1
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
Affiliation(s)
- Oscar R Zambrano-Vásquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Fernando Cortés-Camacho
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México City 04960, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México City 05348, Mexico
| | - Estefanía Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Juan C Cabrera-Angeles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José L Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Abraham S Arellano-Buendia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Laura G Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico.
| |
Collapse
|
2
|
Armillotta M, Angeli F, Paolisso P, Belmonte M, Raschi E, Di Dalmazi G, Amicone S, Canton L, Fedele D, Suma N, Foà A, Bergamaschi L, Pizzi C. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol Ther 2025; 270:108861. [PMID: 40245989 DOI: 10.1016/j.pharmthera.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are oral antidiabetic agents that have shown significant improvements in cardiovascular and renal outcomes among patients with heart failure (HF), regardless of diabetic status, establishing them as a cornerstone therapy. In addition to glycemic control and the osmotic diuretic effect, the inhibition of SGLT2 improves endothelial function and vasodilation, optimizing myocardial energy metabolism and preserving cardiac contractility. Moreover, SGLT2 inhibitors may exhibit anti-inflammatory properties and attenuate acute myocardial ischemia/reperfusion injury, thereby reducing cardiac infarct size, enhancing left ventricular function, and mitigating arrhythmias. These pleiotropic effects have demonstrated efficacy across various cardiovascular conditions, ranging from acute to chronic coronary syndromes and extending to arrhythmias, valvular heart disease, cardiomyopathies, cardio-oncology, and cerebrovascular disease. This review provides an overview of the current literature on the potential mechanisms underlying the effectiveness of SGLT2 inhibitors across a wide range of cardiovascular diseases beyond HF.
Collapse
Affiliation(s)
- Matteo Armillotta
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Francesco Angeli
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | | | - Marta Belmonte
- Cardiology Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Guido Di Dalmazi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Division of Endocrinology and Diabetes Prevention and Care Unit, IRCCS, University Hospital of Bologna, Bologna, Italy
| | - Sara Amicone
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Lisa Canton
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Damiano Fedele
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Nicole Suma
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Alberto Foà
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Luca Bergamaschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Carmine Pizzi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Sridharan K, Sivaramakrishnan G. Therapeutic Potential of Sodium-Glucose Cotransporter-2 Inhibitors in Nonalcoholic Fatty Liver Disease: A Network Meta-analysis. Am J Ther 2025; 32:e297-e301. [PMID: 40338692 DOI: 10.1097/mjt.0000000000001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain ; and
| | | |
Collapse
|
4
|
Uchinuma H, Matsushita M, Tanahashi M, Suganami H, Utsunomiya K, Kaku K, Tsuchiya K. Post-hoc analysis of the tofogliflozin post-marketing surveillance study (J-STEP/LT): Tofogliflozin improves liver function in type 2 diabetes patients regardless of BMI. J Diabetes Investig 2025; 16:615-628. [PMID: 39823131 PMCID: PMC11970296 DOI: 10.1111/jdi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
AIMS/INTRODUCTION Patients with type 2 diabetes are at high risk of developing steatotic liver disease (SLD). Weight loss has proven effective in treating metabolic dysfunction-associated steatotic liver disease (MASLD) in obese patients with type 2 diabetes, with sodium-glucose cotransporter 2 (SGLT2) inhibitors showing promising results. However, lean MASLD is more prevalent in Japan, necessitating alternative approaches to body weight reduction. MATERIALS AND METHODS We used the J-STEP/LT dataset including up to 3-year treatment data to analyze the effects of the SGLT2 inhibitor tofogliflozin on liver function and treatment safety and conducted a subgroup analysis based on body mass index (BMI; kg/m2, <20, 20-<23, 23-<25, 25-<30, and ≥30). RESULTS This study included 4,208 participants. Tofogliflozin significantly reduced alanine aminotransferase (ALT) levels in participants with baseline ALT levels >30 U/L across all BMI groups, with median changes of -12, -16, -13, -15, and -15 U/L, respectively (P = 0.9291 for trends). However, median changes in body weight with tofogliflozin were -2.00, -2.75, -2.00, -3.00, and -3.80 kg, respectively (P < 0.0001 for trends), with no significant weight loss observed in the BMI <20 group. ALT levels were also significantly decreased in participants who did not lose weight. Safety assessments according to BMI and age categories revealed no clear differences in the frequency of adverse events. CONCLUSIONS Tofogliflozin reduced ALT levels without substantial body weight reduction among lean participants. These findings suggest that SGLT2 inhibitors may be a viable treatment option for non-obese patients with type 2 diabetes and SLD.
