1
|
Yin J, Liu M, Wang X, Miao H, He W, Liu W, Yu Z, Zhang Q, Bai J, Cheng Y, Ni B. Brief biology and pathophysiology of Tekt bundles. Cell Adh Migr 2025; 19:2465421. [PMID: 39949046 PMCID: PMC11834534 DOI: 10.1080/19336918.2025.2465421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Tektins, a family of microtubule-stabilizing proteins, are critical for cilia and flagella assembly in mammals. They maintain doublet microtubule stability and ciliary/flagellar motility. Loss of Tekt1-5 causes microtubule instability, impaired motility, and diseases like infertility, retinal degeneration, Mainzer-Saldino syndrome, and diabetic nephropathy. Pathophysiological stimuli regulate Tektin expression through transcriptional, posttranscriptional, translational, and posttranslational modifications. This review summarizes the latest findings on Tektin functions and their role in diseases.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Min Liu
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiao Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wenjuan He
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei Liu
- Department of Immunology, Army Medical University, Chongqing, China
| | - Zhongying Yu
- Department of Urology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Qinghua Zhang
- Reproductive Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jialian Bai
- School of Artificial Intelligence and Big Data, Chongqing Industry Polytechnic College, Chongqing, China
| | - Yimei Cheng
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Katsuma K, Shimada K, Tonai S, Mashiko D, Iida-Norita R, Kaneda Y, Miyata H, Ikawa M. The absence of both RIBC1 and RIBC2 induces decreased sperm motility and litter size in male mice. Andrology 2025. [PMID: 40265983 DOI: 10.1111/andr.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND RIBC1 (RIB43A domain with coiled-coils 1) and RIBC2 (RIB43A domain with coiled-coils 2) are homolog proteins of RIB43a which is localized to microtubules in the cilia and flagella of unicellular organisms. Cryo-electron microscopy and artificial intelligence studies showed that RIBC1 and RIBC2 are microtubule inner proteins (MIPs) localized in the inner lumen of the doublet microtubules (DMTs) in mouse sperm flagella. However, the function of RIBC1 and RIBC2 in mammalian reproduction and sperm flagella is still unknown. OBJECTIVE To clarify the function of RIBC1 and RIBC2 in mouse spermatozoa. MATERIALS AND METHODS We generated Ribc1 knockout (KO), Ribc2 KO, and Ribc1 and Ribc2 double-knockout (Ribc1/2 DKO) mice using the CRISPR/Cas9 system and analyzed their phenotypes. RESULTS We revealed that the loss of either RIBC1 or RIBC2 alone did not affect male fertility, but the absence of both caused a decrease in pup numbers. Sperm motility analysis showed that Ribc1 KO spermatozoa had reduced velocity, but Ribc2 KO sperm velocities were comparable with WT mice. However, Ribc1/2 DKO sperm velocities were significantly lower than those from Ribc1 KO mice. No structural abnormalities in the axonemal structure at the transmission electron microscope (TEM) level and no abnormalities in the flagellar waveform pattern were observed in Ribc1/2 DKO spermatozoa. DISCUSSION AND CONCLUSION Both RIBC1 and RIBC2 are not significant for maintaining the axonemal structure in mouse spermatozoa, but both proteins function cooperatively in sperm motility. This result may indicate that minor structural changes due to RIBC protein absence are not detected at the TEM level, and RIBC2 function depends on RIBC1 in sperm motility. We think that reduced litter size in Ribc1/2 DKO mice is caused by reduced sperm motility due to minor structural abnormalities caused by the loss of two RIBC proteins.
Collapse
Affiliation(s)
- Kento Katsuma
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shingo Tonai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Mashiko
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Zeng T, Wang J, Liu Z, Wang X, Zhang H, Ai X, Deng X, Wu K. Identification of Candidate Genes and eQTLs Related to Porcine Reproductive Function. Animals (Basel) 2025; 15:1038. [PMID: 40218432 PMCID: PMC11987867 DOI: 10.3390/ani15071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Expression quantitative trait locus (eQTL) mapping is an effective tool for identifying genetic variations that regulate gene expression. An increasing number of studies suggested that SNPs associated with complex traits in farm animals are considered as expression quantitative trait loci. Identifying eQTLs associated with gene expression levels in the endometrium helps to unravel the regulatory mechanisms of genes related to reproductive functions in this tissue and provides molecular markers for the genetic improvement of high-fertility sow breeding. In this study, 218 RNA-seq data from pig endometrial tissue were used for eQTL analysis to identify genetic variants regulating gene expression. Additionally, weighted gene co-expression network analysis (WGCNA) was performed to identify hub genes involved in reproductive functions. The eQTL analysis identified 34,876 significant cis-eQTLs regulating the expression of 5632 genes (FDR ≤ 0.05), and 90 hub genes were identified by WGCNA analysis. By integrating eQTL and WGCNA results, 14 candidate genes and 16 fine-mapped cis-eQTLs were identified, including FRK, ARMC3, SLC35F3, TMEM72, FFAR4, SOWAHA, PSPH, FMO5, HPN, FUT2, RAP1GAP, C6orf52, SEL1L3, and CLGN, which were involved in the physiological processes of reproduction in sows through hormone regulation, cell adhesion, and amino acid and lipid metabolism. These eQTLs regulate the high expression of candidate genes in the endometrium, thereby affecting reproductive-related physiological functions. These findings enhance our understanding of the genetic basis of reproductive traits and provide valuable genetic markers for marker-assisted selection (MAS), which can be applied to improve sow fecundity and optimize breeding strategies for high reproductive performance.
