1
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Song J, Jaklofsky M, Carmone C, de Boer V, Wever N, Keijer J, Grefte S. Six-hour hypoxia-induced protein degradation in M. gastrocnemius of 24-day-old mice by activating FOXO1 and suppressing AKT-mTORC1. Am J Physiol Endocrinol Metab 2025; 328:E620-E632. [PMID: 40094441 DOI: 10.1152/ajpendo.00508.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Long-term hypoxia has been associated with skeletal muscle atrophy, including increased protein degradation over protein synthesis. This contrasts sharply with muscle hypertrophy and net protein synthesis occurring in the developing skeletal muscle of young mice. Here, we aimed to understand the impact of acute, physiologically plausible environmental hypoxia on muscle proteostasis of the M. gastrocnemius of young mice. Fasted prepubertal, 24-day-old male B6JRccHsd(B6J)-Nnt+/Wuhap mice with similar body weight and lean mass were exposed to normobaric hypoxia (12% O2) or normoxia (20.9% O2) for 6 h. The transcriptome (n = 12) and protein (n = 6) responses of the M. gastrocnemius were analyzed. A hypoxic response of M. gastrocnemius was confirmed by increased expression of hypoxia-inducible factor 1 (HIF1) (Ankrd37 and Ddit4) and forkhead box-O (FOXO) 1 (Depp1 and Ddit4) target genes. RNA-Seq analysis revealed that hypoxia activated FOXO signaling, which was confirmed by increased FOXO1 protein levels and decreased p-AKT/AKT ratio. Detailed mapping of the FOXO1 pathway suggests a strong FOXO1-mediated hypoxic effect on protein degradation and synthesis. A central role of Atf4 is suggested by the hypoxic-dependent positive correlations with FOXO1, FBXO32, Depp1, Eif4ebp1, and Ddit4. Further analyses showed increased FBXO32, which positively correlated with FOXO1, and decreased p-S6K/S6K and p-4E-BP1/4E-BP1 ratios. Our results showed for the first time that a 6-h exposure to 12% O2 normobaric hypoxia in 24-day-old mice activates FOXO1 signaling in M. gastrocnemius, resulting in decreased protein synthesis and increased protein degradation most likely via reduced energy availability, which may be relevant for infant air or high altitude traveling.NEW & NOTEWORTHY We newly investigated an acute (6 h) hypoxic exposure (12% O2) in developing and growing M. gastrocnemius of 24-day-old mice. This acute hypoxia significantly enhanced muscle protein breakdown via the activation of FOXO1 and subsequently FBXO32, whereas also suppressing protein synthesis via the reduced p-S6K/S6K and p-4E-BP1/4E-BP1 and thus AKT-mTORC1 pathway. Together these changes observed could potentially hamper the muscle development of young mice.
Collapse
Affiliation(s)
- Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Jaklofsky
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Claudia Carmone
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Vincent de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Niels Wever
- Animal Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Zuo X, Zhao R, Wu M, Wang Y, Wang S, Tang K, Wang Y, Chen J, Yan X, Cao Y, Li T. Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. NATURE AGING 2025; 5:419-436. [PMID: 39910243 DOI: 10.1038/s43587-024-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Sarcopenia is a geriatric disorder characterized by a gradual loss of muscle mass and function. Despite its prevalence, the underlying mechanisms remain unclear, and there are currently no approved treatments. In this study, we conducted a comprehensive analysis of the molecular and metabolic signatures of skeletal muscle in patients with impaired muscle strength and sarcopenia using multi-omics approaches. Across discovery and replication cohorts, we found that disrupted branched-chain amino acid (BCAA) catabolism is a prominent pathway in sarcopenia, which leads to BCAA accumulation and decreased muscle health. Machine learning analysis further supported the causal role of BCAA catabolic dysfunction in sarcopenia. Using mouse models, we validated that defective BCAA catabolism impairs muscle mass and strength through dysregulated mTOR signaling, and enhancing BCAA catabolism by BT2 protects against sarcopenia in aged mice and in mice lacking Ppm1k, a positive regulator of BCAA catabolism in skeletal muscle. This study highlights improving BCAA catabolism as a potential treatment of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanyan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province & School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Cao
- Department of Cardiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Moreira-Pais A, Ferreira R, Aires I, Sousa-Mendes C, Nogueira-Ferreira R, Seixas F, Leite-Moreira A, Oliveira PA, Duarte JA. Age, cancer, and the dual burden of cancer and doxorubicin in skeletal muscle wasting in female rats: which one to blame? Biogerontology 2025; 26:47. [PMID: 39853446 DOI: 10.1007/s10522-024-10182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin. Herein, we sought to investigate markers of inflammation and neuromuscular junction (NMJ) remodeling during aging and in response to cancer or cancer with chemotherapy. To address this, we utilized female rats across three age groups - young, adult, and old - to examine age-related changes, with old rats serving as a sarcopenia model. Additionally, a chemically-induced breast cancer (BCa) model was implemented in female adult rats, both without (adult BCa) or with doxorubicin administration (adult BCaDOX), to study cancer cachexia. The atrophy of the gastrocnemius muscle was observed in old, adult BCa and adult BCaDOX rats compared to adult ones. No signs of inflammation or NMJ impairment were observed in adult BCa or adult BCaDOX rats, except for the low levels of the subunit α1 of the acetylcholine receptor in adult BCaDOX rats compared to adult ones. In contrast, old rats presented high serum levels of interleukin 6, brain-derived neurotrophic factor (BDNF) and calcitonin gene-related peptide compared to young rats. In the gastrocnemius muscle, BDNF levels were decreased in old rats compared to adult rats, suggesting impaired skeletal muscle regeneration upon age-induced damage. The BDNF muscle levels were inversely correlated with its levels in circulation in adult and old rats. Hence, this work highlights BDNF as a specific biomarker of age-induced skeletal muscle atrophy, at least, in the differential diagnosis against cancer- or cancer with chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal.
