1
|
Liu S, Dai S, Deng Y, Li J, Zhang Y, Yang M. Long-read epicPCR enhances species-level host identification of clinically relevant antibiotic resistance genes in environmental microbial communities. ENVIRONMENT INTERNATIONAL 2025; 197:109337. [PMID: 39978216 DOI: 10.1016/j.envint.2025.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Identifying clinically relevant antibiotic resistance gene (ARG) hosts in complex microbial communities is crucial for environmental health. EpicPCR (emulsion, paired isolation, and concatenation PCR), a single-cell technology, has advanced this field. However, its traditional format, which links target genes to the V4 region of 16S rRNA genes (∼300 bp), limits species-level identification. To overcome this, we developed "long-read" epicPCR, which links target genes to 16S segments spanning the V4-V9 regions (∼1000 bp) by refining primer pairing strategies to balance amplification length and specificity. We validated this approach by targeting seven clinically relevant ARGs (optrA, tet(X4), mcr-3, NDM-5, KPC-2, IMP-4, and VIM-1), an efflux pump gene (tmexD), and an insertion sequence gene (IS1216E), all confirming correct sequence fusion. Using the optrA gene as a model target, long-read epicPCR demonstrated greater precision and fewer false positives than the short-read method in mock communities. It also significantly improved the identification rate of optrA host species from 29.0 % to 54.4 % in anaerobic digestion reactors, while maintaining consistency with short-read epicPCR in profiling host bacterial communities. Moreover, long-read epicPCR identified two novel optrA host species, Lactobacillus amylotrophicus and Streptococcus alactolyticus, in anaerobic effluents, highlighting potential dissemination risks. Notably, this versatile method is envisioned to enhance targeted antimicrobial surveillance and microbial functional dynamics monitoring in the environment.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lee D, Muir P, Lundberg S, Lundholm A, Sandegren L, Koskiniemi S. A CRISPR-Cas9 system protecting E. coli against acquisition of antibiotic resistance genes. Sci Rep 2025; 15:1545. [PMID: 39789078 PMCID: PMC11718013 DOI: 10.1038/s41598-025-85334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug. Therefore, we developed an engineered CRISPR-Cas9 system that protects bacteria from horizontal gene transfer. We synthesized a CRISPR locus targeting eight AMR genes and cloned this with the Cas9 and transacting tracrRNA on a medium copy plasmid. We next evaluated the efficiency of the system to block HGT through transformation, transduction, and conjugation. Our results show that expression of the CRISPR-Cas9 system successfully protects E. coli MG1655 from acquiring the targeted resistance genes by transformation or transduction with 2-3 logs of protection depending on the system for transfer and the target gene. Furthermore, we show that the system blocks conjugation of a set of clinical plasmids, and that the system is also able to protect the probiotic bacterium E. coli Nissle 1917 from acquiring AMR genes.
Collapse
Affiliation(s)
- Danna Lee
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Petra Muir
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sara Lundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - August Lundholm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Lozano-Andrade CN, Dinesen C, Wibowo M, Bach NA, Hesselberg-Thomsen V, Jarmusch SA, Strube ML, Kovács ÁT. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. THE ISME JOURNAL 2025; 19:wraf013. [PMID: 39846898 PMCID: PMC11833321 DOI: 10.1093/ismejo/wraf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation. Despite the growing body of knowledge on their mode of action, biosynthesis, and regulation, we still do not fully understand the role of secondary metabolites on the ecology of the producers and resident communities in situ. Here, we specifically examine the influence of Bacillus subtilis-produced cyclic lipopeptides during the assembly of a bacterial synthetic community, and simultaneously, explore the impact of cyclic lipopeptides on B. subtilis establishment success in a synthetic community propagated in an artificial soil microcosm. We found that surfactin production facilitates B. subtilis establishment success within multiple synthetic communities. Although neither a wild type nor a cyclic lipopeptide non-producer mutant had a major impact on the synthetic community composition over time, both the B. subtilis and the synthetic community metabolomes were altered during co-cultivation. Overall, our work demonstrates the importance of surfactin production in microbial communities, suggesting a broad spectrum of action of this natural product.
Collapse
Affiliation(s)
| | - Caja Dinesen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Nil Arenos Bach
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
4
|
Wang C, Song Y, Liang J, Wang Y, Zhang D, Zhao Z. Antibiotic resistance genes are transferred from manure-contaminated water bodies to the gut microbiota of animals through the food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125087. [PMID: 39383990 DOI: 10.1016/j.envpol.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Fecal-contaminated water may enter the food chain and become an important route for the transmission of antibiotic resistance genes (ARGs) to the human microbiome. However, little is known about the spread of ARGs from fecal contamination in water bodies along the aquatic food chain. In this study, laboratory-raised Daphnia magna and Aristichthys nobilis were used to investigate the effects of the addition of manure on target ARGs in water and their intestinal contents to determine the potential transmission route of ARGs in the aquatic food chain system. The abundance of target ARGs in water as well as D. magna and A. nobilis intestinal contents significantly increased when fecal contamination was present. ARGs bioaccumulated along the food chain, with four ARGs (tetM-01, tetX, qnrS, and sul2) detected regularly. Mn and Cr were key environmental factors that promoted the transfer of ARGs along the food chain. Fecal addition significantly changed the structure of microbial communities in water, D. magna gut, and A. nobilis gut. The ARG spectrum was significantly correlated with the composition and structure of the bacterial community. Proteobacteria, Bacteroidetes, and Firmicutes were identified as the main host bacteria and were likely to act as carriers of ARGs to promote the spread of antibiotic resistance in the food chain. The composition and structure of bacterial communities, along with mobile genetic elements, were two key drivers of ARG transfer. These findings provide new insights into the distribution and spread of ARGs along the freshwater food chain.
Collapse
Affiliation(s)
- Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
5
|
Wang X, Qian Y, Wang Y, Wang S, Bi J, Shi C, Han Q, Wan-Yan R, Yu Q, Li H. Metagenomics reveals the potential transmission risk of resistomes from urban park environment to human. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135387. [PMID: 39094311 DOI: 10.1016/j.jhazmat.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Urban parks play a significant role in urban ecosystems and are strongly associated with human health. Nevertheless, the biological contamination of urban parks - opportunistic pathogens and antibiotic resistance genes (ARGs) - has been poorly reported. Here, metagenomic and 16 S rRNA sequencing methods were used to study the distribution and assembly of opportunistic pathogens and ARGs in soil and water from nine parks in Lanzhou city, and further compared them with local human gut microbiomes to investigate the potential transmission risk. Our results revealed that the most important type of drug resistance in urban parks was multidrug resistance, with various resistance mechanisms. Approximately half of ARGs were shared between human gut and park environment, and it was noteworthy that cross-species transmission might exist among some high-risk ARGs, such as mepA and mdtE, with a significant enrichment in human gut. Metagenomic binning uncovered several bacterial genomes carrying adjacent ARGs, MGEs, and virulence genes, indicating a possibility that these genes may jointly transfer among different environments, particularly from park environment to human. Our results provided a reference point for the management of environmental pollutants in urban parks.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jie Bi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Chenwei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wan-Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Kever L, Zhang Q, Hardy A, Westhoff P, Yu Y, Frunzke J. Resistance against aminoglycoside antibiotics via drug or target modification enables community-wide antiphage defense. MICROLIFE 2024; 5:uqae015. [PMID: 39205678 PMCID: PMC11350373 DOI: 10.1093/femsml/uqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by Streptomyces. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant Streptomyces venezuelae with the apramycin-producing strain Streptoalloteichus tenebrarius. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.
