1
|
Yin H, Xin Y, Yang J, Luo Q, Yang M, Sun J, Wang Y, Wang Q, Kalvakolanu DV, Guo B, Jiang W, Zhang L. Multifunctional nanozymes: Promising applications in clinical diagnosis and cancer treatment. Biosens Bioelectron 2025; 279:117383. [PMID: 40121930 DOI: 10.1016/j.bios.2025.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/09/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains one of the greatest challenges in modern medicine. Traditional chemotherapy drugs often cause severe side effects, including nausea, vomiting, diarrhea, neurotoxicity, liver damage, and nephrotoxicity. In addition to these adverse effects, high recurrence and metastasis rates following treatment pose significant challenges for clinicians. There is an urgent need for novel therapeutic strategies to improve cancer treatment outcomes. In this context, nanozymes-artificial enzyme mimetics-have attracted considerable attention due to their unique advantages, including potent tumor-killing effects, enhanced biocompatibility, and reduced toxicity. Notably, nanozymes can dynamically monitor tumors through imaging and tracing. The multifunctional nanozyme (MN) is a promising research focus, integrating multiple catalytic activities, signal enhancement, sensing capabilities, and diverse modifications within a single nanozyme system. MNs can selectively target tumor regions, facilitating synergistic effects with other cancer therapies while enabling real-time imaging and tumor tracking. In this review, we first categorize MNs based on their composition and structural characteristics. We then discuss the primary mechanisms by which MNs exert their anticancer effects. Additionally, we review three types of MN biosensors and four MN-based therapeutic approaches applied in cancer treatment. Finally, we highlight the current challenges in MN research and provide an outlook on future developments in this field.
Collapse
Affiliation(s)
- Hailin Yin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yang Xin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qian Luo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Mei Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Qi Wang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ling Zhang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Tang J, Li C, Ma W, Ba Z, Hu Z, Willner I, Wang C. An Activatable Caged Palladium Nanocomposite for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202503485. [PMID: 40135680 DOI: 10.1002/anie.202503485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
Pd-based intracellular catalysis has attracted increasing interest in modulating biological processes or disease treatment. The unsatisfactory catalytic efficiency arising from limited active sites and poor water solubility of palladium nanoparticles (Pd NPs) and their "always on" catalytic activities pose, however, significant limitations. Herein, we develop a high-performance nanocomposite based on ultrafine Pd NPs confined within molecular cages, and incorporated with glucose oxidase (GOx) and AS1411 aptamer-modified hyaluronic acid (HA). The cage-confined strategy enables facile synthesis of ultrafine Pd NPs with more accessible active sites, significantly improving the catalytic activities of Pd NPs for enhanced bioorthogonal catalysis. Importantly, the nanocomposite exhibits targeting ability and activatable activity in response to both the acidic pH and hyaluronidase overexpressed in the tumor environment, enabling selective drug synthesis. Besides, it features CAT-, OXD-, and GPx-like activities, promoting reactive oxygen species (ROS) generation and intracellular GSH depletion to elevate oxidative stress for enhanced therapy. The cage-confined configuration makes it possible to establish metal-based intracellular catalytic systems with high performance, enabling the synthesis of desired molecules for effective disease theranostics.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chi Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenjie Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhengnuo Ba
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Complex Bio-hybrid Systems, The Hebrew University of Jerusalem Institution, Jerusalem, 91904, Israel
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Gao Z, Qin K, He W, Liang Y, Yu J, Wang Z, Li X, Chen J, Cai Z, Hu J, Liu H, Wang D, Li Y, Sun B. Chemocatalytic Cell Tagging Platform for Recording Cell-Cell Interactions via Engineered Palladium-Based Artificial Metalloenzymes. Angew Chem Int Ed Engl 2025; 64:e202424738. [PMID: 39982120 DOI: 10.1002/anie.202424738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/22/2025]
Abstract
Proximity labeling platforms (PLPs) have become a powerful tool for studying spatial cell-cell interactions (CCIs) in living organisms. However, their effectiveness often relies on membranal catalytic modules of bait cells, such as natural enzymes or small-molecule photocatalysts, which are typically constrained by complex genetic modifications or the limited applicability of visible light. Here, we present a novel chemocatalytic approach, ArM-Tag, which utilizes an engineered artificial metalloenzyme (ArM) for cell surface-localized tagging. The ArM-Tag system combines a palladium (Pd) cofactor, a lipid anchor, and a streptavidin (SAV) scaffold to catalyze the O-deallylation reaction on the surface of target cells, generating short-lived electrophilic intermediates that label neighboring cells within a micrometer-scale range. By integrating Biotin-SAV technology with directed evolution, we engineered a series of biotinylated Pd complexes and optimized the ArM for efficient catalysis. We demonstrate the power of this approach by applying the ArM-Tag system to selectively record antigen-specific CCIs, specifically showing how CAR-T cells interact with tumor cells through the mesothelin/anti-mesothelin axis. This versatile, non-genetic system provides a powerful tool for probing CCIs and offers exciting prospects for advancing immunotherapy, particularly in targeted cancer treatments and immune cell-based therapies.
Collapse
Affiliation(s)
- Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Qin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
| | - Wei He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
| | - Zhimei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
| | - Xuejing Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
| | - Jinzhong Hu
- Bozhou UK Biomedical Technology Co., LTD, Bozhou, 236800, P. R. China
| | - Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Dandan Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaojia Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210089, China
- Bozhou UK Biomedical Technology Co., LTD, Bozhou, 236800, P. R. China
| |
Collapse
|
4
|
Xu QH, Yin XY, Chen ZQ, Huang EK, Yao X, Li X, Liu PN. Construction of In Situ Personalized Cancer Vaccines by Bioorthogonal Catalytic Microneedles for Augmented Melanoma Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500015. [PMID: 40130650 DOI: 10.1002/smll.202500015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/06/2025] [Indexed: 03/26/2025]
Abstract
In situ personalized tumor vaccines are produced directly at the primary tumor site by killing cancer cells and stimulating immune cells, they are effective against individuals and bypass the complexity and high cost of in vitro vaccine production. However, their clinical application is hindered by insufficient efficiency in inducing immunogenic cancer cell death (ICD) and systemic inflammation caused by immune adjuvants. Here, personalized cancer vaccines are constructed in situ for melanoma immunotherapy based on bioorthogonal catalytic microneedles, which enable the catalytic release of prodrugs at tumor sites and mediate strong ICD and an enhanced tumor immune response while avoiding systemic immune storms and toxic side effects. By incorporating TiO2 nanosheets supported Pd into swellable microneedles, the bioorthogonal microneedles are constructed to catalyze the depropargylation reaction of doxorubicin (DOX) prodrug and imiquimod (IMQ) prodrug in situ. The activated DOX at subcutaneous tumor sites induced strong ICD and released tumor-associated antigens. Concurrently, the activated IMQ acts as a Toll-like receptor (TLR7) agonist, enhancing the anti-tumor immune response. In vivo experiments demonstrate that this immunotherapy achieves ≈97% inhibition of primary tumors and effectively inhibits untreated distant tumors (≈94% inhibition) and lung metastasis (≈92% inhibition).
