1
|
Duan H, Bao Y, Jiang L, Li P, Wang Y, He Y, Deng X, Wu W, Zhang W, Liu X. Effect of low-moderate intensity traditional Chinese exercises combined with acupuncture on patients with stable chronic obstructive pulmonary disease: study protocol for a randomized controlled trial. Front Med (Lausanne) 2025; 12:1470196. [PMID: 40241911 PMCID: PMC12000029 DOI: 10.3389/fmed.2025.1470196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Background Traditional Chinese exercises (TCEs), as a new technology for pulmonary rehabilitation, have been proven to be effective in patients with chronic obstructive pulmonary disease (COPD). However, further aggravation of dynamic hyperinflation manifested as exertional dyspnea during exercises may limit the partial therapeutic efficacy of TCEs on patients with COPD. Acupuncture therapy, internationally recognized as a complementary and alternative therapy, can effectively improve the degree of dyspnea, and it is expected to serve as an adjuvant therapy for exercise training in patients with COPD to fully realize the therapeutic efficacy of exercise training. Therefore, this study aims to explore the multidimensional and multi-system effects of the combination of pulmonary-based Qigong (PQ) exercise and acupuncture therapy on patients with COPD. Methods This protocol describes an assessor-blinded, data analyst-blinded, four-arm randomized controlled trial that aims to recruit 132 participants with stable COPD and randomly allocate them into pulmonary-based Qigong exercise group, acupuncture group, pulmonary-based Qigong exercise and acupuncture combined group, or control group at a 1:1:1:1 ratio. All participants will receive usual medical care and health education; those in the intervention groups will receive PQ exercise, acupuncture treatment, or a combination of both treatments three times per week for 8 weeks. The primary outcome will be the exercise endurance as assessed by a 6-min walk test. Secondary outcomes will include lung function, degree of dyspnea, diaphragmatic function, respiratory muscle strength, skeletal muscle structure, skeletal muscle function, psychological states, and quality of life. Exploratory outcomes will include the levels of inflammatory mediators. The frequency and severity of acute exacerbations of COPD will be recorded at baseline and 1 year after intervention. Discussion The findings of this study will clarify the effects of the combination of PQ exercise and acupuncture therapy on the multi-system function of patients with stable COPD to provide evidence for acupuncture as an adjuvant therapy for pulmonary rehabilitation. Clinical trial registration https://www.chictr.org.cn, ChiCTR2300076255.
Collapse
Affiliation(s)
- Hongxia Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidie Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen He
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinliao Deng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai, China
| | - Wei Zhang
- Department of Pulmonary Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Di Stefano A, Nucera F, Rosani U, Brun P, Gnemmi I, Maniscalco M, D’Anna SE, Leonardi A, Carriero V, Bertolini F, Freni J, Ieni A, Gangemi S, Ruggeri P, Ricciardolo FLM. Impaired SERPIN-Protease Balance in the Peripheral Lungs of Stable COPD Patients. Int J Mol Sci 2025; 26:2832. [PMID: 40243422 PMCID: PMC11988695 DOI: 10.3390/ijms26072832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The protease-antiprotease balance is involved in many biological processes, including blood coagulation, tissue remodeling, inflammation and immune responses. The aim of this study is to determine the balance between SERPINs and some related proteases in the lungs of stable COPD patients. In this cross-sectional study, the expression and localization of human SERPINs (anti-proteases) and some related proteases were measured in the lung parenchyma of mild-moderate COPD (MCOPD, n = 13) patients, control smokers (CS, n = 14) and control nonsmokers (CNS, n = 12) using transcriptome analysis, immunohistochemistry, and ELISA tests. Peripheral lung transcriptomic data showed increased mRNA levels of tissue plasminogen activator (tPA), cathepsin-L and caspase-1 as well as increased SERPINs A6, B3, B5, B11, B13 in the COPD group compared to the CNS group. At the protein level, IHC analysis showed that tPA and cathepsin-L increased in the bronchiolar epithelium and alveolar septa of the CS and COPD groups compared to the CNS group, as well as SERPINB5 and B13 in the alveolar macrophages and alveolar septa of the CS and COPD groups compared to the CNS group. SERPINA6 was shown to be decreased in the bronchiolar epithelium, bronchiolar lamina propria, and alveolar septa of the CS and COPD groups compared to the CNS group and was positively correlated with lung function. SERPINB3 was decreased in the alveolar septa of the CS group compared to the CNS group. The ELISA tests showed that in the total lung extracts, decreased levels of SERPINA6 and increased caspase-1 were shown in the COPD group compared to the CNS or both control groups, respectively. These data show an imbalance, at the protein level, of SERPINs and some related proteases in the lungs of the CS and stable COPD groups. These alterations may play a role in damaging the lung parenchyma of susceptible COPD patients.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Linici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, 28013 Novara, Italy;
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Paola Brun
- Histology Unit, Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Linici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, 28013 Novara, Italy;
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, 82037 Benevento, Italy; (M.M.); (S.E.D.)
