1
|
Ljung A, Gio-Batta M, Hesselmar B, Imberg H, Rabe H, Nowrouzian FL, Johansen S, Törnhage CJ, Lindhagen G, Ceder M, Lundell AC, Rudin A, Wold AE, Adlerberth I. Gut microbiota markers in early childhood are linked to farm living, pets in household and allergy. PLoS One 2024; 19:e0313078. [PMID: 39602375 PMCID: PMC11602077 DOI: 10.1371/journal.pone.0313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Children growing up on farms or with pets have a lower risk of developing allergy, which may be linked to their gut microbiota development during infancy. METHODS Children from the FARMFLORA birth cohort (N = 65), of whom 28 (43%) lived on a dairy farm and 40 (62%) had pets, provided fecal samples at intervals from 3 days to 18 months of age. Gut microbiota composition was characterized using quantitative microbial culture of various typical anaerobic and facultatively anaerobic bacteria, with colonization rate and population counts of bacterial groups determined at the genus or species level. Allergy was diagnosed at three and eight years of age by experienced pediatricians. Generalized estimating equations were used to identify associations between farm residence or pet ownership, gut microbiota development and allergy. Adjustments were made for important potential confounders. RESULTS Growing up on a farm was associated with a higher ratio of anaerobic to facultative bacteria in the first week, smaller Escherichia coli populations in colonized children in the first months of life and less frequent colonization by Clostridioides difficile at 12 months of age. Having pets in the household was associated with more frequent colonization by Bifidobacterium, Lactobacillus and Bacteroides in the first months. A higher ratio of anaerobic to facultative bacteria at one week of age, early colonization by Bifidobacterium, Lactobacillus and Bacteroides, and reduced carriage of C. difficile at 4-12 months of age all correlated negatively with subsequent allergy diagnosis. CONCLUSIONS Our findings indicate that lower rates of allergy in children growing up on farms or with pets may be related to early establishment of typical anaerobic commensals in their gut microbiota. However, further studies are needed to validate our observations in this small birth cohort study.
Collapse
Affiliation(s)
- Annika Ljung
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bill Hesselmar
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Imberg
- Statistiska Konsultgruppen, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Forough L. Nowrouzian
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Carl-Johan Törnhage
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Pediatric Clinic, Skaraborg Hospital, Skövde, Sweden
| | | | | | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes E. Wold
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Zheng H, Xu Y, Wu Y, Huangfu X, Chen W, He K, Yang Y. Effects of Three Modification Methods on the In Vitro Gastrointestinal Digestion and Colonic Fermentation of Dietary Fiber from Lotus Leaves. Foods 2024; 13:3768. [PMID: 39682840 DOI: 10.3390/foods13233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) were utilized for the modification of lotus leaves, and the effects on in vitro gastrointestinal digestion and colonic fermentation of insoluble dietary fiber (IDF) from lotus leaves were compared. Compared with SEIDF and ATIDF, BMIDF released more polyphenols and exhibited better antioxidant capacity during in vitro gastrointestinal digestion. The IDF of lotus leaves changed the gut microbiota composition during in vitro colonic fermentation. SEIDF was beneficial to the diversity of gut microbiota compared with BMIDF and ATIDF. Among the three IDF groups of lotus leaves, six significant differences of OTUs were all in ATIDF; however there was the highest relative abundance of Escherichia-Shigella in ATIDF. In addition, the concentrations of butyric acid and valeric acid produced by SEIDF were significantly higher than that of BMIDF and ATIDF. Overall, SE modification improved the colonic fermentation characteristics of IDFs in lotus leaves more effectively; while BM modification helped to promote the release of polyphenols from IDFs in lotus leaves during in vitro gastrointestinal digestion. The research lays the foundation for the application of the dietary fiber of lotus leaves as a premium fiber additive in functional food.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhang Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuantong Huangfu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxiu Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Parajuli A, Mäkelä I, Roslund MI, Ringqvist E, Manninen J, Sun Y, Nurminen N, Oikarinen S, Laitinen OH, Hyöty H, Flodström-Tullberg M, Sinkkonen A. Production, analysis, and safety assessment of a soil and plant-based natural material with microbiome- and immune-modulatory effects. Methods 2024; 231:94-102. [PMID: 39306218 DOI: 10.1016/j.ymeth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Iida Mäkelä
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Marja I Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Juulia Manninen
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Yan Sun
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland.
| |
Collapse
|
4
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tripp P, Davis EC, Gurung M, Rosa F, Bode L, Fox R, LeRoith T, Simecka C, Seppo AE, Järvinen KM, Yeruva L. Infant Microbiota Communities and Human Milk Oligosaccharide Supplementation Independently and Synergistically Shape Metabolite Production and Immune Responses in Healthy Mice. J Nutr 2024; 154:2871-2886. [PMID: 39069270 PMCID: PMC11393170 DOI: 10.1016/j.tjnut.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVES In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis positive (BIP) or B. longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 d. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS The results showed that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum sp., and Erysipelatoclostridium sp. The BIP microbiome produced 2-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of mesenteric lymph node cells to phorbol myristate acetate and lipopolysaccharide and increased serum IgA and IgG concentrations. CONCLUSIONS Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.
Collapse
Affiliation(s)
- Patricia Tripp
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Manoj Gurung
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Fernanda Rosa
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States; Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Renee Fox
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Christy Simecka
- Division of Laboratory Animal Medicine University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Laxmi Yeruva
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
6
|
Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Rubio-Moraga Á. Food and human health applications of edible mushroom by-products. N Biotechnol 2024; 81:43-56. [PMID: 38521182 DOI: 10.1016/j.nbt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Mushroom waste can account for up to 50% of the total mushroom mass. Spent mushroom substrate, misshapen mushrooms, and mushroom stems are examples of mushroom byproducts. In ancient cultures, fungi were prized for their medicinal properties. Aqueous extracts containing high levels of β-glucans as functional components capable of providing prebiotic polysaccharides and improved texture to foods have been widely used and new methods have been tested to improve extraction yields. Similarly, the addition of insoluble polysaccharides controls the glycemic index, counteracting the effects of increasingly high-calorie diets. Numerous studies support these benefits in vitro, but evidence in vivo is scarce. Nonetheless, many authors have created a variety of functional foods, ranging from yogurt to noodles. In this review, we focus on the pharmacological properties of edible mushroom by-products, and the possible risks derived from its consumption. By incorporating these by-products into human or animal feed formulations, mushroom producers will be able to fully optimize crop use and pave the way for the industry to move toward a zero-waste paradigm.
