova
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Lauren Acton
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Andrew Cobley
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| | - Phillip Gould
- Coventry University Group: Coventry UniversityWhitefriars StCoventry2706UK
| |
Collapse
|
3
|
Badhe MR, Das P, Sahoo S, Paul A, Sahoo PK, Reddy RRK, Suryawanshi AR, Nandanpawar PC, Das Mahapatra K, Nagpure NS, Goswami M, Mohanty J. Physiological Responses to Acute Heat Stress in Rohu, Labeo rohita: Insights from Liver Proteomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1129-1142. [PMID: 39207653 DOI: 10.1007/s10126-024-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Heat stress is a major problem in aquaculture species, causing changes in physiology such as decreased feed intake, growth rate, reproduction, and internal cellular damage, thereby affecting fish's health. The effects of an acute heat stress simulating a daily rise and fall in temperature on summer days were evaluated in the liver proteome of rohu (Labeo rohita) fingerlings in the present study. The fish maintained at 30 °C were gradually exposed to a higher temperature of 36 °C at an increment rate of 1 °C per 1.5 h, and after 3 h at that temperature, it was gradually reduced to 30 °C. The liver tissue samples were collected at 5 am, 5 pm, and 5 am the next day from the exposed and control fish. Protein samples were prepared from the liver tissues, and the extracted proteins were compared using 2-dimensional (2D) gel electrophoresis (2DGE) and mass spectrometry (MS) using a MALDI-TOF/TOF mass spectrometer. A total of 44 differentially expressed protein spots were visualized in 2D gel analysis from heat stress exposed fish at three time points, out of which 21 proteins including one hypothetical protein could be identified by MS. The abundance of five selected differentially expressed proteins (DEPs) was validated using qPCR. The majority of DEPs were found to be involved primarily in lipid, protein and energy metabolism, immune system regulation, cytoskeletal stability, and ROS management. The findings of this study would help in the development of strategies to mitigate heat stress in L. rohita.
Collapse
Affiliation(s)
- Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Priyanka Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | | | | | - Kanta Das Mahapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Naresh S Nagpure
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mukunda Goswami
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
4
|
Machuca A, Peñalver GA, Garcia RAF, Martinez-Lopez A, Castillo-Lluva S, Garcia-Calvo E, Luque-Garcia JL. Advancing rhodium nanoparticle-based photodynamic cancer therapy: quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J Mater Chem B 2024; 12:12073-12086. [PMID: 39453320 DOI: 10.1039/d4tb01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Rhodium nanoparticles have been recently discovered as good photosensitizers with great potential in cancer photodynamic therapy by effectively inducing cytotoxicity in cancer cells under near-infrared laser. This study evaluates the molecular mechanisms underlying such antitumoral effect through quantitative proteomics. The results revealed that rhodium nanoparticle-based photodynamic therapy disrupts tumor metabolism by downregulating key proteins involved in ATP synthesis and mitochondrial function, leading to compromised energy production. The treatment also induces oxidative stress and apoptosis while targeting the invasion capacity of cancer cells. Additionally, key proteins involved in drug resistance are also affected, demonstrating the efficacy of the treatment in a multi-drug resistant cell line. In vivo evaluation using a chicken embryo model also confirmed the effectiveness of the proposed therapy in reducing tumor growth without affecting embryo viability.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Gabriel A Peñalver
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Angelica Martinez-Lopez
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Jose L Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
6
|
Klayech Z, Moussa A, Souid M, Hadhri R, Miled S, Gabbouj S, Remadi Y, Faleh R, Bouaouina N, Zakhama A, Hassen E. Prognostic Significance of Combining Cytokeratin-19, E-Cadherin and Ki-67 Analysis in Triple-Negative Breast Cancer with Basal-Like and Non-Basal-Like Phenotype. Cancer Invest 2024; 42:769-781. [PMID: 39435793 DOI: 10.1080/07357907.2024.2416166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Triple-negative breast cancer (TNBC) is known to have the worst outcome compared to the other forms of breast cancer. Moreover, molecular markers identified basal-like breast cancer (BLBC) phenotypes to be also related to a worse prognosis. In this study, we evaluated by immunohistochemistry (IHC) the prognostic significance of combining Cytokeratin-19 (CK19), E-cadherin, and Ki-67 tissue expression in triple-negative breast cancer (TNBC) cases presenting a basal-like (BLBC) or a non-basal-like (n-BLBC) phenotype to improve the selection and the monitoring of BC patients with a more aggressive outcome. Herein, when compared to n-BLBC, patients with BLBC showed a positive correlation with lymph node metastasis occurrence and lower survival rates. Immunohistochemistry analysis revealed significantly lower E-cadherin prevalence and higher prevalence of both CK19 and Ki-67 in BLBC when compared to n-BLBC. Spearman correlation showed that E-cadherin is negatively and significantly correlated to CK19 and Ki-67 expressions. Moreover, in BLBC, expressing both CK19 and Ki-67 combined with E-cadherin loss was associated with the worst relapse-free and overall survival. In conclusion, TNBC/BLBC phenotypes simultaneously losing E-cadherin and overexpressing CK19 and Ki-67 markers are the most aggressive forms. This combined analysis could be a predictive marker of poor prognosis.