| | - Silvestro Ennio D’Anna
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, 82037 Benevento, Italy; (M.M.); (S.E.D.)
| | - Andrea Leonardi
- Ophthalmology Unit, Department of Neuroscience, University of Padova, 35121 Padova, Italy;
| | - Vitina Carriero
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| | - Francesca Bertolini
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| | - Josè Freni
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98122 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| |
Collapse
|
3
|
Khawas S, Sharma N. Cell death crosstalk in respiratory diseases: unveiling the relationship between pyroptosis and ferroptosis in asthma and COPD. Mol Cell Biochem 2025; 480:1305-1326. [PMID: 39112808 DOI: 10.1007/s11010-024-05062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/29/2024] [Indexed: 02/21/2025]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1β and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
4
|
Gungor Y, Ercan S, Ermiş SSÖ, Kozalı Y, Kursunluoglu G, Sahan C, Alpaydin AO, Kayali HA. NLRP3 is a BMI-independent mediator of stable COPD. BMC Pulm Med 2025; 25:31. [PMID: 39838349 PMCID: PMC11749553 DOI: 10.1186/s12890-024-03435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
PURPOSE The inflammatory response in animal models of chronic obstructive pulmonary disease (COPD) is activated by the NLR-family-pyrin-domain-containing-3 (NLRP3) inflammasome pathway, which is also known to play a role in obesity-related inflammation. The NLRP3/caspase-1/interleukin (IL)-1β pathway might be involved in the progression of COPD with increasing body mass index. To our knowledge, no previous studies have explored the role of NLRP3 inflammasome markers in linking COPD and obesity. Here, we aim to investigate this potential connection by examining levels of NLRP3, caspase-1, IL-1β, and IL-17A and to provide additional data on the expression of these molecules in relation to smoking status and COPD severity. METHODS A case‒control study was conducted between July 2020 and March 2023. Peripheral blood mononuclear cells were isolated, and total RNA was extracted for real-time quantitative polymerase chain reaction (qPCR) analysis to measure the expression levels of inflammasome molecules. RESULTS 29 subjects who were diagnosed with stable COPD and 32 controls were included in the data analysis. NLRP3 and IL-17A but not caspase-1 or IL-1β expression was significantly greater in the COPD group than in the control group. We detected a significant increase in NLRP3 levels in the smoker COPD group (p = 0.009) and nonsmoker COPD group (p = 0.045) compared with those in the nonsmoker control group. There was no significant correlation between BMI and the inflammasome markers. CONCLUSION As proinflammatory biomarkers, NLRP3 and IL-17A are prominent in stable COPD patients. Smoking may trigger NLRP3-mediated inflammation in stable COPD patients. The expression levels of NLRP3 inflammasome molecules did not differ in terms of disease severity or BMI.
Collapse
Affiliation(s)
- Yonca Gungor
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- İzmir Biomedicine and Genome Center, İzmir, Türkiye
| | - Selin Ercan
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Saliha Selin Özuygur Ermiş
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiğit Kozalı
- İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Biotechnology, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, İzmir, Türkiye
| | - Gizem Kursunluoglu
- ERFARMA Drug Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Ceyda Sahan
- Department of Public Health, Dokuz Eylul University, İzmir, Türkiye
| | - Aylin Ozgen Alpaydin
- Department of Chest Diseases, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Hulya Ayar Kayali
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye.