Collapse
Affiliation(s)
- Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| |
Collapse
|
7
|
Sasaki M, Suaini NHA, Afghani J, Heye KN, O'Mahony L, Venter C, Lauener R, Frei R, Roduit C. Systematic review of the association between short-chain fatty acids and allergic diseases. Allergy 2024; 79:1789-1811. [PMID: 38391245 DOI: 10.1111/all.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
We performed a systematic review to investigate the current evidence on the association between allergic diseases and short chain fatty acids (SCFAs), which are microbially produced and suggested as one mechanism on how gut microbiome affects the risk of allergic diseases. Medline, Embase and Web of Science were searched from data inception until September 2022. We identified 37 papers, of which 17 investigated prenatal or early childhood SCFAs and the development of allergic diseases in childhood, and 20 assessed SCFAs in patients with pre-existing allergic diseases. Study design, study populations, outcome definition, analysis method and reporting of the results varied between papers. Overall, there was some evidence showing that the three main SCFAs (acetate, propionate and butyrate) in the first few years of life had a protective effect against allergic diseases, especially for atopic dermatitis, wheeze or asthma and IgE-mediated food allergy in childhood. The association between each SCFA and allergic disease appeared to be different by disease and the age of assessment. Further research that can determine the potentially timing specific effect of each SCFA will be useful to investigate how SCFAs can be used in treatment or in prevention against allergic diseases.
Collapse
Affiliation(s)
- Mari Sasaki
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Noor H A Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jamie Afghani
- Environmental Medicine Faculty of Medicine, University of Augsburg, Augsburg, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristina N Heye
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Liam O'Mahony
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Carina Venter
- Pediatric Allergy and Immunology, University of Colorado/Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Roger Lauener
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
8
|
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Rodríguez-Lagunas MJ, Collado MC, Pérez-Cano FJ. Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods 2024; 13:2058. [PMID: 38998564 PMCID: PMC11241808 DOI: 10.3390/foods13132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Garyfallia Kapravelou
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
| | - Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Manuel Bernabeu
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Karen Knipping
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | | | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Center for Biomedical Research Network for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Carmen Collado
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Francisco José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
9
|
Barman M, Gio-Batta M, Andrieux L, Stråvik M, Saalman R, Fristedt R, Rabe H, Sandin A, Wold AE, Sandberg AS. Short-chain fatty acids (SCFA) in infants' plasma and corresponding mother's milk and plasma in relation to subsequent sensitisation and atopic disease. EBioMedicine 2024; 101:104999. [PMID: 38340558 PMCID: PMC10869761 DOI: 10.1016/j.ebiom.2024.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) in intestinal contents may influence immune function, while less is known about SCFAs in blood plasma. The aims were to investigate the relation between infants' and maternal plasma SCFAs, as well as SCFAs in mother's milk, and relate SCFA concentrations in infant plasma to subsequent sensitisation and atopic disease. METHODS Infant plasma (N = 148) and corresponding mother's milk and plasma were collected four months postpartum. Nine SCFA (formic, acetic, propionic, isobutyric, butyric, succinic, valeric, isovaleric, and caproic acid) were analysed by UPLC-MS. At 12 months of age, atopic disease was diagnosed by a pediatric allergologist, and sensitisation was measured by skin prick test. All families participated in the Swedish birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). FINDINGS Infants with sensitisation, atopic eczema, or food allergy had significantly lower concentrations of five, three, and two SCFAs, respectively, in plasma at four months. Logistic regressions models showed significant negative associations between formic, succinic, and caproic acid and sensitisation [ORadj (95% CI) per SD: 0.41 (0.19-0.91); 0.19 (0.05-0.75); 0.25 (0.09-0.66)], and between acetic acid and atopic eczema [0.42 (0.18-0.95)], after adjusting for maternal allergy. Infants' and maternal plasma SCFA concentrations correlated strongly, while milk SCFA concentrations were unrelated to both. Butyric and caproic acid concentrations were enriched around 100-fold, and iso-butyric and valeric acid around 3-5-fold in mother's milk, while other SCFAs were less prevalent in milk than in plasma. INTERPRETATION Butyric and caproic acid might be actively transported into breast milk to meet the needs of the infant, although mechanistic studies are needed to confirm this. The negative associations between certain SCFAs on sensitisation and atopic disease adds to prior evidence regarding their immunoregulatory potential. FUNDING Swedish Research Council (Nr. 2013-3145, 2019-0137 and 2023-02217 to A-S.S.), Swedish Research Council for Health, Working Life and Welfare FORTE, Nr 2018-00485 to A.W.), The Swedish Asthma and Allergy Association's Research Fund (2020-0020 to A.S.).
Collapse
Affiliation(s)
- Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Léna Andrieux
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden; Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
| | - Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Robert Saalman
- Institute of Clinical Sciences, Department of Pediatrics, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Rikard Fristedt
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Umeå 901 87, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
10
|
Gracia MI, Vazquez P, Ibáñez-Pernía Y, Pos J, Tawde S. Performance Evaluation of a Novel Combination of Four- and Five-Carbon [Butyric and Valeric] Short-Chain Fatty Acid Glyceride Esters in Broilers. Animals (Basel) 2024; 14:617. [PMID: 38396585 PMCID: PMC10885893 DOI: 10.3390/ani14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A novel combination of Butyric and Valeric acid glycerol esters with oregano oil in a dry powder form was evaluated for performance improvements in broilers. The dosing regimen (500 g/Ton feed in starter and grower; 250 g/Ton in finisher feed) was considered low compared to conventional practices using non-esterified Butyric and Valeric short-chain fatty acids (SCFA). Six trials were conducted at various trial facilities in Italy, United Kingdom, Spain, and Poland. Supplemented broilers weighed significantly more than the control birds at 28 days of age (+3.4%; 1459 g vs. 1412 g; p = 0.0006) and at 42 days of age (+2.5%; 2834 g vs. 2763 g; p = 0.0030). Supplementation significantly reduced mortality from 1.9% to 0.8% during the finisher phase (from 29 to 42 days of age); however, average mortality was 3.2% for the whole 42-day growth period and was not affected. Further, supplemented broilers grew more (66.4 vs. 64.5 g/day; p = 0.0005), ate more feed (104.7 vs. 103.1 g/day; p = 0.0473), converted feed significantly more efficiently (1.58 vs. 1.60; p = 0.0072), leading to better EPEF value (410 vs. 389; p = 0.0006) than the control broilers. Meta-analysed trial performance data for novel SCFA formulations such as these are not commonly available, and serve to facilitate efficacy determination from an end-user perspective. The use of short- and medium-chain fatty acid esters in optimal low-dose combinations to reliably augment gut health and performance appears promising in commercial broiler production, and may lead to further improvements in industry practices and reduced antibiotic use.
