1
|
Sabir S, Thani ASB, Abbas Q. Nanotechnology in cancer treatment: revolutionizing strategies against drug resistance. Front Bioeng Biotechnol 2025; 13:1548588. [PMID: 40370595 PMCID: PMC12075138 DOI: 10.3389/fbioe.2025.1548588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
A notable increase in cancer-related fatalities and morbidity worldwide is attributed to drug resistance. The factors contributing to drug resistance include drug efflux via ABC transporters, apoptosis evasion, epigenetic alterations, DNA repair mechanisms, and the tumor microenvironment, among others. Systemic toxicities and resistance associated with conventional cancer diagnostics and therapies have led to the development of alternative approaches, such as nanotechnology, to enhance diagnostic precision and improve therapeutic outcomes. Nanomaterial, including carbon nanotubes, dendrimers, polymeric micelles, and liposomes, have shown significant benefits in cancer diagnosis and treatment due to their unique physicochemical properties, such as biocompatibility, stability, enhanced permeability, retention characteristics, and targeted delivery. Building on these advantages, this review is conducted through comprehensive analysis of recent literature to explore the principal mechanisms of drug resistance, the potential of nanomaterials to revolutionize selective drug delivery and cancer treatment. Additionally, the strategies employed by nanomaterials to overcome drug resistance in tumors, such as efflux pump inhibition, multidrug loading, targeted delivery to the tumor microenvironment, and gene silencing therapies are discussed in detail. Furthermore, we examine the challenges associated with nanomaterials that limit their application and impede their transition to clinical use.
Collapse
Affiliation(s)
- Shazia Sabir
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Sakhir, Bahrain
| | | | - Qamar Abbas
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Sakhir, Bahrain
| |
Collapse
|
2
|
Fahim C, Abdollah MRA, Labib RM, Ibrahim N, Swilam N. Phytochemical Analysis and In Vivo Anticancer Effect of Becium grandiflorum: Isolation and Characterization of a Promising Cytotoxic Diterpene. Nutrients 2025; 17:1164. [PMID: 40218923 PMCID: PMC11990180 DOI: 10.3390/nu17071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background:Becium grandiflorum is a fragrant perennial shrub of the Lamiaceae family. Objectives: The current study aimed to explore the cytotoxic potential of the n-hexane fraction from Becium grandiflorum aerial parts and, further, isolate its major diterpene and conduct in vitro and in vivo anticancer activities along with its molecular mechanism and synergy with doxorubicin. Methods: The hydroalcoholic extract of Becium grandiflorum aerial parts was fractionated, and the n-hexane fraction was analyzed via GC-MS. The major isolated diterpene, 18-epoxy-pimara-8(14),15-diene (epoxy-pimaradiene), was quantified using UPLC-PDA. Cytotoxicity assays were conducted on HCT-116, MCF-7, MDA-MB-231, and HepG2 cell lines. The synergistic effect with doxorubicin was tested on HepG2 cells. In vivo anticancer activity was evaluated using the Ehrlich ascites carcinoma model, and molecular docking analyzed Bax-Bcl2 interactions. Results: The n-hexane fraction contained 21 compounds, mainly oxygenated diterpenes, and the major isolated compound was epoxy-pimaradiene, with a quantity of 0.3027 mg/mg. N-Hexane fraction and epoxy-pimaradiene exhibited strong cytotoxicity against HepG2 cells, induced apoptosis, and G2/M arrest. The combination of epoxy-pimaradiene with doxorubicin lowered the IC50 of doxorubicin from 4 µM to 1.78 µM. In vivo, both reduced tumor growth and increased necrotic tumor areas. Molecular docking revealed disruption of Bax-Bcl2. Conclusions: The findings suggest that B. grandiflorum and its major diterpene, epoxy-pimaradiene, exhibit potent anticancer activity, particularly against liver cancer cells. Epoxy-pimaradiene enhances doxorubicin's efficacy, induces apoptosis, and inhibits tumor progression. Further studies are needed to explore their therapeutic potential.
Collapse
Affiliation(s)
- Christeen Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| | - Maha R. A. Abdollah
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.M.L.); (N.I.)
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.M.L.); (N.I.)
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| |
Collapse
|
3
|
Tural B, Ertaş E, Batıbay H, Tural S. The Impact of Pistacia khinjuk plant gender on silver nanoparticle synthesis: Are extracts of root obtained from female plants preferentially used? Biochem Biophys Res Commun 2025; 746:151257. [PMID: 39754972 DOI: 10.1016/j.bbrc.2024.151257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Pistacia khinjuk, a dioecious plant native to Southeast Anatolia, Turkey, features distinct male and female individuals with varying bioactive compound profiles. This study investigates the gender-specific phytochemical composition of root extracts from male and female Pistacia khinjuk plants and their influence on the green synthesis of silver nanoparticles. Using natural bioactive compounds such as polyphenols, flavonoids, alkaloids, and terpenoids as reducing and stabilizing agents, the study demonstrates significant differences between the nanoparticles synthesized from male and female root extracts. Female root extracts, with their higher polyphenolic content, produced silver nanoparticles that were smaller in size (150.1 nm) and more stable, as indicated by a zeta potential of -32.5 mV. In comparison, the silver nanoparticles synthesized from male root extracts were larger in size (213.8 nm) and exhibited a less negative zeta potential of -21.36 mV. Additionally, silver nanoparticles derived from female root extracts showed superior antioxidant activity and greater antibacterial efficacy against Staphylococcus aureus and Escherichia coli, as reflected in larger inhibition zones. These findings highlight the potential of Pistacia khinjuk root extracts for sustainable nanoparticle synthesis and underscore the value of gender-specific bioactive compounds in advancing green technologies and biomedical applications.
Collapse
Affiliation(s)
- Bilsen Tural
- Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| | - Erdal Ertaş
- Department of Food Processing, Technical Sciences Vocational School, Batman University, Batman, Turkey.
| | - Hayri Batıbay
- Department of Chemistry, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| | - Servet Tural
- Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| |
Collapse
|
4
|
Pacyga K, Pacyga P, Szuba E, Viscardi S, Topola E, Duda-Madej A. Nanotechnology Meets Phytotherapy: A Cutting-Edge Approach to Treat Bacterial Infections. Int J Mol Sci 2025; 26:1254. [PMID: 39941020 PMCID: PMC11818366 DOI: 10.3390/ijms26031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The increasing prevalence of bacterial infections and the rise in antibiotic resistance have prompted the search for alternative therapeutic strategies. One promising approach involves combining plant-based bioactive substances with nanoparticles, which have demonstrated improved antimicrobial activity compared to their free forms, both in vitro, in vivo, and in clinical studies. This approach not only improves their stability but also enables targeted delivery to bacterial cells, reducing side effects and minimising the risk of resistance development, leading to more effective treatments. This narrative review explores the benefits of combining bioactive plant compounds (berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine) with nanoparticles for the treatment of bacterial infections (caused by Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens, and Pseudomonas aeruginosa), highlighting the potential of this approach to overcome the limitations of traditional antimicrobial therapies. Ultimately, this strategy offers a promising alternative in the fight against resistant bacterial strains, paving the way for the development of more effective and sustainable treatments.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Emilia Szuba
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland;
| |
Collapse
|
5
|
Machado JCB, Cristina da Silva J, Leite GVB, Dos Santos Dantas T, Daniele-Silva A, de Freitas Fernandes-Pedrosa M, de Oliveira AM, Dantas da Cruz RC, de Souza IA, Weilack I, Schieber A, Ferreira MRA, Wagner KG, Lira Soares LA. Phytochemical Profile, Acute, and Subacute Toxicity of Spray-Dried Hydroethanolic Extract From Punica granatum Leaves. Chem Biodivers 2025:e202402429. [PMID: 39813285 DOI: 10.1002/cbdv.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
This study aimed to provide a comprehensive understanding of the acute and subacute safety and phytochemical profile of pomegranate leaves, aligning with the growing interest in sustainable, plant-based therapeutics. The phytochemical composition and the acute and subacute toxicity of a spray-dried hydroethanolic extract from pomegranate leaves (SDE) were investigated using experimental animal models. Utilizing UV-visible spectrophotometry and liquid chromatography-mass spectrometry (LC-MS), a diverse array of tannins and flavonoids, totaling 38 compounds, was identified. The findings revealed that SDE exhibited no adverse effects across various tests, including macroscopic, biochemical, hematological, and histological evaluations, even at high doses (2000 mg/kg for single doses and 1000 mg/kg for repeated doses). Furthermore, SDE significantly (p < 0.05) reduced serum total cholesterol levels in both acute and subacute toxicity evaluations, suggesting a positive impact on lipid metabolism. This research not only confirms the safety of pomegranate leaf spray-dried hydroethanolic extract at significant concentrations but also highlights its potential as a source of bioactive compounds with therapeutic benefits. The absence of toxicity, coupled with its cholesterol-lowering properties, supports the use of pomegranate leaves in medicinal, nutritional, and food additive applications. Additionally, this study provides essential phytochemical and safety data, paving the way for future research exploring its potential as an active ingredient.