Collapse
Affiliation(s)
- Qian-He Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiu-Yuan Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhen-Qiang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - En-Kui Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
5
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2025; 45:887-908. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Yi J, Wang H, Deng Q, Huang C, Zhang L, Sun M, Ren J, Qu X. A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy. Chem Sci 2025; 16:6014-6022. [PMID: 40070470 PMCID: PMC11891781 DOI: 10.1039/d4sc06481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer cells exhibit altered metabolism and energetics, prominently reprogramming lipid metabolism to support tumor growth and progression, making it a promising target for cancer therapy. However, traditional genetic and pharmaceutical approaches for disrupting lipid metabolism face challenges due to the adaptability of tumor metabolism and potential side effects on normal tissues. Here, we present a bacteria-based bioorthogonal platform combining transition metal catalysts and Lactobacillus to disrupt the flexible lipid homeostasis in tumors. This platform activates glutamine transporter inhibitors in situ, targeting lipid synthesis in hypoxic tumor environments, while Lactobacillus inhibits lipid accumulation. By disrupting lipid metabolism and glutamine utilization, the present study proposes a safe and potent strategy for cancer therapy, with potential applications for other metabolic diseases.
Collapse
Affiliation(s)
- Jiadai Yi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Huan Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
7
|
Garcia-Peiro JI, Ortega-Liebana MC, Adam C, Lorente-Macías Á, Travnickova J, Patton EE, Guerrero-López P, Garcia-Aznar JM, Hueso JL, Santamaria J, Unciti-Broceta A. Dendritic Platinum Nanoparticles Shielded by Pt-S PEGylation as Intracellular Reactors for Bioorthogonal Uncaging Chemistry. Angew Chem Int Ed Engl 2025; 64:e202424037. [PMID: 39813113 DOI: 10.1002/anie.202424037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Beyond their classical role as cytotoxics, Platinum (Pt) coordination complexes recently joined the selected group of transition metals capable of performing bioorthogonal reactions in living environments. To minimize their reactivity towards nucleophiles, which limit their catalytic performance, we investigated the use of Pt(0) with different forms, sizes and surface functionalization. We report herein the development of PEGylated Pt nanodendrites with the capacity to activate prodyes and prodrugs in cell culture and in vivo. Their dendritic morphology together with their surface shielding through Pt-S-bonded PEGylation synergistically contributed to create catalytic nanoreactors compatible with the highly-crowded and reductive environment of the cell cytoplasm, thereby facilitating in situ bioorthogonal drug uncaging in cancer cells in 2D and 3D culture, including in microfluidic systems, and xenografted in zebrafish.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018, Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - M Carmen Ortega-Liebana
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- Department of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071, Granada, Spain
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Catherine Adam
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Álvaro Lorente-Macías
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Jana Travnickova
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - E Elizabeth Patton
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Paula Guerrero-López
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009, Zaragoza, Spain
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3 A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - J Manuel Garcia-Aznar
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009, Zaragoza, Spain
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3 A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018, Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009, Zaragoza, Spain
- Escuela Politécnica Superior, Universidad de Zaragoza. Crta. de Cuarte s/n, 22071, Huesca, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018, Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| |
Collapse
|
8
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
9
|
Sancho-Albero M, Decio A, Akpinar R, De Luigi A, Giavazzi R, Terracciano LM, De Cola L. Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs. Mater Today Bio 2025; 30:101433. [PMID: 39866783 PMCID: PMC11764275 DOI: 10.1016/j.mtbio.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis. Extracellular vesicles (EVs) have a similar ability in target only certain organs or to return to their original cells, showing home behavior. Here we report a strategy inspired by nature, using a combination of NPs and the targeting cell membranes of EVs. We implement the EV membranes, extracted by the EVs produced by melanoma B16-BL6 cells, as a coating of organosilica porous particles with the aim of targeting tumors and lung metastasis, while avoiding systemic effects and accumulation of the NPs in undesired organs. The tissue-specific fingerprint provided by the EVs-derived membranes from melanoma cells provides preferential uptake into the tumor and selective targeting of lungs. The ability of the EVs hybrid systems to behave as the natural EVs was demonstrated in vitro and in vivo in two different tumor models. As a proof of concept, the loading and release of doxorubicin, was investigated and its accumulation demonstrated in the expected tissues.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Alessandra Decio
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Reha Akpinar
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Raffaella Giavazzi
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Luigi M. Terracciano
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
- Department of Pharmaceutical Science, DISFARM. Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
10
|
Zhu S, Shou X, Kuang G, Kong X, Sun W, Zhang Q, Xia J. Stimuli-responsive hydrogel microspheres encapsulated with tumor-cell-derived microparticles for malignant ascites treatment. Acta Biomater 2025; 192:328-339. [PMID: 39586349 DOI: 10.1016/j.actbio.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Tumor-cell-derived microparticles (TMPs) have been recognized as chemotherapeutic drug carriers and immunomodulators for anti-tumor therapy. Research in the clinical application of TMPs has been devoted to developing an effective delivery formulation that could enhance their therapeutic effects. Here, we propose thermal-responsive agarose hydrogel microspheres (MTX-TMPs@MSs) with encapsulation of Methotrexate (MTX)-packaging TMPs (MTX-TMPs) and black phosphorus quantum dots (BPQDs) by microfluidic technology for synergistic treatment of malignant ascites. The laden MTX-TMPs, separated from apoptotic tumor cells, could target tumor cells for the delivery of chemotherapy drugs and modulate the tumor immune microenvironment. Under near-infrared (NIR) induced thermal stimulation, MTX-TMPs could be controllably released from the low-melting-point agarose matrix hydrogel microspheres for chemotherapy (CHT) and immunotherapy (IMT). In addition, benefiting from photothermal therapy (PTT)-induced tumor immunogenic death, the anti-tumor immune response triggered by MTX-TMPs was further enhanced. Based on these features, the MTX-TMPs@MSs could remarkably eliminate tumor cells in vitro and obviously suppress tumor growth in vivo through synergistic PTT, CHT, and IMT. Therefore, it is envisaged that this TMPs-integrated microcarrier will have promising applications in clinical tumor therapy. STATEMENT OF SIGNIFICANCE: Primary liver cancer ranks third among the causes of cancer deaths globally, with hepatocellular carcinoma (HCC) being the most common type. In particular, patients with advanced HCC accompanied by malignant ascites, a common complication, indicate tumor metastasis and a poor prognosis. In this paper, we developed stimuli-responsive hydrogel microspheres from microfluidics for the delivery of methotrexate (MTX)-loaded tumor-cell-derived microparticles (MTX-TMPs) for synergistic chemotherapy, photothermal therapy, and immunotherapy. The release of MTX-TMPs from hydrogel microspheres could be on-demand controlled through BPQDs-mediated photothermal stimulus. On the other hand, BPQDs-mediated mild hyperthermia cooperatesss with MTX-TMPs-induced chemotherapy could participate in remodeling the tumor immunosuppressive microenvironment. Thus, the prepared microcarrier system holds great promise for tumor therapy.