Collapse
Affiliation(s)
- Marta I. Gracia
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Patricia Vazquez
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Yolanda Ibáñez-Pernía
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Jeroen Pos
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| | - Snehal Tawde
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| |
Collapse
|
11
|
Losol P, Wolska M, Wypych TP, Yao L, O'Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases. Clin Transl Allergy 2024; 14:e12339. [PMID: 38342758 PMCID: PMC10859320 DOI: 10.1002/clt2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
- Department of Molecular Biology and GeneticsSchool of BiomedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Magdalena Wolska
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Tomasz P. Wypych
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Lu Yao
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
12
|
Shi J, Dong P, Liu C, Xu Y, Zheng M, Cheng L, Wang J, Raghavan V. Lactobacillus rhamnosus Probio-M9 alleviates OVA-sensitized food allergy through modulating gut microbiota and its metabolism. Food Funct 2023; 14:10784-10795. [PMID: 37982421 DOI: 10.1039/d3fo03321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Over the past few decades, food allergy has continued to rise, significantly affecting our health, economy, and quality of life. However, current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies is to modulate immunity and microbiota. Human milk (HM) could be considered a protective factor against food allergy, but how probiotics in human milk impact the susceptibility to food allergy remains unknown. Therefore, we studied the preventive impact of human milk Lactobacillus rhamnosus Probio-M9 on food allergy in ovalbumin (OVA)-sensitized mice. We studied the effects of oral administration of Probio-M9 on allergic signatures, immune response, gut microbiota, and metabolism. Oral therapeutic administration of live Probio-M9, but not heat-killed Probio-M9, significantly reduces OVA-specific IgE (OVA-sIgE), histamine, and mMCP-1 (mouse mast cell protease-1) levels in OVA-sensitized mice. Moreover, Probio-M9 supplementation reduced allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response. 16S rDNA sequencing analysis revealed an increased ratio of Firmicutes/Bacteroidota (F/B) and the relative abundance of short-chain fatty acid (SCFA)-producing Clostridia in the feces after Probio-M9 intake. Simultaneously, Probio-M9 significantly increased the levels of SCFAs and promoted the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing the expression of the antimicrobial peptides (AMPs) Reg3b and Reg3g. Our findings suggest that the use of Probio-M9 can be a potent strategy in food allergy prevention.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yan Xu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Mingzhu Zheng
- Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| |
Collapse
|
13
|
Chun Y, Grishin A, Rose R, Zhao W, Arditi Z, Zhang L, Wood RA, Burks AW, Jones SM, Leung DYM, Jones DR, Sampson HA, Sicherer SH, Bunyavanich S. Longitudinal dynamics of the gut microbiome and metabolome in peanut allergy development. J Allergy Clin Immunol 2023; 152:1569-1580. [PMID: 37619819 PMCID: PMC11440358 DOI: 10.1016/j.jaci.2023.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Rising rates of peanut allergy (PA) motivate investigations of its development to inform prevention and therapy. Microbiota and the metabolites they produce shape food allergy risk. OBJECTIVE We sought to gain insight into gut microbiome and metabolome dynamics in the development of PA. METHODS We performed a longitudinal, integrative study of the gut microbiome and metabolome of infants with allergy risk factors but no PA from a multicenter cohort followed through mid-childhood. We performed 16S rRNA sequencing, short chain fatty acid measurements, and global metabolome profiling of fecal samples at infancy and at mid-childhood. RESULTS In this longitudinal, multicenter sample (n = 122), 28.7% of infants developed PA by mid-childhood (mean age 9 years). Lower infant gut microbiome diversity was associated with PA development (P = .014). Temporal changes in the relative abundance of specific microbiota and gut metabolite levels significantly differed in children who developed PA. PA-bound children had different abundance trajectories of Clostridium sensu stricto 1 sp (false discovery rate (FDR) = 0.015) and Bifidobacterium sp (FDR = 0.033), with butyrate (FDR = 0.045) and isovalerate (FDR = 0.036) decreasing over time. Metabolites associated with PA development clustered within the histidine metabolism pathway. Positive correlations between microbiota, butyrate, and isovalerate and negative correlations with histamine marked the PA-free network. CONCLUSION The temporal dynamics of the gut microbiome and metabolome in early childhood are distinct for children who develop PA. These findings inform our thinking on the mechanisms underlying and strategies for potentially preventing PA.
Collapse
Affiliation(s)
- Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rebecca Rose
- Metabolomics Core, New York University, New York, NY
| | - William Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - A Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Stacie M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Ark
| | | | - Drew R Jones
- Metabolomics Core, New York University, New York, NY
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott H Sicherer
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
14
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
16
|
Strauss JC, Haskey N, Ramay HR, Ghosh TS, Taylor LM, Yousuf M, Ohland C, McCoy KD, Ingram RJM, Ghosh S, Panaccione R, Raman M. Weighted Gene Co-Expression Network Analysis Identifies a Functional Guild and Metabolite Cluster Mediating the Relationship between Mucosal Inflammation and Adherence to the Mediterranean Diet in Ulcerative Colitis. Int J Mol Sci 2023; 24:ijms24087323. [PMID: 37108484 PMCID: PMC10138710 DOI: 10.3390/ijms24087323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diet influences the pathogenesis and clinical course of inflammatory bowel disease (IBD). The Mediterranean diet (MD) is linked to reductions in inflammatory biomarkers and alterations in microbial taxa and metabolites associated with health. We aimed to identify features of the gut microbiome that mediate the relationship between the MD and fecal calprotectin (FCP) in ulcerative colitis (UC). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of co-abundant microbial taxa and metabolites correlated with the MD and FCP. The features considered were gut microbial taxa, serum metabolites, dietary components, short-chain fatty acid and bile acid profiles in participants that experienced an increase (n = 13) or decrease in FCP (n = 16) over eight weeks. WGCNA revealed ten modules containing sixteen key features that acted as key mediators between the MD and FCP. Three taxa (Faecalibacterium prausnitzii, Dorea longicatena, Roseburia inulinivorans) and a cluster of four metabolites (benzyl alcohol, 3-hydroxyphenylacetate, 3-4-hydroxyphenylacetate and phenylacetate) demonstrated a strong mediating effect (ACME: -1.23, p = 0.004). This study identified a novel association between diet, inflammation and the gut microbiome, providing new insights into the underlying mechanisms of how a MD may influence IBD. See clinicaltrials.gov (NCT04474561).