- İzmir Biomedicine and Genome Center, İzmir, Türkiye.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, İzmir, Türkiye.
| |
Collapse
|
5
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2025; 329:e13410. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Liu Y, Zheng Y, Wei C, Cai X. DMRT3-mediated lncRNA OIP5-AS1 promotes the pyroptosis of bronchial epithelial cells by binding with EIF4A3 to enhance YAP mRNA stability. Immunol Res 2024; 72:1365-1383. [PMID: 39287912 DOI: 10.1007/s12026-024-09534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Asthma is featured by persistent airway inflammation. Long noncoding RNAs (lncRNAs) are reported to play critical roles in asthma. However, the function of Opa interacting protein 5-antisense 1 (OIP5-AS1) in pyroptosis during the development of asthma remains unexplored. The blood samples of asthma patients (n = 32) as well as the baseline characteristics of asthma patients or healthy people were collected. An in vivo model of asthma was established using house dust mites (HDM). To mimic asthma in vitro, BEAS-2B cells were treated with HDM. Cell pyroptosis and apoptosis were examined by flow cytometry. The levels of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) were detected by enzyme-linked immunosorbent assay (ELISA). The binding among messenger RNAs (mRNAs) was assessed by chromatin immunoprecipitation (ChIP), dual luciferase report assay, RNA immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), and RNA pull-down assay, respectively. The cellular localization was observed by fluorescence in situ hybridization (FISH) staining. The level of OIP5-AS1 was upregulated in asthma patients. HDM induced pyroptosis and increased the levels of IL-18, IL-1β, and lactate dehydrogenase (LDH) in BEAS-2B cells, which was obviously reversed by OIP5-AS1 knockdown. Consistently, the expressions of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), c-caspase 1, and pyroptosis-related gasdermin D-1 (GSDMD-1) in BEAS-2B cells were upregulated by HDM treatment, while these phenomena were partially abolished by silencing of OIP5-AS1. Moreover, HDM promoted the progression of asthma in vivo, which was rescued by the downregulation of OIP5-AS1. OIP5-AS1 silencing decreased HDM-induced cell pyroptosis by inactivation of NLRP3. More importantly, OIP5-AS1 promoted the mRNA stability of yes-associated protein (YAP) via binding with eukaryotic translation initiation factor 4A3 (EIF4A3), and OIP5-AS1 was transcriptionally upregulated by doublesex and mab-3 related transcription factor 3 (DMRT3). DMRT3-mediated OIP5-AS1 aggravated the progression of asthma by mediation of the EIF4A3/YAP axis, which might provide a new therapeutic strategy against asthma.
Collapse
Affiliation(s)
- Yunchan Liu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P.R. China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P.R. China
| | - Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P.R. China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P.R. China.
| |
Collapse
|
7
|
Choi J, Yun SH, Kim H, Lee J, Kim SM, Park MH, Lee HJ, Chun W, Han SB, Ahn KS, Lee JW. Aromadendrin Ameliorates Airway Inflammation in Experimental Mice with Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2024; 35:e2408022. [PMID: 39639498 PMCID: PMC11813338 DOI: 10.4014/jmb.2408.08022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Aromadendrin (ARO) is an active plant compound that exerts anti-inflammatory effects. However, its ameliorative effects on chronic obstructive pulmonary disease (COPD) remain unclear. Therefore, we investigated the inhibitory effects of ARO on bronchial inflammation using an experimental model of COPD. In vivo analysis confirmed a notable increase in the number of neutrophils/macrophages and the formation of reactive oxygen species (ROS), myeloperoxidase (MPO), interleukin (IL)-6/IL-1β, and monocyte chemoattractant protein (MCP)-1 in the bronchoalveolar lavage (BAL) fluid of COPD mice, which was attenuated by oral gavage of ARO. In addition, hematoxylin and eosin staining showed a notable cell influx in the lungs of the COPD group, which was ameliorated by ARO. Western blotting revealed that ARO decreased the upregulation of neutrophil elastase expression in the lungs of the COPD group. Furthermore, periodic acid-Schiff staining showed that increased mucus formation in the lungs of the COPD group was downregulated by ARO. ARO also blocked CREB activation in the lungs of COPD mice. This in vivo, anti-inflammatory effect of ARO was accompanied by its modulatory effect on the activation of the MAPK/NF-κB/NLRP3 inflammasome. In summary, our study demonstrated that ARO has protective effects on bronchial inflammation by attenuating immune cell accumulation, toxic molecule/cytokine/chemokine formation, and MAPK/NF-κB/NLRP3 inflammasome activation, suggesting the potential development of ARO as an adjuvant for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hyueyun Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Seong-Man Kim