Collapse
Affiliation(s)
- Shishi Zhu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xin Shou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Gaizhen Kuang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Weijian Sun
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Qingfei Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
11
|
Lin Y, Hashimoto R, Chang TC, Tanaka K. Synthesis of phenanthridine derivatives by a water-compatible gold-catalyzed hydroamination. Bioorg Med Chem 2024; 113:117928. [PMID: 39299083 DOI: 10.1016/j.bmc.2024.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Since transition-metal-catalyzed reactions are one of the most powerful and direct approaches for the synthesis of organic molecules, translating them to biological systems for biomedical applications is an emerging field. The manipulation of transition metal reactions in biological settings for uncaging prodrugs and synthesizing bioactive drugs has been widely studied. To expand the toolbox of transition-metal-mediated prodrug strategy, this work introduces the 2'-alkynl-biphenylamine precursors for the synthesis of phenanthridine derivatives using a water-compatible gold-catalyzed hydroamination under mild conditions. Moreover, the structure-reactivity relationship revealed that the nucleophilicity of the amine group in the precursor was critical for facilitating the gold-catalyzed synthesis of phenanthridine derivatives. The research shows the potential to be used for phenanthridine-based prodrug designs in an aqueous solution.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Riichi Hashimoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
12
|
Yao Y, Chen Y, Zhou C, Zhang Q, He X, Dong K, Yang C, Chu B, Qian Z. Bioorthogonal chemistry-based prodrug strategies for enhanced biosafety in tumor treatments: current progress and challenges. J Mater Chem B 2024; 12:10818-10834. [PMID: 39352785 DOI: 10.1039/d4tb01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting. However, subtle differences in the microenvironments between tumors and normal tissue may still result in unintended cytotoxicity. Bioorthogonal reactions, known for their selectivity and precision without interfering with natural biochemical processes, are gaining attention. When combined with prodrug strategies, these reactions offer the potential to create highly effective chemotherapy drugs. This review examines the safety and efficacy of prodrug strategies utilizing various bioorthogonal reactions in cancer treatment.
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Quanzhi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xun He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
13
|
Wang Q, Song Y, Yuan S, Zhu Y, Wang W, Chu L. Prodrug activation by 4,4'-bipyridine-mediated aromatic nitro reduction. Nat Commun 2024; 15:8643. [PMID: 39368987 PMCID: PMC11455939 DOI: 10.1038/s41467-024-52604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/16/2024] [Indexed: 10/07/2024] Open
Abstract
Unleashing prodrugs through nitro-reduction is a promising strategy in cancer treatment. In this study, we present a unique bioorthogonal reaction for aromatic nitro reduction, mediated by 4,4'-bipyridine. The reaction is a rare example of organocatalyst-mediated bioorthogonal reaction. This bioorthogonal reaction demonstrates broad substrate scope and proceeds at low micromolar concentrations under biocompatible conditions. Our mechanistic study reveals that water is essential for the reaction to proceed at biorelevant substrate concentrations. We illustrate the utility of our reaction for controlled prodrug activation in mammalian cells, bacteria, and mouse models. Furthermore, a nitro-reduction-annulation cascade is developed for the synthesis of indole derivatives in living cells.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yikang Song
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuowei Yuan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaoji Zhu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Ling Chu
- School of Pharmaceutical Sciences MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Huang X, Feng J, Hu S, Xu B, Hao M, Liu X, Wen Y, Su D, Ji Y, Li Y, Li Y, Huang Y, Chan TS, Hu Z, Tian N, Shao Q, Huang X. Regioselective epitaxial growth of metallic heterostructures. NATURE NANOTECHNOLOGY 2024; 19:1306-1315. [PMID: 38918614 DOI: 10.1038/s41565-024-01696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Constructing regioselective architectures in heterostructures is important for many applications; however, the targeted design of regioselective architectures is challenging due to the sophisticated processes, impurity pollution and an unclear growth mechanism. Here we successfully realized a one-pot kinetically controlled synthetic framework for constructing regioselective architectures in metallic heterostructures. The key objective was to simultaneously consider the reduction rates of metal precursors and the lattice matching relationship at heterogeneous interfaces. More importantly, this synthetic method also provided phase- and morphology-independent behaviours as foundations for choosing substrate materials, including phase regulation from Pd20Sb7 hexagonal nanoplates (HPs) to Pd8Sb3 HPs, and morphology regulation from Pd20Sb7 HPs to Pd20Sb7 rhombohedra and Pd20Sb7 nanoparticles. Consequently, the activity of regioselective epitaxially grown Pt on Pd20Sb7 HPs was greatly enhanced towards the ethanol oxidation reaction; its activity was 57 times greater than that of commercial Pt/C, and the catalyst showed increased stability (decreasing by 16.3% after 2,000 cycles) and selectivity (72.4%) compared with those of commercial Pt/C (56.0%, 18.2%). This work paves the way for the design of unconventional well-defined heterostructures for use in various applications.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Shengnan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingsheng Hao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
16
|
Li Z, Jiang T, Yuan X, Li B, Wu C, Li Y, Huang Y, Xie X, Pan W, Ping Y. Controlled bioorthogonal activation of Bromodomain-containing protein 4 degrader by co-delivery of PROTAC and Pd-catalyst for tumor-specific therapy. J Control Release 2024; 374:441-453. [PMID: 39179113 DOI: 10.1016/j.jconrel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The precise and safe treatment of bioorthogonal prodrug system is hindered by separate administration of prodrug and its activator, which often results in poor therapeutic effects and severe side effects. To address above issues, we herein construct a single bioorthogonal-activated co-delivery system for simultaneous PROTAC prodrug (proPROTAC) delivery and controlled, site-specific activation for tumor-specific treatment. In this co-delivery system (termed AuPLs), prodrug (proPROTAC) and water-soluble Pd-catalyst are first encapsulated by gold nanocubes (AuNCs), which are further coated with a layer of phase-change material (lauric acid/stearic acid, LA/SA). Below 39 °C, the solid state of LA/SA prevents the activation of Pd-mediated bioorthogonal reaction due to the solidification of Pd-catalyst and proPROTAC. Nevertheless, once over 42 °C, the phase change of LA/SA into liquid state, enabled by the photothermal effect of AuNCs, triggers the simultaneous release of proPROTAC and Pd-catalyst and initiates the in situ bioorthogonal reaction for proPROTAC activation. In the tumor-bearing mouse models, the systemic administration of AuPLs results in the accumulation in tumor region, where the photothermal effect activates and controls the tumor-specific bioorthogonal reaction to degrade BRD4 protein, leading to anti-tumor effects with minimized side effects. Overall, the co-delivery proPROTAC and Pd-catalyst and controlled activation by photothermal effects provide a precise way for biorthogonal-based anticancer prodrugs.