Collapse
Affiliation(s)
- Janaina Carla Barbosa Machado
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joyce Cristina da Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel Victor Batista Leite
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thainá Dos Santos Dantas
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Alisson Macário de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Pernambuco, Brazil
| | | | | | - Ingrid Weilack
- Faculty of Agriculture, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | - Andreas Schieber
- Faculty of Agriculture, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | | | - Karl Gerhard Wagner
- Pharmaceutical Technology and Biopharmacy Institute, University of Bonn, Bonn, Germany
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol Genet Eng Rev 2024; 40:3379-3407. [PMID: 36117472 DOI: 10.1080/02648725.2022.2122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 12/07/2022]
Abstract
Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - R Hari Krishna
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Maanya Vittal
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - C Likhitha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - N Pooja
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering, Bangalore, India
- Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore, India
| |
Collapse
|
7
|
Abdellatif AAH, Mostafa MAH, Konno H, Younis MA. Exploring the green synthesis of silver nanoparticles using natural extracts and their potential for cancer treatment. 3 Biotech 2024; 14:274. [PMID: 39450421 PMCID: PMC11496425 DOI: 10.1007/s13205-024-04118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increasing attention in nanomedicine, with versatile applications in drug delivery, antimicrobial treatments, and cancer therapies. While chemical synthesis remains a common approach for AgNP production, ensuring environmental sustainability requires a shift toward eco-friendly, "green" synthesis techniques. This article underscores the promising role of plant extracts in the green synthesis of AgNPs, highlighting the importance of their natural sources and diverse bioactive compounds. Various characterization methods for these nanomaterials are also reviewed. Furthermore, the anticancer potential of green AgNPs (Gr-AgNPs) is examined, focusing on their mechanisms of action and the challenges to their clinical implementation. Finally, future directions in the field are discussed.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Al Qassim, Saudi Arabia
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, 41477 Al Madinah, Al Munawarah Saudi Arabia
- Departmentof Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524 Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Yamagata University, Yonezawa, Yamagata 982-8510 Japan
| | - Mahmoud A. Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
8
|
Yu M, Gouvinhas I, Chen J, Zhu Y, Deng J, Xiang Z, Oliveira P, Xia C, Barros A. Unlocking the therapeutic treasure of pomegranate leaf: A comprehensive review on phytochemical compounds, health benefits, and future prospects. Food Chem X 2024; 23:101587. [PMID: 39036478 PMCID: PMC11260341 DOI: 10.1016/j.fochx.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The exploration of sustainable and valuable by-products from industrial and agricultural processes is increasingly recognized for its economic, environmental and health advantages. This review examines the phytochemical constituents, biological properties, current applications and future directions of pomegranate (Punica granatum L.) leaf (PGL). PGL exhibits broad biological activities, aiding in managing health conditions like chronic diseases, cancer, diabetes, obesity, and neurological disorders. Anti-cancer and anti-diabetic effects are demonstrated in vitro and in vivo using animal models. Anti-inflammatory and neuroprotective properties are also observed in cell cultures and animal studies. Its anti-microbial properties show efficacy against pathogens. However, variability in phytochemical composition due to different extraction methods and environmental conditions poses challenges for standardization. The review underscores the urgent need for comprehensive human clinical trials to confirm PGL's therapeutic benefits and safety, calling for future research to fully harness PGL's potential as a sustainable and bioactive compound in various industrial applications.
Collapse
Affiliation(s)
- Manyou Yu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Paula Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Agronomy, School of Agricultural and Veterinary Sciences, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
Zuñiga-Miranda J, Carrera-Pacheco SE, Gonzalez-Pastor R, Mayorga-Ramos A, Rodríguez-Pólit C, Heredia-Moya J, Vizuete K, Debut A, Barba-Ostria C, Coyago-Cruz E, Guamán LP. Phytosynthesis of Silver Nanoparticles Using Mansoa alliacea (Lam.) A.H. Gentry (Bignoniaceae) Leaf Extract: Characterization and Their Biological Activities. Pharmaceutics 2024; 16:1247. [PMID: 39458579 PMCID: PMC11510252 DOI: 10.3390/pharmaceutics16101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Mansoa alliacea is a native plant renowned for its medicinal properties in traditional healing in the Amazon Region. This plant is rich in polyphenols, flavonoids, anthocyanins, phenolic acids, tannins, ketones, triterpenes, as well as other bioactive compounds. Objectives. This study aims to develop an innovative, eco-friendly method for synthesizing silver nanoparticles using an aqueous extract of M. alliacea (Ma-AgNPs), enhancing the biological activities of AgNPs by leveraging the therapeutic potential of the plant's bioactive compounds. Methods. Silver nanoparticles were synthesized using the aqueous extract of M. alliacea. The biological activities of Ma-AgNPs were assessed, including antibacterial, anti-inflammatory, antioxidant, antitumor, and anti-biofilm effects, along with evaluating their hemolytic activity. Results. Quantitative analysis revealed that Ma-AgNPs exhibit potent antibacterial activity against multidrug and non-multidrug-resistant bacteria, with MIC values ranging from 1.3 to 10.0 µg/mL. The Ma-AgNPs significantly reduced NO production by 86.9% at 4 µg/mL, indicating strong anti-inflammatory effects. They demonstrated robust antioxidant activity with an IC50 of 5.54 ± 1.48 µg/mL and minimal hemolytic activity, with no hemolysis observed up to 20 µg/mL and only 4.5% at 40 µg/mL. Their antitumor properties were notable, with IC50 values between 2.9 and 5.4 µg/mL across various cell lines, and they achieved over 50% biofilm inhibition at concentrations of 30-40 µg/mL. Conclusions. These findings underscore the potential of Ma-AgNPs for biomedical applications, particularly in developing new antimicrobial agents and bioactive coatings with reduced toxicity. This research highlights a sustainable approach that not only preserves but also amplifies the inherent biological activities of plant extracts, paving the way for innovative therapeutic solutions.
Collapse
Affiliation(s)
- Johana Zuñiga-Miranda
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Quito 170143, Ecuador;
| | - Linda P. Guamán
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| |
Collapse
|
10
|
Sheta MH, Abd El-Wahed AHM, Elshaer MA, Bayomy HM, Ozaybi NA, Abd-Elraheem MAM, El-Sheshtawy ANA, El-Serafy RS, Moustafa MMI. Green Synthesis of Zinc and Iron Nanoparticles Using Psidium guajava Leaf Extract Stimulates Cowpea Growth, Yield, and Tolerance to Saline Water Irrigation. HORTICULTURAE 2024; 10:915. [DOI: 10.3390/horticulturae10090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Plants use a variety of physiological, biochemical, and molecular mechanisms to mitigate salt stress impacts. Many techniques, including the application of nanoparticles (NPs), are being used to increase plant stress tolerance. To assess the growth and productivity of Vigna unguiculata L. (cowpea) plants exposed to salt stress, cowpea has been cultivated using different saline water levels and subjected to green synthesized zinc NPs (ZnNPs) and iron NPs (FeNPs) applied via foliar spraying. The cowpea plants that grew under the lowest saline water level showed the best leaf traits, leaf water content per area (LWCA), pods, and seed yields, but when salinity levels increased, the plants’ growth and productivity slightly declined. ZnNP and FeNP treatments slow down the degradation of photosynthetic pigments and greatly mitigate the negative effects of salt stress. In both stressed and unstressed plants, ZnNP treatments produced the highest osmoprotectant concentrations (proline, protein, and total carbohydrates). As a result of salt stress, cowpea seeds showed a marked decrease in dry matter and protein content, but ZnNP and FeNP treatments increased it. Conclusively, the results obtained indicated that ZnNPs and FeNPs foliar application to cowpea plants stimulated leaf pigment and polyphenol production, which in turn increased seed dry matter, seed yield, protein content, and the plants’ ability to withstand saline stress.
Collapse
Affiliation(s)
- Mohamed H. Sheta
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mohammed A. Elshaer
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo 11823, Egypt
| | - Hala M. Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nawal A. Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | | | - Rasha S. El-Serafy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Mahmoud M. I. Moustafa
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
11
|
Moond M, Singh S, Rani J, Beniwal A, Sharma RK. Bio‐Fabricated Silver Nanoparticles for Catalytic Degradation of Toxic Dyes and Colorimetric Sensing of Hg 2+. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/25/2024] [Indexed: 01/06/2025]
Abstract
AbstractIn the present study, silver nanoparticles were synthesized via green synthesis using fenugreek (Trigonella foenum‐graecum L.) seeds of variety HM 425. The AgNPs were characterized by using UV‐Visible spectroscopy, Particle size analyzer, Field emission scanning electron microscopy coupled to Energy dispersive X‐ray spectroscopy, XRD, High resolution transmission electron microscopy and Fourier Transform Infrared Spectroscopy. The AgNPs were spherical and had an average particle size of 28 nm. The reduction of cationic dyes Methylene blue, Rhodamine B, and an anionic azo dye Methyl Orange by Sodium borohydride was used as a model reaction to investigate the catalytic ability of AgNPs. The results demonstrated an efficient catalytic dye degradation of methylene blue (95.81 %, 25 min, 0.1737±0.01 min−1), Rhodamine B (90.23 %, 15 min, 0.1388±0.01 min−1) and methyl orange (83.63 %, 39 min, 0.0412±0.002 min−1). The synthesized AgNPs had an excellent detection limit of 12.50 μM for Hg2+, making them excellent solid bio‐based sensors for mercury sensing.
