1
|
Sharma T, Mondal T, Saralamma VVG, Hassan MI, Kim CJ, Churqui MP, Nyström K, Thombare K, Baig MH, Dong JJ. Exploring the exportin-1 inhibitors for COVID-19 and anticancer treatment. J Biomol Struct Dyn 2025:1-12. [PMID: 40395159 DOI: 10.1080/07391102.2025.2503981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/27/2024] [Indexed: 05/22/2025]
Abstract
Nuclear export protein 1, also known as XPO1, plays a crucial role in cellular homeostasis and assists in the nucleocytoplasmic transfer of ribonucleic acids (RNAs) and proteins. In addition, this nuclear export receptor is essential for the export of a variety of cargo molecules, such as proteins implicated in the immune response, tumor suppression, and cell cycle regulation. XPO1 has emerged as a promising target to disrupt the life cycles of multiple viruses and treat cancers. In our current work, we used a computational approach consisting of pharmacophore-assisted virtual screening complemented by molecular docking, molecular dynamics, and solvation-based free-energy studies to identify new inhibitors of the XPO1 protein. The identified compounds displayed highly stable RMSD plots, hydrogen bonding interactions, and relatively good binding affinities in both docking and free energy studies. These molecules were validated in vitro against SARS-CoV-2 and cancer cell lines. The study identified novel inhibitors of the XPO1 protein with both antiviral and anticancer activities.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Marianela Patzi Churqui
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hanson Q, Hu X, Pal S, Recabo K, Ye L, Poon I, Denson JP, Messing S, Shen M, Wilson KM, Zakharov A, Esposito D, Martinez NJ. A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14. Biochemistry 2025; 64:419-431. [PMID: 39789725 DOI: 10.1021/acs.biochem.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion. In this work, we developed high-throughput screening (HTS) assays for NSP14 MTase and ExoN activities. We screened both activities against a collection of 40,664 compounds. A total of 1677 initial hit compounds were identified, cherrypicked, counterscreened for assay interference, and screened for off-target selectivity. We identified 396 and 174 high-quality hits against the MTase and ExoN activities, respectively. Along with inhibitors for individual activities, we identified dual-activity inhibitors, including a novel inhibitor that is not competitive with any substrate and interacts with a putative allosteric binding site. This study represents the largest published screen of SARS-CoV-2 NSP14 MTase and ExoN activities to date and culminates in a pipeline for the NSP14 drug discovery.
Collapse
Affiliation(s)
- Quinlin Hanson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sourav Pal
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Katlin Recabo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Lin Ye
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ivy Poon
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - John-Paul Denson
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Simon Messing
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelli M Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dominic Esposito
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Khan M, Irvin P, Park SB, Ivester HM, Ricardo-Lax I, Leek M, Grieshaber A, Jang ES, Coutermarsh-Ott S, Zhang Q, Maio N, Jiang JK, Li B, Huang W, Wang AQ, Xu X, Hu Z, Zheng W, Ye Y, Rouault T, Rice C, Allen IC, Liang TJ. Repurposing of lonafarnib as a treatment for SARS-CoV-2 infection. JCI Insight 2025; 10:e182704. [PMID: 39625789 PMCID: PMC11721293 DOI: 10.1172/jci.insight.182704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has emerged as a global pandemic pathogen with high mortality. While treatments have been developed to reduce morbidity and mortality of COVID-19, more antivirals with broad-spectrum activities are still needed. Here, we identified lonafarnib (LNF), a Food and Drug Administration-approved inhibitor of cellular farnesyltransferase (FTase), as an effective anti-SARS-CoV-2 agent. LNF inhibited SARS-CoV-2 infection and acted synergistically with known anti-SARS antivirals. LNF was equally active against diverse SARS-CoV-2 variants. Mechanistic studies suggested that LNF targeted multiple steps of the viral life cycle. Using other structurally diverse FTase inhibitors and a LNF-resistant FTase mutant, we demonstrated a key role of FTase in the SARS-CoV-2 life cycle. To demonstrate in vivo efficacy, we infected SARS-CoV-2-susceptible humanized mice expressing human angiotensin-converting enzyme 2 (ACE2) and treated them with LNF. LNF at a clinically relevant dose suppressed the viral titer in the respiratory tract and improved pulmonary pathology and clinical parameters. Our study demonstrated that LNF, an approved oral drug with excellent human safety data, is a promising antiviral against SARS-CoV-2 that warrants further clinical assessment for treatment of COVID-19 and potentially other viral infections.