Collapse
Affiliation(s)
- Larissa Kever
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Qian Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Aël Hardy
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Julia Frunzke
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
7
|
Joannard B, Sanchez-Cid C. Bacterial dynamics of the plastisphere microbiome exposed to sub-lethal antibiotic pollution. MICROBIOME 2024; 12:97. [PMID: 38790062 PMCID: PMC11127405 DOI: 10.1186/s40168-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Antibiotics and microplastics are two major aquatic pollutants that have been associated to antibiotic resistance selection in the environment and are considered a risk to human health. However, little is known about the interaction of these pollutants at environmental concentrations and the response of the microbial communities in the plastisphere to sub-lethal antibiotic pollution. Here, we describe the bacterial dynamics underlying this response in surface water bacteria at the community, resistome and mobilome level using a combination of methods (next-generation sequencing and qPCR), sequencing targets (16S rRNA gene, pre-clinical and clinical class 1 integron cassettes and metagenomes), technologies (short and long read sequencing), and assembly approaches (non-assembled reads, genome assembly, bacteriophage and plasmid assembly). RESULTS Our results show a shift in the microbial community response to antibiotics in the plastisphere microbiome compared to surface water communities and describe the bacterial subpopulations that respond differently to antibiotic and microplastic pollution. The plastisphere showed an increased tolerance to antibiotics and selected different antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Several metagenome assembled genomes (MAGs) derived from the antibiotic-exposed plastisphere contained ARGs, virulence factors, and genes involved in plasmid conjugation. These include Comamonas, Chryseobacterium, the opportunistic pathogen Stenotrophomonas maltophilia, and other MAGs belonging to genera that have been associated to human infections, such as Achromobacter. The abundance of the integron-associated ciprofloxacin resistance gene aac(6')-Ib-cr increased under ciprofloxacin exposure in both freshwater microbial communities and in the plastisphere. Regarding the antibiotic mobilome, although no significant changes in ARG load in class 1 integrons and plasmids were observed in polluted samples, we identified three ARG-containing viral contigs that were integrated into MAGs as prophages. CONCLUSIONS This study illustrates how the selective nature of the plastisphere influences bacterial response to antibiotics at sub-lethal selective pressure. The microbial changes identified here help define the selective role of the plastisphere and its impact on the maintenance of environmental antibiotic resistance in combination with other anthropogenic pollutants. This research highlights the need to evaluate the impact of aquatic pollutants in environmental microbial communities using complex scenarios with combined stresses. Video Abstract.
Collapse
Affiliation(s)
- Brune Joannard
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France
| | - Concepcion Sanchez-Cid
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
8
|
DelaFuente J, Diaz-Colunga J, Sanchez A, San Millan A. Global epistasis in plasmid-mediated antimicrobial resistance. Mol Syst Biol 2024; 20:311-320. [PMID: 38409539 PMCID: PMC10987494 DOI: 10.1038/s44320-024-00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.
Collapse
Affiliation(s)
| | - Juan Diaz-Colunga
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Institute of Functional Biology & Genomics, IBFG - CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Alvaro Sanchez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Institute of Functional Biology & Genomics, IBFG - CSIC, Universidad de Salamanca, Salamanca, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
10
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Singh S, Sharma P, Pal N, Sarma DK, Kumar M. Antibiotic disposal challenges in India: investigating causes and effects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:325. [PMID: 38421517 DOI: 10.1007/s10661-024-12425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Antibiotic resistance has become a global problem and India emerges as a key battlefield in the fight against it. While inappropriate use of antibiotics is well known, the review article deliberates a less recognized yet equally perilous facet of the crisis i.e. improper antibiotic disposal. An investigation of the sources of antibiotic pollution in Indian water bodies identifies discharge of pharmaceutical effluents, hospital waste, and agricultural runoff as major contributing factors. Furthermore, it discusses the repercussions of antibiotic pollution including those relating to human health, aquatic ecosystems, and antibiotic resistance. Reviewing the causes and consequences of improper antibiotic disposal practices emphasizes the necessity of rethinking antibiotic waste management practices. The review highlights the need for stringent rules and increased awareness, while also discussing the emerging technologies and strategies to mitigate the risks of antibiotic disposal in India.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
12
|
Risely A, Newbury A, Stalder T, Simmons BI, Top EM, Buckling A, Sanders D. Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes. Nat Commun 2024; 15:555. [PMID: 38228585 PMCID: PMC10791616 DOI: 10.1038/s41467-024-44827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.
Collapse
Affiliation(s)
- Alice Risely
- School of Science, Engineering, and Environment, University of Salford, Salford, M5 4WT, UK
| | - Arthur Newbury
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Benno I Simmons
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Angus Buckling
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Dirk Sanders
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
13
|
Liu C, Wang Y, Zhou Z, Wang S, Wei Z, Ravanbakhsh M, Shen Q, Xiong W, Kowalchuk GA, Jousset A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. THE ISME JOURNAL 2024; 18:wrae169. [PMID: 39259188 PMCID: PMC11453101 DOI: 10.1093/ismejo/wrae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Chen Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Yijin Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zeyuan Zhou
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Castañeda-Barba S, Top EM, Stalder T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 2024; 22:18-32. [PMID: 37430173 DOI: 10.1038/s41579-023-00926-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.
Collapse
Affiliation(s)
- Salvador Castañeda-Barba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
15
|
Alonso-del Valle A, Toribio-Celestino L, Quirant A, Pi CT, DelaFuente J, Canton R, Rocha EPC, Ubeda C, Peña-Miller R, San Millan A. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc Natl Acad Sci U S A 2023; 120:e2314135120. [PMID: 38096417 PMCID: PMC10741383 DOI: 10.1073/pnas.2314135120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.
Collapse
Affiliation(s)
- Aida Alonso-del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Anna Quirant
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
| | - Carles Tardio Pi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán, Universidad Nacional Autónoma de México, Yucatán04510, México
| | - Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid28034, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris75015, France
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| |
Collapse
|
16
|
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 2023; 21:772-788. [PMID: 37491458 DOI: 10.1038/s41579-023-00933-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Pathak A, Angst DC, León-Sampedro R, Hall AR. Antibiotic-degrading resistance changes bacterial community structure via species-specific responses. THE ISME JOURNAL 2023; 17:1495-1503. [PMID: 37380830 PMCID: PMC10432403 DOI: 10.1038/s41396-023-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Some bacterial resistance mechanisms degrade antibiotics, potentially protecting neighbouring susceptible cells from antibiotic exposure. We do not yet understand how such effects influence bacterial communities of more than two species, which are typical in nature. Here, we used experimental multispecies communities to test the effects of clinically important pOXA-48-plasmid-encoded resistance on community-level responses to antibiotics. We found that resistance in one community member reduced antibiotic inhibition of other species, but some benefitted more than others. Further experiments with supernatants and pure-culture growth assays showed the susceptible species profiting most from detoxification were those that grew best at degraded antibiotic concentrations (greater than zero, but lower than the starting concentration). This pattern was also observed on agar surfaces, and the same species also showed relatively high survival compared to most other species during the initial high-antibiotic phase. By contrast, we found no evidence of a role for higher-order interactions or horizontal plasmid transfer in community-level responses to detoxification in our experimental communities. Our findings suggest carriage of an antibiotic-degrading resistance mechanism by one species can drastically alter community-level responses to antibiotics, and the identities of the species that profit most from antibiotic detoxification are predicted by their intrinsic ability to survive and grow at changing antibiotic concentrations.