Collapse
Affiliation(s)
- Monika Moond
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Sushila Singh
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Jyoti Rani
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Anuradha Beniwal
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| | - Rajni Kant Sharma
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004 Haryana India
| |
Collapse
|
12
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
13
|
Bhat SA, Kumar V, Dhanjal DS, Gandhi Y, Mishra SK, Singh S, Webster TJ, Ramamurthy PC. Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics-a comprehensive review. DISCOVER NANO 2024; 19:121. [PMID: 39096427 PMCID: PMC11297894 DOI: 10.1186/s11671-024-04072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Breast cancer, a widespread malignancy affecting women globally, often arises from mutations in estrogen/progesterone receptors. Conventional treatments like surgery, radiotherapy, and chemotherapy face limitations such as low efficacy and adverse effects. However, nanotechnology offers promise with its unique attributes like targeted delivery and controlled drug release. Yet, challenges like poor size distribution and environmental concerns exist. Biogenic nanotechnology, using natural materials or living cells, is gaining traction for its safety and efficacy in cancer treatment. Biogenic nanoparticles synthesized from plant extracts offer a sustainable and eco-friendly approach, demonstrating significant toxicity against breast cancer cells while sparing healthy ones. They surpass traditional drugs, providing benefits like biocompatibility and targeted delivery. Thus, this current review summarizes the available knowledge on breast cancer (its types, stages, histopathology, symptoms, etiology and epidemiology) with the importance of using biogenic nanomaterials as a new and improved therapy. The novelty of this work lies in its comprehensive examination of the challenges and strategies for advancing the industrial utilization of biogenic metal and metal oxide NPs. Additionally; it underscores the potential of plant-mediated synthesis of biogenic NPs as effective therapies for breast cancer, detailing their mechanisms of action, advantages, and areas for further research.
Collapse
Affiliation(s)
- Shahnawaz Ahmad Bhat
- Jamia Milia Islamia, New Delhi, 110011, India
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India.
| | | | - Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | | | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | | |
Collapse
|
14
|
Das AK, Borah M, Kalita JJ, Bora U. Cytotoxic potential of Curcuma caesia rhizome extract and derived gold nanoparticles in targeting breast cancer cell lines. Sci Rep 2024; 14:17223. [PMID: 39060291 PMCID: PMC11282265 DOI: 10.1038/s41598-024-66175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Among all types of cancer, breast cancer is the most aggressive, as it is responsible for most of the cancer related death of women. Though several medical therapies are available, the scenario of curing such disease is not favorable. Therefore, there is an urgent need to find alternatives to deal with it. The knowledge of ethnopharmacy might give some better solution to mitigate such deadly diseases. Here, we are using the rhizome of Curcuma caesia Roxb. (Black turmeric), as well as gold nanoparticles (GNPs) synthesized with it to check their specific cytotoxic potentiality against breast cancer cell lines. In our study, ethanolic extract was used to evaluate the cytotoxic effect of the rhizome. GNPs were synthesized by using the same extract and characterized by UV-Vis spectroscopy (UV-Vis), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Thermo gravimetric analysis (TGA). The TEM, XRD, FTIR and TGA results revealed the successful synthesis and capping of GNPs. The UV-Vis Spectrum showed a sharp and narrow absorption peak at 550 nm and HRTEM confirmed both the stability and successful synthesis of the nanoparticles. The MTT assay of the crude extract revealed strong cytotoxicity against breast cancer cell lines viz. MCF-7 (ER+) and MDA MB-231 (Triple Negative Breast Cancer, TNBC) by showing IC50 values as 15.70 ± 0.029 and 21.57 ± 0.031 μg/mL respectively. For extract mediated GNPs, the IC50 values were found to be 6.44 ± 0.045 and 5.87 ± 0.031μg/mL respectively in both breast cancer cell lines. As the IC50 value for GNPs was found to be much lower than that of crude extract, it indicates a higher efficiency of the GNP. However, both the rhizome extract and its mediated GNPs showed more toxicity towards MDA MB-231 (TNBC) cell lines. It was also observed that the GNPs showed more toxicity towards TNBC cell lines compared to the rhizome extract. No toxicity was found in case of other cell lines such as L 929 and HeLa for both crude extract as well as for GNPs. These observations suggests that both the crude rhizome extract and its derived GNPs exhibit selective cytotoxic potential against breast cancer cell lines, which might be exploited for target specific treatment. Moreover, with an understanding of the mechanism behind the GNPs therapeutic efficiency, it can be developed as a personalized therapy to treat such type of cancers.
Collapse
Affiliation(s)
- Ajoy Kumar Das
- Department of Botany, Arya Vidyapeeth College (Autonomous), Gopinath Nagar, Guwahati, Assam, 781 016, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| | - Maina Borah
- Department of Botany, Pandu College, Guwahati, Assam, 781 012, India
| | - Jon Jyoti Kalita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Utpal Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
15
|
Abdelrahman KN, Abdel Ghany AGA, Saber RA, Osman A, Sitohy B, Sitohy M. Anthocyanins from pomegranate peel ( Punica granatum), chili pepper fruit ( Capsicum annuum), and bougainvillea flowers ( Bougainvillea spectabilis) with multiple biofunctions: Antibacterial, antioxidant, and anticancer. Heliyon 2024; 10:e32222. [PMID: 38868073 PMCID: PMC11168436 DOI: 10.1016/j.heliyon.2024.e32222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Background Natural colorants, including natural pigments, e.g., anthocyanins, carotenoids, and chlorophylls, in novel and attractive food matrixes have become a popular trend. They impart favorite colors to food products and provide significant therapeutic effects. This study is aimed at extracting and identifying some natural pigments from different plant sources and evaluating their ability as antibacterial, antioxidant, and anticancer activities. Methods The anthocyanin-rich extract (ARE) is derived from three natural plant sources: pomegranate peel (Punica granatum), chili pepper fruit (Capsicum annuum), and Bougainvillea flowers. Bougainvillea spectabilis are analyzed for biochemical composition, as well as antioxidant, antibacterial, and anticancer activity, HPLC, DPPH, FRAP, disc diffusion assay, MIC, MTT, VEGFR-2, and caspase-9 assays. Results All three extracts had varying total phenolic contents, ranging from 14 to 466 mg GAE/g extract, where Punica granatum was the highest (466 mg GAE/g extract), followed by Bougainvillea spectabilis (180 mg GAE/g extract), and then Capsicum annuum (14 mg GAE/g extract). The antioxidant activity rose steadily with raising concentration. The ARE of pomegranate peels recorded highest value, followed by Bougainvillea flowers and chili pepper fruit. The MTT assay revealed an inhibitory action of the tested extracts on the proliferation of HCT-116, MCF-7, and HepG2 in a concentration-based manner. Gene expression of caspase-9 transcripts was considerably multiplied by the application of ARE of pomegranate peels. All the tested extracts inhibited VEGFR-2, and the inhibition (%) expanded gradually with increasing concentrations, achieving the highest value (80 %) at 10 μg/mL. The ARE of pomegranate peels scored highest antibacterial activity, followed by ARE of chili pepper fruit and Bougainvillea flowers. The inhibition zone diameter escalated gradually with rising concentrations of the tested samples. Conclusion The AREs of the three studied plant sources can be used as multifunctional products with antioxidant, anticancer, and antibacterial activities that are natural, safe, and cheap.
Collapse
Affiliation(s)
| | | | - Refaat A. Saber
- Faculty of Development and Technology, Zagazig University, Zagazig, 44519, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection, and Immunology, Umeå University, SE-90185, Umeå, Sweden
- Institution of Diagnostics and Intervention, Oncology, Umeå University, SE-90185, Umeå, Sweden
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
17
|
Gu W, Kong R, Qi S, Cheng X, Cai X, Zhou Z, Zhang S, Zhao H, Song J, Hu Q, Yu H, Tong H, Wang Y, Lu T. Sono-assembly of ellagic acid into nanostructures significantly enhances aqueous solubility and bioavailability. Food Chem 2024; 442:138485. [PMID: 38278106 DOI: 10.1016/j.foodchem.2024.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Ellagic acid (EA), commonly found in foods, offers significant health benefits in combating chronic diseases. However, its therapeutic potential is hindered by its extremely poor solubility and bioavailability. METHOD In this study, EA nanoparticles (EA NPs) were produced using a sono-assembly method, without additional agents. RESULTS EA NPs exhibited stick-like nanoparticle structures with an average size of 147.3 ± 0.73 nm. EA NPs likely adopt a tunnel-type solvate structure, with 4 water participating in disruption of intramolecular hydrogen bonds in EA and establishment of intermolecular hydrogen bonds between EAs. Importantly, EA NPs exhibited remarkable enhancements in water solubility, with 120.7-fold increase in water, and 97.8-fold increase in pH 6.8 buffer. Moreover, ex vivo intestinal permeability studies demonstrated significant improvements (P < 0.5). These findings were further supported by in vivo pharmacokinetic studies, where EA NPs significantly enhanced the relative bioavailability of EA by 4.69 times.