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Cláudia Sousa-Mendes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science-AL4AnimalS, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, 4200-319, Porto, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
5
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
6
|
Lamia SN, Davis CS, Macpherson PCD, Willingham TB, Zhang Y, Liu C, Iannucci L, Ganji E, Harden D, Bhattacharya I, Abraham AC, Brooks SV, Glancy B, Killian ML. Overexpression of enhanced yellow fluorescent protein fused with Channelrhodopsin-2 causes contractile dysfunction in skeletal muscle. FASEB J 2024; 38:e70185. [PMID: 39584396 PMCID: PMC11586894 DOI: 10.1096/fj.202401664rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2-EYFP (ChR2-EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2-EYFP skeletal muscle and introduced the ChR2-only mouse model that expresses light-responsive ChR2 without the fluorescent EYFP in their skeletal muscles. We found a significant reduction in the contractile ability of ChR2-EYFP muscles compared with ChR2-only and WT mice, observed under both electrical and optogenetic stimulation paradigms. Bulk RNAseq identified the downregulation of genes associated with transmembrane transport and metabolism in ChR2-EYFP muscle, while the ChR2-only muscle did not demonstrate any notable deviations from WT muscle. The RNAseq results were further corroborated by a reduced protein-level expression of ion channel-related HCN2 in ChR2-EYFP muscles and gluconeogenesis-modulating FBP2 in both ChR2-EYFP and ChR2-only muscles. Overall, this study reveals an intrinsic skeletal dysfunction in the widely used ChR2-EYFP mice model and underscores the importance of considering alternative optogenetic models, such as the ChR2-only, for future research in skeletal muscle optogenetics.
Collapse
Affiliation(s)
- Syeda N. Lamia
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
- School of MedicineWashington UniversitySt LouisMissouriUSA
| | - Carol S. Davis
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | | | - T. Brad Willingham
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yingfan Zhang
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Chengyu Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Leanne Iannucci
- Eunice Kennedy Shriver National Institute of Child Health and DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Elahe Ganji
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Desmond Harden
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | | | | | | | - Brian Glancy
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
- National Institute of Arthritis, Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Megan L. Killian
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
7
|
Traoré M, Noviello C, Vergnol A, Gentil C, Halliez M, Saillard L, Gelin M, Forand A, Lemaitre M, Guesmia Z, Cadot B, Caldas de Almeida Araujo E, Marty B, Mougenot N, Messéant J, Strochlic L, Sadoine J, Slimani L, Jolly A, De la Grange P, Hogrel JY, Pietri-Rouxel F, Falcone S. GDF5 as a rejuvenating treatment for age-related neuromuscular failure. Brain 2024; 147:3834-3848. [PMID: 38584513 DOI: 10.1093/brain/awae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human vastus lateralis muscle biopsies from adult young (21-42 years) and aged (77-80 years) donors, quantifying the molecular markers modified by GDF5 overexpression in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann cells. We established a preclinical study by treating chronically (for 4 months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 overexpression in the old tibialis anterior muscle promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000 µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 overexpression preserved neuromuscular junction morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of reinnervation-related genes, in particular markers of Schwann cells (fold-change 3.19 for S100b gene expression, P = 0.0101). To characterize the molecular events induced by GDF5 overexpression during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a 'rejuvenating' transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 overexpression (P < 0.05). Towards a preclinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17.8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing neuromuscular junction degeneration (7.96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-related alterations than those observed in mice and improved by GDF5 and reproduced its major effects on human cells, suggesting this treatment as efficient in humans. Overall, these data provide a foundation to examine the curative potential of GDF5 drug in clinical trials for sarcopenia and, eventually, other neuromuscular diseases.
Collapse
Affiliation(s)
- Massiré Traoré
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Chiara Noviello
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Amélie Vergnol
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Christel Gentil
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marius Halliez
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Lucile Saillard
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Maxime Gelin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Anne Forand
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Inovarion, F-75005 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Zoheir Guesmia
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Bruno Cadot
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Benjamin Marty
- Institut de Myologie, CEA, Laboratoire d'imagerie et de spectroscopie par RMN, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Julien Messéant
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Laure Strochlic
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Jeremy Sadoine
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Lofti Slimani
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Ariane Jolly
- GenoSplice, Paris Biotech Santé, F-75014 Paris, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Laboratoire de physiologie et d'évaluation neuromusculaire, F-75013 Paris, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
8
|
van Megen WH, de Baaij JHF, Churchill GA, Devuyst O, Hoenderop JGJ, Korstanje R. Genetic drivers of age-related changes in urinary magnesium excretion. Physiol Genomics 2024; 56:634-647. [PMID: 39037434 PMCID: PMC11460537 DOI: 10.1152/physiolgenomics.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Medical Biosciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
9
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
10
|
Matheny CJ, Qadota H, Bailey AO, Valdebenito-Silva S, Oberhauser AF, Benian GM. The myosin chaperone UNC-45 has an important role in maintaining the structure and function of muscle sarcomeres during adult aging. Mol Biol Cell 2024; 35:ar98. [PMID: 38809582 PMCID: PMC11244168 DOI: 10.1091/mbc.e23-12-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Aaron O. Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | | | - Andres F. Oberhauser
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77550
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
11
|
Camera A, Tabetah M, Castañeda V, Kim J, Galsinh AS, Haro-Vinueza A, Salinas I, Seylani A, Arif S, Das S, Mori MA, Carano A, de Oliveira LC, Muratani M, Barker R, Zaksas V, Goel C, Dimokidis E, Taylor DM, Jeong J, Overbey E, Meydan C, Porterfield DM, Díaz JE, Caicedo A, Schisler JC, Laiakis EC, Mason CE, Kim MS, Karouia F, Szewczyk NJ, Beheshti A. Aging and putative frailty biomarkers are altered by spaceflight. Sci Rep 2024; 14:13098. [PMID: 38862573 PMCID: PMC11166946 DOI: 10.1038/s41598-024-57948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/23/2024] [Indexed: 06/13/2024] Open
Abstract
Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.
Collapse
Affiliation(s)
- Andrea Camera
- Intitute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alissen Haro-Vinueza
- Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ivonne Salinas
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Allen Seylani
- Riverside-School of Medicine, University of California, Riverside, CA, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saswati Das
- Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anthony Carano
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19041, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Esteban Díaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evagelia C Laiakis
- Department of Oncology, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
12
|
Kerr HL, Krumm K, Anderson B, Christiani A, Strait L, Li T, Irwin B, Jiang S, Rybachok A, Chen A, Dacek E, Caeiro L, Merrihew GE, MacDonald JW, Bammler TK, MacCoss MJ, Garcia JM. Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics. J Clin Invest 2024; 134:e172890. [PMID: 39145448 PMCID: PMC11324300 DOI: 10.1172/jci172890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23-32 months old) and female (27-28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%-22% prevalence of sarcopenia was identified in 23-26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27-28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Haiming L. Kerr
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kora Krumm
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anthony Christiani
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lena Strait
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Theresa Li
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Brynn Irwin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siyi Jiang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Artur Rybachok
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amanda Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth Dacek
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
Moreira-Pais A, Vitorino R, Sousa-Mendes C, Neuparth MJ, Nuccio A, Luparello C, Attanzio A, Novák P, Loginov D, Nogueira-Ferreira R, Leite-Moreira A, Oliveira PA, Ferreira R, Duarte JA. Mitochondrial remodeling underlying age-induced skeletal muscle wasting: let's talk about sex. Free Radic Biol Med 2024; 218:68-81. [PMID: 38574975 DOI: 10.1016/j.freeradbiomed.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rui Vitorino
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal.