Collapse
Affiliation(s)
- Ayush Pathak
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland.
| | - Daniel C Angst
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Ricardo León-Sampedro
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Flores-Vargas G, Korber DR, Bergsveinson J. Sub-MIC antibiotics influence the microbiome, resistome and structure of riverine biofilm communities. Front Microbiol 2023; 14:1194952. [PMID: 37593545 PMCID: PMC10427767 DOI: 10.3389/fmicb.2023.1194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on aquatic environments is not yet fully understood. Here, we explore these effects by employing a replicated microcosm system fed with river water where biofilm communities were continuously exposed over an eight-week period to sub-MIC exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, streptomycin, and oxytetracycline). Biofilms were examined using a structure-function approach entailing microscopy and metagenomic techniques, revealing details on the microbiome, resistome, virulome, and functional prediction. A comparison of three commonly used microbiome and resistome databases was also performed. Differences in biofilm architecture were observed between sub-MIC antibiotic treatments, with an overall reduction of extracellular polymeric substances and autotroph (algal and cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. While metagenomic analyses demonstrated that microbial diversity was lowest at the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 1/50. This study also notes the importance of benchmarking analysis tools and careful selection of reference databases, given the disparity in detected antimicrobial resistance genes (ARGs) identity and abundance across methods. Ultimately, the most detected ARGs in sub-MICs exposed biofilms were those that conferred resistance to aminoglycosides, tetracyclines, β-lactams, sulfonamides, and trimethoprim. Co-occurrence of microbiome and resistome features consistently showed a relationship between Proteobacteria genera and aminoglycoside ARGs. Our results support the hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission and promote prevalence of antibiotic resistance in riverine biofilms communities, and additionally shift overall microbial community metabolic function.
Collapse
Affiliation(s)
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jordyn Bergsveinson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Li H, Niu C, Luo J, Huang Z, Zhou W. Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm. Antibiotics (Basel) 2023; 12:1245. [PMID: 37627665 PMCID: PMC10451999 DOI: 10.3390/antibiotics12081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a chronic disease resulting from dysbiosis in the oral microbiome. Antagonism of commensal Streptococcus sanguinis and Streptococcus gordonii against cariogenic Streptococcus mutans is pivotal to keep the microecological balance. However, concerns are growing on antimicrobial agents in anticaries therapy, for broad spectrum antimicrobials may have a profound impact on the oral microbial community, especially on commensals. Here, we report celastrol, extracted from Traditional Chinese Medicine's Tripterygium wilfordii (TW) plant, as a promising anticaries candidate. Our results revealed that celastrol showed antibacterial and antibiofilm activity against cariogenic bacteria S. mutans while exhibiting low cytotoxicity. By using a multispecies biofilm formed by S. mutans UA159, S. sanguinis SK36, and S. gordonii DL1, we observed that even at relatively low concentrations, celastrol reduced S. mutans proportion and thereby inhibited lactic acid production as well as water-insoluble glucan formation. We found that celastrol thwarted S. mutans outgrowth through the activation of pyruvate oxidase (SpxB) and H2O2-dependent antagonism between commensal oral streptococci and S. mutans. Our data reveal new anticaries properties of celastrol that enhance oral streptococcal antagonism, which thwarts S. mutans outgrowth, indicating its potential to maintain oral microbial balance for prospective anticaries therapy.
Collapse
Affiliation(s)
- Hao Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Junyuan Luo
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; (H.L.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
20
|
Matviichuk O, Mondamert L, Geffroy C, Dagot C, Labanowski J. Life in an unsuspected antibiotics world: River biofilms. WATER RESEARCH 2023; 231:119611. [PMID: 36716569 DOI: 10.1016/j.watres.2023.119611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Waterborne bacteria that naturally live in biofilms are continuously exposed to pharmaceutical residues, regularly released into the freshwater environment. At the source level, the discharge of antibiotics into rivers has already been repeatedly linked to the development of antimicrobial resistance. But what about biofilms away from the discharge point? Two rivers, with sites subject to dispersed contamination of medium intensity, were studied as typical representatives of high- and middle-income countries. The biofilms developed on rocks indigenous to rivers are perfectly representative of environmental exposure. Our results show that away from the hotspots, the amount of antibiotics in the biofilms studied favours the maintenance and enrichment of existing resistant strains as well as the selection of new resistant mutants, and these favourable conditions remain over a period of time. Thus, in this type of river, the environmental risk of selection pressure is not only present downstream of urbanized areas but is also possible upstream and far downstream of wastewater treatment plant discharges. Despite this, correlation analysis found no strong positive correlation between antibiotic concentrations and the abundance of measured integrons and their corresponding resistance genes. Nevertheless, this work highlights the need to consider the risks of antibiotics beyond hotspots as well.
Collapse
Affiliation(s)
- Olha Matviichuk
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France; University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Christophe Dagot
- University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France.
| |
Collapse
|
21
|
Pradier L, Bedhomme S. Ecology, more than antibiotics consumption, is the major predictor for the global distribution of aminoglycoside-modifying enzymes. eLife 2023; 12:e77015. [PMID: 36785930 PMCID: PMC9928423 DOI: 10.7554/elife.77015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Antibiotic consumption and its abuses have been historically and repeatedly pointed out as the major driver of antibiotic resistance emergence and propagation. However, several examples show that resistance may persist despite substantial reductions in antibiotic use, and that other factors are at stake. Here, we study the temporal, spatial, and ecological distribution patterns of aminoglycoside resistance, by screening more than 160,000 publicly available genomes for 27 clusters of genes encoding aminoglycoside-modifying enzymes (AME genes). We find that AME genes display a very ubiquitous pattern: about 25% of sequenced bacteria carry AME genes. These bacteria were sequenced from all the continents (except Antarctica) and terrestrial biomes, and belong to a wide number of phyla. By focusing on European countries between 1997 and 2018, we show that aminoglycoside consumption has little impact on the prevalence of AME-gene-carrying bacteria, whereas most variation in prevalence is observed among biomes. We further analyze the resemblance of resistome compositions across biomes: soil, wildlife, and human samples appear to be central to understand the exchanges of AME genes between different ecological contexts. Together, these results support the idea that interventional strategies based on reducing antibiotic use should be complemented by a stronger control of exchanges, especially between ecosystems.