Collapse
Affiliation(s)
- Mohsin Khan
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Parker Irvin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Hannah M. Ivester
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Madeleine Leek
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ailis Grieshaber
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Eun Sun Jang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Qi Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Bing Li
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Wenwei Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Amy Q. Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Tracey Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Charles Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Huuskonen S, Liu X, Pöhner I, Redchuk T, Salokas K, Lundberg R, Maljanen S, Belik M, Reinholm A, Kolehmainen P, Tuhkala A, Tripathi G, Laine P, Belanov S, Auvinen P, Vartiainen M, Keskitalo S, Österlund P, Laine L, Poso A, Julkunen I, Kakkola L, Varjosalo M. The comprehensive SARS-CoV-2 'hijackome' knowledge base. Cell Discov 2024; 10:125. [PMID: 39653747 PMCID: PMC11628605 DOI: 10.1038/s41421-024-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sini Huuskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Taras Redchuk
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Antti Tuhkala
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Garima Tripathi
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sergei Belanov
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Mattos M, Sacramento CQ, Ferreira AC, Fintelman-Rodrigues N, Pereira-Dutra FS, de Freitas CS, Gesto JSM, Temerozo JR, Silva ADPDD, Moreira MTG, Silva RSC, Silveira GPE, Pinto DP, Pereira HM, Fonseca LB, Alves Ferreira M, Blanco C, Viola JPB, Bou-Habib DC, Bozza PT, Souza TML. Newly Proposed Dose of Daclatasvir to Prevent Lethal SARS-CoV-2 Infection in Human Transgenic ACE-2 Mice. Viruses 2024; 16:1856. [PMID: 39772165 PMCID: PMC11680164 DOI: 10.3390/v16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance. It is thus necessary to study novel and repurposed antivirals for the treatment of COVID-19. We previously demonstrated that daclatasvir (DCV), an inhibitor of the hepatitis C virus (HCV) NS5A protein, impairs SARS-CoV-2 replication by targeting viral RNA polymerase and exonuclease, but the doses of DCV used to inhibit the new coronavirus are greater than the standard human plasma exposure for hepatitis C. Because any potential use of DCV against SARS-CoV-2 would be shorter than that reported here and short-term toxicological studies on DCV show that higher doses are tolerable, we searched for doses of DCV that could protect transgenic mice expressing the human ACE2 receptor (K18-hACE-2) from lethal challenge with SARS-CoV-2. We found that a dose of 60 mg/kg/day provides this protection by reducing virus replication and virus-induced lung insult. This dose is tolerable in different animal models. Taken together, our data provide preclinical evidence that can support phase I clinical trials to confirm the safety, tolerability, and pharmacokinetics of new doses of daclatasvir for a short duration in humans to further advance this compound's utility against COVID-19.