Collapse
Affiliation(s)
- Tong Zeng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
| | - Ji Wang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
| | - Zhexi Liu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China
| | - Xiaofeng Wang
- Beijing Municipal General Station for Animal Husbandry & Veterinary Service, Beijing 100107, China;
| | - Han Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
| | - Xiaohua Ai
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
| | - Keliang Wu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (J.W.); (Z.L.); (H.Z.); (X.A.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
4
|
Kulasooriya S, Liu H, Vijayakumar S, Bloom C, Tu S, Borgmeier BJ, Zhou M, Tao L, Kachar B, He DZ. Single-cell Transcriptomics Unravel Stereocilia Degeneration as a Key Contributor to Age-related Vestibular Dysfunction in Mice and Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636113. [PMID: 39975332 PMCID: PMC11838431 DOI: 10.1101/2025.02.02.636113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Age-related vestibular dysfunction (ARVD) is a prevalent, debilitating condition in the elderly. The etiology and molecular mechanisms are poorly understood. We focused on mechanosensitive hair cells (HCs) as they are particularly vulnerable to aging. Using single-cell RNA-seq transcriptomes of young and old mouse vestibular HCs, we show that aging HCs display both universal molecular blueprints, such as genomic instability, mitochondrial dysfunction, and impaired proteostasis, and cell type-specific aging signatures associated with deterioration of hair bundles and mechanotransduction. These signatures are also observed in aged human vestibular HCs, suggesting shared mechanisms. Importantly, morphological and functional analysis revealed that bundle degeneration and vestibular functional decline precede HC loss, highlighting the deterioration of mechanotransduction as a key contributor to ARVD. Furthermore, molecular and cellular changes associated with aging signatures are less pronounced in vestibular HCs than in cochlear HCs, underscoring the different pace of aging between the two mammalian inner ear sensory epithelia.
Collapse
|
5
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
6
|
Martínez-Hernández R, Serrano-Somavilla A, Fernández-Contreras R, Sanchez-Guerrero C, Sánchez de la Blanca N, Sacristán-Gómez P, Sebastian-Valles F, Sampedro-Núñez M, Fraga J, Calatayud M, Vicente A, García-de-Casasola G, Sanz-García A, Araujo-Castro M, Ruz-Caracuel I, Puig-Domingo M, Marazuela M. Primary Cilia as a Tumor Marker in Pituitary Neuroendocrine Tumors. Mod Pathol 2024; 37:100475. [PMID: 38508520 DOI: 10.1016/j.modpat.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Pituitary neuroendocrine tumors (PitNETs) account for approximately 15% of all intracranial neoplasms. Although they usually appear to be benign, some tumors display worse behavior, displaying rapid growth, invasion, refractoriness to treatment, and recurrence. Increasing evidence supports the role of primary cilia (PC) in regulating cancer development. Here, we showed that PC are significantly increased in PitNETs and are associated with increased tumor invasion and recurrence. Serial electron micrographs of PITNETs demonstrated different ciliation phenotypes (dot-like versus normal-like cilia) that represented PC at different stages of ciliogenesis. Molecular findings demonstrated that 123 ciliary-associated genes (eg, doublecortin domain containing protein 2, Sintaxin-3, and centriolar coiled-coil protein 110) were dysregulated in PitNETs, representing the upregulation of markers at different stages of intracellular ciliogenesis. Our results demonstrate, for the first time, that ciliogenesis is increased in PitNETs, suggesting that this process might be used as a potential target for therapy in the future.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain.
| | - Ana Serrano-Somavilla
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Raul Fernández-Contreras
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Cristina Sanchez-Guerrero
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Nuria Sánchez de la Blanca
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Pablo Sacristán-Gómez
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Fernando Sebastian-Valles
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Javier Fraga
- Department of Pathology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calatayud
- Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Almudena Vicente
- Department of Endocrinology and Nutrition, Hospital Universitario de Toledo, Toledo, Castilla-La Mancha, Spain
| | | | - Ancor Sanz-García
- Faculty of Health Sciences, Universidad de Castilla la Mancha, Talavera de la Reina, Castilla-La Mancha, Spain
| | | | | | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain.