Collapse
Affiliation(s)
- Jaclyn C Strauss
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Natasha Haskey
- Department of Biology, Irving K Barber Faculty of Science, University of British Columbia-Okanagan, 3137 University Way, Kelowna, BC V1V 1V7, Canada
| | - Hena R Ramay
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tarini Shankar Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, College Road, National University of Ireland, T12 K8AF Cork, Ireland
| | - Lorian M Taylor
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Munazza Yousuf
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Christina Ohland
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kathy D McCoy
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard J M Ingram
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, College Road, National University of Ireland, T12 K8AF Cork, Ireland
| | - Remo Panaccione
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Lefebo BK, Kassa DH, Tarekegn BG. Factors associated with stunting: gut inflammation and child and maternal-related contributors among under-five children in Hawassa City, Sidama Region, Ethiopia. BMC Nutr 2023; 9:54. [PMID: 36945069 PMCID: PMC10031938 DOI: 10.1186/s40795-023-00701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Under-nutrition remains a major global public health challenge, particularly among children under the age of five. Among the manifestations of under-nutrition, stunting accounts for the larger proportion, which is associated with multiple factors. In Ethiopia, however, the link between intestinal inflammation and childhood stunting was not well investigated. Therefore, the present study aimed to determine the association between gut inflammation and childhood stunting. METHOD A community-based cross-sectional study was conducted and a total of 82 children were included in the study. Anthropometric data were collected by measuring weight in underwear and without shoes with an electronic scale to the nearest 0.1 kg and their height in the Frankfort plane with a telescopic height instrument. Environmental risk factors for enteric bacterial exposure, access to improved sources of drinking water, and the presence of facilities for hygiene and sanitation conditions were assessed using a questionnaire. Gut inflammation was tested through fecal leukocyte count and each sample was stained with methylene blue. Stool samples were inoculated on MacConkey agar, Salmonella-Shigella agar, and Xylose Lysine Deoxycholate agar after enrichment with Selenite cystine broth and incubated at 37 °C for 18-24 h. Binary and multiple logistic regressions and Chi-square models were used to analyze the data. RESULT Data from the current study revealed that gut inflammation was (AOR: 5.28, 95% CI: 1.32-22.25) associated with stunting. On the other hand, children with reported diarrhea within the last week were 6 times more likely for the probability of being stunted (AOR: 6.21, 95% CI: 2.68-26.83). The findings of this study also demonstrated that children from a household with a family size of more than 5 members were three times more likely to be stunted than their counterparts (AOR: 3.21, 95% CI: 1.20 -10.13). Facts of the current study demonstrated that breastfeeding for 24 months and below was negatively associated (AOR: 0.3; 95% CI: -0.46-0.89) with gut inflammation. Detection of E.coli and Shigella species in the stool samples of children and Menaheria residents were positively associated with gut inflammation (AOR: 5.4, 95% CI: 1.32-22.25; AOR: 5, 95% CI: 1.47-24.21), respectively. CONCLUSION Therefore, there was a strong correlation between stunting and gastrointestinal inflammation. Moreover, stunting was associated with diarrhea, breastfeeding duration, residence, and family size. Similarly, intestinal inflammation was linked to residence, breastfeeding duration, and the prevalence of bacterial infections such as E. coli and Shigella species.
Collapse
Affiliation(s)
- Berhanu Kibemo Lefebo
- School of Nutrition, Food Science and Technology, College of Agriculture, University of Hawassa, Hawassa, Ethiopia
| | - Dejene Hailu Kassa
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Baye Gelaw Tarekegn
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Rahman T, Sarwar PF, Potter C, Comstock SS, Klepac-Ceraj V. Role of human milk oligosaccharide metabolizing bacteria in the development of atopic dermatitis/eczema. Front Pediatr 2023; 11:1090048. [PMID: 37020647 PMCID: PMC10069630 DOI: 10.3389/fped.2023.1090048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 04/07/2023] Open
Abstract
Despite affecting up to 20% of infants in the United States, there is no cure for atopic dermatitis (AD), also known as eczema. Atopy usually manifests during the first six months of an infant's life and is one predictor of later allergic health problems. A diet of human milk may offer protection against developing atopic dermatitis. One milk component, human milk oligosaccharides (HMOs), plays an important role as a prebiotic in establishing the infant gut microbiome and has immunomodulatory effects on the infant immune system. The purpose of this review is to summarize the available information about bacterial members of the intestinal microbiota capable of metabolizing HMOs, the bacterial genes or metabolic products present in the intestinal tract during early life, and the relationship of these genes and metabolic products to the development of AD/eczema in infants. We find that specific HMO metabolism gene sets and the metabolites produced by HMO metabolizing bacteria may enable the protective role of human milk against the development of atopy because of interactions with the immune system. We also identify areas for additional research to further elucidate the relationship between the human milk metabolizing bacteria and atopy. Detailed metagenomic studies of the infant gut microbiota and its associated metabolomes are essential for characterizing the potential impact of human milk-feeding on the development of atopic dermatitis.
Collapse
Affiliation(s)
- Trisha Rahman
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Prioty F. Sarwar
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Cassie Potter
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Sarah S. Comstock
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
19
|
Rosli NSA, Abd Gani S, Khayat ME, Zaidan UH, Ismail A, Abdul Rahim MBH. Short-chain fatty acids: possible regulators of insulin secretion. Mol Cell Biochem 2023; 478:517-530. [PMID: 35943655 DOI: 10.1007/s11010-022-04528-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The benefits of gut microbiota-derived short-chain fatty acids (SCFAs) towards health and metabolism have been emerging since the past decade. Extensive studies have been carried out to understand the mechanisms responsible in initiating the functionalities of these SCFAs towards body tissues, which greatly involves the SCFA-specific receptors free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). This review intends to discuss the potential of SCFAs particularly in regulating insulin secretion in pancreatic β-cells, by explaining the production of SCFAs in the gut, the fate of each SCFAs after their production, involvement of FFAR2 and FFAR3 signalling mechanisms and their impacts on insulin secretion. Increased secretion of insulin after SCFAs treatments were reported in many studies, but contradicting evidence also exist in several other studies. Hence, no clear consensus was achieved in determining the true potential of SCFA in regulating insulin secretion. In this review, we explore how such differences were possible and hopefully be able to shed some perspectives in understanding SCFAs-signalling behaviour and preferences.
Collapse
Affiliation(s)
- Nur Suraya Ashikin Rosli
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Badrin Hanizam Abdul Rahim
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia. .,Institut Biosains, NaturMeds, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Tan T, Xiao D, Li Q, Zhong C, Hu W, Guo J, Chen X, Zhang H, Lin L, Yang S, Xiong G, Yang H, Yang X, Hao L, Yang N. Maternal yogurt consumption during pregnancy and infantile eczema: a prospective cohort study. Food Funct 2023; 14:1929-1936. [PMID: 36723007 DOI: 10.1039/d2fo02064e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maternal fermented food consumption during pregnancy was suggested to be beneficial for a healthy microbiome, and prevent infantile eczema. However, the association between yogurt and eczema has not been well investigated. To examine whether maternal yogurt consumption during pregnancy is associated with risk of infantile eczema, we performed a prospective mother-offspring cohort study in Wuhan, China. Maternal yogurt consumption in late pregnancy was assessed with a semi-quantitative food frequency questionnaire. The main outcomes were doctor-diagnosed infantile eczema collected at 3 and 6 months postpartum. Adjusted rate ratios (aRRs) were calculated by Poisson regression models adjusted for potential confounders. In our study, 182 (7.7%) of 2371 infants followed for 3 months and 84 (4.0%) of 2114 infants followed until 6 months reported doctor-diagnosed eczema. Compared to infants whose mothers had not consumed any yogurt, infants with mothers who consumed yogurt during late pregnancy had reduced risk of eczema between 3 and 6 months of age (aRR = 0.54, 95% CI 0.35-0.85); the reduction was pronounced in those with maternal yogurt intake >3 times per week (aRR = 0.48, 95% CI 0.28-0.82) and >50 g day-1 (aRR = 0.50, 95% CI 0.30-0.81). Moreover, infants with mothers who consumed yogurt showed decreased risk for recurrent eczema within the first 6 months (aRR = 0.46, 95% CI 0.22-0.98). In conclusion, this study found that maternal yogurt consumption during late pregnancy was related to a reduced incidence of eczema in infants aged 3 to 6 months, and recurrent eczema in the first 6 months of life.
