1
|
Zattoni J, Vottero P, Carena G, Uliveto C, Pozzati G, Morabito B, Gitari E, Tuszynski J, Aminpour M. A comprehensive primer and review of PROTACs and their In Silico design. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108687. [PMID: 40058081 DOI: 10.1016/j.cmpb.2025.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The cutting-edge technique of Proteolysis Targeting Chimeras, or PROTACs, has gained significant attention as a viable approach for specific protein degradation. This innovative technology has vast potential in fields such as cancer therapy and drug development. The development of effective and specific therapies for a range of diseases is within reach with PROTACs, which can target previously "undruggable" proteins while circumventing the off-target effects of conventional small molecule inhibitors. This manuscript aims to discuss the application of in silico techniques to the design of these groundbreaking molecules and develop PROTAC complexes, in order to identify potential PROTAC candidates with favorable drug-like properties. Additionally, this manuscript reviews the strengths and weaknesses of these methods to demonstrate their utility and highlights the challenges and future prospects of in silico PROTAC design. The present review provides a valuable and beginner-friendly resource for researchers and drug developers interested in using in silico methods for PROTAC design, specifically ternary structure prediction.
Collapse
Affiliation(s)
- Jacopo Zattoni
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Gea Carena
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Chiara Uliveto
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Pozzati
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Benedetta Morabito
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ebenezea Gitari
- Department of Biochemistry, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Jack Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, T6G 2M9, Canada
| | - Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada.
| |
Collapse
|
2
|
Tripathi A, Chhabra A, Rizvi S, Tyagi RK. Selective steroid receptor modulators, degraders and PROTACs: Therapeutic strategies in management of endocrine-related cancers. Mol Cell Endocrinol 2025:112569. [PMID: 40339978 DOI: 10.1016/j.mce.2025.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Endocrine-related disorders are highly prevalent globally, affecting millions of people. Such diseases are multifactorial in origin and are influenced by the complex interplay of genetics, lifestyle, and environmental factors. Recurring disruptions in the endocrine homeostasis can lead to a cascade of endocrine-related cancers. It is well known that nuclear receptors (NRs), particularly estrogen receptor and androgen receptor malfunctioning promote the oncogenesis of breast cancer and prostate cancer, respectively. However, existing therapeutics against these diseases, including aromatase inhibitors, (anti)hormonal therapy, etc., often yield limited success, prompting to explore alternative methods of disease management. Additionally, drug resistance is prominent in cancer patients undergoing multidrug therapy. Currently, novel drug design strategies targeting NRs are being implemented for the discovery of a new generation of small molecule modulators, including selective NR modulators (SNuRMs) and degraders (SNuRDs). Moreover, proteolysis-targeting chimeras (PROTACs) as NR degraders, are also being developed primarily to overcome drug resistance, enhance protein selectivity, and mitigate off-target toxicity. This review highlights recent advancements in SNuRMs and SNuRDs for managing NRs-associated endocrine/metabolic disorders. Furthermore, we discuss the therapeutic potential of PROTAC degraders as a stand-alone strategy for receptor-mediated disease intervention, offering new avenues for precision medicine.
Collapse
Affiliation(s)
- Anjali Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
3
|
Fabbrizi E, Fiorentino F, Casano F, Mai A, Rotili D. Native mass spectrometry for proximity-inducing compounds: a new opportunity for studying chemical-induced protein modulation. Expert Opin Drug Discov 2025; 20:643-657. [PMID: 40152068 DOI: 10.1080/17460441.2025.2486146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Proximity-inducing compounds promote protein-protein interactions by bringing proteins into close spatial alignment. Among them, targeted protein degradation (TPD) compounds are noteworthy for their potential to target previously 'undruggable' proteins. Native mass spectrometry (nMS), a technique that enables the detection of non-covalent interactions, is emerging as a key tool for studying compound-induced ternary complex formation. AREAS COVERED This review highlights the use of nMS in unraveling the mechanisms of proximity-inducing compounds, focusing on all available studies published since 2020, identified through a PubMed database search. The authors explore how nMS helps investigate the efficacy and mechanisms of proteolysis-targeting chimeras (PROTACs) and molecular glues by capturing the binary and ternary complexes formed by E3 ligases, protein of interest (POI), and these molecules. EXPERT OPINION nMS excels at analyzing intact protein complexes, providing real-time insights into interactions between E3 ligases, POIs, and proximity-inducing agents. This analysis helps understand the formation, stability, and dynamic nature of the complexes along with precise data on stoichiometry and binding affinities, which are crucial for selecting and refining effective degraders. The future of nMS in TPD research is promising, with potential applications in kinetic analysis, degrader screenings, and exploration of novel E3 ligases and target proteins.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Casano
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Science, Roma Tre University, Rome, Italy
- Biostructures and Biosystems National Institute (INBB), Rome, Italy
| |
Collapse
|
4
|
Hinterndorfer M, Spiteri VA, Ciulli A, Winter GE. Targeted protein degradation for cancer therapy. Nat Rev Cancer 2025:10.1038/s41568-025-00817-8. [PMID: 40281114 DOI: 10.1038/s41568-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) aims at reprogramming the target specificity of the ubiquitin-proteasome system, the major cellular protein disposal machinery, to induce selective ubiquitination and degradation of therapeutically relevant proteins. Since its conception over 20 years ago, TPD has gained a lot of attention mainly due to improvements in the design of bifunctional proteolysis targeting chimeras (PROTACs) and understanding the mechanisms underlying molecular glue degraders. Today, PROTACs are on the verge of a first clinical approval and recent structural and mechanistic insights combined with technological leaps promise to unlock the rational design of protein degraders, following the lead of lenalidomide and related clinically approved analogues. At the same time, the TPD universe is expanding at a record speed with the discovery of novel modalities beyond molecular glue degraders and PROTACs. Here we review the recent progress in the field, focusing on newly discovered degrader modalities, the current state of clinical degrader candidates for cancer therapy and upcoming design approaches.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
5
|
Snyder LB, Neklesa TK, Willard RR, Gordon DA, Pizzano J, Vitale N, Robling K, Dorso MA, Moghrabi W, Landrette S, Gedrich R, Lee SH, Taylor IC, Houston JG. Preclinical Evaluation of Bavdegalutamide (ARV-110), a Novel PROteolysis TArgeting Chimera Androgen Receptor Degrader. Mol Cancer Ther 2025; 24:511-522. [PMID: 39670468 PMCID: PMC11962395 DOI: 10.1158/1535-7163.mct-23-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Androgen receptor (AR) signaling is the principal driver of prostate cancer, and drugs that target this pathway (e.g., abiraterone and enzalutamide) are standard treatments for metastatic hormone-sensitive prostate cancer and metastatic castration-resistant prostate cancer. However, continual evolution during prostate cancer progression can result in AR alterations (e.g., mutation, amplification, and splicing) that can cause tumors to become resistant to these therapies. Bavdegalutamide (ARV-110) is a PROteolysis TArgeting Chimera (PROTAC) protein degrader that recruits the cereblon-containing E3 ubiquitin ligase to direct the polyubiquitination and subsequent proteasomal degradation of AR. Bavdegalutamide selectively degrades wild-type AR and most clinically relevant mutants with low nanomolar potency. The advantages of the degradation mechanism of action are demonstrated by the higher activity of bavdegalutamide relative to the AR antagonist enzalutamide in cell-based systems that assess effects on PSA synthesis, proliferation of prostate cancer cells, and induction of apoptosis. In an AR-expressing patient-derived xenograft mouse model, bavdegalutamide showed substantial AR degradation and greater tumor growth inhibition compared with enzalutamide. Bavdegalutamide also showed robust tumor growth inhibition in enzalutamide- and abiraterone-resistant prostate cancer animal models and enhanced activity in combination with abiraterone. These promising preclinical data supported the clinical development of bavdegalutamide as a potential treatment for patients with prostate cancer. Bavdegalutamide was the first PROTAC protein degrader to enter human clinical trials, specifically in patients with metastatic castration-resistant prostate cancer in a phase I/II study (NCT03888612).