Collapse
Affiliation(s)
- Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Faculty of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Ruolin Kong
- Department of Science & Technology Studies, University College London, London, England, United Kingdom
| | - Shuyang Qi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Xuxi Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Xuyi Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyun Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Shunan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Jinyun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Qinglian Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiwen Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huangjin Tong
- Faculty of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Yiwei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| |
Collapse
|
18
|
Dubey T, Bhanukiran K, Hemalatha S. Development of phytosterol-loaded silver nanoparticles for ameliorating haemorrhoidal complications via the AMPK pathway-a mechanistic approach. Biomed Mater 2024; 19:035030. [PMID: 38518371 DOI: 10.1088/1748-605x/ad3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The aim of the current study was to synthesize silver nanoparticles (PLSNPs) using green technology by means of phytosterol-enriched fractions fromBlumea laceraextracts (EAF) and evaluate their toxicological and anti-haemorrhoidal potential. The average size of the synthesized particles was found to be 85.64 nm by scanning electron microscopy and transmission electron microscopy. Energy dispersive spectroscopy showed the elemental composition of PLSNPs to be 12.59% carbon and 87.41% silver, indicating the capping of phytochemicals on the PLSNPs. The PLSNPs were also standardized for total phytosterol content using chemical methods and high-perfromance liquid chromatography. The PLSNPs were found to be safe up to 1000 mg kg-1as no toxicity was observed in the acute and sub-acute toxicity studies performed as per OECD guidelines. After the induction of haemorrhoids, experimental animals were treated with different doses of EAF, PLSNPs and a standard drug (Pilex) for 7 d, and on the eighth day the ameliorative potential was assessed by evaluating the haemorrhoidal (inflammatory severity index, recto-anal coefficient) and biochemical (tumour necrosis factor-alpha and interleukin-6) parameters and histology of the recto-anal tissue. The results showed that treatment with PLSNPs and Pilex significantly (p< 0.05) reduced haemorrhoidal and biochemical parameters. This was further supported by restoration of altered antioxidant status. Further, a marked reduction in the inflammatory zones along with minimal dilated blood vessels was observed in the histopathological study. The results of molecular docking studies also confirmed the amelioration of haemorrhoids via AMP-activated protein kinase (AMPK)-mediated reduction of inflammation and endothelin B receptor modification by PLSNPs. In conclusion, PLSNPs could be a good alternative for the management of haemorrhoids.
Collapse
Affiliation(s)
- Tarkeshwar Dubey
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
19
|
Hassan MM, Gupta T. Colour and surface functional properties of wool fabrics coated with gallnut, feijoa skin, and mango seed kernel tannin-stabilised Ag nanoparticles. RSC Adv 2024; 14:9678-9690. [PMID: 38525064 PMCID: PMC10958619 DOI: 10.1039/d4ra00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024] Open
Abstract
In the textile industry, textile materials are dyed and multi-functionalised by multi-step treatments that considerably increase the environmental impacts by increasing water and energy usage along with increasing the generation of volume of effluent. In this work, Ag nanoparticles (Ag NPs) were in situ formed and stabilised with gallnut, feijoa fruit skin, and mango seed kernel-derived tannins, and wool fabrics were coated simultaneously with these Ag NPs in the same bath. The Ag NP treatment produced dark to light olive-brown shades on wool fabrics. The treatment conditions for the treatment with Ag NPs were optimised to achieve the best results. The colour intensity, UV radiation absorption, antibacterial activity, surface electrical resistance, and durability of the treatment to washing were assessed by various methods. The gallnut-derived tannin (GNT)-stabilised Ag NP-coated wool fabrics showed overall the best results including excellent antibacterial activity against various types of bacteria. The treatment was durable to at least 20 cycles of IWS 7A washes (equivalent to 80 domestic washes). For the 0.5% Ag NPs on the weight of fibre (owf) dosage, the UV light transmission through the trisodium citrate-stabilised Ag NP-coated fabric at 365 and 311 nm was 6.37 and 0.95% respectively, which reduced to 1.63 and 0.20% for the fabric coated with GNT-stabilised Ag NPs providing excellent protection against UV radiation. The surface resistivity of wool fabric reduced from 1.1 × 1012 ohm cm-1 for the untreated fabric to 1.1 × 109 ohm cm-1 for the fabric coated with 2.0% owf GNT-stabilised Ag NPs. The stabilisation of Ag NPs with GNT prolonged the wash-durability by reducing the leaching of Ag NPs from the treated fabric. The developed method could be a sustainable alternative to traditional multi-stage treatments conducted in the textile industry with toxic synthetic dyes and finishing agents for the colouration and multifunctionalisation of wool fabrics.
Collapse
Affiliation(s)
- Mohammad Mahbubul Hassan
- Bioproduct and Fibre Technology Team, AgResearch Limited 1365 Springs Road, Lincoln Christchurch 7674 New Zealand
- Fashion, Textiles, and Technology Institute (FTTI), University of the Arts London 105 Carpenter's Road London E20 2AR UK
| | - Tanushree Gupta
- Food System Integrity Team, AgResearch Limited, Hopkirk Research Centre, University Drive Palmerston North New Zealand
| |
Collapse
|
20
|
Zayed MF, Abdel-Monem YK, Arafa AA, Eisa WH. Mass production of morin-stabilized silver nanoparticles: Characterization, antioxidant, and antimicrobial activities. Microsc Res Tech 2024; 87:149-158. [PMID: 37728192 DOI: 10.1002/jemt.24419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Phytochemical-conjugated silver nanoparticles (AgNPs) are believed to act as a bridge between nanotechnology and therapy. There is a significant need for green and mass production of such materials due to their extensive applications, especially in the biomedical sector. In this study, morin-stabilized silver nanoparticles (morin/AgNPs) were synthesized on a massive scale using a one-pot solid-state technique. The reaction is achieved by ball milling of morin and silver nitrate powders at ambient temperature without any solvent or toxic reagent. The prepared morin/AgNPs exhibited a semi-hexagonal shape and ranged in size from 21 to 43 nm. The x-ray diffraction results elucidated the formation of highly crystalline AgNPs. Fourier transform infrared and x-ray photoelectron spectroscopic analyses prove that the hydroxyl, carbonyl, and aromatic functionalities in morin are playing major roles in the reduction and stabilization of AgNPs. The antioxidant potential of morin/AgNPs was evaluated utilizing 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) assay. Morin/AgNPs exhibited better free radical scavenging activity (IC50 = 11.7 μg/mL) than morin (IC50 = 14.8 μg/mL). Furthermore, the synthesized AgNPs showed promising antimicrobial activity against Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus mutans, and Candida albicans. The largest inhibition zones were observed against S. aureus (21.2 ± 0.6 mm) and K. pneumonia (20.3 ± 0.5 mm) bacteria. The foregoing results highlighted the prospective application of morin/AgNPs as a promising antioxidant and antimicrobial material for safe medical applications. RESEARCH HIGHLIGHTS: A simple green route for the large-scale production of AgNPs was developed. Morin acts as reducing/stabilizing agent in solid-state synthesis of AgNPs. Morin/AgNPs exhibited promising antimicrobial and antioxidant activity.
Collapse
Affiliation(s)
- Mervat F Zayed
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Yasser K Abdel-Monem
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Abeer A Arafa
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Wael H Eisa
- Spectroscopy Department, Physics Research Institute, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
21
|
Althubiti AA, Alsudir SA, Alfahad AJ, Alshehri AA, Bakr AA, Alamer AA, Alrasheed RH, Tawfik EA. Green Synthesis of Silver Nanoparticles Using Jacobaea maritima and the Evaluation of Their Antibacterial and Anticancer Activities. Int J Mol Sci 2023; 24:16512. [PMID: 38003704 PMCID: PMC10671674 DOI: 10.3390/ijms242216512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Much attention has been gained on green silver nanoparticles (green-AgNPs) in the medical field due to their remarkable effects against multi-drug resistant (MDR) microorganisms and targeted cancer treatment. In the current study, we demonstrated a simple and environment-friendly (i.e., green) AgNP synthesis utilizing Jacobaea maritima aqueous leaf extract. This leaf is well-known for its medicinal properties and acts as a reducing and stabilizing agent. Nanoparticle preparation with the desired size and shape was controlled by distinct parameters; for instance, temperature, extract concentration of salt, and pH. The characterization of biosynthesized AgNPs was performed by the UV-spectroscopy technique, dynamic light scattering, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. The successful formation of AgNPs was confirmed by a surface plasmon resonance at 422 nm using UV-visible spectroscopy and color change observation with a particle size of 37± 10 nm and a zeta potential of -10.9 ± 2.3 mV. SEM further confirmed the spherical size and shape of AgNPs with a size varying from 28 to 52 nm. Antibacterial activity of the AgNPs was confirmed against all Gram-negative and Gram-positive bacterial reference and MDR strains that were used in different inhibitory rates, and the highest effect was on the E-coli reference strain (MIC = 25 μg/mL). The anticancer study of AgNPs exhibited an IC50 of 1.37 μg/mL and 1.98 μg/mL against MCF-7 (breast cancer cells) and A549 (lung cancer cells), respectively. Therefore, this green synthesis of AgNPs could have a potential clinical application, and further in vivo study is required to assess their safety and efficacy.
