1
|
Ma L, Weissenbacher-Lang C, Latinne A, Babb-Biernacki S, Blasi B, Cissé OH, Kovacs JA. Evolving spectrum of Pneumocystis host specificity, genetic diversity, and evolution. FEMS Microbiol Rev 2025; 49:fuaf006. [PMID: 39971735 PMCID: PMC11916894 DOI: 10.1093/femsre/fuaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
Following over a century's worth of research, our understanding of Pneumocystis has significantly expanded in various facets, spanning from its fundamental biology to its impacts on animal and human health. Its significance in public health has been underscored by its inclusion in the 2022 WHO fungal priority pathogens list. We present this review to summarize pivotal advancements in Pneumocystis epidemiology, host specificity, genetic diversity and evolution. Following a concise discussion of Pneumocystis species classification and divergence at the species and strain levels, we devoted the main focus to the following aspects: the epidemiological characteristics of Pneumocystis across nearly 260 mammal species, the increasing recognition of coinfection involving multiple Pneumocystis species in the same host species, the diminishing host specificity of Pneumocystis among closely related host species, and the intriguingly discordant evolution of certain Pneumocystis species with their host species. A comprehensive understanding of host specificity, genetic diversity, and evolution of Pneumocystis can provide important insights into pathogenic mechanisms and transmission modes. This, in turn, holds the potential to facilitate the development of innovative strategies for the prevention and control of Pneumocystis infection.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christiane Weissenbacher-Lang
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Alice Latinne
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | | | - Barbara Blasi
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Sassi M, Curran SJ, Bishop LR, Liu Y, Kovacs JA. CD40 Expression by B Cells Is Required for Optimal Immunity to Murine Pneumocystis Infection. J Infect Dis 2024; 230:1033-1041. [PMID: 38478734 PMCID: PMC11481328 DOI: 10.1093/infdis/jiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
CD40-CD40 ligand interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and quantitative polymerase chain reaction, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell-depleted splenocytes and unstimulated bone marrow-derived dendritic cells were unable to control infection in CD40 knockout mice. Pneumocystis antigen-pulsed bone marrow-derived dendritic cells showed early but limited control of infection. Additional findings were consistent with recent studies that suggested a role for antigen presentation by B cells; specifically, by using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Collapse
Affiliation(s)
- Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Shelly J Curran
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Nev OA, Zamaraeva E, De Oliveira R, Ryzhkov I, Duvenage L, Abou-Jaoudé W, Ouattara DA, Hoving JC, Gudelj I, Brown AJP. Metabolic modelling as a powerful tool to identify critical components of Pneumocystis growth medium. PLoS Comput Biol 2024; 20:e1012545. [PMID: 39466836 PMCID: PMC11542897 DOI: 10.1371/journal.pcbi.1012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Establishing suitable in vitro culture conditions for microorganisms is crucial for dissecting their biology and empowering potential applications. However, a significant number of bacterial and fungal species, including Pneumocystis jirovecii, remain unculturable, hampering research efforts. P. jirovecii is a deadly pathogen of humans that causes life-threatening pneumonia in immunocompromised individuals and transplant patients. Despite the major impact of Pneumocystis on human health, limited progress has been made in dissecting the pathobiology of this fungus. This is largely due to the fact that its experimental dissection has been constrained by the inability to culture the organism in vitro. We present a comprehensive in silico genome-scale metabolic model of Pneumocystis growth and metabolism, to identify metabolic requirements and imbalances that hinder growth in vitro. We utilise recently published genome data and available information in the literature as well as bioinformatics and software tools to develop and validate the model. In addition, we employ relaxed Flux Balance Analysis and Reinforcement Learning approaches to make predictions regarding metabolic fluxes and to identify critical components of the Pneumocystis growth medium. Our findings offer insights into the biology of Pneumocystis and provide a novel strategy to overcome the longstanding challenge of culturing this pathogen in vitro.