Collapse
Affiliation(s)
- Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Daxiang Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Wenqi Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Jinrong Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Seng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | | | - Hongying Yang
- Institute of Health Education, Hubei Provincial Center for Disease Control and Prevention, Hubei Provincial Academy of Preventive Medicine, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
21
|
McKay MJ, Castaneda M, Catania S, Charles KA, Shanahan E, Clarke SJ, Engel A, Varelis P, Molloy MP. Quantification of short-chain fatty acids in human stool samples by LC-MS/MS following derivatization with aniline analogues. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123618. [PMID: 36731355 DOI: 10.1016/j.jchromb.2023.123618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The gut microbiome produces a range of short chain fatty acids (SCFA) crucially linked with diet and nutrition, metabolism, gastrointestinal health and homeostasis. SCFA are primarily measured using gas or liquid chromatography-mass spectrometry (LC/MS) after undergoing chemical derivatization. Here we assess the merits of a derivatization protocol using aniline and two aniline analogues (3-phenoxyaniline and 4-(benzyloxy)aniline) for the targeted LC-MS/MS quantification of nine SCFA (acetic, propionic, butyric, valeric, caproic acid, isobutyric, isovaleric, 2-methylbutyric, and 2-ethylbutyric acid). Evaluation of product ion spectra and optimization of MS detection conditions, provided superior detection sensitivity for 3-phenoxyaniline and 4-(benzyloxy)aniline compared to aniline. We developed a facile SCFA derivatization method using 3-phenoxyaniline under mild reaction conditions which allows for the simultaneous quantification of these SCFA in human stool samples in under eleven minutes using multiple reaction monitoring LC-MS/MS. The method was successfully validated and demonstrates intra- and inter-day accuracy (88.5-103% and 86.0-109%) and precision (CV of 0.55-7.00% and 0.33-9.55%) with recoveries (80.1-87.2% for LLOQ, 88.5-93.0% for ULOQ) and carry-over of (2.68-17.9%). Selectivity, stability and matrix effects were also assessed and satisfied validation criteria. Method applicability was demonstrated by analysing SCFA profiles in DNA-stabilized human stool samples from newly diagnosed colorectal cancer patients prior to surgery. The development of this improved method and its compatibility to measure SCFAs from DNA-stabilized stool will facilitate studies investigating the gut microbiome in health and disease.
Collapse
Affiliation(s)
- Matthew J McKay
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Miguel Castaneda
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sarah Catania
- Shimadzu Scientific Instruments Australia, Unit F, 10-16 South Street, Rydalmere 2116, New South Wales, Australia
| | - Kellie A Charles
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Erin Shanahan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
| | - Stephen J Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, 2065 Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Alexander Engel
- Colorectal Surgical Unit, Royal North Shore Hospital, St. Leonards, 2065 Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Peter Varelis
- Shimadzu Scientific Instruments Australia, Unit F, 10-16 South Street, Rydalmere 2116, New South Wales, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
22
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
23
|
Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species. Metabolites 2023; 13:metabo13020252. [PMID: 36837871 PMCID: PMC9962286 DOI: 10.3390/metabo13020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
This work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.
Collapse
|
24
|
Xiao X, Hu X, Yao J, Cao W, Zou Z, Wang L, Qin H, Zhong D, Li Y, Xue P, Jin R, Li Y, Shi Y, Li J. The role of short-chain fatty acids in inflammatory skin diseases. Front Microbiol 2023; 13:1083432. [PMID: 36817115 PMCID: PMC9932284 DOI: 10.3389/fmicb.2022.1083432] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites of gut microbes that can modulate the host inflammatory response, and contribute to health and homeostasis. Since the introduction of the gut-skin axis concept, the link between SCFAs and inflammatory skin diseases has attracted considerable attention. In this review, we have summarized the literature on the role of SCFAs in skin inflammation, and the correlation between SCFAs and inflammatory skin diseases, especially atopic dermatitis, urticaria, and psoriasis. Studies show that SCFAs are signaling factors in the gut-skin axis and can alleviate skin inflammation. The information presented in this review provides new insights into the molecular mechanisms driving gut-skin axis regulation, along with possible pathways that can be targeted for the treatment and prevention of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianjun Xiao
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoshen Hu
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junpeng Yao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Cao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zihao Zou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haiyan Qin
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongling Zhong
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuxi Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peiwen Xue
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rongjiang Jin
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunzhou Shi
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Yunzhou Shi,
| | - Juan Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Juan Li,
| |
Collapse
|
25
|
Cui H, Mu Z. Prenatal Maternal Risk Factors Contributing to Atopic Dermatitis: A Systematic Review and Meta-Analysis of Cohort Studies. Ann Dermatol 2023; 35:11-22. [PMID: 36750454 PMCID: PMC9905861 DOI: 10.5021/ad.21.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The gestational risk factors predispose to the manifestation of early childhood atopic dermatitis (AD). OBJECTIVE We evaluated the association between modifiable and non-modifiable gestational and prenatal risk factors that affect the AD prevalence in children. METHODS We performed the systematic review and meta-analysis of cohort studies (n=27) in PubMed and EMBASE (2000~2021). A meta-analysis was performed using random-effects models to estimate pooled odds ratios (OR) or hazard ratio (HR). We performed a systematic review according to Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines and summarized cohort studies investigating gestational and prenatal risk factor those predispose to AD in off spring. Leading modifiable and non-modifiable were identified through ORs. Meta-analysis using the random effect model was also conducted to provide an overall estimate for several significant factors. RESULTS Among the non-modifiable risk factors gestational diabetes (7.2, 95% confidence interval [CI]: 1.4~34.5), maternal history of allergy (2.14, 95% CI: 1.54~2.97) and prenatal history of eczema (2.46, 95% CI: 1.0~5.8) were found as major determining risk factors in early manifestation of AD in children. Further, maternal exposure to industrial products (1.89, 95% CI: 1.10~3.16), exposure to antibiotics during pregnancy (3.59, 95% CI: 1.19~10.85) and passive smoking during pregnancy (2.60, 95% CI: 1.11~6.1) are leading causes of early AD manifestation. CONCLUSION Conclusively, both genetic and environmental factors play a pivotal role in early manifestation of AD. The better managing the environmental factors during gestational phase to the least can help curtail the prevalence of AD in children.