Collapse
Affiliation(s)
- Amal A. Althubiti
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Samar A. Alsudir
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Ahmed J. Alfahad
- Institute of Waste Management and Recycling Technologies, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Abrar A. Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Ali A. Alamer
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Rasheed H. Alrasheed
- Institute of Refinery and Petrochemicals, Energy and Industry Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| |
Collapse
|
22
|
Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract. Sci Rep 2023; 13:15605. [PMID: 37731031 PMCID: PMC10511706 DOI: 10.1038/s41598-023-42675-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
On the global market, silver nanoparticles (Ag-NPs) are in high demand for their various applications in biomedicine, material engineering, and consumer products. This study highlighted the biosynthesis of the Ag-NPs using saw palmetto seed phenolic extract (SPS-phenolic extract), which contained vital antioxidant-phenolic compounds. Herein, central composite statistical design, response surface methodology, and sixteen runs were conducted to optimize Ag-NPs biosynthesis conditions for maximizing the production of Ag-NPs and their phenolic content. The best-produced SPS-Ag-NPs showed a surface plasmon resonance peak at 460 nm and nano-spherical sizes ranging from 11.17 to 38.32 nm using the UV spectrum analysis and TEM images, respectively. The produced SPS-Ag-NPs displayed a high negative zeta-potential value (- 32.8 mV) demonstrating their high stability. The FTIR analysis demonstrated that SPS-phenolic compounds were involved in sliver bio-reduction and in stabilizing, capping, and preventing Ag-NP aggregation. The thermogravimetric investigation revealed that the produced SPS-Ag-NPs have remarkable thermal stability. The produced SPS-Ag-NP exceeded total antioxidant activity (13.8 µmol Trolox equivalent) more than the SPS-phenolic extract (12.0 µmol Trolox equivalent). The biosynthesized SPS-Ag-NPs exhibited noticeably better antibacterial activity against multidrug-resistant Gram-negative E. coli and Gram-positive S. aureus compared to SPS-phenolic extract. Hence, the bio-synthesized SPS-Ag-NPs demonstrated great potential for use in biomedical and antimicrobial applications.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
23
|
Dilbar S, Sher H, Ali H, Ullah R, Ali A, Ullah Z. Antibacterial Efficacy of Green Synthesized Silver Nanoparticles Using Salvia nubicola Extract against Ralstonia solanacearum, the Causal Agent of Vascular Wilt of Tomato. ACS OMEGA 2023; 8:31155-31167. [PMID: 37663485 PMCID: PMC10468922 DOI: 10.1021/acsomega.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Ralstonia solanacearum is a phytopathogen causing bacterial wilt diseases of tomato and affecting its productivity, which leads to prominent economic losses annually. As an alternative to conventional pesticides, green synthesized nanoparticles are believed to possess strong antibacterial activities besides being cheap and ecofriendly. Here, we present the synthesis of silver nanoparticles (Sn-AgNPs) from medicinally important aqueous plant extracts of Salvia nubicola. Characterization of biologically synthesized nanoparticles was performed through UV-vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and thermogravimetric analysis. The antibacterial activity of the biosynthesized silver nanoparticles was tested against the phytopathogen R. solanacearum through in vitro experiments. Preliminary phytochemical analysis of the plant extracts revealed the presence of substantial amounts of flavonoids (57.08 mg GAE/g), phenolics (42.30 mg GAE/g), tannins, and terpenoids. The HPLC phenolic profile indicated the presence of 25 possible bioactive compounds. Results regarding green synthesized silver nanoparticles revealed the conformation of different functional groups through FTIR analysis, which could be responsible for the bioreduction and capping of Ag ions into silver NPs. TEM results revealed the spherical, crystalline shape of nanoparticles with the size in the range of 23-63 nm, which validates SEM results. Different concentrations of Sn-AgNPs (T1 (500 μg/mL) to T7 (78.1 μg/mL)) with a combination of plant extracts (PE-Sn-AgNPs) and plant extracts alone exhibited an efficient inhibition of R. solanacearum. These findings could be used as an effective alternative preparation against the bacterial wilt of tomato.
Collapse
Affiliation(s)
- Shazia Dilbar
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hassan Sher
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hina Ali
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy King
Saud University Riyadh, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Zahid Ullah
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| |
Collapse
|
24
|
Benedetti G, Zabini F, Tagliavento L, Meneguzzo F, Calderone V, Testai L. An Overview of the Health Benefits, Extraction Methods and Improving the Properties of Pomegranate. Antioxidants (Basel) 2023; 12:1351. [PMID: 37507891 PMCID: PMC10376364 DOI: 10.3390/antiox12071351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich edible food and medicinal plant of ancient origin, containing flavonols, anthocyanins, and tannins, with ellagitannins as the most abundant polyphenols. In the last decades, its consumption and scientific interest increased, due to its multiple beneficial effects. Pomegranate is a balausta fruit, a large berry surrounded by a thick colored peel composed of exocarp and mesocarp with edible arils inside, from which the pomegranate juice can be produced by pressing. Seeds are used to obtain the seed oil, rich in fatty acids. The non-edible part of the fruit, the peel, although generally disposed as a waste or transformed into compost or biogas, is also used to extract bioactive products. This review summarizes some recent preclinical and clinical studies on pomegranate, which highlight promising beneficial effects in several fields. Although further insight is needed on key aspects, including the limited oral bioavailability and the role of possible active metabolites, the ongoing development of suitable encapsulation and green extraction techniques enabling the valorization of waste pomegranate products point to the great potential of pomegranate and its bioactive constituents as dietary supplements or adjuvants in therapies of cardiovascular and non-cardiovascular diseases.
Collapse
Affiliation(s)
- Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| |
Collapse
|
25
|
Alamier WM, D Y Oteef M, Bakry AM, Hasan N, Ismail KS, Awad FS. Green Synthesis of Silver Nanoparticles Using Acacia ehrenbergiana Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity. ACS OMEGA 2023; 8:18901-18914. [PMID: 37273622 PMCID: PMC10233848 DOI: 10.1021/acsomega.3c01292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (Ag-NPs) exhibit vast potential in numerous applications, such as wastewater treatment and catalysis. In this study, we report the green synthesis of Ag-NPs using Acacia ehrenbergiana plant cortex extract to reduce cationic Rhodamine B (RhB) dye and for antibacterial and antifungal applications. The green synthesis of Ag-NPs involves three main phases: activation, growth, and termination. The shape and morphologies of the prepared Ag-NPs were studied through different analytical techniques. The results confirmed the successful preparation of Ag-NPs with a particle size distribution ranging from 1 to 40 nm. The Ag-NPs were used as a heterogeneous catalyst to reduce RhB dye from aqueous solutions in the presence of sodium borohydride (NaBH4). The results showed that 96% of catalytic reduction can be accomplished within 32 min using 20 μL of 0.05% Ag-NPs aqueous suspension in 100 μL of 1 mM RhB solution, 2 mL of deionized water, and 1 mL of 10 mM NaBH4 solution. The results followed a zero-order chemical kinetic (R2 = 0.98) with reaction rate constant k as 0.059 mol L-1 s-1. Furthermore, the Ag-NPs were used as antibacterial and antifungal agents against 16 Gram-positive and Gram-negative bacteria as well as 1 fungus. The green synthesis of Ag-NPs is environmentally friendly and inexpensive, as well as yields highly stabilized nanoparticles by phytochemicals. The substantial results of catalytic reductions and antimicrobial activity reflect the novelty of the prepared Ag-NPs. These nanoparticles entrench the dye and effectively remove the microorganisms from polluted water.
Collapse
Affiliation(s)
- Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohammed D Y Oteef
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ayyob M. Bakry
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Khatib Sayeed Ismail
- Department
of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
26
|
Yu M, Gouvinhas I, Pires MJ, Neuparth MJ, Costa RMGD, Medeiros R, Bastos MMSM, Vala H, Félix L, Venâncio C, Barros AIRNA, Oliveira PA. Study on the antineoplastic and toxicological effects of pomegranate (Punica granatum L.) leaf infusion using the K14-HPV16 transgenic mouse model. Food Chem Toxicol 2023; 174:113689. [PMID: 36858299 DOI: 10.1016/j.fct.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.
Collapse
Affiliation(s)
- Manyou Yu
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Maria J Neuparth
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports of the University of Porto (FADEUP), Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Rui M Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Morphology Department and University Hospital (HUUFMA), Federal University of Maranhão (UFMA), São Luís, Brazil; Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal
| | - Margarida M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Helena Vala
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Luis Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Ana I R N A Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
27
|
Torres-Rivero K, Florido A, Martí V, Bastos-Arrieta J. Functionalization of Screen-Printed Electrodes with Grape Stalk Waste Extract-Assisted Synthesized Silver and Gold Nanoparticles: Perspectives of Electrocatalytically Enhanced Determination of Uranyl Ion and Other Heavy Metals Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1055. [PMID: 36985948 PMCID: PMC10059588 DOI: 10.3390/nano13061055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Recently, nanotechnology and nanoparticles (NPs) such as AgNPs and AuNPs have become important in analytical chemistry due to their great potential to improve the performance of electrochemical sensors. In this work, Ag and Au nanoparticles have been synthesized using a green route in which a grape stalk waste extract is used as a reducing agent to obtain metallic nanoparticles. These NPs were used to customize the surface of commercial screen-printed electrodes (SPCNFEs). The spin-coating method was used to modify commercial SPCNFEs under a nitrogen atmosphere. The resulting electrodes were used in a determination study of Cd(II), Pb(II), and U(VI) with differential pulse anodic stripping voltammetry (DPASV). The customized green AgNPs and AuNPs electrodes presented higher sensitivity and electroanalytical performance than the non-modified SPCNFE. The results showed that the best analytical parameters were obtained with the green, silver nanoparticle SPCNFEs, with a LOD of 0.12 μg L-1 for Pb(II), which is a lower value compared to the most restrictive regulation guidelines. Additionally, the U(VI) ion was successfully determined using the developed G-AgNPs-SPCNFE in spiked tap water, showing comparable results with the ICP-MS technique.