Collapse
Affiliation(s)
- Olga A. Nev
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Elena Zamaraeva
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM)
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Jennifer Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM)
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ivana Gudelj
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Nev OA, David-Palma M, Heitman J, Brown AJP, Coelho MA. Fungal pathogens and symbionts: Living off the fat of the land. PLoS Pathog 2024; 20:e1012551. [PMID: 39325846 PMCID: PMC11426481 DOI: 10.1371/journal.ppat.1012551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Affiliation(s)
- Olga A. Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis. PLoS Biol 2024; 22:e3002682. [PMID: 38843310 PMCID: PMC11185503 DOI: 10.1371/journal.pbio.3002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024] Open
Abstract
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sage McGinley-Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arman W. Mohammad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
7
|
Ma L, Lin I, Hunter ST, Blasi B, Danesi P, Weissenbacher-Lang C, Cisse OH, Rothenburger JL, Kovacs JA. Development of Highly Efficient Universal Pneumocystis Primers and Their Application in Investigating the Prevalence and Genetic Diversity of Pneumocystis in Wild Hares and Rabbits. J Fungi (Basel) 2024; 10:355. [PMID: 38786710 PMCID: PMC11121927 DOI: 10.3390/jof10050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Despite its ubiquitous infectivity to mammals with strong host specificity, our current knowledge about Pneumocystis has originated from studies of merely 4% of extant mammalian species. Further studies of Pneumocystis epidemiology across a broader range of animal species require the use of assays with high sensitivity and specificity. To this end, we have developed multiple universal Pneumocystis primers targeting different genetic loci with high amplification efficiency. Application of these primers to PCR investigation of Pneumocystis in free-living hares (Lepus townsendii, n = 130) and rabbits (Oryctolagus cuniculus, n = 8) in Canada revealed a prevalence of 81% (105/130) and 25% (2/8), respectively. Genotyping analysis identified five and two variants of Pneumocystis from hares and rabbits, respectively, with significant sequence divergence between the variants from hares. Based on phylogenetic analysis using nearly full-length sequences of the mitochondrial genome, nuclear rRNA operon and dihydropteroate synthase gene for the two most common variants, Pneumocystis in hares and rabbits are more closely related to each other than either are to Pneumocystis in other mammals. Furthermore, Pneumocystis in both hares and rabbits are more closely related to Pneumocystis in primates and dogs than to Pneumocystis in rodents. The high prevalence of Pneumocystis in hares (P. sp. 'townsendii') suggests its widespread transmissibility in the natural environment, similar to P. oryctolagi in rabbits. The presence of multiple distinct Pneumocystis populations in hares contrasts with the lack of apparent intra-species heterogeneity in P. oryctolagi, implying a unique evolution history of P. sp. 'townsendii' in hares.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Isabella Lin
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Summer T. Hunter
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Barbara Blasi
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Patrizia Danesi
- Laboratory of Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico delle Venezie, 35020 Legnaro, Italy;
| | - Christiane Weissenbacher-Lang
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Wien, Austria; (B.B.); (C.W.-L.)
| | - Ousmane H. Cisse
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| | - Jamie L. Rothenburger
- Faculty of Veterinary Medicine, University of Calgary, Canadian Wildlife Health Cooperative (Alberta Region), Calgary, AB T2N 1N4, Canada; (S.T.H.); (J.L.R.)
| | - Joseph A. Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; (I.L.); (O.H.C.); (J.A.K.)
| |
Collapse
|
8
|
Cissé OH, Curran SJ, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Combs C, Thapar S, Dekker JP, Grewal S, Cushion M, Ma L, Kovacs JA. Regional centromere configuration in the fungal pathogens of the Pneumocystis genus. mBio 2024; 15:e0318523. [PMID: 38380929 PMCID: PMC10936427 DOI: 10.1128/mbio.03185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A. Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Thapar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Sassi M, Curran SJ, Bishop LR, Liu Y, Kovacs JA. CD40 Expression by B cells is Required for Optimal Immunity to Murine Pneumocystis Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578900. [PMID: 38410485 PMCID: PMC10896351 DOI: 10.1101/2024.02.05.578900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
CD40-CD40L interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well-defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and qPCR, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout (KO) mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell depleted splenocytes and unstimulated bone-marrow derived dendritic cells (BMDCs) were unable to control infection in CD40 KO mice. Pneumocystis antigen-pulsed BMDCs showed early, but limited, control of infection. Consistent with recent studies that have suggested a role for antigen presentation by B cells, using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Collapse
Affiliation(s)
- Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Shelly J Curran
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
10
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573464. [PMID: 38234769 PMCID: PMC10793447 DOI: 10.1101/2023.12.27.573464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Weissenbacher-Lang C, Grenl A, Blasi B. Meta-Analysis and Systematic Literature Review of the Genus Pneumocystis in Pet, Farm, Zoo, and Wild Mammal Species. J Fungi (Basel) 2023; 9:1081. [PMID: 37998885 PMCID: PMC10672670 DOI: 10.3390/jof9111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
A systematic literature search on Pneumocystis in 276 pet, farm, zoo, and wild mammal species resulted in 124 publications originating from 38 countries that were analyzed descriptively and statistically, for which inclusion and exclusion criteria were exactly defined. The range of recorded Pneumocystis prevalence was broad, yet in half of the citations a prevalence of ≤25% was documented. Prevalence was significantly dependent on the method used for Pneumocystis detection, with PCR revealing the highest percentages. Pet animals showed the lowest median Pneumocystis prevalence, followed by farm, wild, and zoo animals. In contrast, pet and farm animals showed higher proportions of high-grade infection levels compared to zoo and wild mammals. Only in individual cases, all of them associated with severe Pneumocystis pneumonia, was an underlying immunosuppression confirmed. Acquired immunosuppression caused by other diseases was frequently discussed, but its significance, especially in highly immunosuppressive cases, needs to be clarified. This meta-analysis supported a potential influence of the social and environmental factors of the host on Pneumocystis transmission in wildlife, which must be further elucidated, as well as the genetic diversity of the fungus.