Collapse
Affiliation(s)
- Hiroyuki Uchinuma
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| | | | | | | | | | - Kohei Kaku
- Division of Diabetes, Metabolism and EndocrinologyKawasaki Medical SchoolOkayamaJapan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| |
Collapse
|
5
|
Xu R, Liu B, Zhou X. Comparison of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter Protein-2 Inhibitors on Treating Metabolic Dysfunction-Associated Steatotic Liver Disease or Metabolic Dysfunction-Associated Steatohepatitis: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Endocr Pract 2025; 31:521-535. [PMID: 39701283 DOI: 10.1016/j.eprac.2024.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE To assess glucagon-like peptide-1 receptor agonists (GLP-1 receptor agonists) and sodium-glucose cotransporter protein-2 inhibitors (SGLT-2 inhibitors) in patients with metabolic dysfunction-associated steatotic liver disease or metabolic dysfunction-associated steatohepatitis (previously known as nonalcoholic fatty liver disease [NAFLD] and nonalcoholic steatohepatitis [NASH]), we performed a systematic review and network meta-analysis of randomized controlled trials. METHODS The study searched Pubmed, Embase, the Cochrane Library, and Web of Science databases up to November 26, 2023. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. RESULTS Thirty-seven studies were included in the analysis. GLP-1 receptor agonists were found to be more effective than placebo in resolving NASH (relative risk: 2.48, 95% CI:1.86 to 3.30). Both drugs were superior to placebo in reducing liver fat content, as well as decreasing levels of liver enzyme. Network meta-analysis indicated that SGLT-2 inhibitors were more effective than GLP-1 receptor agonists in reducing alanine aminotransferase and aspartate aminotransferase levels. According to the surface under the cumulative probability ranking curve values, GLP-1 receptor agonists and SGLT-2 inhibitors consistently ranked among the top 2 in terms of reducing anthropometric data compared to other included drugs. CONCLUSIONS GLP-1 receptor agonists and SGLT-2 inhibitors have significant effects on reducing liver fat content and liver enzymes in NAFLD or NASH patients compared to placebo. GLP-1 receptor agonists were found to be superior to placebo in resolving NASH. SGLT-2 inhibitors were more effective than GLP-1 receptor agonists in reducing alanine aminotransferase and aspartate aminotransferase levels.
Collapse
Affiliation(s)
- Ruhan Xu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Bo Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS, Grechishnikova VR, Abdulganieva DI, Alekseenko SA, Ardatskaya MD, Bakulin IG, Bakulina NV, Bogomolov PO, Breder VV, Vinnitskaya EV, Geyvandova NI, Golovanova EV, Grinevich VB, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Kozlova IV, Komshilova KA, Konev YV, Korochanskaya NV, Kotovskaya YV, Kravchuk YA, Loranskaya ID, Maev IV, Martynov AI, Mekhtiev SN, Mishina EE, Nadinskaia MY, Nikitin IG, Osipenko MF, Ostroumova OD, Pavlov CS, Pogosova NV, Radchenko VG, Roytberg GE, Saifutdinov RG, Samsonov AA, Seliverstov PV, Sitkin SI, Tarasova LV, Tarzimanova AI, Tkacheva ON, Tkachenko EI, Troshina EA, Turkina SV, Uspenskiy YP, Fominykh YA, Khlynova OV, Tsyganova YV, Shamkhalova MS, Sharkhun OO, Shestakova MV. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2025; 35:94-152. [DOI: 10.22416/1382-4376-2025-35-1-94-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. The clinical guidelines are intended to provide information support for making decisions by gastroenterologists, general practitioners and internists that will improve the quality of medical care for patients with non-alcoholic fatty liver disease, taking into account the latest clinical data and principles of evidence-based medicine. Key points. Clinical guidelines contain information about current views on etiology, risk factors and pathogenesis of nonalcoholic fatty liver disease, peculiarities of its clinical course. Also given recommendations provide information on current methods of laboratory and instrumental diagnostics, invasive and non-invasive tools for nonalcoholic fatty liver disease and its clinical phenotypes assessment, approaches to its treatment, considering the presence of comorbidities, features of dispensary monitoring and prophylaxis. The information is illustrated with algorithms of differential diagnosis and physician's actions. In addition, there is information for the patient and criteria for assessing the quality of medical care. Conclusion. Awareness of specialists in the issues of diagnosis, treatment and follow-up of patients with nonalcoholic fatty liver disease contributes to the timely diagnosis and initiation of treatment, which in the long term will significantly affect their prognosis and quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. L. Raikhelson