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelontaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelontaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Vicenç Martí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelontaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Departament d’Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
28
|
Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract. Appl Biochem Biotechnol 2023; 195:1630-1643. [PMID: 36355335 DOI: 10.1007/s12010-022-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse
|
29
|
Valorisation of fruit peel bioactive into green synthesized silver nanoparticles to modify cellulose wrapper for shelf-life extension of packaged bread. Food Res Int 2023; 164:112321. [PMID: 36737915 DOI: 10.1016/j.foodres.2022.112321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Fruit peels are rich source of bioactive compounds such as polyphenols, flavonoids, and antioxidants but are often discarded as waste due to limited pharmaceutical and nutraceutical applications. This study aimed to valorise pomegranate and citrus fruit peel into green synthesised silver nanoparticles (AgNPs) in order to modify cellulose-based wrapping material for prospective food packaging applications and propose an alternate and sustainable approach to replace polyethene based food packaging material. Four different concentrations of AgNO3 (0.5 mM, 1 mM, 2 mM, and 3 mM) were used for green synthesis of AgNPs from fruit peel bioactive, which were characterised followed by phytochemical analysis. Ultraviolet-Visible spectroscopy showed surface plasmon resonance at 420 nm, XRD analysis showed 2θ peak at 27.8°, 32.16°, 38.5°, 44.31°, 46.09°, 54.76°, 57.47°, 64.61° and 77.50° corresponding to (210), (122), (111), (200), (231), (142), (241), (220) and (311) plane of face centred cubic crystal structure of AgNPs. Fourier-transform infrared spectroscopy analysis of AgNPs green synthesised from pomegranate and kinnow peel extract showed a major peak at 3277, 1640 and 1250-1020 1/cm while a small peak at 2786 1/cm was observed in case of pomegranate peel extract which was negligible in AgNPs synthesized from kinnow peel extract. Particle sizes of AgNPs showed no statistically significant variance with p > 0.10 and thus, 2 mM was chosen for further experimentation and modification of cellulose based packaging material as it showed smallest average particle size. Zeta potential was observed to be nearly neutral with a partial negative strength due to presence of various phenolic compounds such as presence of gallic acid which was confirmed by ultrahigh performance liquid chromatography-photodiode array(UHPLC-PDA) detector. Thermal stability analysis of green synthesised AgNPs qualified the sterilisation conditions up to 100 °C. AgNPs green synthesized from both the peel extracts had higher polyphenolic content, antioxidant and radical scavenging activity as compared to peel extracts without treatment (p < 0.05). The cellulose based food grade packaging material was enrobed by green synthesised AgNPs. The characterisation of modified cellulose wrappers showed no significant difference in thickness of modified cellulose wrappers as compared with untreated cellulose wrapper (p > 0.42) while weight and grammage increased significantly in modified cellulose wrapper (p < 0.05). The colour values on CIE scale (L*, a* and b*) showed statistically significant increase in yellow and green colour (p < 0.05) for modified cellulose wrappers as compared to control wrapper. The oxygen permeability coefficient, water vapour permeability coefficient, water absorption capacity and water behaviour characteristics (water content, swelling degree and solubility) showed significant decrease (p < 0.05) for modified cellulose wrapper as compared to control wrapper. A uniform distribution and density of green synthesised AgNPs across cellulose wrapper matrix was observed through scanning electron microscopy (SEM) images with no significant aggregation, confirming successful enrobing and stable immobilisation of nanoparticles from cellulose matrix. A seven-day storage study of bread wrapped in modified and control cellulose wrappers showed delayed occurrence of microbial, yeast and mould count in bread packaged in modified cellulose wrappers and thus, resulting in shelf life extension of bread. The results are encouraging for the potential applications of modified cellulose wrappers to replace polyethene based food packaging.
Collapse
|
30
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
31
|
Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer. Antioxidants (Basel) 2023; 12:antiox12010127. [PMID: 36670990 PMCID: PMC9854619 DOI: 10.3390/antiox12010127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Polyphenols are a broad group of bioactive phytochemicals with powerful antioxidant, anti-inflammatory, immunomodulatory, and antiviral activities. Numerous studies have demonstrated that polyphenol extracts obtained from natural sources can be used for the prevention and treatment of cancer. Pomegranate peel extract is an excellent source of polyphenols, such as punicalagin, punicalin, ellagic acid, and caffeic acid, among others. These phenolic compounds have antineoplastic activity in in vitro models of cervical cancer through the regulation of cellular redox balance, induction of apoptosis, cell cycle arrest, and modulation of different signaling pathways. The current review summarizes recent data from scientific reports that address the anticancer activity of the predominant polyphenol compounds present in PPE and their different mechanisms of action in cervical cancer models.
Collapse
|
32
|
Zaghloul E, Handousa H, Singab ANB, Elmazar MM, Ayoub IM, Swilam N. Phytoecdysteroids and Anabolic Effect of Atriplex dimorphostegia: UPLC-PDA-MS/MS Profiling, In Silico and In Vivo Models. PLANTS (BASEL, SWITZERLAND) 2023; 12:206. [PMID: 36616335 PMCID: PMC9824417 DOI: 10.3390/plants12010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Atriplex dimorphostegia (Saltbush) is an annual halophytic shrub that is widely distributed across various parts of Asia. The current study is the first to report the metabolites profile of the total ethanol extract of the aerial parts of A. dimorphostegia (TEAD), and its anabolic activity together with the isolated 20-hydroxyecdysone (20-HE) in orchidectomized male rats. TEAD was analyzed and standardized utilizing UPLC-PDA-ESI−MS/MS and UPLC-PDA-UV techniques, resulting in tentative identification of fifty compounds including polyphenols, steroids and triterpenoids. In addition, 20-HE was quantified, representing 26.79 μg/mg of the extract. Phytochemical investigation of TEAD resulted in the isolation of 20-HE from the ethyl acetate fraction (EFAD) and was identified by conventional spectroscopic methods of analysis. Furthermore, the anabolic effect of the isolated 20-HE and TEAD was then evaluated using in silico and in vivo models. Molecular docking experiments revealed in vitro selectivity of 20-HE towards estrogen receptors (ERs), specifically ERβ over ERα and androgenic receptor (AR). The anabolic efficacy of TEAD and 20-HE was studied in orchidectomized immature male Wistar rats using the weight of gastrocnemius and soleus muscles. The weights of ventral prostate and seminal vesicles were used as indicators for androgenic activity. Rats administered 20-HE and TEAD showed a significant increase (p = 0.0006 and p < 0.0001) in the net muscle mass compared to the negative control, while the group receiving TEAD showed the highest percentage among all groups at p < 0.0001. Histopathological investigation of skeletal muscle fibers showed normal morphological structures, and the group administered 20-HE showed an increase in cross sectional area of muscle fibers comparable to methandienone and testosterone groups at p > 0.99. A. dimorphostegia exhibited promising anabolic activity with minimal androgenic side effects.
Collapse
Affiliation(s)
- Eman Zaghloul
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Heba Handousa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11435, Egypt
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Mohey M. Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Iriny M. Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|
33
|
Tyavambiza C, Meyer M, Wusu AD, Madiehe AM, Meyer S. The Antioxidant and In Vitro Wound Healing Activity of Cotyledon orbiculata Aqueous Extract and the Synthesized Biogenic Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms232416094. [PMID: 36555732 PMCID: PMC9781072 DOI: 10.3390/ijms232416094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The synthesis of silver nanoparticles using biogenic methods, particularly plants, has led to the discovery of several effective nanoparticles. In many instances, plant-derived silver nanoparticles have been shown to have more activity than the plant extract which was used to synthesize the nanoparticles. Silver nanoparticles have been successfully synthesized using the medicinal plant, Cotyledon orbiculata. This is a shrub found in the Western Cape province of South Africa. It has a long history of use in traditional medicine in the treatment of wounds and skin infections. The C. orbiculata synthesized silver nanoparticles (Cotyledon-AgNPs) were reported to have good antimicrobial and anti-inflammatory activities; however, their wound-healing properties have not been determined. This study aimed to determine the wound healing activity of Cotyledon-AgNPs using the scratch assay. Gene expression studies were also done to determine the nanoparticles' mechanism of action. The Cotyledon-AgNPs showed good antioxidant, growth-promoting and cell migration properties. Gene expression studies showed that the C. orbiculata water extract and Cotyledon-AgNPs promoted wound healing by upregulating genes involved in cell proliferation, migration and growth while downregulating pro-inflammatory genes. This confirms, for the first time that a water extract of C. orbiculata and silver nanoparticles synthesized from this extract are good wound-healing agents.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Adedoja Dorcas Wusu
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-959-6251
| |
Collapse
|
34
|
Abdo EM, Shaltout OES, Mansour HM. Natural antioxidants from agro-wastes enhanced the oxidative stability of soybean oil during deep-frying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
EL-Aguel A, Pennisi R, Smeriglio A, Kallel I, Tamburello MP, D’Arrigo M, Barreca D, Gargouri A, Trombetta D, Mandalari G, Sciortino MT. Punica granatum Peel and Leaf Extracts as Promising Strategies for HSV-1 Treatment. Viruses 2022; 14:v14122639. [PMID: 36560643 PMCID: PMC9782130 DOI: 10.3390/v14122639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.