Collapse
Affiliation(s)
- Christiane Weissenbacher-Lang
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (A.G.); (B.B.)
| | | | | |
Collapse
|
12
|
Meier CS, Pagni M, Richard S, Mühlethaler K, Almeida JMGCF, Nevez G, Cushion MT, Calderón EJ, Hauser PM. Fungal antigenic variation using mosaicism and reassortment of subtelomeric genes' repertoires. Nat Commun 2023; 14:7026. [PMID: 37919276 PMCID: PMC10622565 DOI: 10.1038/s41467-023-42685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surface antigenic variation is crucial for major pathogens that infect humans. To escape the immune system, they exploit various mechanisms. Understanding these mechanisms is important to better prevent and fight the deadly diseases caused. Those used by the fungus Pneumocystis jirovecii that causes life-threatening pneumonia in immunocompromised individuals remain poorly understood. Here, though this fungus is currently not cultivable, our detailed analysis of the subtelomeric sequence motifs and genes encoding surface proteins suggests that the system involves the reassortment of the repertoire of ca. 80 non-expressed genes present in each strain, from which single genes are retrieved for mutually exclusive expression. Dispersion of the new repertoires, supposedly by healthy carrier individuals, appears very efficient because identical alleles are observed in patients from different countries. Our observations reveal a unique strategy of antigenic variation. They also highlight the possible role in genome rearrangements of small imperfect mirror sequences forming DNA triplexes.
Collapse
Affiliation(s)
- Caroline S Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - João M G C F Almeida
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
- Infections respiratoires fongiques (IFR), Université d'Angers, Université de Brest, Brest, France
| | - Melanie T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH, 45220, USA
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocίo/Consejo Superior de Investigaciones Cientίficas/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiologίa y Salud Pública, Servicio de Medicina Interna, Hospital Universitario Virgen del Rocίo, Departamento de Medicina, Facultad de Medicina, Seville, Spain
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Riebold D, Mahnkopf M, Wicht K, Zubiria-Barrera C, Heise J, Frank M, Misch D, Bauer T, Stocker H, Slevogt H. Axenic Long-Term Cultivation of Pneumocystis jirovecii. J Fungi (Basel) 2023; 9:903. [PMID: 37755011 PMCID: PMC10533121 DOI: 10.3390/jof9090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Pneumocystis jirovecii, a fungus causing severe Pneumocystis pneumonia (PCP) in humans, has long been described as non-culturable. Only isolated short-term experiments with P. jirovecii and a small number of experiments involving animal-derived Pneumocystis species have been published to date. However, P. jirovecii culture conditions may differ significantly from those of animal-derived Pneumocystis, as there are major genotypic and phenotypic differences between them. Establishing a well-performing P. jirovecii cultivation is crucial to understanding PCP and its pathophysiological processes. The aim of this study, therefore, was to develop an axenic culture for Pneumocystis jirovecii. To identify promising approaches for cultivation, a literature survey encompassing animal-derived Pneumocystis cultures was carried out. The variables identified, such as incubation time, pH value, vitamins, amino acids, and other components, were trialed and adjusted to find the optimum conditions for P. jirovecii culture. This allowed us to develop a medium that produced a 42.6-fold increase in P. jirovecii qPCR copy numbers after a 48-day culture. Growth was confirmed microscopically by the increasing number and size of actively growing Pneumocystis clusters in the final medium, DMEM-O3. P. jirovecii doubling time was 8.9 days (range 6.9 to 13.6 days). In conclusion, we successfully cultivated P. jirovecii under optimized cell-free conditions in a 70-day long-term culture for the first time. However, further optimization of the culture conditions for this slow grower is indispensable.