- O2MEDi Inc. 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Mi-Hyeong Park
- Office of Surveillance for Narcotics Abuse, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Rumora L, Markelić I, Hlapčić I, Tomašković AH, Fabijanec M, Džubur F, Samaržija M, Dugac AV. Assessment of NLRP3 inflammasome activation in patients with chronic obstructive pulmonary disease before and after lung transplantation. Immunol Res 2024; 72:964-974. [PMID: 38811459 PMCID: PMC11564204 DOI: 10.1007/s12026-024-09497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The interplay between purinergic receptors as well as pattern recognition receptors like Toll-like receptors (TLRs) and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) might have a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to determine and compare the concentrations of the damage-associated molecular patterns (DAMPs) heat shock protein 70 (Hsp70) and adenosine triphosphate (ATP), and gene expression of their respective receptors as well as NLRP3 inflammasome-related molecules in the peripheral blood of patients with end-stage COPD before and 1 year after lung transplantation (LT). Lung function was assessed by spirometry and diffusion capacity for carbon monoxide (DLCO). Quantitative polymerase chain reaction (qPCR) was applied for detection of TLR2, TLR4, P2X7R, P2Y2R, IL1B, CASP1, and NLRP3 expression. High-sensitivity ELISA kits were used for extracellular (e) Hsp70 and IL-1β, and luminescence assay for eATP measurements. Concentrations of eHsp70 and eATP as well as IL-1β were significantly increased in the plasma of end-stage COPD patients and significantly decreased after LT. In addition, TLR4, P2Y2R, IL1B, CASP1, and NLRP3 expression was up-regulated in COPD patients before LT, while it was significantly suppressed after LT. In conclusion, it could be assumed that NLRP3 inflammasome is activated in the peripheral blood of end-stage COPD patients and that eHsp70 and eATP could be responsible for its activation through triggering their receptors. On the other hand, previously enhanced pro-inflammatory reactions seem to be suppressed to the healthy population levels in lung recipients without allograft rejection.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivona Markelić
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Hlapčić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Andrea Hulina Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Fabijanec
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Centre for Applied Medical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Feđa Džubur
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić Dugac
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
9
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
10
|
Wang M, Peng J, Yang M, Chen J, Shen Y, Liu L, Chen L. Elevated expression of NLRP3 promotes cigarette smoke-induced airway inflammation in chronic obstructive pulmonary disease. Arch Med Sci 2024; 20:1281-1293. [PMID: 39439673 PMCID: PMC11493075 DOI: 10.5114/aoms/176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction NOD-like receptor protein 3 (NLRP3) is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we explored the role of NLRP3 in cigarette smoke (CS)-induced airway inflammation in COPD. Material and methods NLRP3 expression level was assessed with the microarray data in GEO datasets and validated in serum by ELISA from a case-control cohort. Male C57BL/6J mice were randomly divided into: saline, CS, MCC950 (a specific NLRP3 inhibitor, 10 mg/kg) and CS + MCC950 (5 mg/kg and 10 mg/kg) groups (n = 5 per group). All mice were exposed to CS or air for 4 weeks. Then, broncho-alveolar lavage (BAL) fluid and lung tissues were collected for cell counting, ELISA, HE staining and RNA sequencing with validation by real-time qPCR. Results Compared to non-smokers, NLRP3 expression was significantly elevated in the lung