Collapse
Affiliation(s)
- Asma EL-Aguel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Imen Kallel
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela D’Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ahmed Gargouri
- Research Laboratory Toxicology-Environmental Microbiology and Health (LR17ES06), Faculty of Sciences of Sfax, P.O. Box 1171, Sfax 3000, Tunisia
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (R.P.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
36
|
Tawre MS, Shiledar A, Satpute SK, Ahire K, Ghosh S, Pardesi K. Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens. Front Chem 2022; 10:1029056. [PMID: 36438875 PMCID: PMC9682076 DOI: 10.3389/fchem.2022.1029056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2024] Open
Abstract
Hospital acquired infections caused due to ESKAPE pathogens pose a challenge for treatment due to their growing antimicrobial resistance. Curcuma aromatica (CA) is traditionally known for its antibacterial, wound healing and anti-inflammatory properties. The present study highlights the biogenic synthesis of silver nanoparticles (CAAgNPs) capped and stabilized by the compounds from CA rhizome extract, also further demonstrating their antibacterial, antibiofilm and synergistic effects against multidrug-resistant (MDR) pathogens. CAAgNPs were synthesized using aqueous rhizome extract of CA (5 mg/ml) and AgNO3 (0.8 mM) incubated at 60°C up to 144 h. UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed CAAgNPs with characteristic peak at 430 nm, 13 ± 5 nm size of spherical shape, showing presence of silver and crystalline nature, respectively. Dynamic light scattering (DLS) and zeta potential confirmed their monodispersed nature with average diameter of 77.88 ± 48.60 nm and stability. Fourier transform infrared spectroscopic (FTIR) analysis demonstrated the presence of phenolic -OH and carbonyl groups possibly involved in the reduction and stabilization of CAAgNPs. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum biofilm inhibitory concentrations (MBICs) of CAAgNPs against Pseudomonas aeruginosa, NCIM 5029 and PAW1, and, Staphylococcus aureus, NCIM 5021 and S8 were in range from 8 to 128 μg/ml. Almost 50% disruption of pre-formed biofilms at concentrations 8-1,024 μg/ml was observed. Fluorescence microscopy and FESEM analysis confirmed cell death and disruption of pre-formed biofilms of P. aeruginosa PAW1 and S. aureus S8. Checkerboard assay demonstrated the synergistic effect of CAAgNPs (0.125-4 μg/ml) in combination with various antibiotics (0.063-1,024 μg/ml) against planktonic and biofilm forms of P. aeruginosa PAW1. The study confirms the antibacterial and antibiofilm activity of CAAgNPs alone and in combination with antibiotics against MDR pathogens, thus, reducing the dose as well as toxicity of both. CAAgNPs have the potential to be used in wound dressings and ointments, and to improve the performances of medical devices and surgical implants. In vivo toxicity of CAAgNPs however needs to be tested further using mice models.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Aishwarya Shiledar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Kedar Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
37
|
Yisimayili Z, Chao Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem 2022; 395:133600. [DOI: 10.1016/j.foodchem.2022.133600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
38
|
Machado JCB, Ferreira MRA, Soares LAL. Punica granatum leaves as a source of active compounds: A review of biological activities, bioactive compounds, food, and technological application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Tian Y, Luo J, Wang H, Zaki HEM, Yu S, Wang X, Ahmed T, Shahid MS, Yan C, Chen J, Li B. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2892. [PMID: 36365347 PMCID: PMC9654092 DOI: 10.3390/plants11212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou 317000, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo 315033, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Antimicrobial Activity of Silver and Gold Nanoparticles Prepared by Photoreduction Process with Leaves and Fruit Extracts of Plinia cauliflora and Punica granatum. Molecules 2022; 27:molecules27206860. [PMID: 36296456 PMCID: PMC9609182 DOI: 10.3390/molecules27206860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The increased number of resistant microbes generates a search for new antibiotic methods. Metallic nanoparticles have emerged as a new platform against several microorganisms. The nanoparticles can damage the bacteria membrane and DNA by oxidative stress. The photoreduction process is a clean and low-cost method for obtaining silver and gold nanoparticles. This work describes two original insights: (1) the use of extracts of leaves and fruits from a Brazilian plant Plinia cauliflora, compared with a well know plant Punica granatum, and (2) the use of phytochemicals as stabilizing agents in the photoreduction process. The prepared nanoparticles were characterized by UV-vis, FTIR, transmission electron microscopy, and Zeta potential. The antimicrobial activity of nanoparticles was obtained with Gram-negative and Gram-positive bacteria, particularly the pathogens Staphylococcus aureus ATCC 25923; Bacillus subtilis ATCC 6633; clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis; Escherichia coli ATCC 25922; Escherichia coli O44:H18 EAEC042 (clinical isolate); Klebsiella pneumoniae ATCC 700603, Salmonella Thiphymurium ATCC 10231; Pseudomonas aeruginosa ATCC 27853; and Candida albicans ATCC 10231. Excellent synthesis results were obtained. The AgNPs exhibited antimicrobial activities against Gram-negative and Gram-positive bacteria and yeast (80–100%), better than AuNPs (0–87.92%), and may have the potential to be used as antimicrobial agents.
Collapse
|
41
|
Khalil FO, Taj MB, Ghonaim EM, Abed El-Sattar S, Elkhadry SW, El-Refai H, Ali OM, Elgawad ASA, Alshater H. Hydrothermal assisted biogenic synthesis of silver nanoparticles: A potential study on virulent candida isolates from COVID-19 patients. PLoS One 2022; 17:e0269864. [PMID: 36201485 PMCID: PMC9536612 DOI: 10.1371/journal.pone.0269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022] Open
Abstract
Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, the first time we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates were determined. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs was estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 μg/mL and MFC values ranging from 312.5 to 5,000 μg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 μg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.
Collapse
Affiliation(s)
- Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Muhammad B. Taj
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University Bahawalpur, Bahawalpur, Pakistan
- * E-mail: (MBT); (OMA)
| | - Enas M. Ghonaim
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Abed El-Sattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sally W. Elkhadry
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hala El-Refai
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif Saudi Arabia
- * E-mail: (MBT); (OMA)
| | - Ahmed Salah A. Elgawad
- Department of Clinical Pathology, National Liver Institute, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
42
|
Mansour HMM, El-Sohaimy SA, Zeitoun AM, Abdo EM. Effect of Natural Antioxidants from Fruit Leaves on the Oxidative Stability of Soybean Oil during Accelerated Storage. Antioxidants (Basel) 2022; 11:antiox11091691. [PMID: 36139765 PMCID: PMC9495815 DOI: 10.3390/antiox11091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plant by-products are safe, sustainable, and abundant natural antioxidant sources. Here we investigated the antioxidant activity of a mixture of lyophilized pomegranate, guava, and grape (PGG) leaves water extract (1:1:1) and examined its ability to retard the rancidity of soybean oil during accelerated storage at 65 °C for 30 days. To achieve this, we evaluated the oxidative stability of soybean oil enriched with PGG extract at 200, 400, and 800 ppm. We also compared the effect of PGG extract with butylated hydroxytoluene (BHT) (400/100 ppm) with that of only BHT (200 ppm). We observed that 8.19 and 1.78 µg/mL of the extract could scavenge 50% of DPPH• and ABTS•, respectively, indicating its enhanced antioxidant activity. Enriching soyabean oil with the extract at 800 ppm improved its oxidative stability by reducing the acid value to 1.71 mg/g and the total oxidation to 99.87 compared to 2.27 mg/g and 150.32 in the raw oil, respectively. Moreover, PGG-800 ppm inhibited oxidation by 46.07%. Similarly, PGG-400 ppm reinforced BHT (100 ppm) to provide oxidative stability as BHT (p > 0.05), with TOTOX values of 87.93 and 79.23, respectively. PGG-800 ppm and PGG/BHT mix potently inhibited the transformation of polyunsaturated fatty acids into saturated ones. Therefore, the PGG extract might be an efficient substitute for BHT (partially or totally) during industrial processes.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
| | - Sobhy Ahmed El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Service, South Ural State University (SUSU), 454080 Chelyabinsk, Russia
| | - Ahmed M. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
| | - Eman M. Abdo
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
- Correspondence:
| |
Collapse
|
43
|
Pawcenis D, Twardowska E, Leśniak M, Jędrzejczyk RJ, Sitarz M, Profic-Paczkowska J. TEMPO-oxidized cellulose for in situ synthesis of Pt nanoparticles. Study of catalytic and antimicrobial properties. Int J Biol Macromol 2022; 213:738-750. [PMID: 35690157 DOI: 10.1016/j.ijbiomac.2022.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
In this work, platinum nanoparticles (PtNPs) were synthesized by a modified polyol process using TEMPO-oxidized nanocellulose (TOCN) as a stabilizing and co-reducing agent. Different ratios of TOCN nanocellulose to Pt4+ ions were studied to establish the optimum stabilizing effect of PtNPs. The effect of different pH of aqueous TOCN suspensions on the morphology of PtNPs was also examined. It was proved that PtNPs can be obtained solely in the presence of TOCN without the use of an additional reducing agent or ethylene glycol. The morphology and structural properties of the nanocellulose‑platinum nanoparticles composites were assessed using spectroscopic, microscopic and diffraction techniques, The catalytic performance in 4-nitrophenol reduction was evaluated. Significant differences in reaction rate constants k were found depending on the pH of the TOCN suspension applied during Pt4+ reduction. The crucial effect of reaction conditions on PtNPs performance was confirmed in tests of antibacterial efficacy against E. coli.
Collapse
Affiliation(s)
- Dominika Pawcenis
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland.
| | - Ewelina Twardowska
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland
| | - Magdalena Leśniak
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
| | - Roman J Jędrzejczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, Poland
| | - Maciej Sitarz
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
| | - Joanna Profic-Paczkowska
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland
| |
Collapse
|
44
|
Samet S, Ayachi A, Fourati M, Mallouli L, Allouche N, Treilhou M, Téné N, Mezghani-Jarraya R. Antioxidant and Antimicrobial Activities of Erodium arborescens Aerial Part Extracts and Characterization by LC-HESI-MS 2 of Its Acetone Extract. Molecules 2022; 27:molecules27144399. [PMID: 35889269 PMCID: PMC9318634 DOI: 10.3390/molecules27144399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
The phytochemical analysis of antioxidant and antibacterial activities of Erodium arborescens aerial part extracts constitute the focus of this research. The chemical composition of an acetone extract was investigated using LC-HESI-MS2, which revealed the presence of 70 compounds. The major identified components were tannin derivatives. Total polyphenol and total flavonoid contents were assessed in plant extracts (hexane, ethyl acetate, acetone and methanol). The results showed that the acetone extract exhibited the highest contents of polyphenols and flavonoids, 895.54 and 36.39 mg QE/g DE, respectively. Furthermore, when compared to other extracts, Erodium arborescens acetone extract was endowed with the highest antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) tests. In addition, the four extracts of Erodium arborescens showed variable degrees of antimicrobial activity against the tested strains, and the interesting activity was obtained with acetone and methanol extracts.