Collapse
Affiliation(s)
- Lawrence B. Snyder
- Department of Chemistry, Arvinas Operations, Inc., New Haven, Connecticut
| | - Taavi K. Neklesa
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Ryan R. Willard
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Deborah A. Gordon
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Jennifer Pizzano
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Nicholas Vitale
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Kaitlynn Robling
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Madeline A. Dorso
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Walid Moghrabi
- Department of General Administration, Arvinas Operations, Inc., New Haven, Connecticut
| | - Sean Landrette
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Richard Gedrich
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Sang Hyun Lee
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - Ian C.A. Taylor
- Department of Biology, Arvinas Operations, Inc., New Haven, Connecticut
| | - John G. Houston
- Department of General Administration, Arvinas Operations, Inc., New Haven, Connecticut
| |
Collapse
|
6
|
Han C, Yang B, Deng Y, Hu P, Hu B, Liu X, Wang T, Li C, Liu J, Yuan H. Atractylenolide I ameliorated the growth and enzalutamide resistance of castration-resistant prostate cancer by targeting KIF15. Chin Med 2025; 20:35. [PMID: 40087774 PMCID: PMC11909966 DOI: 10.1186/s13020-025-01086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) has been a major cause of tumor-associated death among men worldwide. The discovery of novel therapeutic medicines for CRPC remains imperative. Atractylenolide I (ATR-I), a prominent bioactive component from Atractylodes macrocephala, exhibits powerful anticancer potentials in various malignancies. Nevertheless, the ATR-I's activity on CRPC has not been reported. METHODS An enzalutamide-resistant (EnzR) cell line was successfully constructed. CCK-8, EdU, wound healing, Transwell assays, flow cytometry, and xenograft tumor models were applied to investigate the antitumor activity of ATR-I against CRPC. The changes in the gene expression profiles after ATR-I treatment were analyzed using RNA sequencing. RESULTS ATR-I suppressed the proliferative and migratory abilities of AR+ and AR- CRPC cells, while triggering cell cycle arrest and apoptosis. ATR-I also exerted anti-cancer activity on EnzR cell lines. Intriguingly, a combination of ATR-I with enzalutamide synergistically induced more apoptosis of tumor cells. RNA-sequencing identified kinesin family member 15 (KIF15) as a potential target of ATR-I. KIF15 was up-regulated in prostate cancer (PCa), and its higher level was associated with poorer clinical outcomes. Further investigation showed that ATR-I mediated ubiquitin-proteasomal degradation of AR/AR-V7 through targeting KIF15, resulting in CRPC repression. Finally, our in vivo experiment verified that ATR-I alone or in combination with enzalutamide retarded the growth of EnzR xenograft tumors. CONCLUSIONS These findings identified ATR-I as a promising therapeutic drug for overcoming enzalutamide resistance in CRPC patients and increased our understanding about its antitumor mechanisms.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Bin Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chengbao Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Huixing Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
7
|
Lee S, Kang S, Kim WJ. Targeted Protein Degradation in Cancer Therapy via Hydrophobic Polymer-Tagged Nanoparticles. ACS NANO 2025; 19:7742-7754. [PMID: 39982901 DOI: 10.1021/acsnano.4c12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Targeted protein degradation (TPD) strategies offer a significant advantage over traditional small molecule inhibitors by selectively degrading disease-causing proteins. While small molecules can lead to recurrence and resistance due to compensatory pathway activation, TPD addresses this limitation by promoting protein degradation, thereby reducing the likelihood of recurrence and resistance over the long-term. Despite these benefits, bifunctional TPD molecules face challenges such as low solubility, poor bioavailability, and limited tumor specificity. In this study, we developed polymer-based nanoparticles that combine TPD strategies with nanotechnology through a hydrophobic tagging method. Hydrophobic polymer-tagged nanoparticles facilitate targeted protein degradation by incorporating hydrophobic polymers that mimic hydrophobic residues in misfolded proteins. This system combines degradation and delivery capabilities within a polymer-based platform, inducing protein degradation while improving solubility, stability, and tumor targeting. These nanoparticles consist of a block copolymer composed of an androgen receptor ligand (ARL)-conjugated hydrophobic polylactic acid (PLA) and a hydrophilic polyethylene glycol (PEG), connected by a GSH-cleavable disulfide bond. In aqueous solutions, this block copolymer (ARL-PLA-SS-PEG) forms micelles that degrade in reducible cellular environments. The micelles demonstrated significant in vitro degradation of the target androgen receptor (AR). Furthermore, they achieved substantial tumor accumulation and significantly inhibited tumor growth in a tumor-bearing mouse model. A mechanistic study revealed that the micelle-mediated TPD follows a dual pathway involving both proteasome and autophagosome. This approach has the potential to serve as a universal platform for protein degradation, eliminating the need to develop disease-specific TPD molecules.