Collapse
Affiliation(s)
- Zahra Klayech
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Adnene Moussa
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Anatomy and Pathologic Cytology, Fattouma Bourguiba University Hospital, Monastir University, Monastir, Tunisia
| | - Moufida Souid
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Rim Hadhri
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Anatomy and Pathologic Cytology, Fattouma Bourguiba University Hospital, Monastir University, Monastir, Tunisia
| | - Souad Miled
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Anatomy and Pathologic Cytology, Fattouma Bourguiba University Hospital, Monastir University, Monastir, Tunisia
| | - Sallouha Gabbouj
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Yassmine Remadi
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Raja Faleh
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Gynecology and Obstetrics, Fattouma Bourguiba University Hospital, Monastir University, Monastir, Tunisia
| | - Noureddine Bouaouina
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Ibn Khaldoun Medical Center of Cancerology, Sousse, Tunisia
| | - Abdelfattah Zakhama
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Anatomy and Pathologic Cytology, Fattouma Bourguiba University Hospital, Monastir University, Monastir, Tunisia
| | - Elham Hassen
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
7
|
Shi HQ, Li X, Chen Z, Dong S, Ye C, Hou S, Fan DA, Zhang H, Zhou WC. KRT19 is regulated by miR-642a-5p and promotes pancreatic cancer progression through the Wnt/β-catenin pathway. iScience 2024; 27:110782. [PMID: 39280598 PMCID: PMC11402215 DOI: 10.1016/j.isci.2024.110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Pancreatic cancer (PC) has a really poor prognosis, and we urgently need to delve deeper into its molecular mechanisms. In this study, we found that KRT19 expression was significantly increased in PC tissues and cell lines and it was linked to unfavorable outcomes for patients. Overexpression of KRT19 boosted the proliferation, migration, and invasion of PC cells. Additionally, miR-374b-5p targets KRT19, inhibiting the activation of the Wnt/β-catenin pathway (WBC), which in turn suppresses epithelial-to-mesenchymal transition (EMT) and the progression of PC. Further experiments showed that under hypoxic conditions, HIF1α was positively correlated with KRT19, promoting its expression. The loss of miR-642a-5p and the upregulation of KRT19 induced by hypoxia can significantly favor PC progression. Plus, the increased expression of KRT19 might act as a predictive marker and potential target for PC treatment.
Collapse
Affiliation(s)
- Hua-Qing Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Cheng Ye
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shuang Hou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Dong-Ao Fan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wen-Ce Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, The Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Gansu Province Clinical Nutrition Quality Control Center, The Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
8
|
Gao Y, Chen S, Wang H, Wu C, An R, Li G, Yang M, Zhou Y, Zhou Y, Xie X, Yu H, Zhang J. Liver metastases across cancer types sharing tumor environment immunotolerance can impede immune response therapy and immune monitoring. J Adv Res 2024; 61:151-164. [PMID: 37619932 PMCID: PMC11258657 DOI: 10.1016/j.jare.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/16/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Hepatic immune tolerance might contribute to the development of therapeutic resistance to immunotherapy. However, addressing this issue is challenging since the efficacy of immunotherapy in the context of liver metastasis (LM) remains poorly studied. Here, we aimed to establish an LM common immune feature (LMCIF) score to quantify the characteristics of LM immunotolerance across cancer types for assisting clinical disease management. METHODS Large-scale clinical data were collected to identify the prognosis of LM. Multi-omics datasets of metastatic cancers with LM special immune-related pathways (LMSIPs) from the Molecular Signatures Database (MSigDB)were used to obtain an LMCIF cluster. Based on differential expression genes (DEGs), a novel LMCIF score for the LMCIF cluster was constructed. In addition, multi-omics, and immunohistochemistry (IHC) data from the public and in-house cohorts were used to explore the features of LM, and LMCIF score. RESULTS Patients with LM had a worse prognosis and significantly lower infiltration of immune cells than patients with metastasis to other organs when analyzed with combined clinical and RNA sequencing data. After extracting the LMCIF cluster from 373 samples by utilizing 29 LMSIPs and validating them in a microarray cohort, an LMCIF score was established to confirm the role of the immunosuppressive environment as a contributor to the poor prognosis of LM across cancer types. Moreover, this LMCIF score could be used to predict the immune response of cancer patients undergoing immunotherapy. Finally, we identified that the majority of the 31 LMCIF genes exhibited a negative correlation with TME cells in LM patients, one of them, KRT19, which possessed the strongest positive correlation with LMCIF score, was confirmed to have an immunosuppressive effect through IHC analysis. CONCLUSIONS Our results suggest that LM across cancer types share similar immunological profiles that induce immunotolerance and escape from immune monitoring. The novel LMCIF score represents a common liver metastasis immune cluster for predicting immunotherapy response, the results of which might benefit clinical disease management.