tissues and sera of COPD smokers. CS remarkably induced airway inflammation in mice, characterized by an increase of inflammatory cells and proinflammatory cytokines in BAL fluid and HE inflammatory score, which were ameliorated by MCC950 treatment dose-dependently. Subsequently, 84 candidate genes were selected following RNA sequencing, and five hub genes (Mmp9, IL-1α, Cxcr2, Cxcl10, Ccr1) were then identified by PPI and MCODE analyses, which were confirmed by real-time qPCR. GO and KEGG analysis suggested that the five genes were enriched in a complicated network of inflammatory processes and signaling pathways. Conclusions NLRP3 expression is elevated in lungs and sera of COPD smokers. Inhibition of NLRP3 significantly attenuates CS-induced airway inflammation in mice via inactivation of multiple hub genes and their related inflammatory processes and signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Peng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Lab of Pulmonary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Chung C, Park SY, Huh JY, Kim NH, Shon C, Oh EY, Park YJ, Lee SJ, Kim HC, Lee SW. Fine particulate matter aggravates smoking induced lung injury via NLRP3/caspase-1 pathway in COPD. J Inflamm (Lond) 2024; 21:13. [PMID: 38654364 DOI: 10.1186/s12950-024-00384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Exposure to noxious particles, including cigarette smoke and fine particulate matter (PM2.5), is a risk factor for chronic obstructive pulmonary disease (COPD) and promotes inflammation and cell death in the lungs. We investigated the combined effects of cigarette smoking and PM2.5 exposure in patients with COPD, mice, and human bronchial epithelial cells. METHODS The relationship between PM2.5 exposure and clinical parameters was investigated in patients with COPD based on smoking status. Alveolar destruction, inflammatory cell infiltration, and pro-inflammatory cytokines were monitored in the smoking-exposed emphysema mouse model. To investigate the mechanisms, cell viability and death and pyroptosis-related changes in BEAS-2B cells were assessed following the exposure to cigarette smoke extract (CSE) and PM2.5. RESULTS High levels of ambient PM2.5 were more strongly associated with high Saint George's respiratory questionnaire specific for COPD (SGRQ-C) scores in currently smoking patients with COPD. Combined exposure to cigarette smoke and PM2.5 increased mean linear intercept and TUNEL-positive cells in lung tissue, which was associated with increased inflammatory cell infiltration and inflammatory cytokine release in mice. Exposure to a combination of CSE and PM2.5 reduced cell viability and upregulated NLRP3, caspase-1, IL-1β, and IL-18 transcription in BEAS-2B cells. NLRP3 silencing with siRNA reduced pyroptosis and restored cell viability. CONCLUSIONS PM2.5 aggravates smoking-induced airway inflammation and cell death via pyroptosis. Clinically, PM2.5 deteriorates quality of life and may worsen prognosis in currently smoking patients with COPD.
Collapse
Affiliation(s)
- Chiwook Chung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Suk Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - Jin-Young Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung- Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - ChangHo Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Efficacy Evaluation Center, WOOJUNGBIO Inc, Hwaseong, Republic of Korea
| | - Eun Yi Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Jun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Toychiev A, Gafner N, Belotserkovets V, Sekler D, Tashpulatova S, Osipova S. Impact of Ascaris lumbricoides infection on the development of chronic pulmonary aspergillosis in patients with COPD. Trop Doct 2024; 54:149-156. [PMID: 38291709 DOI: 10.1177/00494755241226488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The aetiopathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear. The aim of our study was to determine the possible influence of Ascaris lumbricoides on the development of chronic pulmonary aspergillosis (CPA) in patients with COPD. The prevalence of A. lumbricoides in patients with COPD with CPA (19.05%) was significantly higher than that in those without (9.20%) and controls (4.9%) (p < 0.05). Trends in levels of Interleukin-1β and of tumour necrosis factor α suggest ascariasis increases susceptibility to Aspergillus sp. in patients with COPD and can be considered an additional risk factor for CPA.