- Saint Petersburg State University;
Academician I.P. Pavlov First Saint Petersburg State Medical University
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - M. D. Ardatskaya
- Central State Medical Academy of the Department of Presidential Affairs
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - P. O. Bogomolov
- Russian University of Medicine;
Moscow Regional Research Clinical Institute
| | - V. V. Breder
- National Medical Research Center of Oncology named after N.N. Blokhin
| | | | | | | | | | | | | | | | - K. B. Kodzoeva
- National Medical Research Center for Transplantology and Artificial Organs named after Academician V.I. Shumakov
| | - I. V. Kozlova
- Saratov State Medical University named after V.I. Razumovsky
| | | | | | | | | | | | | | | | | | - S. N. Mekhtiev
- Academician I.P. Pavlov First Saint Petersburg State Medical University
| | | | - M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Nikitin
- N.I. Pirogov Russian National Research Medical University;
National Medical Research Center “Treatment and Rehabilitation Center”
| | | | | | - Ch. S. Pavlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin
| | - N. V. Pogosova
- National Medical Research Center of Cardiology named after Academician E.I. Chazov
| | | | - G. E. Roytberg
- N.I. Pirogov Russian National Research Medical University
| | - R. G. Saifutdinov
- Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education
| | | | | | - S. I. Sitkin
- North-Western State Medical University named after I.I. Mechnikov;
V.A. Almazov National Medical Research Center
| | | | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | | | | | | | - Yu. P. Uspenskiy
- Academician I.P. Pavlov First Saint Petersburg State Medical University;
Saint Petersburg State Pediatric Medical University
| | - Yu. A. Fominykh
- V.A. Almazov National Medical Research Center; Saint Petersburg State Pediatric Medical University
| | - O. V. Khlynova
- Perm State Medical University named after Academician E.A. Wagner
| | | | | | - O. O. Sharkhun
- N.I. Pirogov Russian National Research Medical University
| | | |
Collapse
|
8
|
Hupa-Breier KL, Schenk H, Campos-Murguia A, Wellhöner F, Heidrich B, Dywicki J, Hartleben B, Böker C, Mall J, Terkamp C, Wilkens L, Becker F, Rudolph KL, Manns MP, Mederacke YS, Marhenke S, Redeker H, Lieber M, Iordanidis K, Taubert R, Wedemeyer H, Noyan F, Hardtke-Wolenski M, Jaeckel E. Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity. Mol Metab 2025; 93:102104. [PMID: 39855563 PMCID: PMC11815970 DOI: 10.1016/j.molmet.2025.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome. METHODS TALLYHO/JngJ mice and NONcNZO10/LtJ mice were fed a high-fat- high-carbohydrate (HF-HC) diet with a surplus of cholesterol diet. A second group of TH mice was additional treated with empagliflozin. RESULTS After sixteen weeks of feeding, both strains developed metabolic syndrome with severe obesity and histological manifestation of steatohepatitis, which was associated with significantly increased intrahepatic CD8+cells, CD4+cells and Tregs, contributing to a significant increase in pro-inflammatory and pro-fibrotic gene activation as well as ER stress and oxidative stress. In comparison with the human transcriptomic signature, we could demonstrate a good metabolic similarity, especially for the TH mouse model. Furthermore, TH mice also developed signs of kidney injury as an extrahepatic comorbidity of MASLD. Additional treatment with empagliflozin in TH mice attenuates hepatic steatosis and improves histological manifestation of MASH. CONCLUSIONS Overall, we have developed two promising new mouse models that are suitable for preclinical studies of MASLD as they recapitulate most of the key features of MASLD.
