1
|
Shen J, Quigley L, Barnard JP, Lu P, Tsai BK, Zemlyanov D, Zhang Y, Sheng X, Gan J, Moceri M, Hu Z, Huang J, Shen C, Deitz J, Zhang X, Wang H. Epitaxial Thin Film Growth on Recycled SrTiO 3 Substrates Toward Sustainable Processing of Complex Oxides. SMALL METHODS 2025; 9:e2401148. [PMID: 39468802 PMCID: PMC12020353 DOI: 10.1002/smtd.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high-quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3 (STO), MgO, LaAlO3, a-Al2O3, and many others. Recent successes in transferring these complex oxides as free-standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost-effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high-resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre-strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high-quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.
Collapse
Affiliation(s)
- Jianan Shen
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Lizabeth Quigley
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - James P. Barnard
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Ping Lu
- Sandia National LaboratoryAlbuquerqueNew Mexico87185United States
| | - Benson Kunhung Tsai
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana47907United States
| | - Yizhi Zhang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Xuanyu Sheng
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Jeremy Gan
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Matteo Moceri
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Zedong Hu
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Jialong Huang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Chao Shen
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Julia Deitz
- Sandia National LaboratoryAlbuquerqueNew Mexico87185United States
| | - Xinghang Zhang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Haiyan Wang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| |
Collapse
|
2
|
Choo S, Varshney S, Liu H, Sharma S, James RD, Jalan B. From oxide epitaxy to freestanding membranes: Opportunities and challenges. SCIENCE ADVANCES 2024; 10:eadq8561. [PMID: 39661695 PMCID: PMC11633760 DOI: 10.1126/sciadv.adq8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Motivated by the growing demand to integrate functional oxides with dissimilar materials, numerous studies have been undertaken to detach a functional oxide film from its original substrate, effectively forming a membrane, which can then be affixed to the desired host material. This review article is centered on the synthesis of functional oxide membranes, encompassing various approaches to their synthesis, exfoliation, and transfer techniques. First, we explore the characteristics of thin-film growth techniques with emphasis on molecular beam epitaxy. We then examine the fundamental principles and pivotal factors underlying three key approaches of creating membranes: (i) chemical lift-off, (ii) the two-dimensional layer-assisted lift-off, and (iii) spalling. We review the methods of exfoliation and transfer for each approach. Last, we provide an outlook into the future of oxide membranes, highlighting their applications and emerging properties.
Collapse
Affiliation(s)
- Sooho Choo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivasheesh Varshney
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Liu
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivam Sharma
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard D. James
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Meng Q, Shi J, Zhang J, Liu Y, Wang W, Webster RF, Zhao D, Zhu Y, Hao B, Qu B, Lin X, Lin CH, Qiao L, Zu X, Huang JK, Li W, Wang D, Yang J, Li S. Elastic Properties of Low-Dimensional Single-Crystalline Dielectric Oxides through Controlled Large-Area Wrinkle Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28980-28990. [PMID: 38768264 DOI: 10.1021/acsami.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Freestanding single-crystalline SrTiO3 membranes, as high-κ dielectrics, hold significant promise as the gate dielectric in two-dimensional (2D) flexible electronics. Nevertheless, the mechanical properties of the SrTiO3 membranes, such as elasticity, remain a critical piece of the puzzle to adequately address the viability of their applications in flexible devices. Here, we report statistical analysis on plane-strain effective Young's modulus of large-area SrTiO3 membranes (5 × 5 mm2) over a series of thicknesses (from 6.5 to 32.2 nm), taking advantage of a highly efficient buckling-based method, which reveals its evident thickness-dependent behavior ranging from 46.01 to 227.17 GPa. Based on microscopic and theoretical results, we elucidate these thickness-dependent behaviors and statistical data deviation with a bilayer model, which consists of a surface layer and a bulk-like layer. The analytical results show that the ∼3.1 nm surface layer has a significant elastic softening compared to the bulk-like layer, while the extracted modulus of the bulk-like layer shows a variation of ∼40 GPa. This variation is considered as a combined contribution from oxygen deficiency presenting in SrTiO3 membranes, and the alignment between applied strain and the crystal orientation. Upon comparison of the extracted elastic properties and electrostatic control capability to those of other typical gate dielectrics, the superior performance of single-crystalline SrTiO3 membranes has been revealed in the context of flexible gate dielectrics, indicating the significant potential of their application in high-performance flexible 2D electronics.