Collapse
Affiliation(s)
- Zhiyao Li
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Taibai Jiang
- Guiyang Healthcare Vocational University, Guiyang 550081, PR China
| | - Xu Yuan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yecheng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Weidong Pan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
He G, Li Y, Zeng Y, Zhang Y, Jiang Q, Zhang Q, Zhu J, Gong J. Advancements in melanoma immunotherapy: the emergence of Extracellular Vesicle Vaccines. Cell Death Discov 2024; 10:374. [PMID: 39174509 PMCID: PMC11341806 DOI: 10.1038/s41420-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Malignant melanoma represents a particularly aggressive type of skin cancer, originating from the pathological transformation of melanocytes. While conventional interventions such as surgical resection, chemotherapy, and radiation therapy are available, their non-specificity and collateral damage to normal cells has shifted the focus towards immunotherapy as a notable approach. Extracellular vesicles (EVs) are naturally occurring transporters, and are capable of delivering tumor-specific antigens and directly engaging in the immune response. Multiple types of EVs have emerged as promising platforms for melanoma vaccination. The effectiveness of EV-based melanoma vaccines manifests their ability to potentiate the immune response, particularly by activating dendritic cells (DCs) and CD8+ T lymphocytes, through engineering a synergy of antigen presentation and targeted delivery. Here, this review mainly focuses on the construction strategies for EV vaccines from various sources, their effects, and immunological mechanisms in treating melanoma, as well as the shortcomings and future perspectives in this field. These findings will provide novel insights into the innovative exploitation of EV-based vaccines for melanoma immune therapy.
Collapse
Affiliation(s)
- Guijuan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuyang Zeng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China.
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Unnikrishnan VB, Sabatino V, Amorim F, Estrada MF, Navo CD, Jimenez-Oses G, Fior R, Bernardes GJL. Gold(III)-Induced Amide Bond Cleavage In Vivo: A Dual Release Strategy via π-Acid Mediated Allyl Substitution. J Am Chem Soc 2024; 146:23240-23251. [PMID: 39113488 PMCID: PMC11345771 DOI: 10.1021/jacs.4c05582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl4] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields. Notably, the reaction exhibits remarkable site-specificity to cleave peptide bonds at the C-terminus of allyl-glycine. The strategic introduction of a leaving group at the allyl position facilitated a dual-release approach through π-acid catalyzed substitution. This reaction was employed for the targeted release of the cytotoxic drug monomethyl auristatin E in combination with an antibody-drug conjugate in cancer cells. Finally, Au-mediated prodrug activation was shown in a colorectal zebrafish xenograft model, leading to a significant increase in apoptosis and tumor shrinkage. Our findings reveal a novel metal-based cleavable reaction expanding the utility of Au complexes beyond catalysis to encompass bond-cleavage reactions for cancer therapy.
Collapse
Affiliation(s)
- V. B. Unnikrishnan
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Valerio Sabatino
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Filipa Amorim
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Marta F. Estrada
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
| | - Gonzalo Jimenez-Oses
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
- Ikerbasque,
Basque Foundation for Sciencep, Bilbao 48013, Spain
| | - Rita Fior
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| |
Collapse
|
19
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
20
|
Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology 2024; 22:340. [PMID: 38890722 PMCID: PMC11184820 DOI: 10.1186/s12951-024-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma immunotherapy.
Collapse
Affiliation(s)
- Xinqing Hao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Shiming Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Jiaqi Li
- Reproductive Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| |
Collapse
|
21
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
22
|
Kang M, Quintana J, Hu H, Teixeira VC, Olberg S, Banla LI, Rodriguez V, Hwang WL, Schuemann J, Parangi S, Weissleder R, Miller MA. Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312326. [PMID: 38389502 PMCID: PMC11161319 DOI: 10.1002/adma.202312326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.
Collapse
Affiliation(s)
- Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- School of Health and Environmental Science, College of Health Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Leou Ismael Banla
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Harvard Radiation Oncology Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Victoria Rodriguez
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| |
Collapse
|
23
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
24
|
van de L'Isle M, Croke S, Valero T, Unciti‐Broceta A. Development of Biocompatible Cu(I)-Microdevices for Bioorthogonal Uncaging and Click Reactions. Chemistry 2024; 30:e202400611. [PMID: 38512657 PMCID: PMC11497292 DOI: 10.1002/chem.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.
Collapse
Affiliation(s)
- Melissa van de L'Isle
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Stephen Croke
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Teresa Valero
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of Chemistry applied to Biomedicine and the EnvironmentFaculty of PharmacyUniversity of GranadaCampus de Cartuja s/n18071GranadaSpain
- GENYOCentre for Genomics and Oncological ResearchPfizer/University of Granada/Andalusian Regional GovernmentAvda. Ilustración 11418016GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Asier Unciti‐Broceta
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| |
Collapse
|
25
|
Zhu H, Li W, Ai S, Wan Y, Lin W. Novel activated NIR-II fluorescence/Ratio photoacoustic probe for dual-modality accurate imaging of palladium ions overload in mouse liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134275. [PMID: 38613954 DOI: 10.1016/j.jhazmat.2024.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Palladium contaminants can pose risks to human health and the natural environment. Once Pd2+ enters the body, it can bind with DNA, proteins, and other macromolecules, disrupting cellular processes and causing serious harm to health. Therefore, it becomes critical to develop simple, highly selective and precise methods for detecting Pd2+in vivo. Here, we have successfully developed the first activated second near-infrared region fluorescence (NIR-II FL) and ratio photoacoustic (PA) probe NYR-1 for dual-modal accurate detection of Pd2+ levels. NYR-1 is capable of rapidly (< 60 s) and sensitively detection of Pd2+ in solution, providing switched on NIR-II FL920 and ratio PA808/PA720 dual-mode signal change. More notably, the probe NYR-1 was successfully used for non-invasive imaging of Pd2+ overload in mouse liver by NIR-II FL/Ratio PA dual-modality imaging technology for the first time. Thus, this work opens up a promising dual-modal detection method for the precise detection of Pd2+ in organisms and in the environment.