Collapse
Affiliation(s)
- Sonda Samet
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Amani Ayachi
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Lotfi Mallouli
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
| | - Nathan Téné
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
- Correspondence: ; Tel.: +33-667276471
| | - Raoudha Mezghani-Jarraya
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| |
Collapse
|
45
|
Lawal Usman U, Kumar Allam B, Bahadur Singh N, Banerjee S. Adsorptive removal of Cr(VI) from wastewater by hexagonal boron nitride-magnetite nanocomposites: Kinetics, mechanism and LCA analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Mobaraki F, Momeni M, Barghbani M, Far BF, Hosseinian S, Hosseini SM. Extract-mediated biosynthesis and characterization of gold nanoparticles: Exploring their protective effect against cyclophosphamide-induced oxidative stress in rat testis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Meratan AA, Hassani V, Mahdavi A, Nikfarjam N. Pomegranate seed polyphenol-based nanosheets as an efficient inhibitor of amyloid fibril assembly and cytotoxicity of HEWL. RSC Adv 2022; 12:8719-8730. [PMID: 35424834 PMCID: PMC8984939 DOI: 10.1039/d1ra05820g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Poor water solubility and low bioavailability are considered as two main factors restricting therapeutic applications of natural polyphenols in relation to various disorders including amyloid-related diseases. Among various strategies developed to overcome these limitations, nanonization has attracted considerable attention. Herein, we compared the potency of bulk and nano forms of the polyphenolic fraction of pomegranate seed (PFPS) for modulating Hen Egg White Lysozyme (HEWL) amyloid fibril formation. Prepared PFPS nanosheets using direct oxidative pyrolysis were characterized by employing a range of spectroscopic and microscopic techniques. We found that the nano form can inhibit the assembly process and disintegrate preformed fibrils of HEWL much more effective than the bulk form of PFPS. Moreover, MTT-based cell viability and hemolysis assays showed the capacity of both bulk and nano forms of PFPS in attenuating HEWL amyloid fibril-induced toxicity, where the nano form was more effective. On the basis of thioflavin T results, a delay in the initiation of amyloid fibril assembly of HEWL appears to be the mechanism of action of PFPS nanosheets. We suggest that the improved efficiency of PFPS nanosheets in modulating the HEWL fibrillation process may be attributed to their increased surface area in accord with the surface-assistance model. Our results may present polyphenol-based nanosheets as a powerful approach for drug design against amyloid-related diseases. PFPS nanosheets modulate the amyloid fibrillation of HEWL much more effective than the bulk form of PFPS. Based on the thioflavin T results, a delay in the initiation of the assembly process appears to be the mechanism of action of PFPS nanosheets.![]()
Collapse
Affiliation(s)
- Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Vahid Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| |
Collapse
|
48
|
Lomelí-Rosales DA, Zamudio-Ojeda A, Reyes-Maldonado OK, López-Reyes ME, Basulto-Padilla GC, Lopez-Naranjo EJ, Zuñiga-Mayo VM, Velázquez-Juárez G. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Capsicum chinense Plant. Molecules 2022; 27:1692. [PMID: 35268794 PMCID: PMC8911899 DOI: 10.3390/molecules27051692] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.
Collapse
Affiliation(s)
- Diego Alberto Lomelí-Rosales
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; (D.A.L.-R.); (O.K.R.-M.); (M.E.L.-R.); (G.C.B.-P.)
| | - Adalberto Zamudio-Ojeda
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico;
| | - Oscar Kevin Reyes-Maldonado
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; (D.A.L.-R.); (O.K.R.-M.); (M.E.L.-R.); (G.C.B.-P.)
| | - Morelia Eunice López-Reyes
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; (D.A.L.-R.); (O.K.R.-M.); (M.E.L.-R.); (G.C.B.-P.)
| | - Georgina Cristina Basulto-Padilla
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; (D.A.L.-R.); (O.K.R.-M.); (M.E.L.-R.); (G.C.B.-P.)
| | - Edgar José Lopez-Naranjo
- Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, José Guadalupe Zuno # 48, Zapopan 45101, Jalisco, Mexico;
| | - Víctor Manuel Zuñiga-Mayo
- CONACyT-Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco 56230, Estado de México, Mexico
| | - Gilberto Velázquez-Juárez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; (D.A.L.-R.); (O.K.R.-M.); (M.E.L.-R.); (G.C.B.-P.)
| |
Collapse
|
49
|
Mendonça AMS, Monteiro CDA, Moraes-Neto RN, Monteiro AS, Mondego-Oliveira R, Nascimento CEC, da Silva LCN, Lima-Neto LG, Carvalho RC, de Sousa EM. Ethyl Acetate Fraction of Punica granatum and Its Galloyl-HHDP-Glucose Compound, Alone or in Combination with Fluconazole, Have Antifungal and Antivirulence Properties against Candida spp. Antibiotics (Basel) 2022; 11:antibiotics11020265. [PMID: 35203867 PMCID: PMC8868470 DOI: 10.3390/antibiotics11020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Candidiasis is the most common fungal infection among immunocompromised patients. Its treatment includes the use of antifungals, which poses limitations such as toxicity and fungal resistance. Plant-derived extracts, such as Punica granatum, have been reported to have antimicrobial activity, but their antifungal effects are still unknown. We aimed to evaluate the antifungal and antiviral potential of the ethyl acetate fraction of P. granatum (PgEA) and its isolated compound galloyl-hexahydroxydiphenoyl-glucose (G-HHDP-G) against Candida spp. In silico analyses predicted the biological activity of G-HHDP-G. The minimum inhibitory concentrations (MIC) of PgEA and G-HHDP-G, and their effects on biofilm formation, preformed biofilms, and phospholipase production were determined. In silico analysis showed that G-HHDP-G has antifungal and hepatoprotective effects. An in vitro assay confirmed the antifungal effects of PgEA and G-HHDP-G, with MIC in the ranges of 31.25–250 μg/mL and 31.25 ≥ 500 μg/mL, respectively. G-HHDP-G and PgEA synergistically worked with fluconazole against planktonic cells. The substances showed antibiofilm action, alone or in combination with fluconazole, and interfered with phospholipase production. The antifungal and antibiofilm actions of PgEA and G-HHDP-G, alone or in combination with fluconazole, in addition to their effects on reducing Candida phospholipase production, identify them as promising candidates for therapeutics.
Collapse
Affiliation(s)
- Aline Michelle Silva Mendonça
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | | | - Roberval Nascimento Moraes-Neto
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
| | - Andrea Souza Monteiro
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | | | | | - Luís Cláudio Nascimento da Silva
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
- Graduate Program in Odontology, CEUMA University, UniCEUMA, São Luís 65075-120, MA, Brazil
| | - Lidio Gonçalves Lima-Neto
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
- Correspondence:
| | - Eduardo Martins de Sousa
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
| |
Collapse
|
50
|
El-Zahar H, Menze ET, Handoussa H, Osman AK, El-Shazly M, Mostafa NM, Swilam N. UPLC-PDA-MS/MS Profiling and Healing Activity of Polyphenol-Rich Fraction of Alhagi maurorum against Oral Ulcer in Rats. PLANTS (BASEL, SWITZERLAND) 2022; 11:455. [PMID: 35161436 PMCID: PMC8838639 DOI: 10.3390/plants11030455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/04/2023]
Abstract
Camelthorn, Alhagi maurorum Boiss, family Fabaceae has long been used in African folk medicine owing to its richness in pharmacologically active metabolites. The crude extract (CEAM), ethyl acetate fraction (EFAM) and n-butanol (BFAM) fraction of A. maurorum aerial parts were investigated for their total polyphenols and oral antiulcer activity using in-vitro and in-vivo models. The major phenolic compound was isolated from the polyphenol-rich EFAM fraction and identified by conventional and spectroscopic methods of analysis as isorhamnetin-3-O-rutinoside. Furthermore, standardization of EAFM using UPLC-PDA-UV quantified isorhamnetin-3-O-rutinoside as 262.91 0.57 g/mg of the fraction. Analysis of EFAM using UPLC-PDA-MS/MS revealed tentative identification of 25 polyphenolic compounds. EFAM exhibited the most potent free radical scavenging activity against DPPH, with an IC50 (27.73 ± 1.85 µg/mL) and an FRAP value of (176.60 ± 5.21 μM Trolox equivalent (TE)/mg fraction) in comparison with CEAM and BFAM. Acetic acid-induced oral ulcers in a rat model were used to evaluate the healing properties of A. maurorum aerial parts. EFAM significantly decreased tumor necrosis factor-alpha (TNF-α) and interleukin-2 (IL-2) by 36.4% and 50.8%, respectively, in the ulcer tissues while, CEAM and BFAM exhibited lower activity at the same dose. In addition, EFAM led to a significant (p < 0.0001) rise in the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker. A. maurorum exhibited a potent healing effect in acetic acid-induced oral ulcers in rats by mitigating the release of pro-inflammatory cytokines and improving PCNA expression.
Collapse
Affiliation(s)
- Hala El-Zahar
- Department of Pharmaceutical Sciences, Faculty of Dentistry, British University in Egypt (BUE), Cairo 11837, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Ahmed K Osman
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|