Collapse
Affiliation(s)
- Qingxiao Meng
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Junjie Shi
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Ji Zhang
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Yang Liu
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Wenxuan Wang
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Richard F Webster
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, Sydney 2052, NSW, Australia
| | - Duoduo Zhao
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Yanda Zhu
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Bohan Hao
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Bo Qu
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
- UNSW Materials & Manufacturing Futures Institute, UNSW, Sydney 2052, NSW, Australia
| | - Xi Lin
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
- UNSW Materials & Manufacturing Futures Institute, UNSW, Sydney 2052, NSW, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Jing-Kai Huang
- Department of Systems Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Wenxian Li
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Danyang Wang
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
| | - Jack Yang
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
- UNSW Materials & Manufacturing Futures Institute, UNSW, Sydney 2052, NSW, Australia
| | - Sean Li
- School of Materials Science and Engineering, UNSW, Sydney 2052, NSW, Australia
- UNSW Materials & Manufacturing Futures Institute, UNSW, Sydney 2052, NSW, Australia
| |
Collapse
|
4
|
Sheeraz M, Jung MH, Kim YK, Lee NJ, Jeong S, Choi JS, Jo YJ, Cho S, Kim IW, Kim YM, Kim S, Ahn CW, Yang SM, Jeong HY, Kim TH. Freestanding Oxide Membranes for Epitaxial Ferroelectric Heterojunctions. ACS NANO 2023. [PMID: 37406362 DOI: 10.1021/acsnano.3c01974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Since facile routes to fabricate freestanding oxide membranes were previously established, tremendous efforts have been made to further improve their crystallinity, and fascinating physical properties have been also reported in heterointegrated freestanding membranes. Here, we demonstrate our synthetic recipe to manufacture highly crystalline perovskite SrRuO3 freestanding membranes using new infinite-layer perovskite SrCuO2 sacrificial layers. To accomplish this, SrRuO3/SrCuO2 bilayer thin films are epitaxially grown on SrTiO3 (001) substrates, and the topmost SrRuO3 layer is chemically exfoliated by etching the SrCuO2 template layer. The as-exfoliated SrRuO3 membranes are mechanically transferred to various nonoxide substrates for the subsequent BaTiO3 film growth. Finally, freestanding heteroepitaxial junctions of ferroelectric BaTiO3 and metallic SrRuO3 are realized, exhibiting robust ferroelectricity. Intriguingly, the enhancement of piezoelectric responses is identified in freestanding BaTiO3/SrRuO3 heterojunctions with mixed ferroelectric domain states. Our approaches will offer more opportunities to develop heteroepitaxial freestanding oxide membranes with high crystallinity and enhanced functionality.
Collapse
Affiliation(s)
- Muhammad Sheeraz
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Min-Hyoung Jung
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Ki Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Nyun-Jong Lee
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Seyeop Jeong
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jin San Choi
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Yong Jin Jo
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Shinuk Cho
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Ill Won Kim
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghoon Kim
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Chang Won Ahn
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sang Mo Yang
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Heon Kim
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
5
|
Kang KT, Corey ZJ, Hwang J, Sharma Y, Paudel B, Roy P, Collins L, Wang X, Lee JW, Oh YS, Kim Y, Yoo J, Lee J, Htoon H, Jia Q, Chen A. Heterogeneous Integration of Freestanding Bilayer Oxide Membrane for Multiferroicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207481. [PMID: 37012611 DOI: 10.1002/advs.202207481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.
Collapse
Affiliation(s)
- Kyeong Tae Kang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Physics, Kyungpook National University, Daegu, 41566, South Korea
| | - Zachary J Corey
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Yogesh Sharma
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Binod Paudel
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Pinku Roy
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueijing Wang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Joon Woo Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yoon Seok Oh
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yeonhoo Kim
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, South Korea
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Han Htoon
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Aiping Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
6
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Huang J, Chen W. Flexible strategy of epitaxial oxide thin films. iScience 2022; 25:105041. [PMID: 36157575 PMCID: PMC9489952 DOI: 10.1016/j.isci.2022.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Applying functional oxide thin films to flexible devices is of great interests within the rapid development of information technology. The challenges involve the contradiction between the high-temperature growth of high-quality oxide films and low melting point of the flexible supports. This review summarizes the developed methods to fabricate high-quality flexible oxide thin films with novel functionalities and applications. We start from the fabrication methods, e.g. direct growth on flexible buffered metal foils and layered mica, etching and transfer approach, as well as remote epitaxy technique. Then, various functionalities in flexible oxide films will be introduced, specifically, owing to the mechanical flexibility, some unique properties can be induced in flexible oxide films. Taking the advantages of the excellent physical properties, the flexible oxide films have been employed in various devices. Finally, future perspectives in this research field will be proposed to further develop this field from fabrication, functionality to device.