| |
Collapse
|
7
|
Martínez Duncker Rebolledo E, Chan D, Christensen KE, Reagan AM, Howell GR, Rozen R, Trasler J. Sperm DNA methylation defects in a new mouse model of the 5,10-methylenetetrahydrofolate reductase 677C>T variant and correction with moderate dose folic acid supplementation. Mol Hum Reprod 2024; 30:gaae008. [PMID: 38366926 PMCID: PMC10980591 DOI: 10.1093/molehr/gaae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
5,10-Methylenetetrahydrofolate reductase (MTHFR) is an enzyme that plays a key role in providing methyl groups for DNA methylation, including during spermatogenesis. A common genetic variant in humans (MTHFR 677C>T) results in reduced enzyme activity and has been linked to various disorders, including male infertility. A new animal model has been created by reproducing the human equivalent of the polymorphism in mice using CRISPR/Cas9. Biochemical parameters in the Mthfr 677TT mice recapitulate alterations found in MTHFR 677TT men. Our aims were to characterize the sperm DNA methylome of the Mthfr 677CC and TT mice on a control diet (2 mg folic acid/kg diet) and assess the effects of folic acid supplementation (10 mg/kg diet) on the sperm DNA methylome. Body and reproductive organ weights, testicular sperm counts, and histology were examined. DNA methylation in sperm was assessed using bisulfite pyrosequencing and whole-genome bisulfite sequencing (WGBS). Reproductive parameters and locus-specific imprinted gene methylation were unaffected by genotype or diet. Using WGBS, sperm from 677TT mice had 360 differentially methylated tiles as compared to 677CC mice, predominantly hypomethylation (60% of tiles). Folic acid supplementation mostly caused hypermethylation in sperm of males of both genotypes and was found to partially correct the DNA methylation alterations in sperm associated with the TT genotype. The new mouse model will be useful in understanding the role of MTHFR deficiency in male fertility and in designing folate supplementation regimens for the clinic.
Collapse
Affiliation(s)
- Edgar Martínez Duncker Rebolledo
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Karen E Christensen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Rima Rozen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, Montreal, QC, Canada
| |
Collapse
|
8
|
Yan J, Zhou L, Liu M, Zhu H, Zhang X, Cai E, Xu X, Chen T, Cheng H, Liu J, Wang S, Dai L, Chang X, Tang F. Single-cell analysis reveals insights into epithelial abnormalities in ovarian endometriosis. Cell Rep 2024; 43:113716. [PMID: 38412094 DOI: 10.1016/j.celrep.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024] Open
Abstract
Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.
Collapse
Affiliation(s)
- Jia Yan
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Mengya Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xin Zhang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - E Cai
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xueqiang Xu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Tinghan Chen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Jun'e Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Shang Wang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Lin Dai
- Department of Pathology, People's Hospital, Peking University, Beijing 100044, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China.
| |
Collapse
|
9
|
Chae S, Park TJ, Kwon T. Convergent differentiation of multiciliated cells. Sci Rep 2023; 13:23028. [PMID: 38155158 PMCID: PMC10754865 DOI: 10.1038/s41598-023-50077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Multiciliated cells (MCCs) are epithelial cells that control body fluid flow and contribute to the clearance of pathogenic microbes and other particles from the airways, egg transport in oviducts, and circulation of cerebrospinal fluid in the central nervous system. Although MCCs have shared functions to control fluid flow via coordinated motility of multiple ciliary structures, they are found in multiple mammalian tissues originating from distinct germ layers and differentiate via distinct developmental pathways. To understand the similarities and differences of MCCs in multiple tissues, we investigated single-cell transcriptome data of nasal epithelial cells, bronchial tubes, fallopian tubes, and ependymal cells in the subventricular zone from humans and mice by cross-species data integration. Expression of cilia-associated genes was indistinguishable between these MCCs, although cell populations had unique properties by the species and tissue, demonstrating that they share the same final differentiation status for ciliary functions. We further analyzed the final differentiation step of MCCs from their distinctive progenitors and confirmed their convergent gene set expression for ciliogenesis at the final step. These results may provide new insight into understanding ciliogenesis during the developmental process.