Collapse
Affiliation(s)
- Mayara Mattos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
- Laboratório de Pesquisas Pré-Clínicas, Departamento de Ciências Biológicas, Universidade Iguaçu, Nova Iguaçu 26275-580, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Filipe S. Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
| | - Caroline Souza de Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - João S. M. Gesto
- SESI Innovation Center for Occupational Health, Rio de Janeiro 22735-280, RJ, Brazil; (J.S.M.G.); (D.C.B.-H.)
| | - Jairo R. Temerozo
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil;
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Aline de Paula Dias Da Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Mariana T. G. Moreira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Rafael S. C. Silva
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Gabriel P. E. Silveira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Douglas P. Pinto
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Heliana M. Pereira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Laís B. Fonseca
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Marcelo Alves Ferreira
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Camilla Blanco
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20230-130, RJ, Brazil;
| | - Dumith Chequer Bou-Habib
- SESI Innovation Center for Occupational Health, Rio de Janeiro 22735-280, RJ, Brazil; (J.S.M.G.); (D.C.B.-H.)
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil;
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| |
Collapse
|
6
|
Choi MH, Wan EYF, Wong ICK, Chan EWY, Chu WM, Tam AR, Yuen KY, Hung IFN. Comparative effectiveness of combination therapy with nirmatrelvir-ritonavir and remdesivir versus monotherapy with remdesivir or nirmatrelvir-ritonavir in patients hospitalised with COVID-19: a target trial emulation study. THE LANCET. INFECTIOUS DISEASES 2024; 24:1213-1224. [PMID: 39025098 DOI: 10.1016/s1473-3099(24)00353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Remdesivir (Veklury, Gilead Sciences, Foster City, CA, USA) and nirmatrelvir-ritonavir (Paxlovid, Pfizer, New York, NY, USA) were reported to improve the outcome of patients with mild-to-moderate COVID-19 symptoms. Preclinical data suggest that nirmatrelvir-ritonavir might be more effective than remdesivir alone or in combination with nirmatrelvir-ritonavir for people at high risk of severe COVID-19. We aimed to assess the safety and effectiveness of combining remdesivir and nirmatrelvir-ritonavir compared with using each drug alone for adults hospitalised with COVID-19. METHODS In this target trial emulation study, we used electronic health records of patients aged 18 years or older who received either combination treatment of nirmatrelvir-ritonavir and remdesivir or monotherapy of either drug between March 16 and Dec 31, 2022, within 5 days of hospitalisation for COVID-19 in Hong Kong. Inverse probability of treatment weighting was applied to balance baseline patient characteristics across the treatment groups. The primary outcome was all-cause mortality. Cox proportional hazards regression adjusting weighting was used to compare the risk of all-cause mortality, intensive care unit (ICU) admission, or ventilatory support for 90 days of follow-up between groups. FINDINGS Between March 16 and Dec 31, 2022, 18 196 participants were identified from electronic health records and assigned to receive remdesivir (n=4232), nirmatrelvir-ritonavir (n=13 656), or nirmatrelvir-ritonavir and remdesivir (n=308). By applying an inverse probability of treatment weighting, a weighted sample composed of 18 410 recipients of nirmatrelvir-ritonavir and remdesivir combination treatment, 18 178 recipients of remdesivir monotherapy, and 18 287 recipients of nirmatrelvir-ritonavir monotherapy was obtained. After a median follow-up of 84 days (IQR 45-90), risk of mortality was lower in patients who received nirmatrelvir-ritonavir monotherapy (hazard ratio [HR] 0·18 [95% CI 0·15 to 0·20]; absolute risk reduction [ARR] -16·33% [95% CI -16·98 to -15·68]) or remdesivir and nirmatrelvir-ritonavir combination therapy (HR 0·66 [95% CI 0·49 to 0·89]; ARR -6·52% [95% CI -7·29 to -5·74]) than in patients who received remdesivir monotherapy. Similar results were observed for ICU admission or ventilatory support (nirmatrelvir-ritonavir monotherapy: HR 0·09 [95% CI 0·07 to 0·11]; ARR -10·04% [95% CI -10·53 to -9·56]; combination therapy: HR 0·68 [95% CI 0·42 to 1·12]; ARR -3·24% [95% CI -3·84 to -2·64]). Compared with combination