Collapse
Affiliation(s)
- Hong Cui
- Department of Dermatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhijuan Mu
- Department of Dermatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
26
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
27
|
Kaelle GCB, Bastos TS, Fernandes EL, de Souza RBMDS, de Oliveira SG, Félix AP. High-protein dried distillers grains in dog diets: diet digestibility and palatability, intestinal fermentation products, and fecal microbiota. J Anim Sci 2023; 101:skad128. [PMID: 37101324 PMCID: PMC10195199 DOI: 10.1093/jas/skad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to evaluate the effects of high-protein dried distillers grains (HPDDG) on palatability and metabolizable energy (ME) of the diet, apparent total tract digestibility (ATTD) of nutrients and energy, intestinal fermentation products, and fecal microbiota in dogs. Four diets containing 0, 70, 140, and 210 g/kg of HPDDG were manufactured. To evaluate the ME and the ATTD of macronutrients of HPDDG itself, an additional test diet was manufactured containing 70% of the control diet formula (0 g/kg) and 300 g/kg of HPDDG. Fifteen adult Beagle dogs were distributed in a randomized block design, with two periods of 15 d each (n = 6). The HPDDG digestibility was obtained using the Matterson substitution method. For the palatability test, 16 adult dogs were used, comparing the diets: 0 vs. 70 g/kg of HPDDG and 0 vs. 210 g/kg of HPDDG. The ATTD of HPDDG were: dry matter = 85.5%, crude protein = 91.2%, and acid-hydrolyzed ether extract = 84.6% and the ME content was 5,041.8 kcal/kg. The ATTD of macronutrients and ME of the diets and the fecal dry matter, score, pH, and ammonia of the dogs did not differ among treatments (P > 0.05). There was a linear increase in the fecal concentrations of valeric acid with the inclusion of HPDDG in the diet (P < 0.05). Streptococcus and Megamonas genera reduced linearly (P < 0.05), and Blautia, Lachnospira, Clostridiales, and Prevotella genera showed a quadratic response to the inclusion of HPDDG in the diet (P < 0.05). Alpha-diversity results showed an increase (P < 0.05) in the number of operational taxonomic units and Shannon index and a trend (P = 0.065) for a linear increase in the Chao-1 index with the dietary inclusion of HPDDG. Dogs preferred the 210 g/kg diet over the 0 g/kg HPDDG diet (P < 0.05). These results demonstrate that the HPDDG evaluated does not affect the utilization of nutrients in the diet, but it may modulate the fecal microbiome of dogs. In addition, HPDDG may contribute to diet palatability for dogs.
Collapse
Affiliation(s)
- Gislaine Cristina Bill Kaelle
- Department of Animal Sciences, Sector of Agrarian Sciences, Federal University of Paraná, 1540 Funcionários Street, Curitiba, PR 80035-050, Brazil
| | - Taís Silvino Bastos
- Department of Animal Sciences, Sector of Agrarian Sciences, Federal University of Paraná, 1540 Funcionários Street, Curitiba, PR 80035-050, Brazil
| | - Eduarda Lorena Fernandes
- Department of Animal Sciences, Sector of Agrarian Sciences, Federal University of Paraná, 1540 Funcionários Street, Curitiba, PR 80035-050, Brazil
| | | | - Simone Gisele de Oliveira
- Department of Animal Sciences, Sector of Agrarian Sciences, Federal University of Paraná, 1540 Funcionários Street, Curitiba, PR 80035-050, Brazil
| | - Ananda Portella Félix
- Department of Animal Sciences, Sector of Agrarian Sciences, Federal University of Paraná, 1540 Funcionários Street, Curitiba, PR 80035-050, Brazil
| |
Collapse
|
28
|
Schwab C. The development of human gut microbiota fermentation capacity during the first year of life. Microb Biotechnol 2022; 15:2865-2874. [PMID: 36341758 PMCID: PMC9733644 DOI: 10.1111/1751-7915.14165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Fermentation capacity of microbial ecosystems intrinsically depends on substrate supply and the ability of a microbial community to deliver monomers for fermentation. In established microbial ecosystems, the microbial community is adapted to efficiently degrade and ferment available biopolymers which is often concurrently reflected in the richness of the microbial community and its functional potential. During the first year of life, the human gut microbial environment is a rather dynamic system that is characterized by a change in physiological conditions (e.g. from aerobic to anaerobic conditions, physical growth of the gastrointestinal tract, development of the intestinal immune system) but also by a change in nutrient supply from a compositionally limited liquid to a diverse solid diet, which demands major compositional and functional changes of the intestinal microbiota. How these transitions link to intestinal microbial fermentation capacity has gained comparatively little interest so far. This mini-review aims to collect evidence that already after birth, there is seeding of a hidden population of various fermentation organisms which remain present at low abundance until the cessation of breastfeeding removes nutritional restrictions of a liquid milk-based diet. The introduction of solid food containing plant and animal material is accompanied by an altering microbiota. The concurrent increases in the abundance of degraders and fermenters lead to higher intestinal fermentation capacity indicated by increased faecal levels of the final fermentation metabolites propionate and butyrate. Recent reports indicate that the development of fermentation capacity is an important step during gut microbiota development, as chronic disorders such as allergy and atopic dermatitis have been linked to lower degradation and fermentation capacity indicated by reduced levels of final fermentation metabolites at 1 year of age.
Collapse
Affiliation(s)
- Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
29
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
30
|
Bartikoski BJ, de Oliveira MS, do Espírito Santo RC, dos Santos LP, dos Santos NG, Xavier RM. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites 2022; 12:394. [PMID: 35629898 PMCID: PMC9146149 DOI: 10.3390/metabo12050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolomic analysis provides a wealth of information that can be predictive of distinctive phenotypes of pathogenic processes and has been applied to better understand disease development. Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In this review, we describe potential metabolic biomarkers that might be helpful in the study of RA pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide) and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles during the early stages of RA and are present systemically, which is a relevant characteristic for biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide important information before disease onset to predict disease activity and treatment response. Regarding therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and can reveal differences between responders and non-responders. In terms of comorbidities, physical impairment represented by higher fatigue scores and muscle wasting has been associated with an increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine samples from RA patients seem to provide critical information about the metabolic profile related to drug response, disease activity and comorbidities.