Collapse
Affiliation(s)
- Léa Pradier
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | | |
Collapse
|
22
|
Haenelt S, Wang G, Kasmanas JC, Musat F, Richnow HH, da Rocha UN, Müller JA, Musat N. The fate of sulfonamide resistance genes and anthropogenic pollution marker intI1 after discharge of wastewater into a pristine river stream. Front Microbiol 2023; 14:1058350. [PMID: 36760511 PMCID: PMC9907086 DOI: 10.3389/fmicb.2023.1058350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Currently there are sparse regulations regarding the discharge of antibiotics from wastewater treatment plants (WWTP) into river systems, making surface waters a latent reservoir for antibiotics and antibiotic resistance genes (ARGs). To better understand factors that influence the fate of ARGs in the environment and to foster surveillance of antibiotic resistance spreading in such habitats, several indicator genes have been proposed, including the integrase gene intI1 and the sulfonamide resistance genes sul1 and sul2. Methods Here we used quantitative PCR and long-read nanopore sequencing to monitor the abundance of these indicator genes and ARGs present as class 1 integron gene cassettes in a river system from pristine source to WWTP-impacted water. ARG abundance was compared with the dynamics of the microbial communities determined via 16S rRNA gene amplicon sequencing, conventional water parameters and the concentration of sulfamethoxazole (SMX), sulfamethazine (SMZ) and sulfadiazine (SDZ). Results Our results show that WWTP effluent was the principal source of all three sulfonamides with highest concentrations for SMX (median 8.6 ng/l), and of the indicator genes sul1, sul2 and intI1 with median relative abundance to 16S rRNA gene of 0.55, 0.77 and 0.65%, respectively. Downstream from the WWTP, water quality improved constantly, including lower sulfonamide concentrations, decreasing abundances of sul1 and sul2 and lower numbers and diversity of ARGs in the class 1 integron. The riverine microbial community partially recovered after receiving WWTP effluent, which was consolidated by a microbiome recovery model. Surprisingly, the relative abundance of intI1 increased 3-fold over 13 km of the river stretch, suggesting an internal gene multiplication. Discussion We found no evidence that low amounts of sulfonamides in the aquatic environment stimulate the maintenance or even spread of corresponding ARGs. Nevertheless, class 1 integrons carrying various ARGs were still present 13 km downstream from the WWTP. Therefore, limiting the release of ARG-harboring microorganisms may be more crucial for restricting the environmental spread of antimicrobial resistance than attenuating ng/L concentrations of antibiotics.
Collapse
Affiliation(s)
- Sarah Haenelt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Gangan Wang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jonas Coelho Kasmanas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany,Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany,Isodetect Umweltmonitoring GmbH, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jochen A. Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany,Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany,*Correspondence: Niculina Musat,
| |
Collapse
|
23
|
Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro. Microorganisms 2023; 11:microorganisms11010193. [PMID: 36677486 PMCID: PMC9860721 DOI: 10.3390/microorganisms11010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal Escherichia coli LM715-1 carrying a chromosomal red fluorescent protein gene and green fluorescent protein (GFP)-labeled broad-host-range RP4 plasmid with ampR, tetR, and kanR in in vitro matings to rifampicin-resistant recipients, including Escherichia coli MG1655, Dec5α, Vibrio cholerae, Pseudomonas putida, Pseudomonas aeruginosa, Klebsiella pneumoniae, Citrobacter rodentium, and Salmonella Typhimurium. Transconjugants were quantified on selective media and confirmed using fluorescence microscopy and PCR for the GFP gene. The plasmid was transferred from E. coli LM715-1 to all tested recipients except P. aeruginosa. Transfer frequencies differed between specific donor-recipient pairings (10-2 to 10-8). Secondary retransfer of plasmid from transconjugants to E. coli LM715-1 occurred at frequencies from 10-2 to 10-7. A serial passage plasmid persistence assay showed plasmid loss over time in the absence of antibiotics, indicating that the plasmid imposed a fitness cost to its host, although some plasmid-bearing cells persisted for at least ten transfers. Thus, the RP4 plasmid can transfer to multiple clinically relevant bacterial species without antibiotic selection pressure.
Collapse
|
24
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
25
|
Bottery MJ. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr Opin Microbiol 2022; 68:102152. [PMID: 35504055 PMCID: PMC9586876 DOI: 10.1016/j.mib.2022.102152] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are a major driver of horizontal gene transfer in prokaryotes, allowing the sharing of ecologically important accessory traits between distantly related bacterial taxa. Within microbial communities, interspecies transfer of conjugative plasmids can rapidly drive the generation genomic innovation and diversification. Recent studies are starting to shed light on how the microbial community context, that is, the bacterial diversity together with interspecies interactions that occur within a community, can alter the dynamics of conjugative plasmid transfer and persistence. Here, I summarise the latest research exploring how community ecology can both facilitate and impose barriers to the spread of conjugative plasmids within complex microbial communities. Ultimately, the fate of plasmids within communities is unlikely to be determined by any one individual host, rather it will depend on the interacting factors imposed by the community in which it is embedded.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
26
|
Fang H, Liu Y, Qiu P, Song HL, Liu T, Guo J, Zhang S. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128733. [PMID: 35334270 DOI: 10.1016/j.jhazmat.2022.128733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Considering conventional disinfection methods are not effective in simultaneously removing ARB and ARGs, a novel electrochemical disinfection (ED) process assisted by molybdenum carbide (Mo2C) electrodes was developed in this study. The established ED process was proved to effectively inactivate multi-resistant ARB (i.e. Escherichia coli K-12 LE392 with resistance to kanamycin, ampicillin, and tetracycline) and to degrade ARGs (including tetA and blaTEM in the form of both intracellular (iARGs) and extracellular ARGs (eARGs)). Specifically, within 15 min treatment by the Mo2C-assisted ED under 2.0 V, a 5-log ARB removal was realized, without any ARB regrowth observed, indicating a permanent inactivation of ARB by the process. Moreover, degradation of the iARGs (0.4-log reduction of the blaTEM and 3.1-log reduction of the tetA) and the eARGs (4.2-log reduction of the blaTEM and 1.1-log reduction of the tetA) were achieved within 60 min, further underpinning the viability of the Mo2C-based ED. While e-, H2O2, and •O2- played leading roles in the entire process of ED, H+ and •OH contributed to bacterial inactivation in the early and late stages of ED, respectively. The reactive species induced by electrolysis posed pressure to the ARB strains, which enhanced oxidative stress response, triggered higher reactive oxygen species generation, induced membrane damage and changed cellular structure. Collectively, the Mo2C-assisted ED demonstrated in the present study represents an attractive alternative to the traditional disinfection methods in combating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
27
|
Newbury A, Dawson B, Klümper U, Hesse E, Castledine M, Fontaine C, Buckling A, Sanders D. Fitness effects of plasmids shape the structure of bacteria-plasmid interaction networks. Proc Natl Acad Sci U S A 2022; 119:e2118361119. [PMID: 35613058 PMCID: PMC9295774 DOI: 10.1073/pnas.2118361119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids, and the spread of AMR within microbial communities will therefore depend on the structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological interaction networks suggest that network structure differs between communities that are predominantly mutualistic versus antagonistic, with the former showing more generalized interactions (i.e., species interact with many others to a similar extent). This suggests that mutualistic bacteria–plasmid networks—where antibiotics are present and plasmids carry AMR genes—will be more generalized than antagonistic interactions, where plasmids do not confer benefits to their hosts. We first develop a simple theory to explain this link: fitness benefits of harboring a mutualistic symbiont promote the spread of the symbiont to other species. We find support for this theory using an experimental bacteria–symbiont (plasmid) community, where the same plasmid can be mutualistic or antagonistic depending on the presence of antibiotics. This short-term and parsimonious mechanism complements a longer-term mechanism (coevolution and stability) explaining the link between mutualistic and antagonistic interactions and network structure.