therapy, nirmatrelvir-ritonavir monotherapy was associated with lower risk of mortality (HR 0·27 [95% CI 0·20 to 0·37]; ARR -9·81% [95% CI -10·39 to -9·24]) and ICU admission or ventilatory support (HR 0·13 [95% CI 0·08 to 0·22]; ARR -6·80% [95% CI -7·22 to -6·39]). INTERPRETATION Our study highlighted the potential for reduced risk of mortality, ICU admission, or the need for ventilatory support in patients hospitalised with COVID-19 treated with nirmatrelvir-ritonavir as a monotherapy compared with treatment regimens based on nirmatrelvir-ritonavir and remdesivir combination therapy or remdesivir monotherapy. Further randomised controlled trials are needed to support the validity of the current results. FUNDING The Health and Medical Research Fund Commissioned Research on COVID-19. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Ming Hong Choi
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Aston Pharmacy School, Aston University, Birmingham, UK; School of Pharmacy, Medical Sciences Division, Macau University of Science and Technology, Macau Special Administrative Region, China
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Wing Ming Chu
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ivan Fan Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
7
|
Siegrist D, Jonsdottir HR, Bouveret M, Boda B, Constant S, Engler OB. Multidrug Combinations against SARS-CoV-2 Using GS-441524 or Ivermectin with Molnupiravir and/or Nirmatrelvir in Reconstituted Human Nasal Airway Epithelia. Pharmaceutics 2024; 16:1262. [PMID: 39458594 PMCID: PMC11510096 DOI: 10.3390/pharmaceutics16101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background. The emergence, global spread, and persistence of SARS-CoV-2 resulted in an unprecedented need for effective antiviral drugs. Throughout the pandemic, various drug development and treatment strategies were adopted, including repurposing of antivirals designed for other viruses along with a multitude of other drugs with varying mechanisms of action (MoAs). Furthermore, multidrug treatment against COVID-19 is an ongoing topic and merits further investigation. Method/Objectives. We assessed the efficacy of multidrug treatment against SARS-CoV-2 in reconstituted human nasal epithelia, using combinations of molnupiravir and nirmatrelvir as a baseline, adding suboptimal concentrations of either GS-441524 or ivermectin, attempting to increase overall antiviral activity while lowering the overall therapeutic dose. Results. Nirmatrelvir combined with molnupiravir, GS-441524, or ivermectin at suboptimal concentrations show increased antiviral activity compared to single treatment. No triple combinations showed improved inhibition of SARS-CoV-2 replication beyond what was observed for double treatments. Conclusions. In general, we observed that the addition of a third compound is not beneficial for antiviral activity, while various double combinations exhibit increased antiviral activity over single treatment.
Collapse
Affiliation(s)
- Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Mendy Bouveret
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | - Bernadett Boda
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | | | - Olivier B. Engler
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| |
Collapse
|
8
|
Rhamadianti AF, Abe T, Tanaka T, Ono C, Katayama H, Makino Y, Deng L, Matsui C, Moriishi K, Shima F, Matsuura Y, Shoji I. SARS-CoV-2 papain-like protease inhibits ISGylation of the viral nucleocapsid protein to evade host anti-viral immunity. J Virol 2024; 98:e0085524. [PMID: 39120134 PMCID: PMC11406913 DOI: 10.1128/jvi.00855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Aulia Fitri Rhamadianti
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Chikako Ono
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hisashi Katayama
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiteru Makino
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
- Center for Cell Signaling and Medical Innovation, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumi Shima
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
9
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
10
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
11
|
Abd-Elshafy DN, Nadeem R, Nasraa MH, Bahgat MM. Analysis of the SARS-CoV-2 nsp12 P323L/A529V mutations: coeffect in the transiently peaking lineage C.36.3 on protein structure and response to treatment in Egyptian records. Z NATURFORSCH C 2024; 79:13-24. [PMID: 38265042 DOI: 10.1515/znc-2023-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.