Collapse
Affiliation(s)
- Katharina L Hupa-Breier
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alejandro Campos-Murguia
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Freya Wellhöner
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Heidrich
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Björn Hartleben
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Clara Böker
- Department of General, Visceral, Vascular and Bariatric Surgery, Klinikum Nordstadt, 30167, Hannover, Germany
| | - Julian Mall
- Department of General, Visceral, Vascular and Bariatric Surgery, Klinikum Nordstadt, 30167, Hannover, Germany
| | - Christoph Terkamp
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ludwig Wilkens
- Department of Pathology, Nordstadt Hospital Hannover, 30167, Hannover, Germany
| | - Friedrich Becker
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Karl Lenhard Rudolph
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Michael Peter Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hanna Redeker
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Maren Lieber
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Ajmera Transplant Centre, Toronto General Hospital, United Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Theofilis P, Oikonomou E, Karakasis P, Pamporis K, Dimitriadis K, Kokkou E, Lambadiari V, Siasos G, Tsioufis K, Tousoulis D. FGF21 Analogues in Patients With Metabolic Diseases: Systematic Review and Meta-Analysis of Randomised Controlled Trials. Liver Int 2025; 45:e70016. [PMID: 39898512 DOI: 10.1111/liv.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND AND AIMS Liver-related complications are frequent in patients with metabolic diseases, with limited treatment options currently available. This systematic review and meta-analysis aimed to assess the effect of fibroblast growth factor-21 (FGF21) analogues on hepatic steatosis, inflammation and fibrosis in patients with metabolic diseases. METHODS We conducted a systematic literature search in Pubmed, Scopus and Web of Science for randomised controlled trials (RCTs) assessing the effect of FGF21 analogues on hepatic steatosis evaluated by hepatic fat fraction (HFF), inflammation and fibrosis compared to placebo. Adverse events (AEs) were also recorded. RESULTS Treatment with FGF21 analogues was associated with metabolic-associated steatohepatitis (MASH) resolution without fibrosis worsening (5 studies, risk ratio [RR] 4.40, 95% confidence interval [CI]: 2.41, 8.03, p < 0.001) and fibrosis improvement by 1 grade without MASH worsening (6 studies, RR 1.79, 95% CI: 1.24, 2.59, p = 0.002). FGF21 analogues significantly lowered HFF compared to placebo (6 studies, SMD -1.08, 95% CI: -1.28, -0.88, p < 0.001), while patients receiving FGF21 analogues were more likely to exhibit a reduction in HFF by 30% (10 studies, RR 4.08, 95% CI: 3.08, 5.40, p < 0.001) or 50% (6 studies, RR 10.43, 95% CI: 5.47, 19.87, p < 0.001). HFF normalisation (≤ 5%) was more frequently achieved with FGF21 analogues (6 studies, RR 14.58, 95% CI: 4.70, 45.18, p < 0.001). The results remained robust after sensitivity analyses. Serious AE and AE leading to drug discontinuation were similar in patients receiving FGF21 analogues or placebo. CONCLUSIONS FGF21 analogues can reduce hepatic steatosis, inflammation and fibrosis in patients with metabolic diseases, representing a possible treatment option for steatotic liver disease.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Pamporis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Dimitriadis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kokkou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital "Sotiria", National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Shinozaki S, Miura K, Tahara T, Yamamoto H. Effectiveness of Pemafibrate Dose Escalation on Metabolic Dysfunction-Associated Steatotic Liver Disease Refractory to Standard Dose. Metabolites 2025; 15:100. [PMID: 39997725 PMCID: PMC11857616 DOI: 10.3390/metabo15020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Background and Aim: Controlling the hepatic inflammation of metabolic dysfunction-associated steatotic liver disease (MASLD) is important to prevent serious condition. Pemafibrate, a selective peroxisome proliferator-activated receptor-α modulator, has demonstrated effectiveness at a standard dose (0.2 mg daily). The aim of this study is to evaluate the effectiveness of pemafibrate dose escalation from 0.2 mg to 0.4 mg daily in patients with MASLD who are refractory to standard-dose therapy. Methods: This study included patients with MASLD who had a persistent elevation of alanine aminotransferase (ALT) levels despite more than one year of standard-dose pemafibrate therapy (0.2 mg daily). All patients underwent dose escalation to 0.4 mg once daily. Hepatic inflammation was assessed using serum ALT levels, hepatic function was evaluated with the albumin-bilirubin score, and hepatic fibrosis was estimated using Mac-2 binding protein glycosylation isomer (M2BPGi) levels. A one-year treatment period was investigated, including six months before dose escalation and six months after dose escalation. Results: Eleven patients were included. The median treating period with standard-dose pemafibrate was 3.2 years. Weight did not show significant change throughout the observation period. Regarding the hepatobiliary enzyme, the aspartate aminotransferase, ALT, and γ-glutamyl transpeptidase levels significantly improved six months after the dose escalation. Specifically, ALT improved in all patients, and the ALT levels normalized in four patients (36%). The lipid profiles, the albumin-bilirubin score, and M2BPGi did not significantly change after the dose escalation. Conclusions: The dose escalation of pemafibrate from 0.2 mg to 0.4 mg daily may improve hepatic inflammation in patients with MASLD refractory to standard-dose therapy.