Collapse
Affiliation(s)
- Abdurakhim Toychiev
- Postdoctoral Researcher, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| | - Natalya Gafner
- Pulmonologist, Department of Therapy, Republican Specialized Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - Vera Belotserkovets
- Pulmonologist, Department of Therapy, Republican Specialized Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - Dildora Sekler
- Senior Researcher, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| | - Shakhnoza Tashpulatova
- Associate Professor, Department of Infectious and Child Infectious Diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | - Svetlana Osipova
- Principal Investigator, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| |
Collapse
|
13
|
Duan JX, Guan XX, Cheng W, Deng DD, Chen P, Liu C, Zhou Y, Hammock BD, Yang HH. COX-2/sEH-Mediated Macrophage Activation Is a Target for Pulmonary Protection in Mouse Models of Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100319. [PMID: 38158123 DOI: 10.1016/j.labinv.2023.100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1β into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.
Collapse
Affiliation(s)
- Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ding-Ding Deng
- Department of Respiratory Medicine, First Affiliated People's Hospital of Shaoyang College, Shaoyang, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, California
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
14
|
Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues. Inflammopharmacology 2024; 32:287-305. [PMID: 37991660 DOI: 10.1007/s10787-023-01389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Pulmonary fibrosis is a devastating disorder distinguished by redundant inflammation and matrix accumulation in the lung interstitium. The early inflammatory cascade coupled with recurring tissue injury orchestrates a set of events marked by perturbed matrix hemostasis, deposition of matrix proteins, and remodeling in lung tissue. Numerous investigations have corroborated a direct correlation between the NLR family pyrin domain-containing 3 (NLRP3) activation and the development of pulmonary fibrosis. Dysregulated activation of NLRP3 within the pulmonary microenvironment exacerbates inflammation and may incite fibrogenic responses. Nevertheless, the precise mechanisms through which the NLRP3 inflammasome elicits pro-fibrogenic responses remain inadequately defined. Contemporary findings suggest that the pro-fibrotic consequences stemming from NLRP3 signaling primarily hinge on the action of interleukin-1β (IL-1β). IL-1β instigates IL-1 receptor signaling, potentiating the activity of transforming growth factor-beta (TGF-β). This signaling cascade, in turn, exerts influence over various transcription factors, including SNAIL, TWIST, and zinc finger E-box-binding homeobox 1 (ZEB 1/2), which collectively foster myofibroblast activation and consequent lung fibrosis. Here, we have connected the dots to illustrate how the NLRP3 inflammasome orchestrates a multitude of signaling events, including the activation of transcription factors that facilitate myofibroblast activation and subsequent lung remodeling. In addition, we have highlighted the prominent role played by various cells in the formation of myofibroblasts, the primary culprit in lung fibrosis. We also provided a concise overview of various compounds that hold the potential to impede NLRP3 inflammasome signaling, thus offering a promising avenue for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
15
|
Gu P, Wang Z, Yu X, Wu N, Wu L, Li Y, Hu X. Mechanism of KLF9 in airway inflammation in chronic obstructive pulmonary. Immun Inflamm Dis 2023; 11:e1043. [PMID: 37904708 PMCID: PMC10568256 DOI: 10.1002/iid3.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Peijie Gu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Zhen Wang
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xin Yu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Nan Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Liang Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Yihang Li
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| |
Collapse
|
16
|
Feng H, Zheng R. Cigarette smoke prevents M1 polarization of alveolar macrophages by suppressing NLRP3. Life Sci 2023:121854. [PMID: 37307964 DOI: 10.1016/j.lfs.2023.121854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory condition mainly caused by cigarette smoke (CS). Alveolar macrophages (AMs) contribute to its development, although the polarization of AMs is controversial. This study explored the polarization of AMs and mechanisms underlying their involvement in COPD. AM gene expression data from non-smokers, smokers, and COPD patients were downloaded from the GSE13896 and GSE130928 datasets. Macrophage polarization was evaluated by CIBERSORT and gene set enrichment analysis (GSEA). Polarization-related differentially expressed genes (DEGs) were identified in GSE46903. KEGG enrichment analysis and single