Collapse
Affiliation(s)
- Diana Riebold
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Marie Mahnkopf
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Gent, Belgium;
| | - Cristina Zubiria-Barrera
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (C.Z.-B.); (H.S.)
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, 30625 Hannover, Germany
| | - Jan Heise
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre (EMZ), University Medicine Rostock, 18057 Rostock, Germany;
| | - Daniel Misch
- Lungenklinik Heckeshorn, Helios Klinikum Emil-von-Behring, 14165 Berlin, Germany; (D.M.); (T.B.)
| | - Torsten Bauer
- Lungenklinik Heckeshorn, Helios Klinikum Emil-von-Behring, 14165 Berlin, Germany; (D.M.); (T.B.)
| | - Hartmut Stocker
- Clinic for Infectiology, St. Joseph’s Hospital Berlin, 12101 Berlin, Germany;
| | - Hortense Slevogt
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (C.Z.-B.); (H.S.)
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, 30625 Hannover, Germany
| |
Collapse
|
14
|
Li X, Li Z, Ye J, Ye W. Diagnostic performance of metagenomic next-generation sequencing for Pneumocystis jirovecii pneumonia. BMC Infect Dis 2023; 23:455. [PMID: 37430211 PMCID: PMC10331973 DOI: 10.1186/s12879-023-08440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Pneumocystis jirovecii pneumonia (PJP) can be a life-threatening opportunistic infection. We aimed to evaluate the diagnostic accuracy of metagenomic next-generation sequencing (mNGS) for PJP. METHODS A comprehensive electronic literature search of Web of Knowledge, PubMed, Cochrane Library, CNKI and Wanfang data was performed. Bivariate analysis was conducted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (DOR), the area under the summary receiver operator characteristic (SROC) curve and the Q-point value (Q*). RESULTS The literature search resulted in 9 studies with a total of 1343 patients, including 418 cases diagnosed with PJP and 925 controls. The pooled sensitivity of mNGS for diagnosis of PJP was 0.974 [95% confidence interval (CI), 0.953-0.987]. The pooled specificity was 0.943 (95% CI, 0.926-0.957), the DOR was 431.58 (95% CI, 186.77-997.27), the area under the SROC curve was 0.987, and the Q* was 0.951. The I2 test indicated no heterogeneity between studies. The Deek funnel test suggested no potential publication bias. Subgroup analyses showed that the area under the SROC curve of mNGS for diagnosis of PJP in immunocompromised and non-HIV patients was 0.9852 and 0.979, respectively. CONCLUSIONS Current evidence indicates that mNGS exhibits excellent accuracy for the diagnosis of PJP. The mNGS is a promising tool for assessment of PJP in both immunocompromised and non-HIV patients.
Collapse
Affiliation(s)
- Xuefang Li
- Department of Infectious Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Jian Ye
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China.
| |
Collapse
|
15
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
16
|
Analysis of Pneumocystis Transcription Factor Evolution and Implications for Biology and Lifestyle. mBio 2023; 14:e0271122. [PMID: 36651897 PMCID: PMC9973273 DOI: 10.1128/mbio.02711-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pneumocystis jirovecii kills hundreds of thousands of immunocompromised patients each year. Yet many aspects of the biology of this obligate pathogen remain obscure because it is not possible to culture the fungus in vitro independently of its host. Consequently, our understanding of Pneumocystis pathobiology is heavily reliant upon bioinformatic inferences. We have exploited a powerful combination of genomic and phylogenetic approaches to examine the evolution of transcription factors in Pneumocystis species. We selected protein families (Pfam families) that correspond to transcriptional regulators and used bioinformatic approaches to compare these families in the seven Pneumocystis species that have been sequenced to date with those from other yeasts, other human and plant pathogens, and other obligate parasites. Some Pfam families of transcription factors have undergone significant reduction during their evolution in the Pneumocystis genus, and other Pfam families have been lost or appear to be in the process of being lost. Meanwhile, other transcription factor families have been retained in Pneumocystis species, and some even appear to have undergone expansion. On this basis, Pneumocystis species seem to have retained transcriptional regulators that control chromosome maintenance, ribosomal gene regulation, RNA processing and modification, and respiration. Meanwhile, regulators that promote the assimilation of alternative carbon sources, amino acid, lipid, and sterol biosynthesis, and iron sensing and homeostasis appear to have been lost. Our analyses of transcription factor retention, loss, and gain provide important insights into the biology and lifestyle of Pneumocystis. IMPORTANCE Pneumocystis jirovecii is a major fungal pathogen of humans that infects healthy individuals, colonizing the lungs of infants. In immunocompromised and transplant patients, this fungus causes life-threatening pneumonia, and these Pneumocystis infections remain among the most common and serious infections in HIV/AIDS patients. Yet we remain remarkably ignorant about the biology and epidemiology of Pneumocystis due to the inability to culture this fungus in vitro. Our analyses of transcription factor retentions, losses, and gains in sequenced Pneumocystis species provide valuable new views of their specialized biology, suggesting the retention of many metabolic and stress regulators and the loss of others that are essential in free-living fungi. Given the lack of in vitro culture methods for Pneumocystis, this powerful bioinformatic approach has advanced our understanding of the lifestyle of P. jirovecii and the nature of its dependence on the host for survival.