Collapse
Affiliation(s)
- Huayong Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Sixin Ai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yang Wan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
26
|
Sancho-Albero M, Sebastian V, Perez-Lopez AM, Martin-Duque P, Unciti-Broceta A, Santamaria J. Extracellular Vesicles-Mediated Bio-Orthogonal Catalysis in Growing Tumors. Cells 2024; 13:691. [PMID: 38667306 PMCID: PMC11048864 DOI: 10.3390/cells13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.
Collapse
Affiliation(s)
- Maria Sancho-Albero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Ana M. Perez-Lopez
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (A.M.P.-L.); (A.U.-B.)
| | - Pilar Martin-Duque
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (A.M.P.-L.); (A.U.-B.)
| | - Jesus Santamaria
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
27
|
Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X, Chen Z. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J Control Release 2024; 368:170-183. [PMID: 38382811 DOI: 10.1016/j.jconrel.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Due to the blood-brain barrier (BBB), the application of chemical drugs for glioblastoma treatment is severely limited. Recently, exosomes have been widely applied for drug delivery to the brain. However, the differences in brain targeting efficiency among exosomes derived from different cell sources, as well as the premature drug leakage during circulation, still limit the therapeutic efficacy. Here, we designed a functional oligopeptide-modified exosome loaded with doxorubicin (Pep2-Exos-DOX) for glioblastoma treatment. BV2 mouse microglial cell line was selected as the exosome source due to the favorable BBB penetration. To avoid drug release in the circulation, a redox-response oligopeptide was designed for incorporation into the membranes of exosomes to lock the drug during circulation. The enrichment of the drug in glioblastoma was confirmed. Pharmacodynamic evaluation showed Pep2-Exos-DOX possessed significant anti-cancer activity against glioblastoma as well as relative biosafety. This exosome-based drug delivery system modified with redox-response oligopeptides provides us a novel strategy for brain diseases treatment.
Collapse
Affiliation(s)
- Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiming Huo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, China
| | - Yurou Shao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan An
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
28
|
Wang Q, Li X, Cao Z, Feng W, Chen Y, Jiang D. Enzyme-Mediated Bioorthogonal Cascade Catalytic Reaction for Metabolism Intervention and Enhanced Ferroptosis on Neuroblastoma. J Am Chem Soc 2024; 146:8228-8241. [PMID: 38471004 DOI: 10.1021/jacs.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhiyao Cao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
29
|
Sun M, Liu X, Liu Z, Zhang W, Li G, Ren J, Qu X. Single-Atom Catalysts Mediated Bioorthogonal Modulation of N 6-Methyladenosine Methylation for Boosting Cancer Immunotherapy. J Am Chem Soc 2024; 146:8216-8227. [PMID: 38486429 DOI: 10.1021/jacs.3c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.
Collapse
Affiliation(s)
- Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Guangming Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
30
|
Liu L, Zhang X, Fedeli S, Cicek YA, Ndugire W, Rotello VM. Controlled Bio-Orthogonal Catalysis Using Nanozyme-Protein Complexes via Modulation of Electrostatic Interactions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1507. [PMID: 38612022 PMCID: PMC11012815 DOI: 10.3390/ma17071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Bio-orthogonal chemistry provides a powerful tool for drug delivery systems due to its ability to generate therapeutic agents in situ, minimizing off-target effects. Bio-orthogonal transition metal catalysts (TMCs) with stimuli-responsive properties offer possibilities for controllable catalysis due to their spatial-, temporal-, and dosage-controllable properties. In this paper, we fabricated a stimuli-responsive bio-orthogonal catalysis system based on an enhanced green fluorescent protein (EGFP)-nanozyme (NZ) complex (EGFP-NZ). Regulation of the catalytic properties of the EGFP-NZ complex was directly achieved by modulating the ionic strength of the solution. The dielectric screening introduced by salt ions allows the dissociation of the EGFP-NZ complex, increasing the access of substrate to the active site of the NZs and concomitantly increasing nanozyme activity. The change in catalytic rate of the NZ/EGFP = 1:1 complex was positively correlated with salt concentration from 0 mM to 150 mM.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; (L.L.); (X.Z.); (S.F.); (Y.A.C.)
| |
Collapse
|
31
|
Dal Forno GM, Latocheski E, Navo CD, Albuquerque BL, St John AL, Avenier F, Jiménez-Osés G, Domingos JB. Interplay of chloride levels and palladium(ii)-catalyzed O-deallenylation bioorthogonal uncaging reactions. Chem Sci 2024; 15:4458-4465. [PMID: 38516072 PMCID: PMC10952092 DOI: 10.1039/d3sc06408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The palladium-mediated uncaging reaction of allene substrates remains a promising yet often overlooked strategy in the realm of bioorthogonal chemistry. This method exhibits high kinetic rates, rivaling those of the widely employed allylic and propargylic protecting groups. In this study, we investigate into the mechanistic aspects of the C-O bond-cleavage deallenylation reaction, examining how chloride levels influence the kinetics when triggered by Pd(ii) complexes. Focusing on the deallenylation of 1,2-allenyl protected 4-methylumbelliferone promoted by Allyl2Pd2Cl2, our findings reveal that reaction rates are higher in environments with lower chloride concentrations, mirroring intracellular conditions, compared to elevated chloride concentrations typical of extracellular conditions. Through kinetic and spectroscopic experiments, combined with DFT calculations, we uncover a detailed mechanism that identifies AllylPd(H2O)2 as the predominant active species. These insights provide the basis for the design of π-allylpalladium catalysts suited for selective uncaging within specific cellular environments, potentially enhancing targeted therapeutic applications.