Collapse
Affiliation(s)
- Seohee Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seonwoo Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- OmniaMed Co, Ltd, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
9
|
Meng S, Meng Y, Yang X, Yu W, Li B, Liu T, Zhang J, Ren X, Zhang L. Rapid and high-throughput screening of proteolysis targeting chimeras using a dual-reporter system expressing fluorescence protein and luciferase. BMC Biol 2025; 23:51. [PMID: 39985000 PMCID: PMC11846234 DOI: 10.1186/s12915-025-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Proteolysis targeting chimera (PROTAC), a novel drug discovery strategy, utilizes the ubiquitin-proteasome system to degrade target proteins in cells. While Western blotting, mass spectrometry, and Lumit Immunoassay have been instrumental in determining protein levels, the rapid screening of PROTACs continues to pose challenges, necessitating the development of alternative methodologies. RESULTS We herein reported an alternative high-throughput method for screening PROTACs using a dual-reporter system expressing a Renilla luciferase (RLUC)-fused target protein and enhanced green fluorescent protein (EGFP). EGFP served as an internal reference and RLUC as an indicated target protein degradation. Rapid measurement of EGFP or RLUC light signals was achieved using a fluorescence/luminescence plate-based reader in the endpoint mode. The feasibility of the screening model was tested using ARV110, a clinical trial-stage PROTAC targeting the androgen receptor (AR). In EGFP/RLUC-tAR-expressing modal cells treated with varying concentrations of ARV110, normalized RLUC luminescence decreased dose-dependently, as confirmed via western blotting detection of AR expression. Then the platform was used to practically screen Sirtuin 2 (SIRT2) degraders from a small group of PROTACs that we built. Normalized RLUC luminescence changes in model cells expressing EGFP/RLUC-SIRT2 reflected the degradation efficiencies of PROTACs. Compounds 128 and 129 exhibited the highest degradation efficacies, leading to dose-dependent degradation of endogenous SIRT2 protein in the MCF-7 cell line and inducing cell growth arrest. CONCLUSIONS The dual-reporter system using both fluorescence and chemiluminescence was successfully constructed. Using this method, we identified effective candidate PROTACs against SIRT2. The dual-reporter system may accelerate drug discovery during PROTAC development.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Meng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xuena Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Bole Li
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300060, China.
| | - Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin'S Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China.
| |
Collapse
|
10
|
Feller F, Honin I, Miranda M, Weber H, Henze S, Hanl M, Hansen FK. Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders. J Med Chem 2025; 68:1824-1843. [PMID: 39804678 PMCID: PMC11780399 DOI: 10.1021/acs.jmedchem.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders. A set of 12 proteolysis targeting chimeras (PROTACs) was synthesized using a solid-phase supported parallel synthesis approach utilizing a covalent FEM1B ligand as an E3 ligase warhead. The evaluation of the HDAC degradation efficiency revealed substantial HDAC1 degradation by the top-performing degrader FF2049 (1g: Dmax = 85%; DC50 = 257 nM). Unlike our previously published cereblon-recruiting selective HDAC6 degrader, A6, which uses the same HDAC ligand, the FEM1B-based PROTACs achieved selective HDAC1-3 degradation. This unexpected change in the HDAC isoform degradation profile was accompanied by significant enhancement of the antiproliferative properties.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Irina Honin
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Heiko Weber
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svenja Henze
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
11
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
12
|
Lv MY, Hou DY, Liu SW, Cheng DB, Wang H. Strategy and Design of In Situ Activated Protein Hydrolysis Targeted Chimeras. ACS NANO 2025; 19:101-119. [PMID: 39731609 DOI: 10.1021/acsnano.4c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway. This process is cyclical, allowing for broad applicability, potent protein degradation, and selective targeting. Despite their effectiveness, PROTACs can inadvertently target and degrade nonspecific proteins, potentially resulting in significant side effects and off-target toxicity. To address this concern, researchers have created stimuli-activated PROTACs that enhance targeted protein degradation while minimizing potential harm to healthy cells. These advanced PROTACs aim to improve the precision of degradation in both time and space. This article reviews the strategies for in situ activated PROTACs, highlighting key compounds and research advancements associated with various mechanisms of action. The insights presented here aim to guide further exploration in the field of activated PROTACs.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Da-Yong Hou
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Shao-Wei Liu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
13
|
Zhang Q, He Y, Rao D, He R, Yu L, Sun Y, Lai Y, Shi Z, Peng L, Zhang Z, Xu S. Discovery of an Efficacious RET PROTAC Degrader with Enhanced Antiproliferative Activity against Resistant Cancer Cells Harboring RET Solvent-Front Mutations. J Med Chem 2025; 68:753-775. [PMID: 39731581 DOI: 10.1021/acs.jmedchem.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance. Herein, we describe the design, synthesis, and evaluation of a series of RET PROTAC degraders. The representative compound QZ2135 (20) effectively degraded RET kinase and its resistant mutants, such as V804M and G810C/R. It also exhibited superior antiproliferative activity against Ba/F3 cells stably expressing oncogenic fusions of RET with solvent-front mutants, including G810C/R/S, compared to its parental inhibitor. Notably, QZ2135 demonstrated in vivo antitumor efficacy in a Ba/F3-KIF5B-RET-G810C xenograft mouse model. Together, this study provides a potential alternative strategy for overcoming acquired resistance to RET inhibitors mediated by solvent-front mutations.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingqi He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510310, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Thyroid and Breast Surgery, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510310, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Wang LY, Hung CL, Wang TC, Hsu HC, Kung HJ, Lin KH. PROTACs as Therapeutic Modalities for Drug Discovery in Castration-Resistant Prostate Cancer. Annu Rev Pharmacol Toxicol 2025; 65:375-396. [PMID: 39116434 DOI: 10.1146/annurev-pharmtox-030624-110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Castration-resistant prostate cancer (CRPC) presents significant challenges in clinical management due to its resistance to conventional androgen receptor (AR)-targeting therapies. The advent of proteolysis targeting chimeras (PROTACs) has revolutionized cancer therapy by enabling the targeted degradation of key molecular players implicated in CRPC progression. In this review we discuss the developments of PROTACs for CRPC treatment, focusing on AR and other CRPC-associated regulators. We provide an overview of the strategic trends in AR PROTAC development from the aspect of targeting site selection and preclinical antitumor evaluation, as well as updates on AR degraders in clinical applications. Additionally, we briefly address the current status of selective AR degrader development. Furthermore, we review new developments in PROTACs as potential CRPC treatment paradigms, highlighting those targeting chromatin modulators BRD4, EZH2, and SWI/SNF; transcription regulator SMAD3; and kinases CDK9 and PIM1. Given the molecular targets shared between CRPC and neuroendocrine prostate cancer (NEPC), we also discuss the potential of PROTACs in addressing NEPC.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan;
| | - Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Tsan-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine and PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kwang-Huei Lin
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Zhao M, Ma W, Liang J, Xie Y, Wei T, Zhang M, Qin J, Lao L, Tian R, Wu H, Cheng J, Li M, Liu Y, Hong L, Li G. Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair. J Med Chem 2024; 67:19428-19447. [PMID: 39475482 DOI: 10.1021/acs.jmedchem.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (8a-8o, 14a-14f, 22a-22m) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified L134 (22a) as a potent BRD4 degrader, achieving BRD4 degradation (Dmax > 98%, DC50 = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by L134 was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC L134 based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.