Collapse
Affiliation(s)
- Satoshi Shinozaki
- Shinozaki Medical Clinic, Utsunomiya 321-3223, Japan
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Shimotsuke 329-0431, Japan
| | - Kouichi Miura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Shimotsuke 329-0431, Japan
| | | | - Hironori Yamamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Shimotsuke 329-0431, Japan
| |
Collapse
|
11
|
Au K, Zheng MH, Lee WJ, Ghanem OM, Mahawar K, Shabbir A, le Roux CW, Targher G, Byrne CD, Yilmaz Y, Valenti L, Sebastiani G, Treeprasertsuk S, Hui HX, Sakran N, Neto MG, Kermansaravi M, Kow L, Seki Y, Tham KW, Dang J, Cohen RV, Stier C, AlSabah S, Oviedo RJ, Chiappetta S, Parmar C, Yang W. Resmetirom and Metabolic Dysfunction-Associated Steatohepatitis: Perspectives on Multidisciplinary Management from Global Healthcare Professionals. Curr Obes Rep 2024; 13:818-830. [PMID: 39110384 DOI: 10.1007/s13679-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
PURPOSE OF REVIEW The approval of resmetirom brings great hope to patients with metabolic dysfunction-associated steatohepatitis (MASH). The purpose of this review is to explore its impact on the global health environment. The implementation of multidisciplinary management MASH is proposed. RECENT FINDINGS Resmetirom has benefits in the treatment of MASH, and its safety and effectiveness have been studied. The adverse events (AEs) need to be noticed. To improve patient outcomes, a multimodal approach with medication such as resmetirom, combined with metabolic and bariatric surgery (MBS) and lifestyle interventions can be conducted. MASH, a liver disease linked with obesity, is a challenging global healthcare burden compounded by the absence of any approved pharmacotherapy. The recent conditional approval by the Food and Drug Administration (FDA) in the United States of resmetirom, an oral, liver-directed, thyroid hormone receptor beta-selective agonist, marks a significant milestone, offering a treatment option for adults with non-cirrhotic MASH and who have moderate to advanced liver fibrosis. This narrative review discusses the efficacy and safety of resmetirom and its role in the therapeutic landscape of MASH treatment. Despite the promising hepatoprotective effect of resmetirom on histological liver endpoints, its use need further research, particularly regarding ethnic differences, effectiveness and cost-effectiveness, production scalability, social acceptance and accessibility. In addition, integrating resmetirom with other multidisciplinary therapeutic approaches, including lifestyle changes and MBS, might further improve clinical liver-related and cardiometabolic outcomes of individuals with MASH. This review highlights the importance of a comprehensive treatment strategy, supporting continued innovation and collaborative research to refine treatment guidelines and consensus for managing MASH, thereby improving clinical patient outcomes in the growing global epidemic of MASH. Studies done to date have been relatively short and ongoing, the course of the disease is highly variable, the conditions of various patients vary, and given this complex clinical phenotype, it may take many years of clinical trials to show long-term benefits.
Collapse
Affiliation(s)
- Kahei Au
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Wei-Jei Lee
- Medical Weight Loss Center, China Medical University Shinchu Hospital, Zhubei City, Taiwan
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kamal Mahawar
- Department of Upper Gastrointestinal Surgery, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Asim Shabbir
- National University of Singapore, Singapore, Singapore
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | | | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nasser Sakran
- Department of General Surgery, Holy Family Hospital, Nazareth, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Manoel Galvao Neto
- Orlando Health Weight Loss and Bariatric Surgery Institute, Orlando, USA
- Mohak Bariatric and Robotic Center, Indore, India
| | - Mohammad Kermansaravi
- Department of Surgery, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Hazrat-E Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Lilian Kow
- Department GI Surgery, Flinders University South Australia, Adelaide, Australia
| | - Yosuke Seki
- Weight Loss and Metabolic Surgery Centre, Yotsuya Medical Cube, Tokyo, Japan
| | | | - Jerry Dang
- Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ricardo V Cohen
- The Center for Obesity and Diabetes, Hospital Alemao Oswaldo Cruz, Sao Paulo, Brazil
| | - Christine Stier
- Department of MBS and Bariatric Endoscopy, University Hospital Mannheim, Heidelberg University, Mannheim, Baden-Wuerttenberg, Germany
| | - Salman AlSabah
- Department of Surgery, Kuwait University, Kuwait, Kuwait
| | - Rodolfo J Oviedo
- Nacogdoches Medical Center, Nacogdoches, TX, USA
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Sonja Chiappetta
- Bariatric and Metabolic Surgery Unit, Department for General and Laparoscopic Surgery, Ospedale Evangelico Betania, Naples, Italy
| | - Chetan Parmar
- Department of Surgery, Whittington Hospital,, University College London, London, UK
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China.