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Alessandro Nuccio
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| | - Dmitry Loginov
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| | - Rita Nogueira-Ferreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal.
| | - Adelino Leite-Moreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, 4200-319, Porto, Portugal.
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - José A Duarte
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
| |
Collapse
|
14
|
Foessl I, Ackert-Bicknell CL, Kague E, Laskou F, Jakob F, Karasik D, Obermayer-Pietsch B, Alonso N, Bjørnerem Å, Brandi ML, Busse B, Calado Â, Cebi AH, Christou M, Curran KM, Hald JD, Semeraro MD, Douni E, Duncan EL, Duran I, Formosa MM, Gabet Y, Ghatan S, Gkitakou A, Hassler EM, Högler W, Heino TJ, Hendrickx G, Khashayar P, Kiel DP, Koromani F, Langdahl B, Lopes P, Mäkitie O, Maurizi A, Medina-Gomez C, Ntzani E, Ohlsson C, Prijatelj V, Rabionet R, Reppe S, Rivadeneira F, Roshchupkin G, Sharma N, Søe K, Styrkarsdottir U, Szulc P, Teti A, Tobias J, Valjevac A, van de Peppel J, van der Eerden B, van Rietbergen B, Zekic T, Zillikens MC. A perspective on muscle phenotyping in musculoskeletal research. Trends Endocrinol Metab 2024; 35:478-489. [PMID: 38553405 DOI: 10.1016/j.tem.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 05/12/2024]
Abstract
Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.
Collapse
Affiliation(s)
- Ines Foessl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Erika Kague
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Franz Jakob
- Bernhard-Heine-Centrum für Bewegungsforschung und Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Würzburg, Germany
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
de Jong JCBC, Caspers MPM, Worms N, Keijzer N, Kleemann R, Menke AL, Nieuwenhuizen AG, Keijer J, Verschuren L, van den Hoek AM. Translatability of mouse muscle-aging for humans: the role of sex. GeroScience 2024; 46:3341-3360. [PMID: 38265577 PMCID: PMC11009184 DOI: 10.1007/s11357-024-01082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Muscle-aging drives sarcopenia and is a major public health issue. Mice are frequently used as a model for human muscle-aging, however, research investigating their translational value is limited. In addition, mechanisms underlying muscle-aging may have sex-specific features in humans, but it is not yet assessed whether these are recapitulated in mice. Here, we studied the effects of aging on a functional, histological and transcriptional level at multiple timepoints in male and female mice (4, 17, 21 and 25 months), with particular emphasis on sex-differences. The effects of natural aging on the transcriptome of quadriceps muscle were compared to humans on pathway level. Significant loss of muscle mass occurred late, at 25 months, in both male (-17%, quadriceps) and female mice (-10%, quadriceps) compared to young control mice. Concomitantly, we found in female, but not male mice, a slower movement speed in the aged groups compared to the young mice (P < 0.001). Consistently, weighted gene co-expression network analysis revealed a stronger association between the aging-related reduction of movement and aging-related changes in muscle transcriptome of female compared to male mice (P < 0.001). In male, but not female mice, major distinctive aging-related changes occurred in the last age group (25 months), which highlights the necessity for careful selection of age using mice as a muscle-aging model. Furthermore, contrasting to humans, more aging-related changes were found in the muscle transcriptome of male mice compared to female mice (4090 vs. 2285 differentially expressed genes at 25 months, respectively). Subsequently, male mice recapitulated more muscle-aging related pathways characteristic for both male and female humans. In conclusion, our data show that sex has a critical effect on the mouse muscle-aging trajectory, although these do not necessarily reflect sex differences observed in the human muscle-aging trajectory.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
16
|
Cefis M, Dargegen M, Marcangeli V, Taherkhani S, Dulac M, Leduc-Gaudet JP, Mayaki D, Hussain SNA, Gouspillou G. MFN2 overexpression in skeletal muscles of young and old mice causes a mild hypertrophy without altering mitochondrial respiration and H 2O 2 emission. Acta Physiol (Oxf) 2024; 240:e14119. [PMID: 38400630 DOI: 10.1111/apha.14119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
AIM Sarcopenia, the aging-related loss of muscle mass and function, is a debilitating process negatively impacting the quality of life of affected individuals. Although the mechanisms underlying sarcopenia are incompletely understood, impairments in mitochondrial dynamics, including mitochondrial fusion, have been proposed as a contributing factor. However, the potential of upregulating mitochondrial fusion proteins to alleviate the effects of aging on skeletal muscles remains unexplored. We therefore hypothesized that overexpressing Mitofusin 2 (MFN2) in skeletal muscle in vivo would mitigate the effects of aging on muscle mass and improve mitochondrial function. METHODS MFN2 was overexpressed in young (7 mo) and old (24 mo) male mice for 4 months through intramuscular injections of an adeno-associated viruses. The impacts of MFN2 overexpression on muscle mass and fiber size (histology), mitochondrial respiration, and H2O2 emission (Oroboros fluororespirometry), and various signaling pathways (qPCR and western blotting) were investigated. RESULTS MFN2 overexpression increased muscle mass and fiber size in both young and old mice. No sign of fibrosis, necrosis, or inflammation was found upon MFN2 overexpression, indicating that the hypertrophy triggered by MFN2 overexpression was not pathological. MFN2 overexpression even reduced the proportion of fibers with central nuclei in old muscles. Importantly, MFN2 overexpression had no impact on muscle mitochondrial respiration and H2O2 emission in both young and old mice. MFN2 overexpression attenuated the increase in markers of impaired autophagy in old muscles. CONCLUSION MFN2 overexpression may be a viable approach to mitigate aging-related muscle atrophy and may have applications for other muscle disorders.