Collapse
Affiliation(s)
- Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Ma
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinyi Liang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jiajie Qin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Lingyin Lao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyang Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
17
|
Wang Y, He Y, You Q, Wang L. Design of bifunctional molecules to accelerate post-translational modifications: achievements and challenges. Drug Discov Today 2024; 29:104194. [PMID: 39343161 DOI: 10.1016/j.drudis.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Post-translational modifications (PTMs) of proteins are crucial for regulating biological processes and their dysregulation is linked to various diseases, highlighting PTM regulation as a significant target for drug development. Traditional drug targets often interact with multiple proteins, resulting in lower selectivity and inevitable adverse effects, which limits their clinical applicability. Recent advancements in bifunctional molecules, such as proteolysis-targeting chimeras (PROTACs), have shown promise in targeting PTMs precisely. However, regulatory mechanisms for many of the >600 known PTMs remain underexplored. This review examines current progress and challenges in designing bifunctional molecules for PTM regulation, focusing on effector selection and ligand design strategies, aiming to propel the utilization and advancement of bifunctional molecules to the forefront of PTM research.
Collapse
Affiliation(s)
- Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
19
|
Dong Y, Ma T, Xu T, Feng Z, Li Y, Song L, Yao X, Ashby CR, Hao GF. Characteristic roadmap of linker governs the rational design of PROTACs. Acta Pharm Sin B 2024; 14:4266-4295. [PMID: 39525578 PMCID: PMC11544172 DOI: 10.1016/j.apsb.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 11/16/2024] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology represents a groundbreaking development in drug discovery, leveraging the ubiquitin‒proteasome system to specifically degrade proteins responsible for the disease. PROTAC is characterized by its unique heterobifunctional structure, which comprises two functional domains connected by a linker. The linker plays a pivotal role in determining PROTAC's biodegradative efficacy. Advanced and rationally designed functional linkers for PROTAC are under development. Nonetheless, the correlation between linker characteristics and PROTAC efficacy remains under-investigated. Consequently, this study will present a multidisciplinary analysis of PROTAC linkers and their impact on efficacy, thereby guiding the rational design of linkers. We will primarily discuss the structural types and characteristics of PROTAC linkers, and the optimization strategies used for their rational design. Furthermore, we will discuss how factors like linker length, group type, flexibility, and linkage site affect the biodegradation efficiency of PROTACs. We believe that this work will contribute towards the advancement of rational linker design in the PROTAC research area.
Collapse
Affiliation(s)
- Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhangyan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yonggui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lingling Song
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macau Polytechnic University, Macau 999078, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Tian Y, Wang X, Wu C, Qiao J, Jin H, Li H. A protracted war against cancer drug resistance. Cancer Cell Int 2024; 24:326. [PMID: 39342202 PMCID: PMC11439304 DOI: 10.1186/s12935-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Currently, even the most effective anti-cancer therapies are often limited by the development of drug resistance and tumor relapse, which is a major challenge facing current cancer research. A deep understanding of the molecular and biochemical bases of drug efficacy that can help predict the clinical drug resistance, coupled with the evolution of systematic genomic and proteomic technologies, have facilitated studies identifying and elucidating the underlying mechanisms. In this review, we focus on several important issues on cancer drug resistance and provide a framework for understanding the common ways by which cancers develop resistance to therapeutic agents. With the increasing arsenal of novel anticancer agents and techniques, there are now unprecedented opportunities to understand and overcome drug resistance. The proteolysis targeting chimera (PROTAC) technology, immunotherapy, nanomedicine, and real-time monitoring of drug response all provide effective approaches for combating drug resistance. In addition to the advancement of therapeutic technologies, the revolution of treatment concept is also of great importance. We can take advantage of the interplay between drug sensitive and resistant subclones for combating cancer. However, there remains a long way to go in the protracted war against cancer drug resistance.
Collapse
Affiliation(s)
- Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Xiaowei Wang
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Cong Wu
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Hai Jin
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China.
| | - Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China.
| |
Collapse
|
21
|
Ghosh S, Isma J, Ostano P, Mazzeo L, Toniolo A, Das M, White JR, Simon C, Paolo Dotto G. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat Commun 2024; 15:7984. [PMID: 39266569 PMCID: PMC11392952 DOI: 10.1038/s41467-024-52344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Campus, Pilani, India.
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Monalisa Das
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Joni R White
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
22
|
Lee S, Kim HR, Woo Y, Kim J, Kim HW, Park JY, Suh B, Choi Y, Ahn J, Ryu JH, Roe JS, Song J, Lee SH. UBX-390: A Novel Androgen Receptor Degrader for Therapeutic Intervention in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400398. [PMID: 38958553 PMCID: PMC11434238 DOI: 10.1002/advs.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The androgen receptor (AR) is an attractive target for treating prostate cancer, considering its role in the development and progression of localized and metastatic prostate cancer. The high global mortality burden of prostate cancer, despite medical treatments such as androgen deprivation or AR antagonist therapy, highlights the need to explore alternative strategies. One strategy involves the use of heterobifunctional degraders, also known as proteolysis-targeting chimeras, which are novel small-molecule therapeutics that inhibit amplified or mutated targets. Here, the study reports a novel cereblon-based AR degrader, UBX-390, and demonstrates its superior activity over established AR degraders, such as ARV-110 or ARCC-4, in prostate cancer cells under short- and long-term treatment conditions. UBX-390 suppresses chromatin binding and gene expression of AR and demonstrates substantial efficacy in the degradation of AR mutants in patients with treatment-resistant prostate cancer. UBX-390 is presented as an optimized AR degrader with remarkable potential for treating castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Soohyun Lee
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yaejin Woo
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jiyoung Kim
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Han Wool Kim
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Ji Youn Park
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Beomseon Suh
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Yuri Choi
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jungmin Ahn
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Je Ho Ryu
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Song Hee Lee
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| |
Collapse
|
23
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
24
|
Kanbar K, El Darzi R, Jaalouk DE. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front Genet 2024; 15:1434002. [PMID: 39144725 PMCID: PMC11321987 DOI: 10.3389/fgene.2024.1434002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed "undruggable" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
Collapse
Affiliation(s)
- Karim Kanbar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
25
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
26
|
Liu HY, Li Z, Reindl T, He Z, Qiu X, Golden RP, Donovan KA, Bailey A, Fischer ES, Zhang T, Gray NS, Yang PL. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Nat Commun 2024; 15:5179. [PMID: 38898037 PMCID: PMC11187112 DOI: 10.1038/s41467-024-49161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresia Reindl
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xueer Qiu
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan P Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Adam Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Priscilla L Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Morgenstern TJ, Darko-Boateng A, Afriyie E, Shanmugam SK, Zhou X, Choudhury P, Desai M, Kass RS, Clarke OB, Colecraft HM. Ion channel inhibition by targeted recruitment of NEDD4-2 with divalent nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596281. [PMID: 38854018 PMCID: PMC11160594 DOI: 10.1101/2024.05.28.596281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Arden Darko-Boateng
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Afriyie
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Sri Karthika Shanmugam
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Xinle Zhou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | | | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY
| | - Henry M. Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
28
|
Jackson C, Beveridge R. Native mass spectrometry of complexes formed by molecular glues reveals stoichiometric rearrangement of E3 ligases. Analyst 2024; 149:3178-3185. [PMID: 38639441 DOI: 10.1039/d4an00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this application of native mass spectrometry (nMS) to investigate complexes formed by molecular glues (MGs), we have demonstrated its efficiency in delineating stoichiometric rearrangements of E3 ligases that occur during targeted protein degradation (TPD). MGs stabilise interactions between an E3 ligase and a protein of interest (POI) targeted for degradation, and these ternary interactions are challenging to characterise. We have shown that nMS can unambiguously identify complexes formed between the CRBN : DDB1 E3 ligase and the POI GSPT1 upon the addition of lenalidomide, pomalidomide or thalidomide. Ternary complex formation was also identified involving the DCAF15 : DDA1 : DDB1 E3 ligase in the presence of MG (E7820 or indisulam) and POI RBM39. Moreover, we uncovered that the DCAF15 : DDA1 : DDB1 E3 ligase self-associates into dimers and trimers when analysed alone at low salt concentrations (100 mM ammonium acetate) which dissociate into single copies of the complex at higher salt concentrations (500 mM ammonium acetate), or upon the addition of MG and POI, forming a 1 : 1 : 1 ternary complex. This work demonstrates the strength of nMS in TPD research, reveals novel binding mechanisms of the DCAF15 E3 ligase, and its self-association into dimers and trimers at reduced salt concentration during structural analysis.