Collapse
Affiliation(s)
- Jijie Huang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijin Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Li Y, Xiang C, Chiabrera FM, Yun S, Zhang H, Kelly DJ, Dahm RT, Kirchert CKR, Cozannet TEL, Trier F, Christensen DV, Booth TJ, Simonsen SB, Kadkhodazadeh S, Jespersen TS, Pryds N. Stacking and Twisting of Freestanding Complex Oxide Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203187. [PMID: 35901262 DOI: 10.1002/adma.202203187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The integration of dissimilar materials in heterostructures has long been a cornerstone of modern materials science-seminal examples are 2D materials and van der Waals heterostructures. Recently, new methods have been developed that enable the realization of ultrathin freestanding oxide films approaching the 2D limit. Oxides offer new degrees of freedom, due to the strong electronic interactions, especially the 3d orbital electrons, which give rise to rich exotic phases. Inspired by this progress, a new platform for assembling freestanding oxide thin films with different materials and orientations into artificial stacks with heterointerfaces is developed. It is shown that the oxide stacks can be tailored by controlling the stacking sequences, as well as the twist angle between the constituent layers with atomically sharp interfaces, leading to distinct moiré patterns in the transmission electron microscopy images of the full stacks. Stacking and twisting is recognized as a key degree of structural freedom in 2D materials but, until now, has never been realized for oxide materials. This approach opens unexplored avenues for fabricating artificial 3D oxide stacking heterostructures with freestanding membranes across a broad range of complex oxide crystal structures with functionalities not available in conventional 2D materials.
Collapse
Affiliation(s)
- Ying Li
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Faculty of Science, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Cheng Xiang
- Department of Physics, Centre for Nanostructured Graphene (CNG), Technical University of Denmark (DTU), Fysikvej, 309, Kgs. Lyngby, 2800, Denmark
| | - Francesco M Chiabrera
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Shinhee Yun
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Haiwu Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Daniel J Kelly
- DTU Nanolab, Technical University of Denmark (DTU), Fysikvej, 307, Kgs. Lyngby, 2800, Denmark
| | - Rasmus T Dahm
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Charline K R Kirchert
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Thomas E Le Cozannet
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Felix Trier
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Dennis V Christensen
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Timothy J Booth
- Department of Physics, Centre for Nanostructured Graphene (CNG), Technical University of Denmark (DTU), Fysikvej, 309, Kgs. Lyngby, 2800, Denmark
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Shima Kadkhodazadeh
- DTU Nanolab, Technical University of Denmark (DTU), Fysikvej, 307, Kgs. Lyngby, 2800, Denmark
| | - Thomas S Jespersen
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
9
|
Salles P, Guzmán R, Zanders D, Quintana A, Fina I, Sánchez F, Zhou W, Devi A, Coll M. Bendable Polycrystalline and Magnetic CoFe 2O 4 Membranes by Chemical Methods. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12845-12854. [PMID: 35232015 PMCID: PMC8931725 DOI: 10.1021/acsami.1c24450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The preparation and manipulation of crystalline yet bendable functional complex oxide membranes has been a long-standing issue for a myriad of applications, in particular, for flexible electronics. Here, we investigate the viability to prepare magnetic and crystalline CoFe2O4 (CFO) membranes by means of the Sr3Al2O6 (SAO) sacrificial layer approach using chemical deposition techniques. Meticulous chemical and structural study of the SAO surface and SAO/CFO interface properties have allowed us to identify the formation of an amorphous SAO capping layer and carbonates upon air exposure, which dictate the crystalline quality of the subsequent CFO film growth. Vacuum annealing at 800 °C of SAO films promotes the elimination of the surface carbonates and the reconstruction of the SAO surface crystallinity. Ex-situ atomic layer deposition of CFO films at 250 °C on air-exposed SAO offers the opportunity to avoid high-temperature growth while achieving polycrystalline CFO films that can be successfully transferred to a polymer support preserving the magnetic properties under bending. Float on and transfer provides an alternative route to prepare freestanding and wrinkle-free CFO membrane films. The advances and challenges presented in this work are expected to help increase the capabilities to grow different oxide compositions and heterostructures of freestanding films and their range of functional properties.
Collapse
Affiliation(s)
- Pol Salles
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Roger Guzmán
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Zanders
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | | | - Ignasi Fina
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | | | - Wu Zhou
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anjana Devi
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Mariona Coll
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|