Collapse
Affiliation(s)
- Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
10
|
Sur A, Wang Y, Capar P, Margolin G, Prochaska MK, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev Cell 2023; 58:3028-3047.e12. [PMID: 37995681 PMCID: PMC11181902 DOI: 10.1016/j.devcel.2023.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and identify unexpected long-term cycling populations. Focused clustering and transcriptional trajectory analyses of non-skeletal muscle and endoderm identified transcriptional profiles and candidate transcriptional regulators of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and recently discovered best4+ cells. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Morgan Kathleen Prochaska
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
12
|
Carrell EM, Chen YH, Ranum PT, Coffin SL, Singh LN, Tecedor L, Keiser MS, Hudry E, Hyman BT, Davidson BL. VWA3A-derived ependyma promoter drives increased therapeutic protein secretion into the CSF. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:296-304. [PMID: 37547292 PMCID: PMC10400871 DOI: 10.1016/j.omtn.2023.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.
Collapse
Affiliation(s)
- Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L. Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S. Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Salve BG, Kurian AM, Vijay N. Concurrent loss of ciliary genes WDR93 and CFAP46 in phylogenetically distant birds. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230801. [PMID: 37621660 PMCID: PMC10445033 DOI: 10.1098/rsos.230801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
The respiratory system is the primary route of infection for many contagious pathogens. Mucociliary clearance of inhaled pathogens is an important innate defence mechanism sustained by the rhythmic movement of epithelial cilia. To counter host defences, viral pathogens target epithelial cells and cilia. For instance, the avian influenza virus that targets ciliated cells modulates the expression of WDR93, a central ciliary apparatus C1d projection component. Lineage-specific prevalence of such host defence genes results in differential susceptibility. In this study, the comparative analysis of approximately 500 vertebrate genomes from seven taxonomic classes spanning 73 orders confirms the widespread conservation of WDR93 across these different vertebrate groups. However, we established loss of the WDR93 in landfowl, geese and other phylogenetically independent bird species due to gene-disrupting changes. The lack of WDR93 transcripts in species with gene loss in contrast to its expression in species with an intact gene confirms gene loss. Notably, species with WDR93 loss have concurrently lost another C1d component, CFAP46, through large segmental deletions. Understanding the consequences of such gene loss may provide insight into their role in host-pathogen interactions and benefit global pathogen surveillance efforts by prioritizing species missing host defence genes and identifying putative zoonotic reservoirs.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Amia Miriam Kurian
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
14
|
Padua MB, Helm BM, Wells JR, Smith AM, Bellchambers HM, Sridhar A, Ware SM. Congenital heart defects caused by FOXJ1. Hum Mol Genet 2023; 32:2335-2346. [PMID: 37158461 PMCID: PMC10321388 DOI: 10.1093/hmg/ddad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
FOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, IN 46202, USA
| | - John R Wells
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda M Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Helen M Bellchambers
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arthi Sridhar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Kim DY, Sub YJ, Kim HY, Cho KJ, Choi WI, Choi YJ, Lee MG, Hildebrandt F, Gee HY. LRRC6 regulates biogenesis of motile cilia by aiding FOXJ1 translocation into the nucleus. Cell Commun Signal 2023; 21:142. [PMID: 37328841 PMCID: PMC10273532 DOI: 10.1186/s12964-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND LRRC6 is an assembly factor for dynein arms in the cytoplasm of motile ciliated cells, and when mutated, dynein arm components remained in the cytoplasm. Here, we demonstrate the role of LRRC6 in the active nuclear translocation of FOXJ1, a master regulator for cilia-associated gene transcription. METHODS We generated Lrrc6 knockout (KO) mice, and we investigated the role of LRRC6 on ciliopathy development by using proteomic, transcriptomic, and immunofluorescence analysis. Experiments on mouse basal cell organoids confirmed the biological relevance of our findings. RESULTS The absence of LRRC6 in multi-ciliated cells hinders the assembly of ODA and IDA components of cilia; in this study, we showed that the overall expression of proteins related to cilia decreased as well. Expression of cilia-related transcripts, specifically ODA and IDA components, dynein axonemal assembly factors, radial spokes, and central apparatus was lower in Lrrc6 KO mice than in wild-type mice. We demonstrated that FOXJ1 was present in the cytoplasm and translocated into the nucleus when LRRC6 was expressed and that this process was blocked by INI-43, an importin α inhibitor. CONCLUSIONS Taken together, these results hinted at the LRRC6 transcriptional regulation of cilia-related genes via the nuclear translocation of FOXJ1. Video Abstract.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Yu Jin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyeong Jee Cho
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won Il Choi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yo Jun Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Elliott KH, Balchand SK, Bonatto Paese CL, Chang CF, Yang Y, Brown KM, Rasicci DT, He H, Thorner K, Chaturvedi P, Murray SA, Chen J, Porollo A, Peterson KA, Brugmann SA. Identification of a heterogeneous and dynamic ciliome during embryonic development and cell differentiation. Development 2023; 150:dev201237. [PMID: 36971348 PMCID: PMC10163354 DOI: 10.1242/dev.201237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity. Genes within the differentially expressed ciliome exhibited a lower level of functional constraint across species, suggesting organism and cell-specific function adaptation. The biological relevance of ciliary heterogeneity was functionally validated by using Cas9 gene-editing to disrupt ciliary genes that displayed dynamic gene expression profiles during osteogenic differentiation of multipotent neural crest cells. Collectively, this novel primary cilia-focused resource will allow researchers to explore longstanding questions related to how tissue and cell-type specific functions and ciliary heterogeneity may contribute to the range of phenotypes associated with ciliopathies.