Collapse
Affiliation(s)
- Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Hao Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui An
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying Zhou
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yundong Zhou
- Shanghai Medical Innovation Fusion Biomedical Research Center, Shanghai, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Lin Z, Shi YY, Yu LY, Ma CX, Pan SY, Dou Y, Zhou QJ, Cao Y. Metabolic dysfunction associated steatotic liver disease in patients with plaque psoriasis: a case-control study and serological comparison. Front Med (Lausanne) 2024; 11:1400741. [PMID: 38813379 PMCID: PMC11133595 DOI: 10.3389/fmed.2024.1400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Background The relationship between plaque psoriasis and both MASLD and lean MASLD has not been sufficiently explored in the current literature. Method This retrospective and observational study was carried out from January 2021 to January 2023 at The First Affiliated Hospital of Zhejiang Chinese Medical University. Patients diagnosed with plaque psoriasis and a control group consisting of individuals undergoing routine physical examinations were enrolled. The incidence of MASLD and lean MASLD among these groups was compared. Additionally, patients with plaque psoriasis were divided into those with MASLD, those with lean MASLD, and a control group with only psoriasis for a serological comparative analysis. Results The incidence of MASLD in the observation group and the control group was 43.67% (69/158) and 22.15% (35/158), respectively (p < 0.01). Furthermore, the incidence of lean MASLD within the observation group and the control group was 10.76% (17/158) and 4.43% (7/158), respectively (p < 0.01). After controlling for potential confounding variables, plaque psoriasis was identified as an independent risk factor for MASLD with an odds ratio of 1.88 (95% cl: 1.10-3.21). In terms of serological comparison, compared to the simple psoriasis group, we observed a significant elevation in the tumor marker CYFRA21-1 levels in both groups compared to the control group with simple psoriasis (p < 0.01). Moreover, the MASLD group exhibited elevated levels of inflammatory markers and psoriasis score, whereas these effects were mitigated in the lean MASLD group. Conclusion The prevalence of MASLD and lean MASLD is higher among patients with psoriasis. Those suffering from psoriasis along with MASLD show increased psoriasis scores and inflammatory markers compared to those without metabolic disorders. MASLD likely worsens psoriasis conditions, indicating the necessity of targeted health education for affected individuals to reduce the risk of MASLD, this education should include guidelines on exercise and diet. In serological assessments, elevated levels of cytokeratin 19 fragment (CYFRA21-1) were noted in both MASLD and lean MASLD groups, implying a potential synergistic role between psoriasis and MASLD.
Collapse
Affiliation(s)
- Zheng Lin
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue-yi Shi
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lu-yan Yu
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen-xi Ma
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Si-yi Pan
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Dou
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiu-jun Zhou
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Jokela TA, Dane MA, Smith RL, Devlin KL, Shalabi S, Lopez JC, Miyano M, Stampfer MR, Korkola JE, Gray JW, Heiser LM, LaBarge MA. Functional delineation of the luminal epithelial microenvironment in breast using cell-based screening in combinatorial microenvironments. Cell Signal 2024; 113:110958. [PMID: 37935340 PMCID: PMC10696611 DOI: 10.1016/j.cellsig.2023.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mark A Dane
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Rebecca L Smith
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Kaylyn L Devlin
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Sundus Shalabi
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| | - Jennifer C Lopez
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James E Korkola
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, OR, USA.
| | - Mark A LaBarge
- Department of Population Sciences, Center for Cancer and Aging, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Center for Cancer Biomarkers Research (CCBIO), University of Bergen, Bergen, Norway; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Krüger J, Fischer A, Breunig M, Allgöwer C, Schulte L, Merkle J, Mulaw MA, Okeke N, Melzer MK, Morgenstern C, Azoitei N, Seufferlein T, Barth TF, Siebert R, Hohwieler M, Kleger A. DNA methylation-associated allelic inactivation regulates Keratin 19 gene expression during pancreatic development and carcinogenesis. J Pathol 2023; 261:139-155. [PMID: 37555362 DOI: 10.1002/path.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jana Krüger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Chantal Allgöwer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Lucas Schulte
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | | - Medhanie A Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Nnamdi Okeke
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Michael K Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Clara Morgenstern
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Thomas Fe Barth
- Department of Pathology, Ulm University Hospital, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Organoid Core Facility, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Fallatah A, Anastasakis DG, Manzourolajdad A, Sharma P, Wang X, Jacob A, Alsharif S, Elgerbi A, Coulombe PA, Hafner M, Chung BM. Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer. BMC Mol Cell Biol 2023; 24:26. [PMID: 37592256 PMCID: PMC10433649 DOI: 10.1186/s12860-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.