Collapse
Affiliation(s)
- Cara Jackson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
29
|
Hayhow TG, Williamson B, Lawson M, Cureton N, Braybrooke EL, Campbell A, Carbajo RJ, Cheraghchi-Bashi A, Chiarparin E, Diène CR, Fallan C, Fisher DI, Goldberg FW, Hopcroft L, Hopcroft P, Jackson A, Kettle JG, Klinowska T, Künzel U, Lamont G, Lewis HJ, Maglennon G, Martin S, Gutierrez PM, Morrow CJ, Nikolaou M, Nissink JWM, O'Shea P, Polanski R, Schade M, Scott JS, Smith A, Weber J, Wilson J, Yang B, Crafter C. Metabolism-driven in vitro/in vivo disconnect of an oral ERɑ VHL-PROTAC. Commun Biol 2024; 7:563. [PMID: 38740899 PMCID: PMC11091220 DOI: 10.1038/s42003-024-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anne Jackson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bin Yang
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | |
Collapse
|
30
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
31
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
32
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
33
|
Hu Z, Chen PH, Li W, Krone M, Zheng S, Saarbach J, Velasco IU, Hines J, Liu Y, Crews CM. EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling. SCIENCE ADVANCES 2024; 10:eadj7251. [PMID: 38536914 PMCID: PMC10971414 DOI: 10.1126/sciadv.adj7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
We recently developed a heterobifunctional approach [phosphorylation targeting chimeras (PhosTACs)] to achieve the targeted protein dephosphorylation (TPDephos). Here, we envisioned combining the inhibitory effects of receptor tyrosine kinase inhibitors (RTKIs) and the active dephosphorylation by phosphatases to achieve dual inhibition of kinases. We report an example of tyrosine phosphatase-based TPDephos and the effective epidermal growth factor receptor (EGFR) tyrosine dephosphorylation. We also used phosphoproteomic approaches to study the signaling transductions affected by PhosTAC-related molecules at the proteome-wide level. This work demonstrated the differential signaling pathways inhibited by PhosTAC compared with the TKI, gefitinib. Moreover, a covalent PhosTAC selective for mutated EGFR was developed and showed its inhibitory potential for dysregulated EGFR. Last, EGFR PhosTACs, consistent with EGFR dephosphorylation profiles, induced apoptosis and inhibited cancer cell viability during prolonged PhosTAC treatment. PhosTACs showcased their potential of modulating RTKs activity, expanding the scope of bifunctional molecule utility.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mackenzie Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jacques Saarbach
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ines Urquizo Velasco
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT 06511, USA
- Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
34
|
Bouvier C, Lawrence R, Cavallo F, Xolalpa W, Jordan A, Hjerpe R, Rodriguez MS. Breaking Bad Proteins-Discovery Approaches and the Road to Clinic for Degraders. Cells 2024; 13:578. [PMID: 38607017 PMCID: PMC11011670 DOI: 10.3390/cells13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.
Collapse
Affiliation(s)
- Corentin Bouvier
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
| | - Rachel Lawrence
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Francesca Cavallo
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico;
| | - Allan Jordan
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Roland Hjerpe
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Manuel S. Rodriguez
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UT3, 31400 Toulouse, France
- B Molecular, Centre Pierre Potier, Canceropôle, 31106 Toulouse, France
| |
Collapse
|
35
|
Li W, Wang Z. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochem Biophys 2024; 82:77-90. [PMID: 37847340 PMCID: PMC10866789 DOI: 10.1007/s12013-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/30/2023] [Indexed: 10/18/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor in men, when the disease progresses to the advanced stage, most patients will develop distant metastasis and develop into castration-resistant prostate cancer (CRPC), resulting in increased mortality. Ubiquitination is a widespread protein post-translational modification process in the biological world, and it plays an important role in the development and transfer of PCa. E3 ubiquitin ligase plays an important role in the specific selection and role of substrates in the process of ubiquitination ligase. This review will briefly introduce the ubiquitination process and E3 ubiquitin ligase, focus on the recently discovered multiple mechanisms by which ubiquitination affects PCa development and metastasis, and a summary of the current emerging proteolysis-targeting chimeras (PROTAC) in the treatment of PCa.