Collapse
|
17
|
First Molecular Detection of Pneumocystis spp. in the Golden Jackal (Canis aureus). J Wildl Dis 2022; 58:897-901. [PMID: 36300952 DOI: 10.7589/jwd-d-22-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022]
Abstract
Forty-six golden jackals (Canis aureus) were collected between November 2020 and February 2021 in five counties of Serbia. Lung samples were screened for the presence of Pneumocystis DNA by pan-Pneumocystis PCR on the mtLSU rRNA gene obtaining PCR products of 370 bp in length. Pneumocystis DNA was detected in the lungs from 6/46 (13.04%) golden jackals. Four were females and two were males; four were classified as adults and two as subadults. Positive samples were confirmed in 4/5 investigated counties. No gross pathologic lung lesions were observed in this study. The sequences of Pneumocystis spp. from golden jackals were identical to one another and showed the highest similarity with Pneumocystis spp. sequences of dogs (98% nucleotide identity). The genetic variation was comparable to Pneumocystis spp. of raccoon dogs (95-97% nucleotide identity), red foxes (91-95% nucleotide identity), ferrets (86% nucleotide identity), and another Pneumocystis type in dogs (P. canis Ck2, 81% nucleotide identity) was higher. Golden jackals may be carriers and may play a nonnegligible role in the spread of Pneumocystis spp. Although this finding cannot be directly related to any clinical manifestation or pathologic lesions, a possible role in the exacerbation of different pulmonary disorders should be considered.
Collapse
|
18
|
Babb-Biernacki SJ, Esselstyn JA, Doyle VP. Predicting Species Boundaries and Assessing Undescribed Diversity in Pneumocystis, an Obligate Lung Symbiont. J Fungi (Basel) 2022; 8:jof8080799. [PMID: 36012788 PMCID: PMC9409666 DOI: 10.3390/jof8080799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.
Collapse
Affiliation(s)
- Spenser J. Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Correspondence:
| | - Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Vinson P. Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70809, USA;
| |
Collapse
|
19
|
Bishop LR, Curran SJ, Kovacs JA. Mucosal-Associated Invariant T Cells Accumulate in the Lungs during Murine Pneumocystis Infection but Are Not Required for Clearance. J Fungi (Basel) 2022; 8:jof8060645. [PMID: 35736127 PMCID: PMC9224882 DOI: 10.3390/jof8060645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis is a fungal pathogen that can cause pneumonia in immunosuppressed hosts and subclinical infection in immunocompetent hosts. Mucosal-associated invariant T (MAIT) cells are unconventional lymphocytes with a semi-invariant T-cell receptor that are activated by riboflavin metabolites that are presented by the MHC-1b molecule MR1. Although Pneumocystis can presumably synthesize riboflavin metabolites based on whole-genome studies, the role of MAIT cells in controlling Pneumocystis infection is unknown. We used a co-housing mouse model of Pneumocystis infection, combined with flow cytometry and qPCR, to characterize the response of MAIT cells to infection in C57BL/6 mice, and, using MR1−/− mice, which lack MAIT cells, to examine their role in clearing the infection. MAIT cells accumulated in the lungs of C57BL/6 mice during Pneumocystis infection and remained at increased levels for many weeks after clearance of infection. In MR1−/− mice, Pneumocystis infection was cleared with kinetics similar to C57BL/6 mice. Thus, MAIT cells are not necessary for control of Pneumocystis infection, but the prolonged retention of these cells in the lungs following clearance of infection may allow a more rapid future response to other pathogens.