Collapse
Affiliation(s)
- Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Amirhossein Manzourolajdad
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
- Department of Computer Science, Colgate University, Hamilton, NY, United States of America
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Alexis Jacob
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, United States of America.
| |
Collapse
|
13
|
Pham SH, Vuorinen SI, Arif KT, Griffiths LR, Okolicsanyi RK, Haupt LM. Syndecan-4 regulates the HER2-positive breast cancer cell proliferation cells via CK19/AKT signalling. Biochimie 2023; 207:49-61. [PMID: 36460206 DOI: 10.1016/j.biochi.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
Despite the use of the highly specific anti-HER2 receptor (trastuzumab) therapy, HER2-positive breast cancers account for 20-30% of all breast cancer carcinomas, with HER2 status a challenge to treatment interventions. The heparan sulfate proteoglycans (HSPGs) are prominently expressed in the extracellular matrix (ECM), mediate breast cancer proliferation, development, and metastasis with most studies to date conducted in animal models. This study examined HSPGs in HER2-positive human breast cancer cell lines and their contribution to cancer cell proliferation. The study examined the cells following enhancement (via the addition of heparin) and knockdown (KD; using short interfering RNA, siRNA) of HSPG core proteins. The interaction of HSPG core proteins and AKT signalling molecules was examined to identify any influence of this signalling pathway on cancer cell proliferation. Our findings illustrated the HSPG syndecan-4 (SDC4) core protein significantly regulates cell proliferation with increased BC cell proliferation following heparin addition to cultures and decreased cell number following SDC4 KD. In addition, along with SDC4, significant changes in CK19/AKT signalling were identified as mediators of BC HER2-positive BC cell proliferation. This study provides evidence for a cell growth regulatory axis involving HSPGs/CK19 and AKT that represents a potential molecular target to prevent proliferation of HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Son H Pham
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Sofia I Vuorinen
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Km Taufiqul Arif
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Rachel K Okolicsanyi
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
14
|
Mal S, Duarte E Souza L, Allard C, David C, Blais-Ouellette S, Gaboury L, Tang NYW, Martel R. Duplex Phenotype Detection and Targeting of Breast Cancer Cells Using Nanotube Nanoprobes and Raman Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1173-1184. [PMID: 36795958 DOI: 10.1021/acsabm.2c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We designed, synthesized, and characterized a Raman nanoprobe made of dye-sensitized single-walled carbon nanotubes (SWCNTs) that can selectively target biomarkers of breast cancer cells. The nanoprobe is composed of Raman-active dyes encapsulated inside a SWCNT, whose surface is covalently grafted with poly(ethylene glycol) (PEG) at a density of ∼0.7% per carbon. Using α-sexithiophene- and β-carotene-derived nanoprobes covalently bound to an antibody, either anti-E-cadherin (E-cad) or anti-keratin-19 (KRT19), we prepared two distinct nanoprobes that specifically recognize biomarkers on breast cancer cells. Immunogold experiments and transmission electron microscopy (TEM) images are first used to guide the synthesis protocol for higher PEG-antibody attachment and biomolecule loading capacity. The duplex of nanoprobes was then applied to target E-cad and KRT19 biomarkers in T47D and MDA-MB-231 breast cancer cell lines. Hyperspectral imaging of specific Raman bands allows for simultaneous detection of this nanoprobe duplex on target cells without the need for additional filters or subsequent incubation steps. Our results confirm the high reproducibility of the nanoprobe design for duplex detection and highlight the potential of Raman imaging for advanced biomedical applications in oncology.