Collapse
Affiliation(s)
- Marina Cefis
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Manon Dargegen
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Vincent Marcangeli
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Département des sciences biologiques, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Shima Taherkhani
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Département des sciences biologiques, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Maude Dulac
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Dominique Mayaki
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sabah N A Hussain
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
17
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
18
|
Habiballa L, Hruby A, Granic A, Dodds RM, Hillman SJ, Jurk D, Passos JF, Sayer AA. Determining the feasibility of characterising cellular senescence in human skeletal muscle and exploring associations with muscle morphology and physical function at different ages: findings from the MASS_Lifecourse Study. GeroScience 2024; 46:1141-1158. [PMID: 37434081 PMCID: PMC10828484 DOI: 10.1007/s11357-023-00869-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular senescence may be associated with morphological changes in skeletal muscle and changes in physical function with age although there have been few human studies. We aimed to determine the feasibility of characterising cellular senescence in skeletal muscle and explored sex-specific associations between markers of cellular senescence, muscle morphology, and physical function in participants from the MASS_Lifecourse Study. Senescence markers (p16, TAF (Telomere-Associated DNA Damage Foci), HMGB1 (High Mobility Group Box 1), and Lamin B1) and morphological characteristics (fibre size, number, fibrosis, and centrally nucleated fibres) were assessed in muscle biopsies from 40 men and women (age range 47-84) using spatially-resolved methods (immunohistochemistry, immunofluorescence, and RNA and fluorescence in situ hybridisation). The associations between senescence, morphology, and physical function (muscle strength, mass, and physical performance) at different ages were explored. We found that most senescence markers and morphological characteristics were weakly associated with age in men but more strongly, although non-significantly, associated with age in women. Associations between senescence markers, morphology, and physical function were also stronger in women for HMGB1 and grip strength (r = 0.52); TAF, BMI, and muscle mass (r > 0.4); Lamin B1 and fibrosis (r = - 0.5); fibre size and muscle mass (r ≥ 0.4); and gait speed (r = - 0.5). However, these associations were non-significant. In conclusion, we have demonstrated that it is feasible to characterise cellular senescence in human skeletal muscle and to explore associations with morphology and physical function in women and men of different ages. The findings require replication in larger studies.
Collapse
Affiliation(s)
- Leena Habiballa
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Adam Hruby
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- University of Southern California, Los Angeles, CA, USA
| | - Antoneta Granic
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| | - Richard M Dodds
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susan J Hillman
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Diana Jurk
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Avan A Sayer
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
19
|
Barsky ST, Monks DA. Lifespan Effects of Muscle-Specific Androgen Receptor Overexpression on Body Composition of Male and Female Rats. Endocrinology 2024; 165:bqae012. [PMID: 38301268 DOI: 10.1210/endocr/bqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
20
|
Huang W, Bates R, Zou X, Queen NJ, Mo X, Arnold WD, Ray A, Owendoff G, Cao L. Environmental Enrichment Improves Motor Function and Muscle Transcriptome of Aged Mice. Adv Biol (Weinh) 2024; 8:e2300148. [PMID: 37518850 PMCID: PMC10825065 DOI: 10.1002/adbi.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Aging results in the progressive decline of muscle strength. Interventions to maintain muscle strength may mitigate the age-related loss of physical function, thus maximizing health span. The work on environmental enrichment (EE), an experimental paradigm recapitulating aspects of an active lifestyle, has revealed EE-induced metabolic benefits mediated by a brain-fat axis across the lifespan of mice. EE initiated at 18-month of age shows a trend toward an increased mean lifespan. While previous work described EE's influences on the aging dynamics of several central-peripheral processes, its influence on muscle remained understudied. Here, the impact of EE is investigated on motor function, neuromuscular physiology, and the skeletal muscle transcriptome. EE is initiated in 20-month-old mice for a five-month period. EE mice exhibit greater relative lean mass that is associated with improved mobility and hindlimb grip strength. Transcriptomic profiling of muscle tissue reveals an EE-associated enrichment of gene expression within several metabolic pathways related to oxidative phosphorylation and the TCA cycle. Many mitochondrial-related genes-several of which participate in the electron transport chain-are upregulated. Stress-responsive signaling pathways are downregulated because of EE. The results suggest that EE improves motor function-possibly through preservation of mitochondrial function-even late in life.
Collapse
Affiliation(s)
- Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rhiannon Bates
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - W. David Arnold
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alissa Ray
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory Owendoff
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
21
|
de Smalen LM, Börsch A, Leuchtmann AB, Gill JF, Ritz D, Zavolan M, Handschin C. Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proc Natl Acad Sci U S A 2023; 120:e2302360120. [PMID: 37639610 PMCID: PMC10483666 DOI: 10.1073/pnas.2302360120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.
Collapse
Affiliation(s)
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, BaselCH-4056, Switzerland
| | | | | |
Collapse
|
22
|
Vintila AR, Slade L, Cooke M, Willis CRG, Torregrossa R, Rahman M, Anupom T, Vanapalli SA, Gaffney CJ, Gharahdaghi N, Szabo C, Szewczyk NJ, Whiteman M, Etheridge T. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216141120. [PMID: 37523525 PMCID: PMC10410709 DOI: 10.1073/pnas.2216141120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.