Collapse
Affiliation(s)
- Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
36
|
Wang C, Zhang Y, Yu W, Xu J, Xing D. PROTAC-biomacromolecule conjugates for precise protein degradation in cancer therapy: A review. Int J Biol Macromol 2024; 261:129864. [PMID: 38302015 DOI: 10.1016/j.ijbiomac.2024.129864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Proteolysis targeting chimera (PROTAC) technology is a promising new mode of targeted protein degradation with significant transformative implications for the clinical treatment of different diseases. Nevertheless, while this technology offers numerous advantages, on-target off-tumour toxicity in healthy cells remains a major challenge for clinical application in cancer therapy. Strategies are presently being explored to optimize degradation activity with cellular selectivity to minimize undesirable side effects. PROTAC-antibody conjugates and PROTAC-aptamer conjugates are unique innovations that combine PROTACs and biomacromolecules. These novel PROTAC-biomacromolecule conjugates (PBCs) can enhance the targetability of PROTACs and reduce their off-target side-effects. The combination of potent PROTACs and highly safe biomacromolecules will pioneer an emerging trend in targeted protein degradation. In our review, we have summarized recent advances in PBCs, discussed current challenges, and outlooked opportunities for future research in the field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Setia N, Almuqdadi HTA, Abid M. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders. Eur J Med Chem 2024; 265:116041. [PMID: 38199162 DOI: 10.1016/j.ejmech.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The scientific community has shown considerable interest in proteolysis-targeting chimeras (PROTACs) in the last decade, indicating their remarkable potential as a means of achieving targeted protein degradation (TPD). Not only are PROTACs seen as valuable tools in molecular biology but their emergence as a modality for drug discovery has also garnered significant attention. PROTACs bind to E3 ligases and target proteins through respective ligands connected via a linker to induce proteasome-mediated protein degradation. The discovery of small molecule ligands for E3 ligases has led to the prevalent use of various E3 ligases in PROTAC design. Furthermore, the incorporation of different types of linkers has proven beneficial in enhancing the efficacy of PROTACs. By far more than 3300 PROTACs have been reported in the literature. Notably, Von Hippel-Lindau (VHL)-based PROTACs have surfaced as a propitious strategy for targeting proteins, even encompassing those that were previously considered non-druggable. VHL is extensively utilized as an E3 ligase in the advancement of PROTACs owing to its widespread expression in various tissues and well-documented binders. Here, we review the discovery of VHL ligands, the types of linkers employed to develop VHL-based PROTACs, and their subsequent modulation to design advanced non-conventional degraders to target various disease-causing proteins. Furthermore, we provide an overview of other E3 ligases recruited in the field of PROTAC technology.
Collapse
Affiliation(s)
- Nisha Setia
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
38
|
Chen QH, Munoz E, Ashong D. Insight into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:663. [PMID: 38339414 PMCID: PMC10854644 DOI: 10.3390/cancers16030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Induced protein degradation has emerged as an innovative drug discovery approach, complementary to the classical method of suppressing protein function. The androgen receptor signaling pathway has been identified as the primary driving force in the development and progression of lethal castration-resistant prostate cancer. Since androgen receptor degraders function differently from androgen receptor antagonists, they hold the promise to overcome the drug resistance challenges faced by current therapeutics. Proteolysis-targeting chimeras (PROTACs), monomeric degraders, hydrophobic tagging, molecular glues, and autophagic degradation have demonstrated their capability in downregulating intracellular androgen receptor concentrations. The potential of these androgen receptor degraders to treat castration-resistant prostate cancer is substantiated by the advancement of six PROTACs and two monomeric androgen receptor degraders into phase I or II clinical trials. Although the chemical structures, in vitro and in vivo data, and degradation mechanisms of androgen receptor degraders have been reviewed, it is crucial to stay updated on recent advances in this field as novel androgen receptor degraders and new strategies continue to emerge. This review thus provides insight into recent advancements in this paradigm, offering an overview of the progress made since 2020.
Collapse
Affiliation(s)
- Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (E.M.); (D.A.)
| | | | | |
Collapse
|
39
|
Alsaidan OA, Onobun E, Ye C, Lou L, Beharry Z, Xie ZR, Lebedyeva I, Crich D, Cai H. Inhibition of N-myristoyltransferase activity promotes androgen receptor degradation in prostate cancer. Prostate 2024; 84:254-268. [PMID: 37905842 PMCID: PMC10872856 DOI: 10.1002/pros.24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Even though prostate cancer (PCa) patients initially respond to androgen deprivation therapy, some will eventually develop castration resistant prostate cancer (CRPC). Androgen receptor (AR) mediated cell signaling is a major driver in the progression of CRPC while only a fraction of PCa becomes AR negative. This study aimed to understand the regulation of AR levels by N-myristoyltransferase in PCa cells. METHODS Two enantiomers, (1S,2S)- d-NMAPPD and (1R,2R)- d-NMAPPD (LCL4), were characterized by various methods (1 H and 13 C NMR, UHPLC, high-resolution mass spectra, circular dichroism) and evaluated for the ability to bind to N-myristoyltransferase 1 (NMT1) using computational docking analysis. structure-activity relationship analysis of these compounds led to the synthesis of (1R,2R)-LCL204 and evaluation as a potential NMT1 inhibitor utilizing the purified full length NMT1 enzyme. The NMT inhibitory activity wase determined by Click chemistry and immunoblotting. Regulation of NMT1 on tumor growth was evaluated in a xenograft tumor model. RESULTS (1R,2R)- d-NMAPPD, but not its enantiomer (1S,2S)- d-NMAPPD, inhibited NMT1 activity and reduced AR protein levels. (1R,2R)-LCL204, a derivative of (1R,2R)- d-NMAPPD, inhibited global protein myristoylation. It also suppressed protein levels, nuclear translocation, and transcriptional activity of AR full-length or variants in PCa cells. This was due to enhanced ubiquitin and proteasome-mediated degradation of AR. Knockdown of NMT1 levels inhibited tumor growth and proliferation of cancer cells. CONCLUSION Inhibitory efficacy on N-myristoyltransferase activity by d-NMAPPD is stereospecific. (1R,2R)-LCL204 reduced global N-myristoylation and androgen receptor protein levels at low micromolar concentrations in prostate cancer cells. pharmacological inhibition of NMT1 enhances ubiquitin-mediated proteasome degradation of AR. This study illustrates a novel function of N-myristoyltransferase and provides a potential strategy for treatment of CRPC.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| | - Emmanuel Onobun
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia Athens, Athens, Georgia 30602
| | - Chenming Ye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia Athens, Athens, Georgia 30602
| | - Zanna Beharry
- Department of Chemical and Physical Sciences, University of the Virgin Islands, St. Thomas, VI 00802
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia Athens, Athens, Georgia 30602
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia 30912
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia Athens, Athens, Georgia 30602
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia 30602
| |
Collapse
|
40
|
Bhole RP, Patil S, Kapare HS, Chikhale RV, Gurav SS. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras. Curr Top Med Chem 2024; 24:2050-2073. [PMID: 38963108 DOI: 10.2174/0115680266309968240621072550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Timeresolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyappeth, Pimpri, Pune, 411018, India
| | - Sapana Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Harshad S Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panjim, Goa, India
| |
Collapse
|
41
|