Collapse
Affiliation(s)
- Suraj Mal
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Layane Duarte E Souza
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Charlotte Allard
- Department of Engineering Physics, Polytechnique of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Carolane David
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Nathalie Y-W Tang
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Richard Martel
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
15
|
Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, Di WL. Short-Term Treatment with Rho-Associated Kinase Inhibitor Preserves Keratinocyte Stem Cell Characteristics In Vitro. Cells 2023; 12:cells12030346. [PMID: 36766688 PMCID: PMC9913223 DOI: 10.3390/cells12030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - George T. Hall
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Neil Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Wei-Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: ; Tel.: +44-(0)207905-2369; Fax: +44-(0)207905-2882
| |
Collapse
|
16
|
Data on 2D culture characterisation of potential markers in human HER2-positive breast cancer cell lines. Data Brief 2023; 46:108880. [PMID: 36687151 PMCID: PMC9852922 DOI: 10.1016/j.dib.2022.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
To obtain this dataset, two human HER2-positive breast cancer cell lines (SKBR3 and MDA-MB-453 cell lines) were cultured in basal growth media to 80% confluence. Cells were passaged and total RNA extracted, RNA converted to cDNA and diluted to a working concentration of 40 ng/µL. Gene expression panels of cancer markers including Fibroblast growth factors (FGF), FGF receptors (FGFRs), cyclin-dependent kinases, cytokeratins, and WNT pathway components were then examined using Q-PCR. Gene expression was normalised against the expression of the endogenous gene 18S. This article describes the data used in the research article "Syndecan-4 regulates the HER2-positive breast cancer cell proliferation cells via CK19/AKT signaling" [1]. The data presented demonstrates the range of gene expression profiles of these cells and aims to provide more detail of all gene expression changes observed in these cell lines.
Collapse
|
17
|
Mykhaliuk VV, Havryliak VV, Salyha YT. The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Manzer HS, Nguyen DT, Park JY, Park N, Seo KS, Thornton JA, Nobbs AH, Doran KS. The Group B Streptococcal Adhesin BspC Interacts with Host Cytokeratin 19 To Promote Colonization of the Female Reproductive Tract. mBio 2022; 13:e0178122. [PMID: 36069447 PMCID: PMC9600255 DOI: 10.1128/mbio.01781-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Streptococcus agalactiae, otherwise known as Group B Streptococcus (GBS), is an opportunistic pathogen that vaginally colonizes approximately one third of healthy women. During pregnancy, this can lead to in utero infection, resulting in premature rupture of membranes, chorioamnionitis, and stillbirths. Furthermore, GBS causes serious infection in newborns, including sepsis, pneumonia, and meningitis. Previous studies have indicated that GBS antigen (Ag) I/II family proteins promote interaction with vaginal epithelial cells; thus, we hypothesized that the Ag I/II Group B streptococcal surface protein C (BspC) contributes to GBS colonization of the female reproductive tract (FRT). Here, we show that a ΔbspC mutant has decreased bacterial adherence to vaginal, ecto-, and endocervical cells, as well as decreased auto-aggregation and biofilm-like formation on cell monolayers. Using a murine model of vaginal colonization, we observed that the ΔbspC mutant strain exhibited a significant fitness defect compared to wild-type (WT) GBS and was less able to ascend to the cervix and uterus in vivo, resulting in reduced neutrophil chemokine signaling. Furthermore, we determined that BspC interacts directly with the host intermediate filament protein cytokeratin 19 (K19). Surface localization of K19 was increased during GBS infection, and interaction was mediated by the BspC variable (V) domain. Finally, mice treated with a drug that targets the BspC V-domain exhibited reduced bacterial loads in the vaginal lumen and reproductive tissues. These results demonstrate the importance of BspC in promoting GBS colonization of the FRT and that it may be targeted therapeutically to reduce GBS vaginal persistence and ascending infection. IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract (FRT) of up to one third of women, but GBS carriage can lead to adverse pregnancy outcomes, including premature rupture of membranes, preterm labor, and chorioamnionitis. GBS colonization during pregnancy is also the largest predisposing factor for neonatal GBS disease, including pneumonia, sepsis, and meningitis. The molecular interactions between bacterial surface proteins and the host cell receptors that promote GBS colonization are vastly understudied, and a better understanding would facilitate development of novel therapeutics to prevent GBS colonization and disease. Here, we characterize the role of the GBS surface protein BspC in colonization of the FRT. We show for the first time that GBS infection induces cytokeratin 19 (K19) surface localization on vaginal epithelial cells; GBS then uses the BspC V-domain to interact with K19 to promote colonization and ascending infection. Furthermore, this interaction can be targeted therapeutically to reduce GBS carriage.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dustin T. Nguyen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Joo Youn Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Nogi Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Mississippi State University, Department of Biological Sciences, Mississippi State, Mississippi, USA
| | - Angela H. Nobbs
- University of Bristol, Bristol Dental School, Bristol, United Kingdom
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| |
Collapse
|
19
|