sample GSEA were performed. M1 polarization levels were decreased in smokers and COPD patients, whereas M2 polarization did not change. In the GSE13896 and GSE130928 datasets, 27 and 19 M1-related DEGs, respectively, showed expression changes opposite to those in M1 macrophages in smokers and COPD patients compared with the control group. These M1-related DEGs were enriched in NOD-like receptor signaling pathway. Next, C57BL/6 mice were divided into control, lipopolysaccharide (LPS), CS, and LPS + CS groups, and cytokine levels in bronchoalveolar lavage fluid (BALF) and AM polarization were determined. The expression of macrophage polarization markers and NLRP3 was determined in AMs treated with CS extract (CSE), LPS, and an NLRP3 inhibitor. Cytokines levels and the percentage of M1 AMs in BALF were lower in the LPS + CS group than in the LPS group. Exposure to CSE downregulated the expression of M1 polarization markers and NLRP3 induced by LPS in AMs. The present results indicate that M1 polarization of AMs is repressed in smokers and COPD patients, and CS may inhibit LPS-induced M1 polarization of AMs by suppressing NLRP3.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Buscetta M, Cristaldi M, Cimino M, La Mensa A, Dino P, Bucchieri F, Rappa F, Amato S, Aronica TS, Pace E, Bertani A, Cipollina C. Cigarette smoke promotes inflammasome-independent activation of caspase-1 and -4 leading to gasdermin D cleavage in human macrophages. FASEB J 2022; 36:e22525. [PMID: 36004615 DOI: 10.1096/fj.202200837r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.
Collapse
Affiliation(s)
| | | | | | - Agnese La Mensa
- Fondazione RiMED, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Paola Dino
- Fondazione RiMED, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Santina Amato
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Palermo, Italy
| | - Tommaso Silvano Aronica
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Palermo, Italy
| | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | | | - Chiara Cipollina
- Fondazione RiMED, Palermo, Italy.,Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
18
|
Wu Y, Meng H, Qiao B, Li N, Zhang Q, Jia W, Xing H, Li Y, Yuan J, Yang Z. Yifei Sanjie Formula Treats Chronic Obstructive Pulmonary Disease by Remodeling Pulmonary Microbiota. Front Med (Lausanne) 2022; 9:927607. [PMID: 35847812 PMCID: PMC9277004 DOI: 10.3389/fmed.2022.927607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common pulmonary diseases. Evidence suggests that dysbiosis of pulmonary microbiota leads to the COPD pathological process. Yifei Sanjie Formula (YS) is widely used to treat diseases in respiratory systems, yet little is known about its mechanisms. In the present study, we first established the fingerprint of YS as the background for UHPLC-QTOF-MS. Components were detected, including alkaloids, amino acid derivatives, phenylpropanoids, flavonoids, terpenoids, organic acids, phenols, and the like. The therapeutic effect of YS on COPD was evaluated, and the pulmonary function and ventilatory dysfunction (EF50, TV, and MV) were improved after the administration of YS. Further, the influx of lymphocytes was inhibited in pulmonary parenchyma, accompanied by down-regulation of inflammation cytokines via the NLRP3/caspase-1/IL-1β signaling pathway. The severity of pulmonary pathological damage was reversed. Disturbed pulmonary microbiota was discovered to involve an increased relative abundance of Ralstonia and Mycoplasma and a decreased relative abundance of Lactobacillus and Bacteroides in COPD animals. However, the subversive effect was shown. The abundance and diversity of pulmonary microflora were remodeled, especially increasing beneficial genua Lactobacillus and Bacteroides, as well as downregulating pathogenic genua Ralstonia and Mycoplasma in the YS group. Environmental factor correlation analysis showed that growing pulmonary microbiota was positively correlated with the inflammatory factor, referring to Ralstonia and Mycoplasma, as well as negatively correlated with the inflammatory factor, referring to Lactobacillus and Bacteroides. These results suggest that the effects of YS involved remodeling lung microbes and anti-inflammatory signal pathways, revealing that intervention microbiota and an anti-inflammatory may be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Hui Meng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Bo Qiao
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Ning Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiang Zhang
- Basic Medical School, Shanghai University of Chinese Medicine, Shanghai, China
| | - Wenqing Jia
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Haijing Xing
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Yuqing Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
| | - Jiali Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- Jiali Yuan
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, China
- *Correspondence: Zhongshan Yang
| |
Collapse
|