Collapse
Affiliation(s)
- Gean M Dal Forno
- Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
| | - Eloah Latocheski
- Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800, Derio 48160 Spain
| | - Brunno L Albuquerque
- Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
| | - Albert L St John
- Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182), Université Paris Saclay 9140 Orsay Cedex France
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800, Derio 48160 Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - Josiel B Domingos
- Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
| |
Collapse
|
32
|
Zeng F, Pan Y, Wu M, Lu Q, Qin S, Gao Y, Luan X, Chen R, He G, Wang Y, He B, Chen Z, Song Y. Self-Metallized Whole Cell Vaccines Prepared by Microfluidics for Bioorthogonally Catalyzed Antitumor Immunotherapy. ACS NANO 2024; 18:7923-7936. [PMID: 38445625 DOI: 10.1021/acsnano.3c09871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.
Collapse
Affiliation(s)
- Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Mengnan Wu
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Ruiyue Chen
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratoty of Flexible Electronics& Institute of Advanced Materials, Nanjing Technology University, Nanjing 211816, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhaowei Chen
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Braun J, Ortega-Liebana MC, Unciti-Broceta A, Sieber SA. A Pd-labile fluoroquinolone prodrug efficiently prevents biofilm formation on coated surfaces. Org Biomol Chem 2024; 22:1998-2002. [PMID: 38375536 DOI: 10.1039/d4ob00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Surface-adhered bacteria on implants represent a major challenge for antibiotic treatment. We introduce hydrogel-coated surfaces loaded with tailored Pd-nanosheets which catalyze the release of antibiotics from inactive prodrugs. Masked and antibiotically inactive fluoroquinolone analogs were efficiently activated at the surface and prevented the formation of Staphylococcus aureus biofilms.
Collapse
Affiliation(s)
- Josef Braun
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| | - M Carmen Ortega-Liebana
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
- Department of Medicinal & Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
| | - Stephan A Sieber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| |
Collapse
|
34
|
Huang R, Hirschbiegel CM, Lehot V, Liu L, Cicek YA, Rotello VM. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300943. [PMID: 37042795 PMCID: PMC11234510 DOI: 10.1002/adma.202300943] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The incorporation of transition metal catalysts (TMCs) into nanoscaffolds generates nanocatalysts that replicate key aspects of enzymatic behavior. The TMCs can access bioorthogonal chemistry unavailable to living systems. These bioorthogonal nanozymes can be employed as in situ "factories" for generating bioactive molecules where needed. The generation of effective bioorthogonal nanozymes requires co-engineering of the TMC and the nanometric scaffold. This review presents an overview of recent advances in the field of bioorthogonal nanozymes, focusing on modular design aspects of both nanomaterial and catalyst and how they synergistically work together for in situ uncaging of imaging and therapeutic agents.
Collapse
Affiliation(s)
- Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
35
|
Deng L, Sathyan A, Adam C, Unciti-Broceta A, Sebastian V, Palmans ARA. Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for in Vitro Prodrug Activation by Modulating the Polymer's Microstructure. NANO LETTERS 2024; 24:2242-2249. [PMID: 38346395 PMCID: PMC10885199 DOI: 10.1021/acs.nanolett.3c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anjana Sathyan
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Catherine Adam
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Víctor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
37
|
Zhang X, Liu Y, Jiang M, Mas-Rosario JA, Fedeli S, Cao-Milan R, Liu L, Winters KJ, Hirschbiegel CM, Nabawy A, Huang R, Farkas ME, Rotello VM. Polarization of macrophages to an anti-cancer phenotype through in situ uncaging of a TLR 7/8 agonist using bioorthogonal nanozymes. Chem Sci 2024; 15:2486-2494. [PMID: 38362405 PMCID: PMC10866364 DOI: 10.1039/d3sc06431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/17/2024] Open
Abstract
Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Javier A Mas-Rosario
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Roberto Cao-Milan
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Kyle J Winters
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | | | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| |
Collapse
|
38
|
Kumar A, Lee IS. Designer Nanoreactors for Bioorthogonal Catalysis. Acc Chem Res 2024; 57:413-427. [PMID: 38243820 DOI: 10.1021/acs.accounts.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The evolutionary complexity of compartmentalized biostructures (such as cells and organelles) endows life-sustaining multistep chemical cascades and intricate living functionalities. Relatively, within a very short time span, a synthetic paradigm has resulted in tremendous growth in controlling the materials at different length scales (molecular, nano, micro, and macro), improving mechanistic understanding and setting the design principals toward different compositions, configurations, and structures, and in turn fine-tuning their optoelectronic and catalytic properties for targeted applications. Bioorthogonal catalysis offers a highly versatile toolkit for biochemical modulation and the capability to perform new-to-nature reactions inside living systems, endowing augmented functions. However, conventional catalysts have limitations to control the reactions under physiological conditions due to the hostile bioenvironment. The present account details the development of bioapplicable multicomponent designer nanoreactors (NRs), where the compositions, morphologies, interfacial active sites, and microenvironments around different metal nanocatalysts can be precisely controlled by novel nanospace-confined chemistries. Different architectures of porous, hollow, and open-mouth silica-based nano-housings facilitate the accommodation, protection, and selective access of different nanoscale metal-based catalytic sites. The modular porosity/composition, optical transparency, thermal insulation, and nontoxicity of silica are highly useful. Moreover, large macropores or cavities can also be occupied by enzymes (for chemoenzymatic cascades) and selectivity enhancers (for stimuli-responsive gating) along with the metal nanocatalysts. Further, it is crucial to selectively activate and control catalytic reactions by a remotely operable biocompatible energy source. Integration of highly coupled plasmonic (Au) components having few-nanometer structural features (gaps, cavities, and junctions as electromagnetic hot-spots) endows an opportunity to efficiently harness low-power NIR light and selectively supply energy to the interfacial catalytic sites through localized photothermal and electronic effects. Different plasmonically integrated NRs with customizable plasmonic-catalytic components, cavities inside bilayer nanospaces, and metal-laminated nanocrystals inside hollow silica can perform NIR-/light-induced catalytic reactions in complex media including living cells. In addition, magnetothermia-induced NRs by selective growth of catalytic metals on a pre-installed superparamagnetic iron-oxide core inside a hollow-porous silica shell endowed the opportunity to apply AMF as a bioorthogonal stimulus to promote catalytic reactions. By combining "plasmonic-catalytic" and "magnetic-catalytic" components within a single NR, two distinct reaction steps can be desirably controlled by two energy sources (NIR light and AMF) of distinct energy regimes. The capability to perform multistep organic molecular transformations in harmony with the natural living system will reveal novel reaction schemes for in cellulo synthesis of active drug and bioimaging probes. Well-designed nanoscale discrete architectures of NRs can facilitate spatiotemporal control over abiotic chemical synthesis without adversely affecting the cell viability. However, in-depth understanding of heterogeneous surface catalytic reactions, rate induction mechanisms, selectivity control pathways, and targeted nanobio interactions is necessary. The broad field of biomedical engineering can hugely benefit from the aid of novel nanomaterials with chemistry-based designs and the synthesis of engineered NRs performing unique bioorthogonal chemistry functions.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