Lv Z, Wang Q, Liu X, Du Z, Liang W, Liu T, Zheng Y, Ma B, Xue D. Genetic instability-related lncRNAs predict prognosis and influence the immune microenvironment in breast cancer. Front Genet 2022; 13:926984. [PMID: 36118853 PMCID: PMC9478756 DOI: 10.3389/fgene.2022.926984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Genome instability is a hallmark of cancer, and the function of lncRNAs in regulating genomic stability has been gradually characterized. However, the prognostic value of lncRNAs related to genetic instability has not been found in breast cancer. Here we constructed a genetic instability-related lncRNA model including U62317.4, SEMA3B-AS1, MAPT-AS1, AC115837.2, LINC01269, AL645608.7, and GACAT2. This model can evaluate the risk and predict the survival outcomes of patients. Further analysis showed that the differentially expressed genes between the high- and low-risk groups were enriched in immunity and cornified envelope formation pathways. In addition, M2 macrophages infiltrated more obviously in the high-risk group. In summary, lncRNAs related to genetic instability may influence the development of breast cancer through immune infiltration and keratinization. This study provides a wider insight into breast cancer development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biao Ma
- *Correspondence: Biao Ma, ; Dongbo Xue,
| | | |
Collapse
|
20
|
Jia X, Mao X, Zhou Y, Guo X, Huai N, Hu Y, Sun L, Guo J, Zhang Z. Antiestrogenic property of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) and its effects on female development in CD-1 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113906. [PMID: 35878500 DOI: 10.1016/j.ecoenv.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Identifying chemicals with endocrine disrupting properties linked to disease outcomes is a key concern, as stated in the WHO-UNEP 2012 report on endocrine-disrupting chemicals. The chemical 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) is widely and increasingly applied in synthesizing fluorene-based cardo polymers with superior optical, thermal and mechanical properties for various uses. However, little toxicological information is available regarding its safety. Here, we studied the endocrine disrupting property of BPEF by multiple toxicological tools and investigated its effects on female development in adolescent mice. Using the yeast two-hybrid bioassay, BPEF showed strong antiestrogenicity which was similar to that of tamoxifen, an effective antiestrogenic drug. In adolescent CD-1 mice, BPEF significantly decreased the uterine weight at relatively low doses and induced marked endometrial atrophy. Immunohistochemical staining and transcriptome analyses of the mice uteri revealed that BPEF could repressed the expressions of estrogen-responsive genes. Molecular simulation indicated that BPEF could be docked into the antagonist pocket of human estrogen receptor α, and the formation of hydrogen bonds and hydrophobic interactions between BPEF and the active site of receptor maintained their strong binding. All of the data demonstrated that BPEF possessed strong antiestrogenic property and might disrupt female development, suggesting it should be avoided in making products that might directly expose to people, particularly immature women.
Collapse
Affiliation(s)
- Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Narma Huai
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Hu
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Libei Sun
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Alsharif S, Sharma P, Bursch K, Milliken R, Lam V, Fallatah A, Phan T, Collins M, Dohlman P, Tiufekchiev S, Nehmetallah G, Raub CB, Chung BM. Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells. Cell Adh Migr 2021; 15:1-17. [PMID: 33393839 PMCID: PMC7801129 DOI: 10.1080/19336918.2020.1868694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
A cytoskeletal protein keratin 19 (K19) is highly expressed in breast cancer but its effects on breast cancer cell mechanics are unclear. In MCF7 cells where K19 expression is ablated,we found that K19 is required to maintain rounded epithelial-like shape and tight cell-cell adhesion. A loss of K19 also lowered cell surface E-cadherin levels. Inhibiting internalization restored cell-cell adhesion of KRT19 knockout cells, suggesting that E-cadherin internalization contributed to defective adhesion. Ultimately, while K19 inhibited cell migration and invasion, it was required for cells to form colonies in suspension. Our results suggest that K19 stabilizes E-cadherin complexes at the cell membrane to maintain cell-cell adhesion which inhibits cell invasiveness but provides growth and survival advantages for circulating tumor cells.
Collapse
Affiliation(s)
- Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Karina Bursch
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Rachel Milliken
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Van Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Thuc Phan
- Department of Electrical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Meagan Collins
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Priya Dohlman
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| | - Georges Nehmetallah
- Department of Electrical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Christopher B. Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia, USA
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Giwa A, Rossouw SC, Fatai A, Gamieldien J, Christoffels A, Bendou H. Predicting amplification of MYCN using CpG methylation biomarkers in neuroblastoma. Future Oncol 2021; 17:4769-4783. [PMID: 34751044 DOI: 10.2217/fon-2021-0522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification of MYCN in neuroblastoma is a predictor of poor prognosis. Materials and methods: DNA methylation data from the TARGET data matrix were stratified into MYCN amplified and non-amplified groups. Differential methylation analysis, clustering, recursive feature elimination (RFE), machine learning (ML), Cox regression analysis and Kaplan-Meier estimates were performed. Results and Conclusion: 663 CpGs were differentially methylated between the two groups. A total of 25 CpGs were selected by RFE for clustering and ML, and a 100% clustering accuracy was obtained. ML validation on three external datasets produced high accuracy scores of 100%, 97% and 93%. Eight survival-associated CpGs were also identified. Therapeutic interventions may need to be targeted to patient subgroups.