Collapse
Affiliation(s)
- Arthur Newbury
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Beth Dawson
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Uli Klümper
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Institute for Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Colin Fontaine
- Centre d’écologie et des Sciences de la Conservation, CESCO, UMR7204, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 75005 Paris, France
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
28
|
Díaz-Almeyda EM, Ryba T, Ohdera AH, Collins SM, Shafer N, Link C, Prado-Zapata M, Ruhnke C, Moore M, González Angel AM, Pollock FJ, Medina M. Thermal Stress Has Minimal Effects on Bacterial Communities of Thermotolerant Symbiodinium Cultures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.764086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algae in the dinoflagellate family Symbiodiniaceae are endocellular photosymbionts of corals and other cnidarians. This close relationship is disrupted when seawater temperature increases, causing coral bleaching eventually affecting entire coral reefs. Although the relationship between animal host and photosymbiont has been well-studied, little is known about the bacterial community associated with Symbiodiniaceae in culture. We compared the microbial communities of three isolates from different species of the genus Symbiodinium (formerly known as Symbiodinium clade A) with different ecophysiology, levels of interaction with the animal host, and thermal adaptations. Two species, Symbiodinium microadriaticum and Symbiodinium necroappettens, exhibit intermediate thermotolerance, with a decrease of both growth rate and photochemical efficiency with increased temperature. The third species, Symbiodinium pilosum, has high thermotolerance with no difference in growth rate or photochemical efficiency at 32°C. Microbial communities were characterized after 27 days of growth under control (26°C) and high temperature (32°C). Data shows stronger grouping of bacterial assemblages based on Symbiodinium species than temperature. Microbial communities did not group phylogenetically. We found a shared set of fifteen ASVs belonging to four genera and three families that remained in all three Symbiodiniaceae species. These included Labrenzia, Phycisphaeraceae (SM1A02), Roseovarius, and Muricauda, which are all commonly associated with corals and Symbiodiniaceae cultures. Few ASVs differed significantly by temperature within species. S. pilosum displayed significantly lower levels of microbial diversity and greater individual variability in community composition at 32°C compared to 26°C. These results suggest that bacteria associated or co-cultured with thermotolerant Symbiodinium might play an important role in thermotolerance. Further research on the functional metabolic pathways of these bacteria might hold the key to understanding Symbiodinium’s ability to tolerate thermal stress.
Collapse
|
29
|
Muurinen J, Cairns J, Ekakoro JE, Wickware CL, Ruple A, Johnson TA. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol Ecol 2022; 98:6589402. [PMID: 35587376 DOI: 10.1093/femsec/fiac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing prevalence of antimicrobial resistant bacterial infections has ushered in a major global public health crisis. Judicious or restricted antimicrobial use in animal agriculture, aiming to confine the use for the treatment of infections, is the most commonly proposed solution to reduce selection pressure for resistant bacterial strains and resistance genes. However, a multifaceted solution will likely be required to make acceptable progress in reducing antimicrobial resistance, due to other common environmental conditions maintaining antimicrobial resistance and limited executionary potential as human healthcare and agriculture will continue to rely heavily on antimicrobials in the foreseeable future. Drawing parallels from systematic approaches to the management of infectious disease agents and biodiversity loss, we provide examples that a more comprehensive approach is required, targeting antimicrobial resistance in agroecosystems on multiple fronts simultaneously. We present one such framework, based on nested biological units of antimicrobial resistance, and describe established or innovative strategies targeting units. Some of the proposed strategies are already in use or ready to be implemented, while some require further research and discussion among scientists and policymakers. We envision that antimicrobial resistance mitigation strategies for animal agriculture combining multiple tools would constitute powerful ecosystem-level interventions necessary to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, 00014 University of Helsinki, Helsinki, Finland
| | - John Eddie Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Feng Y, Hu J, Chen Y, Xu J, Yang B, Jiang J. Ecological response to antibiotics re-entering the aquaculture environment with possible long-term antibiotics selection based on enzyme activity in sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19033-19044. [PMID: 34705202 DOI: 10.1007/s11356-021-17114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are frequently applied in aquaculture to control infectious diseases and promote aquaculture production. The long-term application of antibiotics can lead to antibiotic resistance within an ecosystem. Herein, we assessed the ecological responses to two antibiotics (oxytetracycline (OTC) and sulfadiazine (SD)) at three concentrations (0 mg/kg (control), 10 mg/kg, and 1000 mg/kg) re-entering the aquaculture sediments of shrimp ponds with an approximately long-term drug application history (5, 15, and more than 30 years) for 2 and 4 months. For the newly reclaimed aquaculture ponds (approximately 5 years), the re-entered OTC significantly promoted urease activity (UA) and peroxidase activity (POA), while inhibited dehydrogenase activity (DHA) and fluorescein diacetate esterase activity (FDA). Meanwhile, the re-entered SD showed promotional effects on POA and DHA, and inhibitory effects on UA and FDA. For ponds with 15 years of aquaculture history, re-entered OTC promoted POA, inhibited FDA, and changed the influencing effects of UA and DHA with exposure time. The re-entered SD showed promotional effects on UA, POA and DHA, and inhibitory effects on FDA. For long-term aquaculture ponds (more than 30 years of aquaculture history), re-entered OTC promoted POA, DHA, and FDA, while it inhibited UA. Meanwhile, SD promoted all four enzyme activities. Pearson correlation analysis indicated that the variances of enzyme responses to the re-entry of antibiotics in the three sediment environments were related with the type, concentration, and exposure time of antibiotics, as well as the sediment properties and aquaculture history. The enzyme activities in the sediment environment from newly reclaimed aquaculture ponds were more sensitive to the re-entered antibiotics, while the enzyme activities displayed a clear tolerance in the sediment environment with more than 30 years of aquaculture history. However, in the sediment environment with 15 years of aquaculture history, the response of the enzyme activities to re-entered antibiotics demonstrated time processes of antibiotic adaptation during antibiotic resistance selection. This study has illustrated the effects of re-entered antibiotics on enzyme activities in the aquaculture environment with long-term antibiotic resistance/tolerance profiles, and further establishes the possible effects on ecosystem functioning in continuous antibiotic selection pressure.
Collapse
Affiliation(s)
- Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
- Institute of Environmental Sciences, Quanzhou Normal University, Quanzhou, 362000, China
| | - Juncong Hu
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China.