Collapse
Affiliation(s)
- Adriana Raluca Vintila
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Luke Slade
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Michael Cooke
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, BradfordBD7 1DP, United Kingdom
| | - Roberta Torregrossa
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX74909
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Christopher J. Gaffney
- Lancaster University Medical School, Lancaster University, LancasterLA1 4YW, United Kingdom
| | - Nima Gharahdaghi
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, FribourgCH-1700, Switzerland
| | - Nathaniel J. Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH45701
| | - Matthew Whiteman
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| |
Collapse
|
23
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, Stec MJ, Negron N, Ni M, Wei Y, Atwal GS, Bai Y, Glass DJ. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle 2023; 13:11. [PMID: 37438807 DOI: 10.1186/s13395-023-00321-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models. METHODS AND RESULTS To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse. CONCLUSIONS This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kun Xiong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shawn Mishra
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corissa McEwen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Abhilash Gadi
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew Wakai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Hunter Salmon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Michael J Stec
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Nicole Negron
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David J Glass
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
25
|
de Jong JCBC, Caspers MPM, Keijzer N, Worms N, Attema J, de Ruiter C, Lek S, Nieuwenhuizen AG, Keijer J, Menke AL, Kleemann R, Verschuren L, van den Hoek AM. Caloric Restriction Combined with Immobilization as Translational Model for Sarcopenia Expressing Key-Pathways of Human Pathology. Aging Dis 2023; 14:937-957. [PMID: 37191430 DOI: 10.14336/ad.2022.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 05/17/2023] Open
Abstract
The prevalence of sarcopenia is increasing while it is often challenging, expensive and time-consuming to test the effectiveness of interventions against sarcopenia. Translational mouse models that adequately mimic underlying physiological pathways could accelerate research but are scarce. Here, we investigated the translational value of three potential mouse models for sarcopenia, namely partial immobilized (to mimic sedentary lifestyle), caloric restricted (CR; to mimic malnutrition) and a combination (immobilized & CR) model. C57BL/6J mice were calorically restricted (-40%) and/or one hindleg was immobilized for two weeks to induce loss of muscle mass and function. Muscle parameters were compared to those of young control (4 months) and old reference mice (21 months). Transcriptome analysis of quadriceps muscle was performed to identify underlying pathways and were compared with those being expressed in aged human vastus lateralis muscle-biopsies using a meta-analysis of five different human studies. Caloric restriction induced overall loss of lean body mass (-15%, p<0.001), whereas immobilization decreased muscle strength (-28%, p<0.001) and muscle mass of hindleg muscles specifically (on average -25%, p<0.001). The proportion of slow myofibers increased with aging in mice (+5%, p<0.05), and this was not recapitulated by the CR and/or immobilization models. The diameter of fast myofibers decreased with aging (-7%, p<0.05), and this was mimicked by all models. Transcriptome analysis revealed that the combination of CR and immobilization recapitulated more pathways characteristic for human muscle-aging (73%) than naturally aged (21 months old) mice (45%). In conclusion, the combination model exhibits loss of both muscle mass (due to CR) and function (due to immobilization) and has a remarkable similarity with pathways underlying human sarcopenia. These findings underline that external factors such as sedentary behavior and malnutrition are key elements of a translational mouse model and favor the combination model as a rapid model for testing the treatments against sarcopenia.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
26
|
Liu N, Butcher JT, Nakano A, del Campo A. Changes in macrophage immunometabolism as a marker of skeletal muscle dysfunction across the lifespan. Aging (Albany NY) 2023; 15:4035-4050. [PMID: 37244285 PMCID: PMC10258037 DOI: 10.18632/aging.204750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
One of the most pronounced changes in the elderly is loss of strength and mobility due to the decline of skeletal muscle function, resulting in a multifactorial condition termed sarcopenia. Although significant clinical changes begin to manifest at advanced ages, recent studies have shown that changes at the cellular and molecular level precede the symptomatology of sarcopenia. By utilizing a single-cell transcriptomic atlas of mouse skeletal muscle across the lifespan, we identified a clear sign of immune senescence that presents during middle age. More importantly, the change in macrophage phenotype in middle age may explain the changes in extracellular matrix composition, especially collagen synthesis, that contributes to fibrosis and overall muscle weakness with advanced age. Our results show a novel paradigm whereby skeletal muscle dysfunction is driven by alterations in tissue-resident macrophages before the appearance of clinical symptoms in middle-aged mice, providing a new therapeutic approach via regulation of immunometabolism.
Collapse
Affiliation(s)
- Norika Liu
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Atsushi Nakano
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergetica Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| |
Collapse
|
27
|
Liang S, Liu D, Xiao Z, Greenbaum J, Shen H, Xiao H, Deng H. Repurposing Approved Drugs for Sarcopenia Based on Transcriptomics Data in Humans. Pharmaceuticals (Basel) 2023; 16:ph16040607. [PMID: 37111364 PMCID: PMC10145476 DOI: 10.3390/ph16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia, characterized by age-related loss of muscle mass, strength, and decreased physical performance, is a growing public health challenge amid the rapidly ageing population. As there are no approved drugs that target sarcopenia, it has become increasingly urgent to identify promising pharmacological interventions. In this study, we conducted an integrative drug repurposing analysis utilizing three distinct approaches. Firstly, we analyzed skeletal muscle transcriptomic sequencing data in humans and mice using gene differential expression analysis, weighted gene co-expression analysis, and gene set enrichment analysis. Subsequently, we employed gene expression profile similarity assessment, hub gene expression reversal, and disease-related pathway enrichment to identify and repurpose candidate drugs, followed by the integration of findings with rank aggregation algorithms. Vorinostat, the top-ranking drug, was also validated in an in vitro study, which demonstrated its efficacy in promoting muscle fiber formation. Although still requiring further validation in animal models and human clinical trials, these results suggest a promising drug repurposing prospect in the treatment and prevention of sarcopenia.
Collapse
Affiliation(s)
- Shuang Liang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Danyang Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410013, China
| | - Zhengwu Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| |
Collapse
|
28
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
29
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
30
|
Branched-Chain Amino Acids and Di-Alanine Supplementation in Aged Mice: A Translational Study on Sarcopenia. Nutrients 2023; 15:nu15020330. [PMID: 36678201 PMCID: PMC9861351 DOI: 10.3390/nu15020330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In age-related sarcopenia, the gradual loss of skeletal muscle mass, function and strength is underpinned by an imbalanced rate of protein synthesis/breakdown. Hence, an adequate protein intake is considered a valuable strategy to mitigate sarcopenia. Here, we investigated the effects of a 12-week oral supplementation with branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) with recognized anabolic properties, in 17-month-old (AGED) C57BL/6J male mice. BCAAs (2:1:1) were formulated in drinking water, alone or plus two L-Alanine equivalents (2ALA) or dipeptide L-Alanyl-L-Alanine (Di-ALA) to boost BCAAs bioavailability. Outcomes were evaluated on in/ex vivo readouts vs. 6-month-old (ADULT) mice. In vivo hind limb plantar flexor torque was improved in AGED mice treated with BCAAs + Di-ALA or 2ALA (recovery score, R.S., towards ADULT: ≥20%), and all mixtures significantly increased hind limb volume. Ex vivo, myofiber cross-sectional areas were higher in gastrocnemius (GC) and soleus (SOL) muscles from treated mice (R.S. ≥ 69%). Contractile indices of isolated muscles were improved by the mixtures, especially in SOL muscle (R.S. ≥ 20%). The latter displayed higher mTOR protein levels in mice supplemented with 2ALA/Di-ALA-enriched mixtures (R.S. ≥ 65%). Overall, these findings support the usefulness of BCAAs-based supplements in sarcopenia, particularly as innovative formulations potentiating BCAAs bioavailability and effects.