| |
Collapse
|
12
|
Williams DM, Ali J, Cragg J, Ch'ng CL, Williams NW, Stephens JW, Min T. The Bidirectional Relationship Between Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Retrospective Cohort Study. Cureus 2024; 16:e75993. [PMID: 39835079 PMCID: PMC11743228 DOI: 10.7759/cureus.75993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have shared pathophysiology. We aim to explore associations between these diseases and the impact of T2D therapies on MASLD-related outcomes in a real-world population. Methods A retrospective cohort study included 153 patients with biopsy-proven MASLD. Health records were reviewed for biochemical or radiological changes over follow-up and compared by T2D status. The rate of incident T2D was determined, and in those with T2D, the changes over follow-up were compared by prescribed treatment. The statistical significance of changes over follow-up was evaluated by Student's t-test, and logistic regression was undertaken to determine the impact of variables on T2D development. Results One hundred and fifty-three patients were included with a mean follow-up of 48.0±22.0 months. Patients with T2D (n=73) were older than patients without T2D (n=80; 56.3 vs 51.9 years, p<0.05). Patients with T2D had a greater stage of hepatic fibrosis (2.6 vs 1.7, p<0.001). Nine (12.3%) patients with T2D and four (5.0%) without T2D died during follow-up (p=0.10). Patients without T2D had greater glycosylated haemoglobin (HbA1c) over follow-up (3.0 mmol/mol, p<0.01), and 21 (26.3%) developed T2D. Patients with T2D treated with sodium-glucose transporter-2 inhibitors (SGLT-2i) and/or glucagon-like peptide-1 receptor analogues (GLP-1RA) had a reduction in FibroScan®-controlled attenuation parameter (-33.7dB/m, p<0.001) but not liver stiffness measure. There were no significant FibroScan® changes in those receiving other treatments. Conclusions Patients with T2D had greater hepatic fibrosis, and one in four patients with MASLD developed T2D over four years. Treatment with SGLT-2i and/or GLP-1RA in patients with T2D is associated with improved measures of steatosis but not fibrosis.
Collapse
Affiliation(s)
- David M Williams
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, GBR
| | - Jumaina Ali
- Department of General Medicine, Morriston Hospital, Swansea, GBR
| | - Jake Cragg
- Department of General Medicine, Morriston Hospital, Swansea, GBR
| | - Chin L Ch'ng
- Department of Hepatology, Singleton Hospital, Swansea, GBR
| | | | - Jeffrey W Stephens
- Diabetes Research Group, Swansea University Medical School, Swansea, GBR
| | - Thinzar Min
- Diabetes Research Group, Swansea University Medical School, Swansea, GBR
| |
Collapse
|
13
|
Janić M, Janež A, Šabović M, El-Tanani M, Rangraze I, Rizzo M, Lunder M. Glucometabolic Efficacy of the Empagliflozin/Metformin Combination in People with Type 1 Diabetes and Increased Cardiovascular Risk: A Sub-Analysis of a Pilot Randomized Controlled Trial. J Clin Med 2024; 13:6860. [PMID: 39598003 PMCID: PMC11594502 DOI: 10.3390/jcm13226860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: People with type 1 diabetes have an unmet need for cardiovascular protection due to the lack of new recommended antidiabetic therapies with cardiovascular benefits. We examined whether the addition of an empagliflozin/metformin combination, and each drug alone, can complement insulin to improve glucometabolic parameters in overweight people with type 1 diabetes at high cardiovascular risk. Methods: This pilot, single-center double-blind randomized controlled trial included 40 people with type 1 diabetes. In addition to insulin, they received empagliflozin (25 mg daily), metformin (2000 mg daily), an empagliflozin/metformin combination, or a placebo. The intervention period was 12 weeks. Glycemic parameters, insulin requirements, and blood and urine samples were analyzed. Indices for liver fibrosis were calculated. Due to potential safety concerns, participants regularly measured blood ketone values. Results: The empagliflozin/metformin combination decreased HbA1c (-0.6%, p < 0.05) and weight (-6.1 kg, p < 0.05). Empagliflozin decreased the urinary albumin-to-creatinine ratio (-31.4 ± 4.9%, p = 0.002). The empagliflozin/metformin combination and empagliflozin decreased the estimated daily proteinuria (-34.6 ± 5.0%, p = 0.006 and -35.9 ± 6.2%, p = 0.03, respectively), the calculated FIB-4 (up to -17.8 ± 5.2%, p = 0.04 and -10.7 ± 3.7%, p = 0.02, respectively), and other liver fibrosis indices and uric acid values. No significant side effects occurred during the study. Conclusions: The empagliflozin/metformin combination improved glycemic control, reduced weight and insulin requirements, and produced several additional beneficial metabolic effects in overweight people with type 1 diabetes with increased cardiovascular risk.