- Institute of Environmental Sciences, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Jinghua Xu
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
- Institute of Environmental Sciences, Quanzhou Normal University, Quanzhou, 362000, China
| | - Benfan Yang
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jinping Jiang
- Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Guilin University of Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
31
|
Matviichuk O, Mondamert L, Geffroy C, Gaschet M, Dagot C, Labanowski J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front Microbiol 2022; 13:795206. [PMID: 35222329 PMCID: PMC8863943 DOI: 10.3389/fmicb.2022.795206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous exposure to low concentrations of antibiotics (sub-minimal inhibitory concentration: sub-MIC) is thought to lead to the development of antimicrobial resistance (AMR) in the environmental microbiota. However, the relationship between antibiotic exposure and resistance selection in environmental bacterial communities is still poorly understood and unproven. Therefore, we measured the concentration of twenty antibiotics, resistome quality, and analyzed the taxonomic composition of microorganisms in river biofilms collected upstream (UPS) and downstream (DWS) (at the point of discharge) from the wastewater treatment plant (WWTP) of Poitiers (France). The results of statistical analysis showed that the antibiotic content, resistome, and microbiome composition in biofilms collected UPS were statistically different from that collected DWS. According to Procrustes analysis, microbial community composition and antibiotics content may be determinants of antibiotic resistance genes (ARGs) composition in samples collected DWS. However, network analysis showed that the occurrence and concentration of antibiotics measured in biofilms did not correlate with the occurrence and abundance of antibiotic resistance genes and mobile genetic elements. In addition, network analysis suggested patterns of co-occurrence between several ARGs and three classes of bacteria/algae: Bacteroidetes incertae sedis, Cyanobacteria/Chloroplast, and Nitrospira, in biofilm collected UPS. The absence of a direct effect of antibiotics on the selection of resistance genes in the collected samples suggests that the emergence of antibiotic resistance is probably not only due to the presence of antibiotics but is a more complex process involving the cumulative effect of the interaction between the bacterial communities (biotic) and the abiotic matrix. Nevertheless, this study confirms that WWTP is an important reservoir of various ARGs, and additional efforts and legislation with clearly defined concentration limits for antibiotics and resistance determinants in WWTP effluents are needed to prevent their spread and persistence in the environment.
Collapse
Affiliation(s)
- Olha Matviichuk
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France.,UMR INSERM 1092, Limoges, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| | | | | | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| |
Collapse
|
32
|
Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett 2022; 25:307-319. [PMID: 34808704 PMCID: PMC9299012 DOI: 10.1111/ele.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
A popular idea in ecology is that trait variation among individuals from the same species may promote the coexistence of competing species. However, theoretical and empirical tests of this idea have yielded inconsistent findings. We manipulated intraspecific trait diversity in a ciliate competing with a nematode for bacterial prey in experimental microcosms. We found that intraspecific trait variation inverted the original competitive hierarchy to favour the consumer with variable traits, ultimately resulting in competitive exclusion. This competitive outcome was driven by foraging traits (size, speed and directionality) that increased the ciliate's fitness ratio and niche overlap with the nematode. The interplay between consumer trait variation and competition resulted in non-additive cascading effects-mediated through prey defence traits-on prey community assembly. Our results suggest that predicting consumer competitive population dynamics and the assembly of prey communities will require understanding the complexities of trait variation within consumer species.
Collapse
Affiliation(s)
| | - Iina Hepolehto
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiFinland
- Department of Computer ScienceUniversity of HelsinkiFinland
| | | |
Collapse
|
33
|
Abstract
In the struggle with antibiotic resistance, we are losing. There is now a serious threat of moving into a postantibiotic world. High levels of resistance, in terms of both frequency and strength, have evolved against all clinically approved antibiotics worldwide. The usable life span of new clinically approved antibiotics is typically less than a decade before resistance reaches frequencies so high as to require only guarded usage. However, microbes have produced antibiotics for millennia without resistance becoming an existential issue. If resistance is the inevitable consequence of antibiotic usage, as has been the human experience, why has it not become an issue for microbes as well, especially since resistance genes are as prevalent in nature as the genes responsible for antibiotic production? Here, we ask how antibiotics can exist given the almost ubiquitous presence of resistance genes in the very microbes that have produced and used antibiotics since before humans walked the planet. We find that the context of both production and usage of antibiotics by microbes may be key to understanding how resistance is managed over time, with antibiotic synthesis and resistance existing in a paired relationship, much like a cipher and key, that impacts microbial community assembly. Finally, we put forward the cohesive, ecologically based "secret society" hypothesis to explain the longevity of antibiotics in nature.
Collapse
Affiliation(s)
- Fabrizio Spagnolo
- Biology Department, Queens College of The City University of New York, Flushing, New York, USA
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College, The City University of New York, Bayside, New York, USA
| | - John J. Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, New York, USA
- The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
34
|
Heß S, Kneis D, Virta M, Hiltunen T. The spread of the plasmid RP4 in a synthetic bacterial community is dependent on the particular donor strain. FEMS Microbiol Ecol 2021; 97:6426180. [PMID: 34788805 DOI: 10.1093/femsec/fiab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
The rapid spread of antibiotic resistance challenges modern medicine. So far, mechanistic and quantitative knowledge concerning the spread of resistance genes mainly relies on laboratory experiments with simplified setups, e.g. two strain communities. Thus, the transferability of the obtained process rates might be limited. To investigate the role of a diverse community concerning the dissemination of the multidrug resistance plasmid RP4, an Escherichia coli harboring RP4 invaded a microbial community consisting of 21 species. Changes in the community composition as well as plasmid uptake by community members were monitored for 22 days. Special focus was laid on the question of whether the observed changes were dependent on the actual invading donor isolate and the ambient antibiotic concentration. In our microcosm experiment, the community composition was primarily influenced by the given environmental variables and only secondarily by the particular invader E. coli. The establishment of resistance within the community, however, was directly dependent on the donor identity. The extent to which ambient conditions influence the spread of RP4 depended on the E. coli donor strain. These results emphasize that even within one species there are great differences in the ability to conquer an ecological niche and to spread antibiotic resistance.
Collapse
Affiliation(s)
- Stefanie Heß
- Institute of Microbiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - David Kneis
- Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00100 Helsinki, Finland
| | - Teppo Hiltunen
- Department of Biology, University of Turku, 20500 Turku, Finland
| |
Collapse
|
35
|
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2021; 30:534-543. [PMID: 34848115 DOI: 10.1016/j.tim.2021.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
The 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood. The current challenge for the field, however, is to better understand how these solutions operate in natural bacterial communities to explain and predict the distribution of plasmids and the dynamics of the horizontal gene transfer that they mediate in bacterial (pan)genomes.
Collapse
Affiliation(s)
- Michael A Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Cairns J, Jousset A, Becks L, Hiltunen T. Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community. Ecol Lett 2021; 25:355-365. [PMID: 34808691 DOI: 10.1111/ele.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.