Collapse
|
20
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
21
|
Danesi P, Petini M, Falcaro C, Bertola M, Mazzotta E, Furlanello T, Krockenberger M, Malik R. Pneumocystis Colonization in Dogs Is as in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063192. [PMID: 35328882 PMCID: PMC8955813 DOI: 10.3390/ijerph19063192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022]
Abstract
Pneumocystis is an atypical fungus that resides in the pulmonary parenchyma of many mammals, including humans and dogs. Immunocompetent human hosts are usually asymptomatically colonised or show subtle clinical signs, but some immunocompromised people can develop florid life-threatening Pneumocystis pneumonia (PCP). Since much less is known concerning Pneumocystis in dogs, we posit the question: can Pneumocystis colonization be present in dogs with inflammatory airway or lung disease caused by other pathogens or disease processes? In this study, Pneumocystis DNA was detected in bronchoalveolar lavage fluid (BALF) of 22/255 dogs (9%) with respiratory distress and/or chronic cough. Although young dogs (<1 year-of-age) and pedigree breeds were more often Pneumocystis-qPCR positive than older dogs and crossbreds, adult dogs with other infectious conditions and/or a history of therapy-resistant pulmonary disease could also be qPCR-positive, including two patients with suppression of the immune system. Absence of pathognomonic clinical or radiographic signs render it impossible to convincingly discriminate between overt PCP versus other lung/airway disease processes colonised by P. canis. It is possible that colonisation with P. canis might play a certain role as a co-pathogen in some canine patients with lower respiratory disease.
Collapse
Affiliation(s)
- Patrizia Danesi
- Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padua, Italy; (C.F.); (M.B.); (E.M.)
- Correspondence: ; Tel.: +39-049-8084902
| | - Matteo Petini
- Clinica e Laboratorio Veterinario San Marco, Veggiano, 35030 Padua, Italy; (M.P.); (T.F.)
| | - Christian Falcaro
- Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padua, Italy; (C.F.); (M.B.); (E.M.)
| | - Michela Bertola
- Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padua, Italy; (C.F.); (M.B.); (E.M.)
| | - Elisa Mazzotta
- Parasitology, Mycology and Medical Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padua, Italy; (C.F.); (M.B.); (E.M.)
| | - Tommaso Furlanello
- Clinica e Laboratorio Veterinario San Marco, Veggiano, 35030 Padua, Italy; (M.P.); (T.F.)
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
22
|
Vera C, Rueda ZV. Transmission and Colonization of Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7110979. [PMID: 34829266 PMCID: PMC8622989 DOI: 10.3390/jof7110979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumocystis spp. was discovered in 1909 and was classified as a fungus in 1988. The species that infects humans is called P. jirovecii and important characteristics of its genome have recently been discovered. Important advances have been made to understand P. jirovecii, including aspects of its biology, evolution, lifecycle, and pathogenesis; it is now considered that the main route of transmission is airborne and that the infectious form is the asci (cyst), but it is unclear whether there is transmission by direct contact or droplet spread. On the other hand, P. jirovecii has been detected in respiratory secretions of hosts without causing disease, which has been termed asymptomatic carrier status or colonization (frequency in immunocompetent patients: 0–65%, pregnancy: 15.5%, children: 0–100%, HIV-positive patients: 20–69%, cystic fibrosis: 1–22%, and COPD: 16–55%). This article briefly describes the history of its discovery and the nomenclature of Pneumocystis spp., recently uncovered characteristics of its genome, and what research has been done on the transmission and colonization of P. jirovecii. Based on the literature, the authors of this review propose a hypothetical natural history of P. jirovecii infection in humans.
Collapse
Affiliation(s)
- Cristian Vera
- Grupo de Investigación en Salud Pública, Research Department, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Correspondence:
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg RT3, Colombia;
| |
Collapse
|
23
|
Tisdale-Macioce N, Green J, Perl AKT, Ashbaugh A, Wiederhold NP, Patterson TF, Cushion MT. The Promise of Lung Organoids for Growth and Investigation of Pneumocystis Species. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:740845. [PMID: 37744131 PMCID: PMC10512221 DOI: 10.3389/ffunb.2021.740845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 09/26/2023]
Abstract
Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.
Collapse
Affiliation(s)
- Nikeya Tisdale-Macioce
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Jenna Green
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T. Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The Perinatal Institute and Section of Neonatology, Cincinnati, OH, United States
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Nathan P. Wiederhold
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Thomas F. Patterson
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, United States
- Section of Infectious Diseases, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|