39
|
Huang X, Xu B, Feng J, Hu S, Dou W, Yang T, Zhan C, Liu S, Ji Y, Li Y, Pao CW, Hu Z, Shao Q, Huang X. Continuous Phase Regulation of a Pd-Te Hexagonal Nanoplate Library. J Am Chem Soc 2023; 145:28010-28021. [PMID: 38095915 DOI: 10.1021/jacs.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Phase regulation of noble metal-based nanomaterials provides a promising strategy for boosting the catalytic performance. However, realizing the continuous phase modulation in two-dimensional structures and unveiling the relevant structure-performance relationship remain significant challenges. In this work, we present the first example of continuous phase modulation in a library of Pd-Te hexagonal nanoplates (HNPs) from cubic-phase Pd4Te, rhombohedral-phase Pd20Te7, rhombohedral-phase Pd8Te3, and hexagonal-phase PdTe to hexagonal-phase PdTe2. Notably, the continuous phase regulation of the well-defined Pd-Te HNPs enables the successful modulation of the distance between adjacent Pd active sites, triggering an exciting way for tuning the relevant catalytic reactions intrinsically. The proof-of-concept oxygen reduction reaction (ORR) experiment shows a Pd-Pd distance-dependent ORR performance, where the hexagonal-phase PdTe HNPs present the best electrochemical performance in ORR (mass activity and specific activity of 1.02 A mg-1Pd and 1.83 mA cm-2Pd at 0.9 V vs RHE). Theoretical investigation reveals that the increased Pd-Pd distance relates to the weak *OH adsorption over Pd-Te HNPs, thus contributing to the remarkable ORR activity of PdTe HNPs. This work advances the phase-controlled synthesis of noble metal-based nanostructures, which gives huge impetus to the design of high-efficiency nanomaterials for diverse applications.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shengnan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
40
|
Yao Q, Lin F, Lu C, Zhang R, Xu H, Hu X, Wu Z, Gao Y, Chen PR. A Dual-Mechanism Targeted Bioorthogonal Prodrug Therapy. Bioconjug Chem 2023; 34:2255-2262. [PMID: 37955377 DOI: 10.1021/acs.bioconjchem.3c00404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Bioorthogonal prodrug therapies offer an intriguing two-component system that features enhanced circulating stability and controlled activation on demand. Current strategies often deliver either the prodrug or its complementary activator to the tumor with a monomechanism targeted mechanism, which cannot achieve the desired antitumor efficacy and safety profile. The orchestration of two distinct and orthogonal mechanisms should overcome the hierarchical heterogeneity of solid tumors to improve the delivery efficiency of both components simultaneously for bio-orthogonal prodrug therapies. We herein developed a dual-mechanism targeted bioorthogonal prodrug therapy by integrating two orthogonal, receptor-independent tumor-targeting strategies. We first employed the endogenous albumin transport system to generate the in situ albumin-bound, bioorthogonal-caged doxorubicin prodrug with extended plasma circulation and selective accumulation at the tumor site. We then employed enzyme-instructed self-assembly (EISA) to specifically enrich the bioorthogonal activators within tumor cells. As each targeted delivery mode induced an intrinsic pharmacokinetic profile, further optimization of the administration sequence according to their pharmacokinetics allowed the spatiotemporally controlled prodrug activation on-target and on-demand. Taken together, by orchestrating two discrete and receptor-independent targeting strategies, we developed an all-small-molecule based bioorthogonal prodrug system for dual-mechanism targeted anticancer therapies to maximize therapeutic efficacy and minimize adverse drug reactions for chemotherapeutic agents.
Collapse
Affiliation(s)
- Qingxin Yao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ruijia Zhang
- Chinese Academy of Sciences Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hanlin Xu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqian Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Wu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Gao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Huang F, Liu J, Li M, Liu Y. Nanoconstruction on Living Cell Surfaces with Cucurbit[7]uril-Based Supramolecular Polymer Chemistry: Toward Cell-Based Delivery of Bio-Orthogonal Catalytic Systems. J Am Chem Soc 2023; 145:26983-26992. [PMID: 38032103 DOI: 10.1021/jacs.3c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Employing living cells as carriers to transport transition metal-based catalysts for target-specific bio-orthogonal catalysis represents a cutting-edge approach in advancing precision biomedical applications. One of the initial hurdles in this endeavor involves effectively attaching the catalysts to the carrier cells while preserving the cells' innate ability to interact with biological systems and maintaining the unaltered catalytic activity. In this study, we have developed an innovative layer-by-layer method that leverages a noncovalent interaction between cucurbit[7]uril and adamantane as the primary driving force for crafting polymeric nanostructures on the surfaces of these carrier cells. The strong binding affinity between the host-guest pair ensures the creation of a durable polymer coating on the cell surfaces. Meanwhile, the layer-by-layer process offers high adaptability, facilitating the efficient loading of bio-orthogonal catalysts onto cell surfaces. Importantly, the polymeric coating shows no discernible impact on the cells' physiological characteristics, including their tropism, migration, and differentiation, while preserving the effectiveness of the bio-orthogonal catalysts.
Collapse
Affiliation(s)
- Fang Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jiaxiong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Mengru Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
42
|
Feng S, Zhang Y, Gao Y, Liu Y, Wang Y, Han X, Zhang T, Song Y. A Gene-Editable Palladium-Based Bioorthogonal Nanoplatform Facilitates Macrophage Phagocytosis for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202313968. [PMID: 37884479 DOI: 10.1002/anie.202313968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
43
|
Liu Z, Sun M, Zhang W, Ren J, Qu X. Target-Specific Bioorthogonal Reactions for Precise Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202308396. [PMID: 37548083 DOI: 10.1002/anie.202308396] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
44
|
Li C, Zhao J, Gao X, Hao C, Hu S, Qu A, Sun M, Kuang H, Xu C, Xu L. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308198. [PMID: 37721365 DOI: 10.1002/adma.202308198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.