Collapse
Affiliation(s)
- Kelsey H. Elliott
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Sai K. Balchand
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Kari M. Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
| | | | - Hao He
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Jing Chen
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Aleksey Porollo
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | | | - Samantha A. Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Kwon KY, Jeong H, Jang DG, Kwon T, Park TJ. Ckb and Ybx2 interact with Ribc2 and are necessary for the ciliary beating of multi-cilia. Genes Genomics 2023; 45:157-167. [PMID: 36508087 DOI: 10.1007/s13258-022-01350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motile cilia in a vertebrate are important to sustaining activities of life. Fluid flow on the apical surface of several tissues, including bronchial epithelium, ependymal epithelium, and fallopian tubules is generated by the ciliary beating of motile cilia. Multi-ciliated cells in ependymal tissue are responsible for the circulation of cerebrospinal fluid (CSF), which is essential for the development and homeostasis of the central nervous system, and airway tissues are protected from external contaminants by cilia-driven mucosal flow over the top of the airway epithelium. OBJECTIVE A previous study reported that reduction of Ribc2 protein leads to disruption of ciliary beating in multi-ciliated cells. However, knowledge regarding the molecular function of Ribc2 is limited, thus currently available information is also limited. Therefore, we evaluated the importance of proteins involved in the interaction with Ribc2 in the process of ciliary beating. METHODS Immunoprecipitation and mass spectrometry analysis was performed for the discovery of proteins involved in the interaction with Ribc2. Expression of the target gene was inhibited by injection of antisense morpholinos and measurement of the fluid flow on the embryonic epidermis of Xenopus was performed using fluorescent beads for examination of the ciliary beating of multi cilia. In addition, the flag-tagged protein was expressed by injection of mRNA and the changes in protein localization in the cilia were measured by immunostaining and western blot analysis for analysis of the molecular interaction between Ribc2 and Ribc2 binding proteins in multi-cilia. RESULTS The IP/MS analysis identified Ckb and Ybx2 as Ribc2 binding proteins and our results showed that localization of both Ckb and Ybx2 occurs at the axoneme of multi-cilia on the embryonic epithelium of Xenopus laevis. In addition, our findings confirmed that knock-down of Ckb or Ybx2 resulted in abnormal ciliary beating and reduction of cilia-driven fluid flow on multi-cilia of Xenopus laevis. In addition, significantly decreased localization of Ckb or Ybx2 in the ciliary axoneme was observed in Ribc2-depleted multi-cilia. CONCLUSION Ckb and Ybx2 are involved in the interaction with Ribc2 and are necessary for the ciliary beating of multi-cilia.
Collapse
Affiliation(s)
- Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyeongsun Jeong
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
18
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
20
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
21
|
Seidel F, Laser KT, Klingel K, Dartsch J, Theisen S, Pickardt T, Holtgrewe M, Gärtner A, Berger F, Beule D, Milting H, Schubert S, Klaassen S, Kühnisch J. Pathogenic Variants in Cardiomyopathy Disorder Genes Underlie Pediatric Myocarditis—Further Impact of Heterozygous Immune Disorder Gene Variants? J Cardiovasc Dev Dis 2022; 9:jcdd9070216. [PMID: 35877578 PMCID: PMC9321514 DOI: 10.3390/jcdd9070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart. Pediatric myocarditis with the dilated cardiomyopathy (DCM) phenotype may be caused by likely pathogenic or pathogenic genetic variants [(L)P] in cardiomyopathy (CMP) genes. Systematic analysis of immune disorder gene defects has not been performed so far. We analyzed 12 patients with biopsy-proven myocarditis and the DCM phenotype together with their parents using whole-exome sequencing (WES). The WES data were filtered for rare pathogenic variants in CMP (n = 89) and immune disorder genes (n = 631). Twelve children with a median age of 2.9 (1.0–6.8) years had a mean left ventricular ejection fraction of 28% (22–32%) and myocarditis was confirmed by endomyocardial biopsy. Patients with primary immunodeficiency were excluded from the study. Four patients underwent implantation of a ventricular assist device and subsequent heart transplantation. Genetic analysis of the 12 families revealed an (L)P variant in the CMP gene in 8/12 index patients explaining DCM. Screening of recessive immune disorder genes identified a heterozygous (L)P variant in 3/12 index patients. This study supports the genetic impact of CMP genes for pediatric myocarditis with the DCM phenotype. Piloting the idea that additional immune-related genetic defects promote myocarditis suggests that the presence of heterozygous variants in these genes needs further investigation. Altered cilium function might play an additional role in inducing inflammation in the context of CMP.