Collapse
Affiliation(s)
- Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Finland.,Department of Microbiology, University of Helsinki, Finland
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, PR China
| | - Lutz Becks
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, Community Dynamics Group, Plön, Germany.,Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Finland.,Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Tang Y, Liang Z, Li G, Zhao H, An T. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. CHEMOSPHERE 2021; 283:131224. [PMID: 34153911 DOI: 10.1016/j.chemosphere.2021.131224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The aquatic environment may represent an essential route for transmission of antibiotic resistance to opportunistic human pathogens. Since industrial wastewater is discharged into the river after treatment, understanding the distribution of antibiotic resistance genes (ARGs) in river systems and the possibility of pathogens acquiring antibiotic resistance are challenges with far-reaching significance. This work mainly studied distribution profiles of pathogens and ARGs, and compared their health risk in various industrial wastewater with that of river water. Results showed that 166 pathogens were concurrently shared by the six water samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant, followed by Fusarium graminearum and Magnaporthe oryzae. The similar composition of the pathogens suggests that pathogens in river water may mainly come from sewage discharge of slaughterhouses and that changes in water quality contribute significantly to the prevalence of these pathogens. Of the 57 ARG types detected, bacitracin was the most abundant, followed by sulfonamide, chloramphenicol, tetracycline, and aminoglycoside. Strikingly, the wastewater from a pharmaceutical factory producing Chinese medicine was also rich in bacA, sul1, mexW, mexB, mexF and oprn. It can be seen from the co-occurrence patterns that pathogens and the main ARGs have strong co-occurrence. Higher abundance of offensive virulence factors in industrial wastewater and their strong correlation with pathogens containing ARGs suggest higher microbiological risk. These findings highlight the need to assess ARG acquisition by pathogens in the surface water of human-impacted environments where pathogens and ARGs may co-thrive.
Collapse
Affiliation(s)
- Yao Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huijun Zhao
- Griffith University, Griffith School Environment, Gold Coast Campus, Southport, Qld, 4222, Australia
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Wei Z, Feng K, Wang Z, Zhang Y, Yang M, Zhu YG, Virta MPJ, Deng Y. High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11824-11834. [PMID: 34415164 DOI: 10.1021/acs.est.1c01250] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) has gained much attention worldwide, while the contribution of vertical gene transfer (VGT) and horizontal gene transfer (HGT) is still elusive. Here, we improved an emerging high-throughput single-cell-based technology, emulsion, paired isolation, and concatenation polymerase chain reaction (epicPCR), by lengthening the sequence of ARG in the fused ARG-16S rRNA fragments to cover the variance of both ARG and its hosts. The improved epicPCR was applied to track the hosts of a widely detected ARG, sul1 gene, in five urban wastewater treatment plants (UWTPs) during two seasons. The sul1 host bacteria were highly diverse and mostly classified as Proteobacteria and Bacteroidetes. Clear seasonal divergence of α-diversity and interaction networks were present in the host community. The consensus phylogenetic trees of the sul1 gene and their host demonstrated incorrespondence on the whole and regularity on abundant groups, suggesting the important role of both HGT and VGT, respectively. The relative importance of these two ways was further measured; HGT (54%) generally played an equal or even more important role as VGT (46%) in UWTPs. The application of the improved epicPCR technology provides a feasible approach to quantify the relative contributions of VGT and HGT in environmental dissemination of ARGs.
Collapse
Affiliation(s)
- Ziyan Wei
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Marko P J Virta
- Department of Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Hass R, von der Ohe J, Dittmar T. Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:4496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
40
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
41
|
Jara B, Tucca F, Srain BM, Méjanelle L, Aranda M, Fernández C, Pantoja-Gutiérrez S. Antibiotics florfenicol and flumequine in the water column and sediments of Puyuhuapi Fjord, Chilean Patagonia. CHEMOSPHERE 2021; 275:130029. [PMID: 33984897 DOI: 10.1016/j.chemosphere.2021.130029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Chile is a major global producer of farmed salmon in the fjords of Patagonia, and therefore a major consumer of antibiotics. We tested whether the antibiotics florfenicol and flumequine persisted in the large Puyuhuapi Fjord after the six months following mandatory concerted treatment by all salmon farms present in the fjord. Antibiotics were detected in 26% of analyzed samples, but only within the particulate phase, with concentrations of florfenicol of up to 23.1 ng L-1, where detected. Flumequine was present in one sample at trace concentration, and neither antibiotic was detected in the dissolved phase nor in surface sediments. A fugacity-based model predicted that flumequine should theoretically remain in surface sediments at the sub-Minimal Inhibiting Concentrations (sub-MIC) previously shown to promote selection for antibiotic resistance in bacteria. Our observations suggest that surface sediments might act as a reservoir for antibiotic resistomes of bacteria, and that bacteria bearing antibiotic resistance genes could eventually become a risk for human health through the consumption of marine products.
Collapse
Affiliation(s)
- Bibiana Jara
- Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile; Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile; Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile; Laboratory of Ecogeochemistry of Benthic Environments - UMR 8222 Centre National de Recherche Scientifique - Sorbonne Université, Banyuls sur Mer, Paris, France
| | - Felipe Tucca
- Norwegian Institute for Water Research (NIVA Chile), Puerto Varas, Chile
| | - Benjamín M Srain
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile
| | - Laurence Méjanelle
- Laboratory of Ecogeochemistry of Benthic Environments - UMR 8222 Centre National de Recherche Scientifique - Sorbonne Université, Banyuls sur Mer, Paris, France
| | - Mario Aranda
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Concepción, Concepción, Chile
| | - Camila Fernández
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile; LOMIC UMR7621, Observatoire Océanologique, Banyuls sur Mer, Sorbonne Université and CNRS, France
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral (PIA ANID), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
42
|
Igler C, Rolff J, Regoes R. Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. eLife 2021; 10:64116. [PMID: 34001313 PMCID: PMC8184216 DOI: 10.7554/elife.64116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation, which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling, we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.
Collapse
Affiliation(s)
- Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
44
|
Kottara A, Hall JPJ, Brockhurst MA. The proficiency of the original host species determines community-level plasmid dynamics. FEMS Microbiol Ecol 2021; 97:6134752. [PMID: 33580956 DOI: 10.1093/femsec/fiab026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids are common in natural bacterial communities, facilitating bacterial evolution via horizontal gene transfer. Bacterial species vary in their proficiency to host plasmids: whereas plasmids are stably maintained in some species regardless of selection for plasmid-encoded genes, in other species, even beneficial plasmids are rapidly lost. It is, however, unclear how this variation in host proficiency affects plasmid persistence in communities. Here, we test this using multispecies bacterial soil communities comprising species varying in their proficiency to host a large conjugative mercury resistance plasmid, pQBR103. The plasmid reached higher community-level abundance where beneficial and when introduced to the community in a more proficient host species. Proficient plasmid host species were also better able to disseminate the plasmid to a wider diversity of host species. These findings suggest that the dynamics of plasmids in natural bacterial communities depend not only upon the plasmid's attributes and the selective environment but also upon the proficiency of their host species.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael A Brockhurst
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
45
|
Ecology and evolution of antimicrobial resistance in bacterial communities. THE ISME JOURNAL 2021; 15:939-948. [PMID: 33219299 PMCID: PMC8115348 DOI: 10.1038/s41396-020-00832-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that the response of bacteria to antibiotics is significantly affected by the presence of other interacting microbes. These interactions are not typically accounted for when determining pathogen sensitivity to antibiotics. In this perspective, we argue that resistance and evolutionary responses to antibiotic treatments should not be considered only a trait of an individual bacteria species but also an emergent property of the microbial community in which pathogens are embedded. We outline how interspecies interactions can affect the responses of individual species and communities to antibiotic treatment, and how these responses could affect the strength of selection, potentially changing the trajectory of resistance evolution. Finally, we identify key areas of future research which will allow for a more complete understanding of antibiotic resistance in bacterial communities. We emphasise that acknowledging the ecological context, i.e. the interactions that occur between pathogens and within communities, could help the development of more efficient and effective antibiotic treatments.