Collapse
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang, 325001, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
45
|
Hyung S, Ko J, Heo YJ, Blum SM, Kim ST, Park SH, Park JO, Kang WK, Lim HY, Klempner SJ, Lee J. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. SCIENCE ADVANCES 2023; 9:eadk1098. [PMID: 38000030 PMCID: PMC10672184 DOI: 10.1126/sciadv.adk1098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | | | - Steven M. Blum
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
47
|
Fu Q, Shen S, Sun P, Gu Z, Bai Y, Wang X, Liu Z. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev 2023; 52:7737-7772. [PMID: 37905601 DOI: 10.1039/d2cs00889k] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prodrugs have emerged as a major strategy for addressing clinical challenges by improving drug pharmacokinetics, reducing toxicity, and enhancing treatment efficacy. The emergence of new bioorthogonal chemistry has greatly facilitated the development of prodrug strategies, enabling their activation through chemical and physical stimuli. This "on-demand" activation using bioorthogonal chemistry has revolutionized the research and development of prodrugs. Consequently, prodrug activation has garnered significant attention and emerged as an exciting field of translational research. This review summarizes the latest advancements in prodrug activation by utilizing bioorthogonal chemistry and mainly focuses on the activation of small-molecule prodrugs and antibody-drug conjugates. In addition, this review also discusses the opportunities and challenges of translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
48
|
Rosso G, Cauda V. Biomimicking Extracellular Vesicles with Fully Artificial Ones: A Rational Design of EV-BIOMIMETICS toward Effective Theranostic Tools in Nanomedicine. ACS Biomater Sci Eng 2023; 9:5924-5932. [PMID: 36535896 PMCID: PMC10646844 DOI: 10.1021/acsbiomaterials.2c01025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Extracellular Vesicles (EVs) are the protagonists in cell communication and membrane trafficking, being responsible for the delivery of innumerable biomolecules and signaling moieties. At the moment, they are of paramount interest to researchers, as they naturally show incredibly high efficiency and specificity in delivering their cargo. For these reasons, EVs are employed or inspire the development of nanosized therapeutic delivery systems. In this Perspective, we propose an innovative strategy for the rational design of EV-mimicking vesicles (EV-biomimetics) for theranostic scopes. We first report on the current state-of-the-art use of EVs and their byproducts, such as surface-engineered EVs and EV-hybrids, having an artificial cargo (drug molecule, genetic content, nanoparticles, or dye incorporated in their lumen). Thereafter, we report on the new emerging field of EV-mimicking vesicles for theranostic scopes. We introduce an approach to prepare new, fully artificial EV-biomimetics, with particular attention to maintaining the natural reference lipidic composition. We overview those studies investigating natural EV membranes and the possible strategies to identify key proteins involved in site-selective natural homing, typical of EVs, and their cargo transfer to recipient cells. We propose the use also of molecular simulations, in particular of machine learning models, to approach the problem of lipid organization and self-assembly in natural EVs. We also discuss the beneficial feedback that could emerge combining the experimental tests with atomistic and molecular simulations when designing an EV-biomimetics lipid bilayer. The expectations from both research and industrial fields on fully artificial EV-biomimetics, having the same key functions of natural ones plus new diagnostic or therapeutic functions, could be enormous, as they can greatly expand the nanomedicine applications and guarantee on-demand and scalable production, off-the-shelf storage, high reproducibility of morphological and functional properties, and compliance with regulatory standards.
Collapse
Affiliation(s)
- Giada Rosso
- Department of Applied Science
and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science
and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
49
|
Deng S, Cao H, Cui X, Fan Y, Wang Q, Zhang X. Optimization of exosome-based cell-free strategies to enhance endogenous cell functions in tissue regeneration. Acta Biomater 2023; 171:68-84. [PMID: 37730080 DOI: 10.1016/j.actbio.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Exosomes, nanoscale extracellular vesicles, play a crucial role in intercellular communication, owing to their biologically active cargoes such as RNAs and proteins. In recent years, they have emerged as a promising tool in the field of tissue regeneration, with the potential to initiate a new trend in cell-free therapy. However, it's worth noting that not all types of exosomes derived from cells are appropriate for tissue repair. Thus, selecting suitable cell sources is critical to ensure their efficacy in specific tissue regeneration processes. Current therapeutic applications of exosomes also encounter several limitations, including low-specific content for targeted diseases, non-tissue-specific targeting, and short retention time due to rapid clearance in vivo. Consequently, this review paper focuses on exosomes from diverse cell sources with functions specific to tissue regeneration. It also highlights the latest engineering strategies developed to overcome the functional limitations of natural exosomes. These strategies encompass the loading of specific therapeutic contents into exosomes, the endowment of tissue-specific targeting capability on the exosome surface, and the incorporation of biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. Collectively, these innovative approaches aim to synergistically enhance the therapeutic effects of natural exosomes, optimizing exosome-based cell-free strategies to boost endogenous cell functions in tissue regeneration. STATEMENT OF SIGNIFICANCE: Exosome-based cell-free therapy has recently emerged as a promising tool for tissue regeneration. This review highlights the characteristics and functions of exosomes from different sources that can facilitate tissue repair and their contributions to the regeneration process. To address the functional limitations of natural exosomes in therapeutic applications, this review provides an in-depth understanding of the latest engineering strategies. These strategies include optimizing exosomal contents, endowing tissue-specific targeting capability on the exosome surface, and incorporating biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. This review aims to explore and discuss innovative approaches that can synergistically improve endogenous cell functions in advanced exosome-based cell-free therapies for a broad range of tissue regeneration.
Collapse
Affiliation(s)
- Siyan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolin Cui
- School of medicine, the Chinese University of Hong Kong, Shenzhen, China; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
50
|
Liu X, Huang T, Chen Z, Yang H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem Commun (Camb) 2023; 59:12548-12559. [PMID: 37791560 DOI: 10.1039/d3cc04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bioorthogonal catalysis, a class of catalytic reactions that are mediated by abiotic metals and proceed in biological environments without interfering with native biochemical reactions, has gained ever-increasing momentum in prodrug delivery over the past few decades. Albeit great progress has been attained in developing new bioorthogonal catalytic reactions and optimizing the catalytic performance of transition metal catalysts (TMCs), the use of TMCs to activate chemotherapeutics at the site of interest in vivo remains a challenging endeavor. To translate the bioorthogonal catalysis-mediated prodrug activation paradigm from flasks to animals, TMCs with targeting capability and stimulus-responsive behavior have been well-designed to perform chemical transformations in a controlled manner within highly complex biochemical systems, rendering on-demand drug activation to mitigate off-target toxicity. Here, we review the recent advances in the development of controllable bioorthogonal catalysis systems, with an emphasis on different strategies for engineering TMCs to achieve precise control over prodrug activation. Furthermore, we outline the envisaged challenges and discuss future directions of controllable bioorthogonal catalysis for disease therapy.
Collapse
Affiliation(s)
- Xia Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|