Collapse
Affiliation(s)
- Franziska Seidel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Kai Thorsten Laser
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72016 Tübingen, Germany;
| | - Josephine Dartsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Simon Theisen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Thomas Pickardt
- National Register for Congenital Heart Defects, 13353 Berlin, Germany;
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
- Core Facility Bioinformatik, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Felix Berger
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
| | - Hendrik Milting
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Stephan Schubert
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Sabine Klaassen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| | - Jirko Kühnisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| |
Collapse
|
22
|
Huang L, Guo M, Zhou Y, Liang T, Li N. Identification of ALMS1 pathogenic variants in Chinese patients with Alström syndrome. Ophthalmic Genet 2022; 43:573-575. [PMID: 35786123 DOI: 10.1080/13816810.2022.2092759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Maosheng Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianwei Liang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Department of Ophthalmology, Children's Hospital, Capital Institute of Pediatrics, Beijing,
| |
Collapse
|
23
|
Freeman TC, Horsewell S, Patir A, Harling-Lee J, Regan T, Shih BB, Prendergast J, Hume DA, Angus T. Graphia: A platform for the graph-based visualisation and analysis of high dimensional data. PLoS Comput Biol 2022; 18:e1010310. [PMID: 35877685 PMCID: PMC9352203 DOI: 10.1371/journal.pcbi.1010310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/04/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Graphia is an open-source platform created for the graph-based analysis of the huge amounts of quantitative and qualitative data currently being generated from the study of genomes, genes, proteins metabolites and cells. Core to Graphia’s functionality is support for the calculation of correlation matrices from any tabular matrix of continuous or discrete values, whereupon the software is designed to rapidly visualise the often very large graphs that result in 2D or 3D space. Following graph construction, an extensive range of measurement algorithms, routines for graph transformation, and options for the visualisation of node and edge attributes are available, for graph exploration and analysis. Combined, these provide a powerful solution for the interpretation of high-dimensional data from many sources, or data already in the form of a network or equivalent adjacency matrix. Several use cases of Graphia are described, to showcase its wide range of applications in the analysis biological data. Graphia runs on all major desktop operating systems, is extensible through the deployment of plugins and is freely available to download from https://graphia.app/. Graphia is a new visual analytics platform specifically created for the network-based analysis of large and complex data, such as that generated in huge amounts by modern biological analyses. It works in a data agnostic, hypothesis-free manner to generate correlation networks from any table of numerical or discrete values, thereafter providing a means to rapidly visualise the often very large networks that result, in either 2D or 3D space. Following network construction, the tool offers an extensive range of analysis algorithms, routines for network transformation, and options for the visualisation of metadata. This provides a powerful analysis solution for the exploration and interpretation of high-dimensional data from any source, as well as any data already defined as a network. Several use cases of Graphia are described to showcase its wide range of applications in the analysis biological data. Graphia is open source and free to all.
Collapse
Affiliation(s)
- Tom C. Freeman
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
- Kajeka Limited, Roslin Innovation Centre, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Sebastian Horsewell
- Kajeka Limited, Roslin Innovation Centre, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anirudh Patir
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - Josh Harling-Lee
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Regan
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara B. Shih
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - James Prendergast
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Tim Angus
- Kajeka Limited, Roslin Innovation Centre, Easter Bush Campus, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Zhu T, Brown AP, Cai LP, Quon G, Ji H. Single-Cell RNA-Seq Analysis Reveals Lung Epithelial Cell Type-Specific Responses to HDM and Regulation by Tet1. Genes (Basel) 2022; 13:genes13050880. [PMID: 35627266 PMCID: PMC9140484 DOI: 10.3390/genes13050880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tet1 protects against house dust mite (HDM)-induced lung inflammation in mice and alters the lung methylome and transcriptome. In order to explore the role of Tet1 in individual lung epithelial cell types in HDM-induced inflammation, we established a model of HDM-induced lung inflammation in Tet1 knockout and littermate wild-type mice, then studied EpCAM+ lung epithelial cells using single-cell RNA-seq analysis. We identified eight EpCAM+ lung epithelial cell types, among which AT2 cells were the most abundant. HDM challenge altered the relative abundance of epithelial cell types and resulted in cell type-specific transcriptomic changes. Bulk and cell type-specific analysis also showed that loss of Tet1 led to the altered expression of genes linked to augmented HDM-induced lung inflammation, including alarms, detoxification enzymes, oxidative stress response genes, and tissue repair genes. The transcriptomic regulation was accompanied by alterations in TF activities. Trajectory analysis supports that HDM may enhance the differentiation of AP and BAS cells into AT2 cells, independent of Tet1. Collectively, our data showed that lung epithelial cells had common and unique transcriptomic signatures of allergic lung inflammation. Tet1 deletion altered transcriptomic networks in various lung epithelial cells, which may promote allergen-induced lung inflammation.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Anthony P. Brown
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Lucy P. Cai
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
| | - Gerald Quon
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95616, USA;
| | - Hong Ji
- California National Primate Research Center, University of California, Davis, CA 95616, USA; (T.Z.); (A.P.B.); (L.P.C.)