Collapse
Affiliation(s)
- Miodrag Janić
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.J.); (M.L.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- School of Medicine, Promise Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.J.); (M.L.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mišo Šabović
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Imran Rangraze
- Internal Medicine Department, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Manfredi Rizzo
- School of Medicine, Promise Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Mojca Lunder
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.J.); (M.L.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Khanmohammadi S, Habibzadeh A, Kamrul-Hasan ABM, Schuermans A, Kuchay MS. Glucose-lowering drugs and liver-related outcomes among individuals with type 2 diabetes: A systematic review of longitudinal population-based studies. Diabet Med 2024; 41:e15437. [PMID: 39340770 DOI: 10.1111/dme.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
AIMS While randomized controlled trials data on the long-term effect of glucose-lowering drugs (GLDs) on liver-related outcomes are lacking, population-based studies have evaluated the associations of GLDs with liver-related outcomes in individuals with type 2 diabetes (T2D). we aimed to conduct a systematic review of population-based studies evaluating the effects of GLDs on liver-related outcomes in people with T2D. METHODS PubMed, Web of Science, and Embase databases were systematically searched for population-based studies testing the associations of GLDs with liver-related outcomes in individuals with T2D and no liver disease other than non-alcoholic fatty liver disease (NAFLD) from inception to 23 February 2024. GLDs included SGLT2is, TZDs, insulin, GLP-1 RAs and dipeptidyl peptidase-4 inhibitors (DPP4Is). RESULTS Ten cohort studies, comprising 1,274,641 participants, met the inclusion criteria. The median follow-up period ranged from 8.9 to 76 months. Of all the GLDs under investigation, SGLT2is were associated with the strongest reduction in NAFLD incidence, cirrhosis, and composite liver-related events compared to other medications. TZDs were associated with a reduced risk of developing NAFLD and cirrhosis but were not significantly associated with a lower incidence of hepatocellular carcinoma. GLP-1 RAs demonstrated a significant association with reduced liver-related mortality. CONCLUSIONS Observational data from population-based studies suggest that GLDs such as SGLT2is are associated with beneficial long-term liver-related outcomes in T2D patients with NAFLD. Additional studies, including randomized controlled trials with long-term follow-up, are needed to confirm these findings. REGISTRATION NUMBER PROSPERO CRD442024536872.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - A B M Kamrul-Hasan
- Department of Endocrinology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, India
| |
Collapse
|
15
|
Fulghum K, Salathe SF, Davis X, Thyfault JP, Puchalska P, Crawford PA. Ketone body metabolism and cardiometabolic implications for cognitive health. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:29. [PMID: 40093558 PMCID: PMC11908690 DOI: 10.1038/s44324-024-00029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 03/19/2025]
Abstract
Cardiometabolic complications of obesity present a growing public health concern and are associated with poor outcomes, mediated in part by an increased risk for cardiovascular disease, metabolic dysfunction-associated fatty liver disease, and systemic insulin resistance. Recent studies support that both insulin resistance and obesity are also associated with aberrant brain metabolism and cognitive impairment similar to what is observed in neurodegenerative diseases. Central to these pathological outcomes are adverse changes in tissue glucose and ketone body metabolism, suggesting that regulation of substrate utilization could be a mechanistic link between the cardiometabolic outcomes of obesity and the progression of cognitive decline. Here, we review ketone body metabolism in physiological and pathological conditions with an emphasis on the therapeutic potential of ketone bodies in treating cardiometabolic diseases and neurodegenerative diseases that lead to cognitive decline. We highlight recent findings in the associations among cardiometabolic disease, ketone body metabolism, and cognitive health while providing a theoretical framework by which ketone bodies may promote positive health outcomes and preserve cognitive function.