Khramtsov YV, Ulasov AV, Lupanova TN, Slastnikova TA, Rosenkranz AA, Bunin ES, Georgiev GP, Sobolev AS. Intracellular Degradation of SARS-CoV-2 N-Protein Caused by Modular Nanotransporters Containing Anti-N-Protein Monobody and a Sequence That Recruits the Keap1 E3 Ligase. Pharmaceutics 2023; 16:4. [PMID: 38276482 PMCID: PMC10818351 DOI: 10.3390/pharmaceutics16010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The proper viral assembly relies on both nucleic acids and structural viral proteins. Thus a biologically active agent that provides the degradation of one of these key proteins and/or destroys the viral factory could suppress viral replication efficiently. The nucleocapsid protein (N-protein) is a key protein for the SARS-CoV-2 virus. As a bioactive agent, we offer a modular nanotransporter (MNT) developed by us, which, in addition to an antibody mimetic to the N-protein, contains an amino acid sequence for the attraction of the Keap1 E3 ubiquitin ligase. This should lead to the subsequent degradation of the N-protein. We have shown that the functional properties of modules within the MNT permit its internalization into target cells, endosome escape into the cytosol, and binding to the N-protein. Using flow cytometry and western blotting, we demonstrated significant degradation of N-protein when A549 and A431 cells transfected with a plasmid coding for N-protein were incubated with the developed MNTs. The proposed MNTs open up a new approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Egor S. Bunin
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
42
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
43
|
Chen S, Zheng Y, Liang B, Yin Y, Yao J, Wang Q, Liu Y, Neamati N. The application of PROTAC in HDAC. Eur J Med Chem 2023; 260:115746. [PMID: 37607440 DOI: 10.1016/j.ejmech.2023.115746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Inducing protein degradation by proteolysis targeting chimera (PROTAC) has provided great opportunities for scientific research and industrial applications. Histone deacetylase (HDAC)-PROTAC has been widely developed since the first report of its ability to induce the degradation of SIRT2 in 2017. To date, ten of the eighteen HDACs (HDACs 1-8, HDAC10, and SIRT2) have been successfully targeted and degraded by HDAC-PROTACs. HDAC-PROTACs surpass traditional HDAC inhibitors in many aspects, such as higher selectivity, more potent antiproliferative activity, and the ability to disrupt the enzyme-independent functions of a multifunctional protein and overcome drug resistance. Rationally designing HDAC-PROTACs is a main challenge in development because slight variations in chemical structure can lead to drastic effects on the efficiency and selectivity of the degradation. In the future, HDAC-PROTACs can potentially be involved in clinical research with the support of the increased amount of in vivo data, pharmacokinetic evaluation, and pharmacological studies.
Collapse
Affiliation(s)
- Shaoting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuxiang Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Benji Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yudong Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jian Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Yanghan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
44
|
Tang X, Liu Z, Li Z, Huang C, Yu W, Fan Y, Hu S, Jin J. Inhibiting CBP Decreases AR Expression and Inhibits Proliferation in Benign Prostate Epithelial Cells. Biomedicines 2023; 11:3028. [PMID: 38002029 PMCID: PMC10669082 DOI: 10.3390/biomedicines11113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: CREB-binding protein (CBP) is a key transcriptional coactivator of androgen receptors (AR). We conducted this study to investigate the effects of CBP on AR expression and proliferation in benign prostatic hyperplasia (BPH) prostate epithelial cells. (2) Methods: By analyzing a published data set, we found that CBP was closely related to the gene expression of AR in prostate cells. We enrolled 20 BPH patients who underwent transurethral resection of the prostate (TURP) in Peking University First Hospital in 2022, and analyzed the expressions of CBP and AR in BPH prostate tissues. Then, we used ICG-001 and shRNA to inhibit CBP in prostate epithelial cells (BPH-1 cells and RWPE-1 cells), and conducted immunofluorescence, cell viability assay, flow cytometry analysis, and Western blot to analyze the effects of CBP on AR expression and proliferation in prostate epithelial cells. We also studied the interaction between CBP and AR through a co-immunoprecipitation assay. (3) Results: CBP is consistent with AR in expression intensity in prostate tissues. Inhibiting CBP decreases AR expression, and induces proliferation inhibition, apoptosis, and cell cycle arrest in BPH prostate epithelial cells. The co-immunoprecipitation assay showed that CBP binds with AR to form transcription complexes in prostate epithelial cells. (4) Conclusions: Inhibiting CBP decreases AR expression and inhibits proliferation in benign prostate epithelial cells. CBP may be a potential target to affect AR expression and the proliferation of prostate epithelial cells in BPH.
Collapse
Affiliation(s)
- Xingxing Tang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China; (X.T.)
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| |
Collapse
|
45
|
Zhang Y, Liao Y, Luo M, Ye Y, Xu Z, Hou W, Liu R, Zhai Q, Lv S, Wei Q. IU1 and enzalutamide combination yields synergistic effects on castration-resistant prostate cancer. Prostate 2023; 83:1446-1457. [PMID: 37545197 DOI: 10.1002/pros.24607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is one of the main treatment modalities for prostate cancer (PCa); however, almost all patients treated with ADT eventually progress into castration-resistant PCa (CRPC). Although second-generation androgen receptor (AR) antagonists, such as enzalutamide, have been approved for CRPC treatment, AR signaling in CRPC cells is reactivated through multiple mechanisms, resulting in resistance to treatment and tumor progression with a very poor prognosis. The present study aimed to explore the anticancer effect of a treatment combining AR antagonist enzalutamide with AR degrader IU1 on PCa cells. METHODS The joint effects of enzalutamide and IU1 on PCa cell proliferation and apoptosis and associated cell signaling were evaluated in vitro. Mechanistically, the ubiquitination level and half-life of AR were examined under the combination treatment. The binding of IU1 and enzalutamide to AR was further verified using cellular thermal shift analysis and isothermal dose-response curve fingerprinting. RESULTS The combination of IU1 and three AR antagonists showed synergistic effects in different prostate cell lines. IU1 and enzalutamide synergistically promoted the degradation of AR and AR-V7 proteins, as well as suppressed the expression levels of AR and AR-V7 downstream target genes at the transcriptional and protein levels. The combination also synergistically blocked the PCa cell cycle and promoted apoptosis in PCa cell lines. Mechanistically, the combination promoted increased levels of AR ubiquitination. In CRPC cell lines and in the presence of increased androgen concentrations, enzalutamide was still able to bind AR competitively with androgens, reducing the stability of AR and thus promoting the degradation effect of IU1 on AR, synergistically producing an inhibitory effect on PCa cells. CONCLUSION Taken together, our findings suggest that the combination of AR degrader and enzalutamide potentially represents a new therapeutic strategy for CRPC.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yuanpeng Liao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Mayao Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yuedian Ye
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Zhuofan Xu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Wenli Hou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Ruiyu Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Qiliang Zhai
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
46
|
Samarkina A, Youssef MK, Ostano P, Ghosh S, Ma M, Tassone B, Proust T, Chiorino G, Levesque MP, Goruppi S, Dotto GP. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat Commun 2023; 14:6498. [PMID: 37838724 PMCID: PMC10576812 DOI: 10.1038/s41467-023-42239-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Melanoma provides a primary benchmark for targeted drug therapy. Most melanomas with BRAFV600 mutations regress in response to BRAF/MEK inhibitors (BRAFi/MEKi). However, nearly all relapse within the first two years, and there is a connection between BRAFi/MEKi-resistance and poor response to immune checkpoint therapy. We reported that androgen receptor (AR) activity is required for melanoma cell proliferation and tumorigenesis. We show here that AR expression is markedly increased in BRAFi-resistant melanoma cells, and in sensitive cells soon after BRAFi exposure. Increased AR expression is sufficient to render melanoma cells BRAFi-resistant, eliciting transcriptional changes of BRAFi-resistant subpopulations, including elevated EGFR and SERPINE1 expression, of likely clinical significance. Inhibition of AR expression or activity blunts changes in gene expression and suppresses proliferation and tumorigenesis of BRAFi-resistant melanoma cells, promoting clusters of CD8+ T cells infiltration and cancer cells killing. Our findings point to targeting AR as possible co-therapeutical approach in melanoma treatment.