Collapse
Affiliation(s)
- Dina N Abd-Elshafy
- Department of Water Pollution Research, Environmental and Climate Change Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Nasraa
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Mahmoud M Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
12
|
Fiaschi L, Biba C, Varasi I, Bartolini N, Paletti C, Giammarino F, Saladini F, Zazzi M, Vicenti I. In Vitro Combinatorial Activity of Direct Acting Antivirals and Monoclonal Antibodies against the Ancestral B.1 and BQ.1.1 SARS-CoV-2 Viral Variants. Viruses 2024; 16:168. [PMID: 38399944 PMCID: PMC10892871 DOI: 10.3390/v16020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Combination antiviral therapy may be helpful in the treatment of SARS-CoV-2 infection; however, no clinical trial data are available, and combined use of direct-acting antivirals (DAA) and monoclonal antibodies (mAb) has been reported only anecdotally. To assess the cooperative effects of dual drug combinations in vitro, we used a VERO E6 cell-based in vitro system with the ancestral B.1 or the highly divergent BQ.1.1 virus to test pairwise combinations of the licensed DAA, including nirmatrelvir (NRM), remdesivir (RDV) and the active metabolite of molnupiravir (EIDD-1931) as well the combination of RDV with four licensed mAbs (sotrovimab, bebtelovimab, cilgavimab, tixagevimab; tested only with the susceptible B.1 virus). According to SynergyFinder 3.0 summary and weighted scores, all the combinations had an additive effect. Within DAA/DAA combinations, paired scores with the B.1 and BQ.1.1 variants were comparable. In the post hoc analysis weighting synergy by concentrations, several cases of highly synergistic scores were detected at specific drug concentrations, both for DAA/DAA and for RDV/mAb combinations. This was supported by in vitro confirmation experiments showing a more than a linear shift of a drug-effective concentration (IC50) at increasing concentrations of the companion drug, although the effect was prominent with DAA/DAA combinations and minimal or null with RDV/mAb combinations. These results support the cooperative effects of dual drug combinations in vitro, which should be further investigated in animal models before introduction into the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (L.F.); (C.B.); (I.V.); (N.B.); (C.P.); (F.G.); (F.S.); (M.Z.)
| |
Collapse
|
13
|
Nguyen LTA, Nguyen TTT, Dang DT. Specific binding of G-quadruplex in SARS-CoV-2 RNA by RHAU peptide. Curr Res Struct Biol 2024; 7:100126. [PMID: 38292819 PMCID: PMC10824680 DOI: 10.1016/j.crstbi.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
G-quadruplexes (G4s) are reported to present on the SARS-CoV-2 RNA genome and control various viral activities. Specific ligands targeting those viral nucleic acid structures could be investigated as promising detection methods or antiviral reagents to suppress this menacing virus. Herein, we demonstrate the binding between a G4 structure in the RNA of SARS-CoV-2 and a fluorescent probe created by fusing a parallel-G4 specific RHAU53 and a cyan fluorescent protein. The specific binding of G4 in SARS-CoV-2 by RHAU peptide was easily detected under the fluorescence spectrometer. The drawbacks of this approach and potential solutions are also discussed.