Collapse
|
31
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
32
|
Peng Z, Zhang R, Kuang X, Yu C, Niu S, Du Y, Lu D, Li S, Teng Z, Lu S. Single-cell RNA-seq reveals interferon-induced guanylate-binding proteins are linked with sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2985-2998. [PMID: 36162807 PMCID: PMC9745549 DOI: 10.1002/jcsm.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2021] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcopenia is defined as an age-related progressive loss of muscle mass and/or strength. Although different factors can contribute to this disease, the underlying mechanisms remain unclear. We assessed transcriptional heterogeneity in skeletal muscles from sarcopenic and control mice at single-cell resolution. METHODS A mouse model was established to study sarcopenic skeletal muscles. Single-cell RNA-seq was performed on tibialis anterior (TA) muscle cells collected from sarcopenic and control mice. A series of bioinformatic analyses were carried out to identify and compare different cell types under different conditions. Immunofluorescence staining and western blotting were used to validate the findings from single-cell experiments. Tube formation assays were conducted to further evaluate the effects of Gbp2 on endothelial cells during angiogenesis. RESULTS A murine sarcopenia model was successfully established using a senescence-accelerated mouse strain (SAMP6, n = 5). Sarcopenia phenotype was induced by administration of dexamethasone (20 mg/kg) and reduced physical activity. Senescence-resistant mice strain (SAMR1) and SAMP6 strain with similar activity but injected with PBS were recruited as two control groups. As signs of sarcopenia, body weight, muscle cell counts and cross-sectional fibre area were all significantly decreased in sarcopenic mice (P value = 0.004, 0.03 and 0.035, respectively). After quality control, 13 612 TA muscle single-cell transcriptomes were retained for analysis. Fourteen cell clusters were identified from the profiled cells. Among them, two distinct endothelial subtypes were found to be dominant in the sarcopenia group (42.2% cells) and in the two control groups (59.1% and 47.9% cells), respectively. 191 differentially expressed genes were detected between the two endothelial subtypes. Sarcopenia-specific endothelial cell subtype exhibited a dramatic increase in the interferon family genes and the interferon-inducible guanylate-binding protein (GBP) family gene expressions. For example, Igtp and Gbp2 in sarcopenic endothelial cells were 5.4 and 13.3 times higher than those in the control groups, respectively. We further validated our findings in muscle specimens of sarcopenia patients and observed that GBP2 levels were increased in endothelial cells of a subset of patients (11 of 40 patients, 27.5%), and we identified significantly higher CD31 and GBP2 co-localization (P value = 0.001128). Finally, we overexpressed Gbp2 in human umbilical vein endothelial cells in vitro. The endothelial cells with elevated Gbp2 expression displayed compromised tube formation. CONCLUSIONS Our single-cell-based results suggested that endothelial cells may play critical roles in sarcopenia development through interferon-GBP signalling pathways, highlighting new therapeutic directions to slow down or even reverse age-related sarcopenia.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Orthopedic Surgerythe First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, the Key Laboratory of Digital Orthopaedics of Yunnan ProvincialKunmingYunnanChina
| | - Ruoyu Zhang
- InnoVec Biotherapeutics Co., LtdBeijingChina
| | - Xiaolin Kuang
- the First Department of Hepatic Diseasesthe Third People's Hospital of Kunming CityKunmingYunnanChina
| | - Chen Yu
- Graduate School of Kunming Medical UniversityKunmingYunnanChina
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation CenterKunming Medical UniversityKunmingYunnanChina
| | - Yongjun Du
- Department of Orthopedic Surgerythe First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, the Key Laboratory of Digital Orthopaedics of Yunnan ProvincialKunmingYunnanChina
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation CenterKunming Medical UniversityKunmingYunnanChina
| | - Shaobo Li
- Department of Spinal Surgerythe First Affiliated Hospital of Dali University (School of Clinical Medicine)DaliYunnanChina
| | - Zhaowei Teng
- Department of Orthopedic Surgerythe First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, the Key Laboratory of Digital Orthopaedics of Yunnan ProvincialKunmingYunnanChina
| | - Sheng Lu
- Department of Orthopedic Surgerythe First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, the Key Laboratory of Digital Orthopaedics of Yunnan ProvincialKunmingYunnanChina
| |
Collapse
|
33
|
Laurila PP, Wohlwend M, Imamura de Lima T, Luan P, Herzig S, Zanou N, Crisol B, Bou-Sleiman M, Porcu E, Gallart-Ayala H, Handzlik MK, Wang Q, Jain S, D'Amico D, Salonen M, Metallo CM, Kutalik Z, Eichmann TO, Place N, Ivanisevic J, Lahti J, Eriksson JG, Auwerx J. Sphingolipids accumulate in aged muscle, and their reduction counteracts sarcopenia. NATURE AGING 2022; 2:1159-1175. [PMID: 37118545 DOI: 10.1038/s43587-022-00309-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/07/2022] [Indexed: 04/30/2023]
Abstract
Age-related muscle dysfunction and sarcopenia are major causes of physical incapacitation in older adults and currently lack viable treatment strategies. Here we find that sphingolipids accumulate in mouse skeletal muscle upon aging and that both genetic and pharmacological inhibition of sphingolipid synthesis prevent age-related decline in muscle mass while enhancing strength and exercise capacity. Inhibition of sphingolipid synthesis confers increased myogenic potential and promotes protein synthesis. Within the sphingolipid pathway, we show that accumulation of dihydroceramides is the culprit disturbing myofibrillar homeostasis. The relevance of sphingolipid pathways in human aging is demonstrated in two cohorts, the UK Biobank and Helsinki Birth Cohort Study in which gene expression-reducing variants of SPTLC1 and DEGS1 are associated with improved and reduced fitness of older individuals, respectively. These findings identify sphingolipid synthesis inhibition as an attractive therapeutic strategy for age-related sarcopenia and co-occurring pathologies.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sébastien Herzig
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suresh Jain
- Intonation Research Laboratories, Secunderabad, India
| | - Davide D'Amico
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Minna Salonen
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
34
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
36
|
Hernández-Camacho JD, Fernández-Ayala DJM, Vicente-García C, Navas-Enamorado I, López-Lluch G, Oliva C, Artuch R, Garcia-Villoria J, Ribes A, de Cabo R, Carvajal JJ, Navas P. Calorie Restriction Rescues Mitochondrial Dysfunction in Adck2-Deficient Skeletal Muscle. Front Physiol 2022; 13:898792. [PMID: 35936917 PMCID: PMC9351392 DOI: 10.3389/fphys.2022.898792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.