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-0679
| |
Collapse
|
25
|
Balázs A, Millar-Büchner P, Mülleder M, Farztdinov V, Szyrwiel L, Addante A, Kuppe A, Rubil T, Drescher M, Seidel K, Stricker S, Eils R, Lehmann I, Sawitzki B, Röhmel J, Ralser M, Mall MA. Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Front Immunol 2022; 13:822437. [PMID: 35296085 PMCID: PMC8918506 DOI: 10.3389/fimmu.2022.822437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| | - Pamela Millar-Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Lukasz Szyrwiel
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Center for Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lehmann
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| |
Collapse
|
26
|
Kaitetzidou E, Gilfillan GD, Antonopoulou E, Sarropoulou E. Sex-biased dynamics of three-spined stickleback (Gasterosteus aculeatus) gene expression patterns. Genomics 2021; 114:266-277. [PMID: 34933072 DOI: 10.1016/j.ygeno.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
The study of the differences between sexes presents an excellent model to unravel how phenotypic variation is achieved from a similar genetic background. Sticklebacks are of particular interest since evidence of a heteromorphic chromosome pair has not always been detected. The present study investigated sex-biased mRNA and small non-coding RNA (sncRNA) expression patterns in the brain, adipose tissues, and gonads of the three-spined stickleback. The sncRNA analysis indicated that regulatory functions occurred mainly in the gonads. Alleged miRNA-mRNA interactions were established and a mapping bias of differential expressed transcripts towards chromosome 19 was observed. Key players previously shown to control sex determination and differentiation in other fish species but also genes like gapdh were among the transcripts identified. This is the first report in the three-spined stickleback demonstrating tissue-specific expression comprising both mRNA and sncRNA between sexes, emphasizing the importance of mRNA-miRNA interactions as well as new presumed genes not yet identified to have gender-specific roles.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece.
| |
Collapse
|
27
|
Rajagopalan S, Singh A, Khiabanian H. Cilium Expression Score Predicts Glioma Survival. Front Genet 2021; 12:758391. [PMID: 34868236 PMCID: PMC8640099 DOI: 10.3389/fgene.2021.758391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 01/29/2023] Open
Abstract
The accurate classification, prognostication, and treatment of gliomas has been hindered by an existing cellular, genomic, and transcriptomic heterogeneity within individual tumors and their microenvironments. Traditional clustering is limited in its ability to distinguish heterogeneity in gliomas because the clusters are required to be exclusive and exhaustive. In contrast, biclustering can identify groups of co-regulated genes with respect to a subset of samples and vice versa. In this study, we analyzed 1,798 normal and tumor brain samples using an unsupervised biclustering approach. We identified co-regulated gene expression profiles that were linked to proximally located brain regions and detected upregulated genes in subsets of gliomas, associated with their histologic grade and clinical outcome. In particular, we present a cilium-associated signature that when upregulated in tumors is predictive of poor survival. We also introduce a risk score based on expression of 12 cilium-associated genes which is reproducibly informative of survival independent of other prognostic biomarkers. These results highlight the role of cilia in development and progression of gliomas and suggest potential therapeutic vulnerabilities for these highly aggressive tumors.
Collapse
Affiliation(s)
- Srinivas Rajagopalan
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Amartya Singh
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
28
|
Gopalan J, Wordeman L, Scott JD. Kinase-anchoring proteins in ciliary signal transduction. Biochem J 2021; 478:1617-1629. [PMID: 33909027 PMCID: PMC11848745 DOI: 10.1042/bcj20200869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Historically, the diffusion of chemical signals through the cell was thought to occur within a cytoplasmic soup bounded by the plasma membrane. This theory was predicated on the notion that all regulatory enzymes are soluble and moved with a Brownian motion. Although enzyme compartmentalization was initially rebuffed by biochemists as a 'last refuge of a scoundrel', signal relay through macromolecular complexes is now accepted as a fundamental tenet of the burgeoning field of spatial biology. A-Kinase anchoring proteins (AKAPs) are prototypic enzyme-organizing elements that position clusters of regulatory proteins at defined subcellular locations. In parallel, the primary cilium has gained recognition as a subcellular mechanosensory organelle that amplifies second messenger signals pertaining to metazoan development. This article highlights advances in our understanding of AKAP signaling within the primary cilium and how defective ciliary function contributes to an increasing number of diseases known as ciliopathies.