Collapse
Affiliation(s)
- Bárbara Jonson Bartikoski
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Marianne Schrader de Oliveira
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Rafaela Cavalheiro do Espírito Santo
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Leonardo Peterson dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Natália Garcia dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Ricardo Machado Xavier
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
31
|
Yagi K, Asai N, Huffnagle GB, Lukacs NW, Fonseca W. Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:877771. [PMID: 35444639 PMCID: PMC9013880 DOI: 10.3389/fimmu.2022.877771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Several environmental factors can influence the development and establishment of the early-life microbiota. For example, exposure to different environmental factors from birth to childhood will shape the lung and gut microbiota and the development of the immune system, which will impact respiratory tract infection and widespread disease occurrence during infancy and later in life. Respiratory syncytial virus (RSV) infects most infants by the age of two and is the primary cause of bronchiolitis in children worldwide. Approximately a third of infants hospitalized with bronchiolitis develop asthma later in life. However, it is unclear what factors increase susceptibility to severe RSV-bronchiolitis and the subsequent asthma development. In recent years, the role of the gut and lung microbiota in airway diseases has received increased interest, and more studies have focused on this field. Different epidemiological studies and experimental animal models have associated early-life gut microbiota dysbiosis with an increased risk of lung disease later in life. This work will review published evidence that correlated environmental factors that affect the early-life microbiota composition and their role in developing severe RSV infection.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Gary B Huffnagle
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
32
|
The extended farm effect: The milk protein β-lactoglobulin in stable dust protects against allergies. Allergol Select 2022; 6:111-117. [PMID: 35392214 PMCID: PMC8982089 DOI: 10.5414/alx02246e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background: The allergy- and asthma-protective farm effect is mediated by numerous factors. Especially dust from cattle stables and raw cow’s milk show beneficial properties, suggesting a bovine protein to be involved. As a major milk protein and member of the lipocalin family, β-lactoglobulin (BLG) binds small, hydrophobic ligands and thereby modulates the immune response. Empty BLG promotes allergy development, whereas BLG in association with ligands shows allergy-preventive as well as allergy-reducing effects in vivo and in vitro. Results: BLG has been identified as a major protein in stable dust (therein bound to zinc) as well as in the air around cattle stables. This association with zinc favors an allergy-protective immune profile. Conclusion: Its immune-modulating, allergy-protective characteristics together with its presence in raw cow’s milk as well as in stable dust and ambient air render BLG an essential contributor to the farm effect.
Collapse
|
33
|
Cheng HY, Chan JCY, Yap GC, Huang CH, Kioh DYQ, Tham EH, Loo EXL, Shek LPC, Karnani N, Goh A, Van Bever HPS, Teoh OH, Chan YH, Lay C, Knol J, Yap F, Tan KH, Chong YS, Godfrey KM, Chan ECY, Lee BW, Ta LDH. Evaluation of Stool Short Chain Fatty Acids Profiles in the First Year of Life With Childhood Atopy-Related Outcomes. FRONTIERS IN ALLERGY 2022; 3:873168. [PMID: 35769572 PMCID: PMC9234937 DOI: 10.3389/falgy.2022.873168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Short chain fatty acids (SCFAs) are the main intestinal intermediate and end products of metabolism of dietary fibers/polyphenols by the gut microbiota. The aim of this study was to evaluate the biological implication of stool SCFA profiles determined in the first year of life on the clinical presentation of allergic outcomes in childhood. Methods From the Growing Up in Singapore Toward healthy Outcomes (GUSTO) cohort, a sub-cohort of 75 participants was recruited. Scheduled questionnaire data was collected for cumulative prevalence of physician-diagnosed eczema, wheezing with the use of nebuliser, and allergen sensitization till the age of 8 years. Stool samples collected at week 3 and months 3, 6 and 12 were quantitated for 9 SCFAs using LC/MS/MS. SCFA data were grouped into lower (below the 25th) and higher (above the 75th percentiles) categories. Generalized Linear Mixed Models was employed to analyse longitudinal association between SCFAs and atopy-related outcomes. Results Children with lower stool butyric acid levels (≤25th percentile) over the first 3 time points had higher odds ratio (OR) for wheezing (adjOR = 14.6), eczema (adjOR = 13.2), food sensitization (adjOR = 12.3) and combined outcomes of both wheezing and eczema (adjOR = 22.6) till age 8 years, compared to those with higher levels (≥75 percentile). Additionally, lower longitudinal levels of propionic acid (≤25th percentile) over 4 time points in first year of life was associated with recurrent wheezing (≥2 episodes) till 8 years (adjOR = 7.4) (adj p < 0.05). Conclusion Our results suggest that relatively low levels of gut SCFAs in early life are associated with increased susceptibility to atopic-related outcomes in childhood.
Collapse
Affiliation(s)
- Hsin Yue Cheng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James Chun Yip Chan
- Singapore Institute of Food and Biotechnology Innovation, ASTAR, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lynette P. C. Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anne Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hugo P. S. Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Oon Hoe Teoh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christophe Lay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Danone Nutricia Research, Singapore, Singapore
| | - Jan Knol
- Danone Nutricia Research, Utrecht, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Le Duc Huy Ta
| |
Collapse
|
34
|
Dąbek-Drobny A, Kaczmarczyk O, Woźniakiewicz M, Paśko P, Dobrowolska-Iwanek J, Woźniakiewicz A, Piątek-Guziewicz A, Zagrodzki P, Zwolińska-Wcisło M. Association between Fecal Short-Chain Fatty Acid Levels, Diet, and Body Mass Index in Patients with Inflammatory Bowel Disease. BIOLOGY 2022; 11:biology11010108. [PMID: 35053106 PMCID: PMC8772864 DOI: 10.3390/biology11010108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract associated with gut inflammation and a disturbance in the amount of bacteria living in the human intestines. As a result, there is a reduction in the production of bacterial metabolites, especially short-chain fatty acids (SCFAs), which are formed from dietary fiber. The aim of our study was to assess the relationship between body mass index (BMI), the type of diet used, and changes in fecal SCFA levels in patients with IBD. We enrolled 61 patients with IBD and 16 patients as a control group. We asked all participants about their daily diet, using the simplified FF questionnaire, and measured the levels of SCFA in their stool samples. Our results revealed that underweight subjects had higher levels of isobutyric acid, whereas those with excessive weight had lower level of butyric, isovaleric, and propionic acids. Furthermore, we observed higher levels of valeric acid in controls than in IBD patients. However, we did not observe a relationship between diet habits and fecal SCFA levels. In conclusion, we demonstrated that BMI is associated with SCFA levels in patients with IBD. Abstract Disturbances in the production of bacterial metabolites in the intestine have been reported in diseases associated with dysbiosis, such as inflammatory bowel diseases (IBDs) that include two conditions: Crohn disease (CD) and ulcerative colitis (UC). Short-chain fatty acids (SCFAs) are the main dietary-fiber-derived bacterial metabolites associated with the course of intestinal inflammation. In this study, we assessed the relationship between body mass index (BMI), the type of diet used, and changes in fecal SCFA levels in patients with IBD. We performed nutritional assessments using a nutritional questionnaire and determined fecal SCFA levels in 43 patients with UC, 18 patients with CD, and 16 controls. Our results revealed that subjects with a BMI > 24.99 kg/m2 had higher levels of isobutyric acid, whereas those with a BMI < 18.5 kg/m2 had lower level of butyric, isovaleric, and propionic acids. Furthermore, we observed higher levels of valeric acid in controls than in IBD patients. We did not reveal a relationship between a specific SCFA and the type of diet, but eating habits appear to be related to the observed changes in the SCFA profile depending on BMI. In conclusion, we demonstrated that BMI is associated with SCFA levels in patients with IBD.
Collapse
Affiliation(s)
- Agnieszka Dąbek-Drobny
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Olga Kaczmarczyk
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (O.K.); (A.P.-G.)
| | - Michał Woźniakiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (A.W.)