Collapse
Affiliation(s)
- Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel J. M. Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- Atsena Therapeutics, Durham, NC, United States
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Oliva
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judith Garcia-Villoria
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Inborn Errors of Metabolism Section, Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain
| | - Antonia Ribes
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Inborn Errors of Metabolism Section, Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Jaime J. Carvajal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Plácido Navas,
| |
Collapse
|
37
|
Liu Y, Senatore A, Sorce S, Nuvolone M, Guo J, Gümüş ZH, Aguzzi A. Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions. Commun Biol 2022; 5:557. [PMID: 35676449 PMCID: PMC9177860 DOI: 10.1038/s42003-022-03496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.
Collapse
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nat Commun 2022; 13:2025. [PMID: 35440545 PMCID: PMC9018781 DOI: 10.1038/s41467-022-29714-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making “CR mimetics” of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging. The anti-aging intervention calorie restriction (CR) is thought to act via the nutrient-sensing multiprotein complex mTORC1. Here the authors show that the mTORC1-inhibitor rapamycin and CR use largely distinct mechanisms to slow mouse muscle aging.
Collapse
|
39
|
Staunton CA, Owen ED, Hemmings K, Vasilaki A, McArdle A, Barrett-Jolley R, Jackson MJ. Skeletal muscle transcriptomics identifies common pathways in nerve crush injury and ageing. Skelet Muscle 2022; 12:3. [PMID: 35093178 PMCID: PMC8800362 DOI: 10.1186/s13395-021-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Motor unit remodelling involving repeated denervation and re-innervation occurs throughout life. The efficiency of this process declines with age contributing to neuromuscular deficits. This study investigated differentially expressed genes (DEG) in muscle following peroneal nerve crush to model motor unit remodelling in C57BL/6 J mice. Muscle RNA was isolated at 3 days post-crush, RNA libraries were generated using poly-A selection, sequenced and analysed using gene ontology and pathway tools. Three hundred thirty-four DEG were found in quiescent muscle from (26mnth) old compared with (4-6mnth) adult mice and these same DEG were present in muscle from adult mice following nerve crush. Peroneal crush induced 7133 DEG in muscles of adult and 699 DEG in muscles from old mice, although only one DEG (ZCCHC17) was found when directly comparing nerve-crushed muscles from old and adult mice. This analysis revealed key differences in muscle responses which may underlie the diminished ability of old mice to repair following nerve injury.
Collapse
Affiliation(s)
- C A Staunton
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - E D Owen
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - K Hemmings
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A Vasilaki
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A McArdle
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - R Barrett-Jolley
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - M J Jackson
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
40
|
Kang YK, Min B, Eom J, Park JS. Different phases of aging in mouse old skeletal muscle. Aging (Albany NY) 2022; 14:143-160. [PMID: 35017317 PMCID: PMC8791220 DOI: 10.18632/aging.203812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
With a graying population and increasing longevity, it is essential to identify life transition in later years and discern heterogeneity among older people. Subclassifying the elderly population to inspect the subdivisions for pathophysiological differences is particularly important for the investigation of age-related illnesses. For this purpose, using 24- and 28-month-old mice to represent the "young-old" and "old-old", respectively, we compared their skeletal muscle transcriptomes and found each in a distinct stage: early/gradual (E-aging) and late/accelerated aging phase (L-aging). Principal component analysis showed that the old-old transcriptomes were largely disengaged from the forward transcriptomic trajectory generated in the younger-aged group, indicating a substantial change in gene expression profiles during L-aging. By calculating the transcriptomic distance, it was found that the 28-month group was closer to the two-month group than to the 24-month group. The divergence rate per month for the transcriptomes was the highest in L-aging, twice as fast as the rate in E-aging. Indeed, many of the L-aging genes were significantly altered in transcription, although the changes did not seem random but rather coordinated in a variety of functional gene sets. Of 2,707 genes transcriptionally altered during E-aging, two-thirds were also significantly changed during L-aging, to either downturning or upturning way. The downturn genes were related to mitochondrial function and translational gene sets, while the upturn genes were linked to inflammation-associated gene sets. Our results provide a transcriptomic muscle signature that distinguishes old-old mice from young-old mice. This can help to methodically examine muscle disorders in the elderly.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-Gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34113, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-Gu, Daejeon 34141, South Korea
| | - Jaemin Eom
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-Gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34113, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Yuseong-Gu, Daejeon 34141, South Korea
| |
Collapse
|
41
|
Liu D, Fan YB, Tao XH, Pan WL, Wu YX, Wang XH, He YQ, Xiao WF, Li YS. Mitochondrial Quality Control in Sarcopenia: Updated Overview of Mechanisms and Interventions. Aging Dis 2021; 12:2016-2030. [PMID: 34881083 PMCID: PMC8612607 DOI: 10.14336/ad.2021.0427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is a common geriatric disorder characterized by decreased muscle strength, low muscle mass and poor physical performance. This aging-related skeletal muscle deterioration leads to adverse outcomes and severely impairs the quality of life of patients. The accumulation of dysfunctional mitochondria with aging is an important factor in the occurrence and progression of sarcopenia. Mitochondrial quality control (MQC) fundamentally ensures the normal mitochondrial functions and is comprised of four main parts: proteostasis, biogenesis, dynamics and autophagy. Therefore, any pathophysiologic factors compromising the quality control of homeostasis in the skeletal muscle may lead to sarcopenia. However, the specific theoretical aspects of these processes have not been fully elucidated. Current therapeutic interventions using nutritional and pharmaceutical treatments show a modest therapeutic efficacy; however, only physical exercise is recommended as the first-line therapy for sarcopenia, which can ameliorate skeletal muscle deficiency by maintaining the homeostatic MQC. In this review, we summarized the known mechanisms that contribute to the pathogenesis of sarcopenia by impairing normal mitochondrial functions and described potential interventions that mitigate sarcopenia through improving MQC.