Collapse
|
46
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Sanchez-Cid C, Guironnet A, Wiest L, Vulliet E, Vogel TM. Gentamicin Adsorption onto Soil Particles Prevents Overall Short-Term Effects on the Soil Microbiome and Resistome. Antibiotics (Basel) 2021; 10:191. [PMID: 33672037 PMCID: PMC7919497 DOI: 10.3390/antibiotics10020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Antibiotics used in agriculture may reach the environment and stimulate the development and dissemination of antibiotic resistance in the soil microbiome. However, the scope of this phenomenon and the link to soil properties needs to be elucidated. This study compared the short-term effects of a range of gentamicin concentrations on the microbiome and resistome of bacterial enrichments and microcosms of an agricultural soil using a metagenomic approach. Gentamicin impact on bacterial biomass was roughly estimated by the number of 16SrRNA gene copies. In addition, the soil microbiome and resistome response to gentamicin pollution was evaluated by 16SrRNA gene and metagenomic sequencing, respectively. Finally, gentamicin bioavailability in soil was determined. While gentamicin pollution at the scale of µg/g strongly influenced the bacterial communities in soil enrichments, concentrations up to 1 mg/g were strongly adsorbed onto soil particles and did not cause significant changes in the microbiome and resistome of soil microcosms. This study demonstrates the differences between the response of bacterial communities to antibiotic pollution in enriched media and in their environmental matrix, and exposes the limitations of culture-based studies in antibiotic-resistance surveillance. Furthermore, establishing links between the effects of antibiotic pollution and soil properties is needed.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
- Promega France, 69100 Charbonnières-les-Bains, France
| | - Alexandre Guironnet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Laure Wiest
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Timothy M. Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
| |
Collapse
|
48
|
Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev 2020; 44:171-188. [PMID: 31981358 DOI: 10.1093/femsre/fuaa001] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the major challenges facing modern medicine worldwide. The past few decades have witnessed rapid progress in our understanding of the multiple factors that affect the emergence and spread of antibiotic resistance at the population level and the level of the individual patient. However, the process of translating this progress into health policy and clinical practice has been slow. Here, we attempt to consolidate current knowledge about the evolution and ecology of antibiotic resistance into a roadmap for future research as well as clinical and environmental control of antibiotic resistance. At the population level, we examine emergence, transmission and dissemination of antibiotic resistance, and at the patient level, we examine adaptation involving bacterial physiology and host resilience. Finally, we describe new approaches and technologies for improving diagnosis and treatment and minimizing the spread of resistance.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - Nathalie Q Balaban
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Jerusalem, Israel
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Health Research Institute, Ctra. Colmenar Viejo Km 9,100 28034 - Madrid, Madrid, Spain
| | - Patrice Courvalin
- French National Reference Center for Antibiotics, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 121 Jack Green building, Tel-Aviv University, Ramat-Aviv, 6997801, Tel Aviv, Israel
| | - Roy Kishony
- Faculty of Biology, The Technion, Technion City, Haifa 3200003, Haifa, Israel
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220 2800 Kgs.Lyngby, Lyngby, Denmark
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, OUS HF Rikshospitalet Postboks 4950 Nydalen 0424 Oslo, Oslo, Norway.,Oslo University Hospital, P. O. Box 4950 Nydalen N-0424 Oslo, Oslo, Norway
| |
Collapse
|
49
|
Cairns J, Jokela R, Becks L, Mustonen V, Hiltunen T. Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. Nat Ecol Evol 2020; 4:1385-1394. [PMID: 32778754 DOI: 10.1038/s41559-020-1272-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022]
Abstract
In an era of pervasive anthropogenic ecological disturbances, there is a pressing need to understand the factors that constitute community response and resilience. A detailed understanding of disturbance response needs to go beyond associations and incorporate features of disturbances, species traits, rapid evolution and dispersal. Multispecies microbial communities that experience antibiotic perturbation represent a key system with important medical dimensions. However, previous microbiome studies on this theme have relied on high-throughput sequencing data from uncultured species without the ability to explicitly account for the role of species traits and immigration. Here, we serially passage a 34-species defined bacterial community through different levels of pulse antibiotic disturbance, manipulating the presence or absence of species immigration. To understand the ecological community response measured using amplicon sequencing, we combine initial trait data measured for each species separately and metagenome sequencing data revealing adaptive mutations during the experiment. We found that the ecological community response was highly repeatable within the experimental treatments, which could be attributed in part to key species traits (antibiotic susceptibility and growth rate). Increasing antibiotic levels were also coupled with an increasing probability of species extinction, making species immigration critical for community resilience. Moreover, we detected signals of antibiotic-resistance evolution occurring within species at the same time scale, leaving evolutionary changes in communities despite recovery at the species compositional level. Together, these observations reveal a disturbance response that presents as classic species sorting, but is nevertheless accompanied by rapid within-species evolution.
Collapse
Affiliation(s)
- Johannes Cairns
- Wellcome Sanger Institute, Cambridge, UK. .,Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Helsinki, Finland. .,Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland.,Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland. .,Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
50
|
Hall JPJ, Harrison E, Pärnänen K, Virta M, Brockhurst MA. The Impact of Mercury Selection and Conjugative Genetic Elements on Community Structure and Resistance Gene Transfer. Front Microbiol 2020; 11:1846. [PMID: 32849443 PMCID: PMC7419628 DOI: 10.3389/fmicb.2020.01846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Carriage of resistance genes can underpin bacterial survival, and by spreading these genes between species, mobile genetic elements (MGEs) can potentially protect diversity within microbial communities. The spread of MGEs could be affected by environmental factors such as selection for resistance, and biological factors such as plasmid host range, with consequences for individual species and for community structure. Here we cultured a focal bacterial strain, Pseudomonas fluorescens SBW25, embedded within a soil microbial community, with and without mercury selection, and with and without mercury resistance plasmids (pQBR57 or pQBR103), to investigate the effects of selection and resistance gene introduction on (1) the focal species; (2) the community as a whole; (3) the spread of the introduced mer resistance operon. We found that P. fluorescens SBW25 only escaped competitive exclusion by other members of community under mercury selection, even when it did not begin with a mercury resistance plasmid, due to its propensity to acquire resistance from the community by horizontal gene transfer. Mercury pollution had a significant effect on community structure, decreasing alpha diversity within communities while increasing beta diversity between communities, a pattern that was not affected by the introduction of mercury resistance plasmids by P. fluorescens SBW25. Nevertheless, the introduced merA gene spread to a phylogenetically diverse set of recipients over the 5 weeks of the experiment, as assessed by epicPCR. Our data demonstrates how the effects of MGEs can be experimentally assessed for individual lineages, the wider community, and for the spread of adaptive traits.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|