Collapse
Affiliation(s)
| | | | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Soumitra Ghosh
- ORL service and Personalized Cancer Prevention Program, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Min Ma
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Beatrice Tassone
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Tatiana Proust
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Charlestown, MA, USA
| | - Gian Paolo Dotto
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland.
- ORL service and Personalized Cancer Prevention Program, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Cutaneous Biology Research Center, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Épalinges, Switzerland.
| |
Collapse
|
47
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
48
|
Cole RN, Fang Q, Wang Z. Androgen receptor nucleocytoplasmic trafficking - A one-way journey. Mol Cell Endocrinol 2023; 576:112009. [PMID: 37414131 PMCID: PMC10528972 DOI: 10.1016/j.mce.2023.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The androgen receptor (AR) is a key regulator of the growth and proliferation of prostate cancer. The majority of lethal castration-resistant prostate cancer (CRPC) growth is still dependent on AR activity. The AR need to be in the nucleus to exert its biological action as a transcription factor. As such, defining the mechanisms that regulate the subcellular localization of AR are important. Previously it was believed that AR was imported into the nucleus in a ligand-dependent manner and subsequently exported out of the nucleus upon ligand withdrawal. Recent evidence has challenged this decades-old paradigm and showed that the AR is degraded, not exported, in the nucleus. This review discusses the current understanding of how AR nucleocytoplasmic localization is regulated by import and through nuclear degradation.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Thankan RS, Thomas E, Purushottamachar P, Weber DJ, Njar VCO. Salinization Dramatically Enhance the Anti-Prostate Cancer Efficacies of AR/AR-V7 and Mnk1/2 Molecular Glue Degraders, Galeterone and VNPP433-3β Which Outperform Docetaxel and Enzalutamide in CRPC CWR22Rv1 Xenograft Mouse Model. Bioorg Chem 2023; 139:106700. [PMID: 37392559 PMCID: PMC10528634 DOI: 10.1016/j.bioorg.2023.106700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Galeterone, 3β-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Gal, 1) and VNPP433-3β, 3β-(1H-imidazole-1-yl-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (2) are potent molecular glue degrader modulators of AR/AR-V7 and Mnk1/2-eIF4E signaling pathways, and are promising Phase 3 and Phase 1 drug candidates, respectively. Because appropriate salts can be utilized to create new chemical entities with enhanced aqueous solubility, in vivo pharmacokinetics, and enhanced in vitro and in vivo efficacies, the monohydrochloride salt of Gal (3) and the mono- and di-hydrochlorides salts of compound 2, compounds 4 and 5, respectively, were synthesized. The salts were characterized using 1H NMR, 13C NMR and HRMS analyses. Compound 3 displayed enhanced in vitro antiproliferative activity (7.4-fold) against three prostate cancer cell lines but surprisingly decreased plasma exposure in the pharmacokinetics study. The antiproliferative activities of the compound 2 salts (4 and 5) were equivalent to that of compound 2, but their oral pharmacokinetic profiles were significantly enhanced. Finally, and most importantly, oral administration of the parent compounds (1 and 2) and their corresponding salts (3, 4 and 5) caused dose-dependent potent inhibition/regression of aggressive and difficult-to-treat CWR22Rv1 tumor xenografts growth, with no apparent host toxicities and were highly more efficacious than the blockbuster FDA-approved prostate cancer drugs, Enzalutamide (Xtandi) and Docetaxel (Taxotere). Thus, the HCl salts of Gal (3) and VNPP433-3β (4 and 5) are excellent orally bioavailable candidates for clinical development.
Collapse
Affiliation(s)
- Retheesh S Thankan
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - Elizabeth Thomas
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - David J Weber
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Xiang W, Zhao L, Han X, Xu T, Kregel S, Wang M, Miao B, Qin C, Wang M, McEachern D, Lu J, Bai L, Yang CY, Kirchhoff PD, Takyi-Williams J, Wang L, Wen B, Sun D, Ator M, Mckean R, Chinnaiyan AM, Wang S. Discovery of ARD-1676 as a Highly Potent and Orally Efficacious AR PROTAC Degrader with a Broad Activity against AR Mutants for the Treatment of AR + Human Prostate Cancer. J Med Chem 2023; 66:13280-13303. [PMID: 37683104 DOI: 10.1021/acs.jmedchem.3c01264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
We report herein the discovery and extensive characterization of ARD-1676, a highly potent and orally efficacious PROTAC degrader of the androgen receptor (AR). ARD-1676 was designed using a new class of AR ligands and a novel cereblon ligand. It has DC50 values of 0.1 and 1.1 nM in AR+ VCaP and LNCaP cell lines, respectively, and IC50 values of 11.5 and 2.8 nM in VCaP and LNCaP cell lines, respectively. ARD-1676 effectively induces degradation of a broad panel of clinically relevant AR mutants. ARD-1676 has an oral bioavailability of 67, 44, 31, and 99% in mice, rats, dogs, and monkeys, respectively. Oral administration of ARD-1676 effectively reduces the level of AR protein in the VCaP tumor tissue in mice and inhibits tumor growth in the VCaP mouse xenograft tumor model without any sign of toxicity. ARD-1676 is a highly promising development candidate for the treatment of AR+ human prostate cancer.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xin Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Kregel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bukeyan Miao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chong Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John Takyi-Williams
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark Ator
- Oncopia Therapeutics Inc, 2 West Liberty Blvd., Malvern, Pennsylvania 19355, United States
| | - Robert Mckean
- Oncopia Therapeutics Inc, 2 West Liberty Blvd., Malvern, Pennsylvania 19355, United States
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|