Collapse
Affiliation(s)
- Di Liu
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi-Bin Fan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Hua Tao
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Wei-Li Pan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Xiang Wu
- 3School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Xiu-Hua Wang
- 4Xiang Ya Nursing School, The Central South University, Changsha 410013, China
| | - Yu-Qiong He
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu-Sheng Li
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
42
|
Englund DA, Zhang X, Aversa Z, LeBrasseur NK. Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech Ageing Dev 2021; 200:111595. [PMID: 34742751 PMCID: PMC8627455 DOI: 10.1016/j.mad.2021.111595] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Cellular senescence is a state of cell cycle arrest induced by several forms of metabolic stress. Senescent cells accumulate with advancing age and have a distinctive phenotype, characterized by profound chromatin alterations and a robust senescence-associated secretory phenotype (SASP) that exerts negative effects on tissue health, both locally and systemically. In preclinical models, pharmacological agents that eliminate senescent cells (senotherapeutics) restore health and youthful properties in multiple tissues. To date, however, very little is understood about the vulnerability of terminally-differentiated skeletal muscle fibers and the resident mononuclear cells that populate the interstitial microenvironment of skeletal muscle to senescence, and their contribution to the onset and progression of skeletal muscle loss and dysfunction with aging. Scientific advances in these areas have the potential to highlight new therapeutic approaches to optimize late-life muscle health. To this end, this review highlights the current evidence and the key questions that need to be addressed to advance the field's understanding of cellular senescence as a mediator of skeletal muscle aging and the potential for emerging senescent cell-targeting therapies to counter age-related deficits in muscle mass, strength, and function. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Davis A Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Rivas DA, Peng F, Benard T, Ramos da Silva AS, Fielding RA, Margolis LM. miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. Am J Physiol Cell Physiol 2021; 321:C977-C991. [PMID: 34705586 PMCID: PMC8714992 DOI: 10.1152/ajpcell.00190.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic pathways is a potential mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6-mo progressive resistance exercise training intervention (PRET) and determine the influence of differentially expressing miRNA on regulation of skeletal muscle mass. Participants were dichotomized by gain (Gainers; mean +561.4 g, n = 33) or loss (Losers; mean −589.8 g, n = 40) of leg lean mass after PRET. Gainers significantly increased fat-free mass 2.4% vs. −0.4% for Losers. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were significantly identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. Using an aging mouse model, we then assessed if miR-19b-3p expression was different in young mice with larger muscle mass compared with older mice. Circulating and skeletal muscle miR-19b-3p expression was higher in young compared with old mice and was positively associated with muscle mass and grip strength. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN by 64% to facilitate significant ∼50% increase in muscle protein synthetic rate as measured with SUnSET. The combine results of these three models identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Fei Peng
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Townsend Benard
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Adelino Sanchez Ramos da Silva
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Lee M Margolis
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
44
|
Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype. Front Aging Neurosci 2021; 13:697621. [PMID: 34408644 PMCID: PMC8365336 DOI: 10.3389/fnagi.2021.697621] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
45
|
Tokarz J, Möller G, Artati A, Huber S, Zeigerer A, Blaauw B, Adamski J, Dyar KA. Common Muscle Metabolic Signatures Highlight Arginine and Lysine Metabolism as Potential Therapeutic Targets to Combat Unhealthy Aging. Int J Mol Sci 2021; 22:ijms22157958. [PMID: 34360722 PMCID: PMC8348621 DOI: 10.3390/ijms22157958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Biological aging research is expected to reveal modifiable molecular mechanisms that can be harnessed to slow or possibly reverse unhealthy trajectories. However, there is first an urgent need to define consensus molecular markers of healthy and unhealthy aging. Established aging hallmarks are all linked to metabolism, and a ‘rewired’ metabolic circuitry has been shown to accelerate or delay biological aging. To identify metabolic signatures distinguishing healthy from unhealthy aging trajectories, we performed nontargeted metabolomics on skeletal muscles from 2-month-old and 21-month-old mice, and after dietary and lifestyle interventions known to impact biological aging. We hypothesized that common metabolic signatures would highlight specific pathways and processes promoting healthy aging, while revealing the molecular underpinnings of unhealthy aging. Here, we report 50 metabolites that commonly distinguished aging trajectories in all cohorts, including 18 commonly reduced under unhealthy aging and 32 increased. We stratified these metabolites according to known relationships with various aging hallmarks and found the greatest associations with oxidative stress and nutrient sensing. Collectively, our data suggest interventions aimed at maintaining skeletal muscle arginine and lysine may be useful therapeutic strategies to minimize biological aging and maintain skeletal muscle health, function, and regenerative capacity in old age.
Collapse
Affiliation(s)
- Janina Tokarz
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Möller
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Simone Huber
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy;
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Kenneth Allen Dyar
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Correspondence:
| |
Collapse
|
46
|
Solovyeva EM, Ibebunjo C, Utzinger S, Eash JK, Dunbar A, Naumann U, Zhang Y, Serluca FC, Demirci S, Oberhauser B, Black F, Rausch M, Hoersch S, Meyer AS. New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mech Ageing Dev 2021; 197:111510. [PMID: 34019916 DOI: 10.1016/j.mad.2021.111510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- NIBR Informatics, 4056, Basel, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | | | - Stephan Utzinger
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | - John K Eash
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | - Andrew Dunbar
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | - Ulrike Naumann
- NIBR, Chemical Biology & Therapeutics, 4056, Basel, Switzerland
| | - Yunyu Zhang
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | | | - Sabrina Demirci
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | | | - Frederique Black
- NIBR, Cardiovascular & Metabolic Diseases, Cambridge, MA02139, USA
| | - Martin Rausch
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | | | - Angelika S Meyer
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland.
| |
Collapse
|
47
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
48
|
Börsch A, Ham DJ, Mittal N, Tintignac LA, Migliavacca E, Feige JN, Rüegg MA, Zavolan M. Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia. Commun Biol 2021; 4:194. [PMID: 33580198 PMCID: PMC7881157 DOI: 10.1038/s42003-021-01723-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, affects 5-13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.
Collapse
Affiliation(s)
- Anastasiya Börsch
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lionel A Tintignac
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | | | - Jérôme N Feige
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
49
|
Börsch A, Zavolan M. Transcription factor motif activity as a biomarker of muscle aging. AMERICAN JOURNAL OF AGING SCIENCE AND RESEARCH 2021; 2:19-23. [PMID: 35083472 PMCID: PMC7612261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In prior work, we analyzed gene expression profiles of mouse, rat and human gastrocnemius muscles to identify conserved regulators of muscle aging processes. By further comparing data obtained from different muscles we found stronger conservation of aging-related factors at the level of molecular pathways than at the level of individual genes. Here we compared the predictive power of models based on gene expression levels and those based on transcription factor motif activities for an individual's age. Although somewhat less accurate than models based on gene expression, models based on motif activities achieve good prediction of muscle age, further providing insights into aging-related molecular pathways.
Collapse
|