Collapse
Affiliation(s)
- Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Sophia Catherine Rossouw
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Azeez Fatai
- Department of Biochemistry, Lagos State University, Nigeria
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| |
Collapse
|
23
|
Abante J, Kambhampati S, Feinberg AP, Goutsias J. Estimating DNA methylation potential energy landscapes from nanopore sequencing data. Sci Rep 2021; 11:21619. [PMID: 34732768 PMCID: PMC8566571 DOI: 10.1038/s41598-021-00781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
High-throughput third-generation nanopore sequencing devices have enormous potential for simultaneously observing epigenetic modifications in human cells over large regions of the genome. However, signals generated by these devices are subject to considerable noise that can lead to unsatisfactory detection performance and hamper downstream analysis. Here we develop a statistical method, CpelNano, for the quantification and analysis of 5mC methylation landscapes using nanopore data. CpelNano takes into account nanopore noise by means of a hidden Markov model (HMM) in which the true but unknown ("hidden") methylation state is modeled through an Ising probability distribution that is consistent with methylation means and pairwise correlations, whereas nanopore current signals constitute the observed state. It then estimates the associated methylation potential energy function by employing the expectation-maximization (EM) algorithm and performs differential methylation analysis via permutation-based hypothesis testing. Using simulations and analysis of published data obtained from three human cell lines (GM12878, MCF-10A, and MDA-MB-231), we show that CpelNano can faithfully estimate DNA methylation potential energy landscapes, substantially improving current methods and leading to a powerful tool for the modeling and analysis of epigenetic landscapes using nanopore sequencing data.
Collapse
Affiliation(s)
- Jordi Abante
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Sandeep Kambhampati
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Goutsias
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
24
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
25
|
Fathinavid A, Ghobadi MZ, Najafi A, Masoudi-Nejad A. Identification of common microRNA between COPD and non-small cell lung cancer through pathway enrichment analysis. BMC Genom Data 2021; 22:41. [PMID: 34635059 PMCID: PMC8507163 DOI: 10.1186/s12863-021-00986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Different factors have been introduced which influence the pathogenesis of chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). COPD as an independent factor is involved in the development of lung cancer. Moreover, there are certain resemblances between NSCLC and COPD, such as growth factors, activation of intracellular pathways, as well as epigenetic factors. One of the best approaches to understand the possible shared pathogenesis routes between COPD and NSCLC is to study the biological pathways that are activated. MicroRNAs (miRNAs) are critical biomolecules that implicate the regulation of several biological and cellular processes. As such, the main goal of this study was to use a systems biology approach to discover common dysregulated miRNAs between COPD and NSCLC, one that targets most genes within common enriched pathways. RESULTS To reconstruct the miRNA-pathways for each disease, we used the microarray miRNA expression data. Then, we employed "miRNA set enrichment analysis" (MiRSEA) to identify the most significant joint miRNAs between COPD and NSCLC based on the enrichment scores. Overall, our study revealed the involvement of the targets of miRNAs (such as has-miR-15b, hsa-miR-106a, has-miR-17, has-miR-103, and has-miR-107) in the most important common biological pathways. CONCLUSIONS According to the promising results of the pathway analysis, the identified miRNAs can be utilized as the new potential signatures for therapy through understanding the molecular mechanisms of both diseases.
Collapse
Affiliation(s)
- Amirhossein Fathinavid
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mohadeseh Zarei Ghobadi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
27
|
Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol 2021; 9:711381. [PMID: 34395440 PMCID: PMC8356673 DOI: 10.3389/fcell.2021.711381] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Primary cancer cell lines are ex vivo cell cultures originating from resected tissues during biopsies and surgeries. Primary cell cultures are objects of intense research due to their high impact on molecular biology and oncology advancement. Initially, the patient-derived specimen must be subjected to dissociation and isolation. Techniques for tumour dissociation are usually reliant on the organisation of connecting tissue. The most common methods include enzymatic digestion (with collagenase, dispase, and DNase), chemical treatment (with ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid), or mechanical disaggregation to obtain a uniform cell population. Cells isolated from the tissue specimen are cultured as a monolayer or three-dimensional culture, in the form of multicellular spheroids, scaffold-based cultures (i.e., organoids), or matrix-embedded cultures. Every primary cell line must be characterised to identify its origin, purity, and significant features. The process of characterisation should include different assays utilising specific (extra- and intracellular) markers. The most frequently used approaches comprise immunohistochemistry, immunocytochemistry, western blot, flow cytometry, real-time polymerase chain reaction, karyotyping, confocal microscopy, and next-generation sequencing. The growing body of evidence indicates the validity of the usage of primary cancer cell lines in the formulation of novel anti-cancer treatments and their contribution to drug development.