Collapse
Affiliation(s)
- Janani Gopalan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
29
|
Roberson EC, Battenhouse AM, Garge RK, Tran NK, Marcotte EM, Wallingford JB. Spatiotemporal transcriptional dynamics of the cycling mouse oviduct. Dev Biol 2021; 476:240-248. [PMID: 33864778 DOI: 10.1016/j.ydbio.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Female fertility in mammals requires iterative remodeling of the entire adult female reproductive tract across the menstrual/estrous cycle. However, while transcriptome dynamics across the estrous cycle have been reported in human and bovine models, no global analysis of gene expression across the estrous cycle has yet been reported for the mouse. Here, we examined the cellular composition and global transcriptional dynamics of the mouse oviduct along the anteroposterior axis and across the estrous cycle. We observed robust patterns of differential gene expression along the anteroposterior axis, but we found surprisingly few changes in gene expression across the estrous cycle. Notable gene expression differences along the anteroposterior axis included a surprising enrichment for genes related to embryonic development, such as Hox and Wnt genes. The relatively stable transcriptional dynamics across the estrous cycle differ markedly from other mammals, leading us to speculate that this is an evolutionarily derived state that may reflect the extremely rapid five-day mouse estrous cycle. This dataset fills a critical gap by providing an important genomic resource for a highly tractable genetic model of mammalian female reproduction.
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Riddhiman K Garge
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Ngan Kim Tran
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA.
| |
Collapse
|
30
|
Hiltpold M, Kadri NK, Janett F, Witschi U, Schmitz-Hsu F, Pausch H. Autosomal recessive loci contribute significantly to quantitative variation of male fertility in a dairy cattle population. BMC Genomics 2021; 22:225. [PMID: 33784962 PMCID: PMC8010996 DOI: 10.1186/s12864-021-07523-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cattle are ideally suited to investigate the genetics of male fertility. Semen from individual bulls is used for thousands of artificial inseminations for which the fertilization success is monitored. Results from the breeding soundness examination and repeated observations of semen quality complement the fertility evaluation for each bull. RESULTS In a cohort of 3881 Brown Swiss bulls that had genotypes at 683,609 SNPs, we reveal four novel recessive QTL for male fertility on BTA1, 18, 25, and 26 using haplotype-based association testing. A QTL for bull fertility on BTA1 is also associated with sperm head shape anomalies. All other QTL are not associated with any of the semen quality traits investigated. We perform complementary fine-mapping approaches using publicly available transcriptomes as well as whole-genome sequencing data of 125 Brown Swiss bulls to reveal candidate causal variants. We show that missense or nonsense variants in SPATA16, VWA3A, ENSBTAG00000006717 and ENSBTAG00000019919 are in linkage disequilibrium with the QTL. Using whole-genome sequence data, we detect strong association (P = 4.83 × 10- 12) of a missense variant (p.Ile193Met) in SPATA16 with male fertility. However, non-coding variants exhibit stronger association at all QTL suggesting that variants in regulatory regions contribute to variation in bull fertility. CONCLUSION Our findings in a dairy cattle population provide evidence that recessive variants may contribute substantially to quantitative variation in male fertility in mammals. Detecting causal variants that underpin variation in male fertility remains difficult because the most strongly associated variants reside in poorly annotated non-coding regions.
Collapse
Affiliation(s)
- Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Naveen Kumar Kadri
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
31
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
32
|
Perotin JM, Polette M, Deslée G, Dormoy V. CiliOPD: a ciliopathy-associated COPD endotype. Respir Res 2021; 22:74. [PMID: 33639936 PMCID: PMC7912836 DOI: 10.1186/s12931-021-01665-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) relies on airway remodelling and inflammation. Alterations of mucociliary clearance are a major hallmark of COPD caused by structural and functional cilia abnormalities. Using transcriptomic databases of whole lung tissues and isolated small airway epithelial cells (SAEC), we comparatively analysed cilia-associated and ciliopathy-associated gene signatures from a set of 495 genes in 7 datasets including 538 non-COPD and 508 COPD patients. This bio-informatics approach unveils yet undescribed cilia and ciliopathy genes associated with COPD including NEK6 and PROM2 that may contribute to the pathology, and suggests a COPD endotype exhibiting ciliopathy features (CiliOPD).
Collapse
Affiliation(s)
- Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Respiratory Diseases, CHU of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Biopathology, CHU Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Respiratory Diseases, CHU of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.
| |
Collapse
|
33
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|