Collapse
Affiliation(s)
- Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sebastian F. Salathe
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Xin Davis
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Puengel T, Tacke F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: where are we today? Expert Opin Pharmacother 2024; 25:1249-1263. [PMID: 38954663 DOI: 10.1080/14656566.2024.2374463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor β-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Hojná S, Malínská H, Hüttl M, Vaňourková Z, Marková I, Miklánková D, Hrdlička J, Papoušek F, Neckář J, Kujal P, Behuliak M, Rauchová H, Kadlecová M, Sedmera D, Neffeová K, Zábrodská E, Olejníčková V, Zicha J, Vaněčková I. Hepatoprotective and cardioprotective effects of empagliflozin in spontaneously hypertensive rats fed a high-fat diet. Biomed Pharmacother 2024; 174:116520. [PMID: 38581924 DOI: 10.1016/j.biopha.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Neffeová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
18
|
Makri ES, Makri E, Goulas A, Xanthopoulos K, Polyzos SA. Animal studies of sodium-glucose co-transporter 2 inhibitors in nonalcoholic fatty liver disease. Ann Gastroenterol 2024; 37:280-290. [PMID: 38779641 PMCID: PMC11107411 DOI: 10.20524/aog.2024.0884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered one of the most common chronic liver diseases. Modern lifestyle, characterized by increasing rates of obesity and type 2 diabetes mellitus (T2DM), has led to a "pandemic" of NAFLD that imposes a personal health and socioeconomic burden. Apart from overnutrition and insulin resistance, various metabolic aberrations, gut microbiota and genetic predispositions are involved in the pathogenesis of the disease. The multifactorial nature of NAFLD's pathogenesis makes the development of pharmacological therapies for patients with this disease challenging. Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) are antidiabetic agents that reduce blood glucose mainly by increasing its renal excretion. As T2DM is one of the major contributors to NAFLD, SGLT-2i have emerged as promising agents for the management of NAFLD. In this review, we summarize the main animal studies on SGLT-2i in models of NAFLD.
Collapse
Affiliation(s)
- Evangelia S. Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Eleftheria Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki (Konstantinos Xanthopoulos)
- Institute of Applied Biosciences, Centre for Research and Technology, Thessaloniki (Konstantinos Xanthopoulos), Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| |
Collapse
|
19
|
Mahmoud A, Mohamed I, Abuelazm M, Ahmed AAS, Saeed A, Elshinawy M, Almaadawy O, Abdelazeem B. Efficacy of orlistat in obese patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Proc AMIA Symp 2024; 37:603-612. [PMID: 38910819 PMCID: PMC11188793 DOI: 10.1080/08998280.2024.2335829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/18/2024] [Indexed: 06/25/2024] Open
Abstract
Objective: Nonalcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant contributor to chronic liver disease worldwide. Orlistat blocks intestinal fat absorption, leading to decreased liver fat content. Therefore, it is a viable option for NAFLD management. Methods: We performed a systematic review and metaanalysis using randomized controlled trials (RCTs). We used mean difference (MD) to pool continuous outcomes presented with the corresponding confidence interval (CI). Results: We included four RCTs with a total of 379 patients. Orlistat was effective in reducing liver fat content (MD: -5.02, 95% CI [-7.23, -2.82], P = 0.00001), alanine transferase (MD: -10.03, 95% CI [-17.80, -2.26], P = 0.01), aspartate transferase (MD: -4.29, 95% CI [-7.59, -0.99], P = 0.01), waist circumference (MD: -3.18, 95% CI [-4.25, -2.10], P = 0.00001), body mass index (MD: -1.03, 95% CI [-1.34, -0.73], P = 0.00001), total cholesterol (MD: -3.75, 95% CI [-4.02, -3.49], P = 0.00001), and low-density lipoprotein (MD: -3.83, 95% CI [-4.05, -3.61], P = 0.00001). However, orlistat was associated with increased serum triglycerides (MD: 7.46, 95% CI [6.48, 8.44], P = 0. 00001). Conclusion: Orlistat is a viable option for NAFLD management; however, it increases triglyceride levels. Larger RCTs are required.
Collapse
Affiliation(s)
| | - Islam Mohamed
- Department of Internal Medicine, University of Missouri, Kansas City, Missouri, USA
| | | | | | | | | | - Omar Almaadawy
- Department of Internal Medicine, MedStar Health, Baltimore, Maryland, USA
| | - Basel Abdelazeem
- Cardiology Department, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|