Collapse
Affiliation(s)
- Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
| | - Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Igor Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wiktoria M. Suchorska
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
28
|
Significance of Targeting VEGFR-2 and Cyclin D1 in Luminal-A Breast Cancer. Molecules 2020; 25:molecules25204606. [PMID: 33050377 PMCID: PMC7594023 DOI: 10.3390/molecules25204606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The hormonal luminal-A is the most pre-dominant sub type of breast cancer (BC), and it is associated with a high level of cyclin D1 in Saudi patients. Tamoxifen is the golden therapy for hormonal BC, but resistance of cancer cells to tamoxifen contributes to the recurrence of BC due to many reasons, including high levels of AIB1 and cyclin D1. Overcoming drug resistance could be achieved by exploring alternative targetable therapeutic pathways and new drugs or combinations. The objective of this study was to determine the differentially enriched pathways in 12 samples of Saudi women diagnosed with luminal-A using the PamChip peptide microarray-based kinase activity profiling, and to compare the activity of HAA2020 and dinaciclib with tamoxifen in singles and combinations in the MCF7 luminal-A cell line. Our results of network and pathway analysis of the 12 samples highlighted the importance of VEGFR and CDKs in promoting luminal-A breast cancer. The activation of VEGF signaling via VEGFR-2 leads to activation of PI3K/AKT kinases and an increase of cell survival, and leads to activation of Hsp90, which induces the phosphorylation of FAK1, resulting in cytoskeleton remodeling. PLC-gamma 1 is also activated, leading to FAK-2 and PKC activation. Notably, the G1/S cell cycle phases and phosphorylation processes contribute to the top seven tumorigenesis processes in the 12 samples. Further, the MTT combination of HAA2020 and dinaciclib showed the best combination index (CI), was more clonogenic against MCF7 cells compared to the other combinations, and it also showed the best selectivity index (SI) in normal MRC5 cells. Interestingly, HAA2020 and dinaciclib showed a synergistic apoptotic and G1 cell cycle effect in MCF7 cells, which was supported by their synergistic CDK2, cyclin D1, and PCNA inhibition activities. Additionally, the combination showed VEGFR-2 and Hsp90 inhibition activities in MCF7 cells. The results show the significance of targeting VEGFR-2 and cyclin D1 in Saudi luminal-A breast cancer patients, and the effect of combining HAA2020 and dinaciclib on those targets in the MCF7 model. It also warrants further preclinical and in vivo investigations for the combination of HAA2020 and dinaciclib as a possible future second-line treatment for luminal-A breast cancers.
Collapse
|
29
|
Lam VK, Sharma P, Nguyen T, Nehmetallah G, Raub CB, Chung BM. Morphology, Motility, and Cytoskeletal Architecture of Breast Cancer Cells Depend on Keratin 19 and Substrate. Cytometry A 2020; 97:1145-1155. [PMID: 32286727 DOI: 10.1002/cyto.a.24011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells gain motility through events that accompany modulation of cell shape and include altered expression of keratins. However, the role of keratins in change of cancer cell architecture is not well understood. Therefore, we ablated the expression of keratin 19 (K19) in breast cancer cells of the MDA-MB-231 cell line and found that cells lacking K19 become more elongated in culture, with morphological reversion toward the parental phenotype upon transduction of KRT19. Also, the number of actin stress fibers and focal adhesions were significantly reduced in KRT19 knockout (KO) cells. The altered morphology of KRT19 KO cells was then characterized quantitatively using digital holographic microscopy (DHM), which not only confirmed the phenotypic change of KRT19 KO cells but also identified that the K19-dependent morphological change is dependent on the substrate type. A new quantitative method of single cell analysis from DHM, via average phase difference maps, facilitated evaluation of K19-substrate interactive effects on cell morphology. When plated on collagen substrate, KRT19 KO cells were less elongated and resembled parental cells. Assessing single cell motility further showed that while KRT19 KO cells moved faster than parental cells on a rigid surface, this increase in motility became abrogated when cells were plated on collagen. Overall, our study suggests that K19 inhibits cell motility by regulating cell shape in a substrate-dependent manner. Thus, this study provides a potential basis for the altered expression of keratins associated with change in cell shape and motility of cancer cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Van K Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Thanh Nguyen
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Georges Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|