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.P.); (J.D.-I.); (P.Z.)
| | - Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.P.); (J.D.-I.); (P.Z.)
| | - Aneta Woźniakiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (A.W.)
| | - Agnieszka Piątek-Guziewicz
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (O.K.); (A.P.-G.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.P.); (J.D.-I.); (P.Z.)
| | - Małgorzata Zwolińska-Wcisło
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, 30-688 Krakow, Poland;
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (O.K.); (A.P.-G.)
- Correspondence: ; Tel.: +48-12-400-31-50
| |
Collapse
|
35
|
Zhao H, Zhou J, Lu H, Xi A, Luo M, Wang K, Lv H, Wang H, Wang P, Miao J, Xu Z. Azithromycin pretreatment exacerbates atopic dermatitis in trimellitic anhydride-induced model mice accompanied by correlated changes in the gut microbiota and serum cytokines. Int Immunopharmacol 2022; 102:108388. [PMID: 34819259 DOI: 10.1016/j.intimp.2021.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease. This study aims to investigate the effect of azithromycin (AZI) pretreatment, a common macrolide-type antibiotic, on the trimellitic anhydride (TMA) induced AD-like symptoms in mice. AZI (25 mg/kg, once daily, 5 days) was administered intragastrically before the 10-day TMA challenge. AD-like symptoms were assessed by ear thickening, scratching behavior, and pathological or immunofluorescence staining; Cytokines in the skin tissue and serum were measured by cytometric bead array; and the compositions of gut microbiota were assessed by 16S rRNA gene sequencing. AZI pretreatment accelerated the development of ear thickening and enhanced the severity of developed AD-like symptoms. AZI pretreatment promoted the infiltrations of neutrophil-like cells, T cells, and mast cells in ear skin. AZI pretreatment elevated the levels of IL-4, IL-6, and IL-17A in the ear skin of AD model mice, but it increased serum TNF-α and IL-6. AZI-pretreatment increased four gut bacterial genera (Bacteroides, Candidatus_Saccharibacteria_unclassified, Acetatifactor, Firmicutes_unclassified) but depleted three short-chain fatty acids producing gut bacterial genera (Alistipes, Clostridiales_unclassified, Butyricicoccus). AD-associated symptoms were positively associated with skin IL-4 and IL-17A, serum TNF-α, and IL-6, and Acetatifactor, but they negatively correlated to the three decreased gut bacterial genera (Alistipes, Clostridiales_unclassified, Butyricicoccus). Thus, our results demonstrate that AZI exposure deteriorates TMA-induced AD-like symptoms in mice, which is related to the imbalances of gut microbiota and skin/serum cytokines.
Collapse
Affiliation(s)
- Huawei Zhao
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Jia Zhou
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anran Xi
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengxian Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keer Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongjie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijuan Wang
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Ping Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Miao
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett’s Esophagus. Microorganisms 2021; 9:microorganisms9122432. [PMID: 34946037 PMCID: PMC8708753 DOI: 10.3390/microorganisms9122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett’s esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
Collapse
|
37
|
Sost MM, Ahles S, Verhoeven J, Verbruggen S, Stevens Y, Venema K. A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon. Nutrients 2021; 13:nu13113915. [PMID: 34836169 PMCID: PMC8619629 DOI: 10.3390/nu13113915] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The effect of a Citrus Fruit Extract high in the polyphenols hesperidin and naringin (CFE) on modulation of the composition and activity of the gut microbiota was tested in a validated, dynamic in vitro model of the colon (TIM-2). CFE was provided at two doses (250 and 350 mg/day) for 3 days. CFE led to a dose-dependent increase in Roseburia, Eubacterium ramulus, and Bacteroides eggerthii. There was a shift in production of short-chain fatty acids, where acetate production increased on CFE, while butyrate decreased. In overweight and obesity, acetate has been shown to increase fat oxidation when produced in the distal gut, and stimulate secretion of appetite-suppressive neuropeptides. Thus, the data in the in vitro model point towards mechanisms underlying the effects of the polyphenols in CFE with respect to modulation of the gut microbiota, both in composition and activity. These results should be confirmed in a clinical trial.
Collapse
Affiliation(s)
- Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Ahles
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Yala Stevens
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
- Correspondence: ; Tel.: +31-622-435-111
| |
Collapse
|
38
|
Protective effects of gut microbiota and gut microbiota-derived acetate on chicken colibacillosis induced by avian pathogenic Escherichia coli. Vet Microbiol 2021; 261:109187. [PMID: 34399296 DOI: 10.1016/j.vetmic.2021.109187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Chicken colibacillosis is caused by avian pathogenic Escherichia coli (APEC), and results in huge economic losses to the poultry industry. With the investigation of the gut-lung axis, more studies have demonstrated the important role of gut microbiota in lung inflammation. The precise role of the gut microbiota in chickens-associated colibacillosis, however, is unknown. Thus, this study assessed the function of the gut microbiota in the chicken defense against APEC infection. Chicken gut microbiota was depleted by drinking water with a mixture of antibiotics (Abx), and subsequently, a model of colibacillosis was established by the intranasal perfusion of APEC. The results showed that gut microbiota protects the chicken challenge by APEC from aggravated lung histopathologic injury, up-regulated pro-inflammatory cytokine production, and increased bacterial load in lung tissues compared with controls. In addition, the air-blood barrier permeability was significantly increased in gut microbiota-depleted chickens compared to the control chickens after challenge with APEC. Furthermore, feeding acetate significantly inhibited the lung inflammatory response and the reduced air-blood permeability induced by APEC infection. The expression of free fatty acid receptor 2 (FFAR2), a receptor for acetate, was also increased in the lung after treatment with acetate. In conclusion, depletion of the gut microbiota resulted in increased susceptibility of chickens to APEC challenge, and gut microbiota derived acetate acted as a protective mediator during the APEC challenge. Novel therapeutic targets that focus on the gut microbiota may be effective in controlling colibacillosis in poultry.
Collapse
|
39
|
Vercelli D. Microbiota and human allergic diseases: the company we keep. Curr Opin Immunol 2021; 72:215-220. [PMID: 34182271 DOI: 10.1016/j.coi.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Environmental, maternal and early life microbial/immune networks program human developmental trajectories and health outcomes and strongly modify allergic disease risk. The effects of environmental microbiota are illustrated by the 'farm effect' (the protection against asthma and allergy conferred by growing up on a traditional farm) and other natural experiments in populations exposed to microbe-rich environments. The role of gut microbiome maturation in the asthma/allergy trajectory is demonstrated by the most recent farm studies, which identified microbial metabolites specifically associated with asthma protection, and studies in other cohorts, which defined dynamic microbial community profiles associated with allergic disease phenotypes. Current and future studies in germ-free mice associated with gut microbiota from human disease states are providing novel mechanistic insights into the role of microbiota in shaping immune function and allergic disease susceptibility.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Arizona Center for the Biology of Complex Diseases and Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021; 13:nu13041244. [PMID: 33918804 PMCID: PMC8069164 DOI: 10.3390/nu13041244] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.
Collapse
|