Collapse
Affiliation(s)
| | | | - Dung Thanh Dang
- Faculty of Biotechnology, Ho Chi Minh City Open University, HCMC, Viet Nam
| |
Collapse
|
14
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
15
|
Gallardo-Toledo E, Neary M, Sharp J, Herriott J, Kijak E, Bramwell C, Curley P, Arshad U, Pertinez H, Rajoli RKR, Valentijn A, Cox H, Tatham L, Kipar A, Stewart JP, Owen A. Chemoprophylactic Assessment of Combined Intranasal SARS-CoV-2 Polymerase and Exonuclease Inhibition in Syrian Golden Hamsters. Viruses 2023; 15:2161. [PMID: 38005839 PMCID: PMC10675045 DOI: 10.3390/v15112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Pibrentasvir (PIB) has been demonstrated to block exonuclease activity of the SARS-CoV-2 polymerase, protecting favipiravir (FVP) and remdesivir (RDV) from post-incorporation excision and eliciting antiviral synergy in vitro. The present study investigated the chemoprophylactic efficacy of PIB, FVP, RDV, FVP with PIB, or RDV with PIB dosed intranasally twice a day, using a Syrian golden hamster contact transmission model. Compared to the saline control, viral RNA levels were significantly lower in throat swabs in FVP (day 7), RDV (day 3, 5, 7), and RDV+PIB (day 3, 5) treatment groups. Similarly, findings were evident for nasal turbinate after PIB and RDV treatment, and lungs after PIB, FVP, and FVP+PIB treatment at day 7. Lung viral RNA levels after RDV and RDV+PIB treatment were only detectable in two animals per group, but the overall difference was not statistically significant. In situ examination of the lungs confirmed SARS-CoV-2 infection in all animals, except for one in each of the RDV and RDV+PIB treatment groups, which tested negative in all virus detection approaches. Overall, prevention of transmission was observed in most animals treated with RDV, while other agents reduced the viral load following contact transmission. No benefit of combining FVP or RDV with PIB was observed.
Collapse
Affiliation(s)
- Eduardo Gallardo-Toledo
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Chloe Bramwell
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Rajith K. R. Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Helen Cox
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
16
|
Awad AM, Hansen K, Del Rio D, Flores D, Barghash RF, Kakkola L, Julkunen I, Awad K. Insights into COVID-19: Perspectives on Drug Remedies and Host Cell Responses. Biomolecules 2023; 13:1452. [PMID: 37892134 PMCID: PMC10604481 DOI: 10.3390/biom13101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Kamryn Hansen
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Diana Del Rio
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Derek Flores
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
17
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
18
|
von Beck T, Mena Hernandez L, Zhou H, Floyd K, Suthar MS, Skolnick J, Jacob J. Atovaquone and Pibrentasvir Inhibit the SARS-CoV-2 Endoribonuclease and Restrict Infection In Vitro but Not In Vivo. Viruses 2023; 15:1841. [PMID: 37766247 PMCID: PMC10534768 DOI: 10.3390/v15091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of SARS-CoV-1 in 2003 followed by MERS-CoV and now SARS-CoV-2 has proven the latent threat these viruses pose to humanity. While the SARS-CoV-2 pandemic has shifted to a stage of endemicity, the threat of new coronaviruses emerging from animal reservoirs remains. To address this issue, the global community must develop small molecule drugs targeting highly conserved structures in the coronavirus proteome. Here, we characterized existing drugs for their ability to inhibit the endoribonuclease activity of the SARS-CoV-2 non-structural protein 15 (nsp15) via in silico, in vitro, and in vivo techniques. We have identified nsp15 inhibition by the drugs pibrentasvir and atovaquone which effectively inhibit SARS-CoV-2 and HCoV-OC43 at low micromolar concentrations in cell cultures. Furthermore, atovaquone, but not pibrentasvir, is observed to modulate HCoV-OC43 dsRNA and infection in a manner consistent with nsp15 inhibition. Although neither pibrentasvir nor atovaquone translate to clinical efficacy in a murine prophylaxis model of SARS-CoV-2 infection, atovaquone may serve as a basis for the design of future nsp15 inhibitors.
Collapse
Affiliation(s)
- Troy von Beck
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Luis Mena Hernandez
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA; (H.Z.); (J.S.)
| | - Katharine Floyd
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| | - Mehul S. Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA; (H.Z.); (J.S.)
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; (T.v.B.); (L.M.H.); (K.F.); (M.S.S.)
| |
Collapse
|
19
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
20
|
Hamdi M, Elkashlan AM, Hammad MA, Ali IH. SARS-CoV-2 Papain-like Protease Responsive ZnO/Daclatasvir-Loaded Chitosan/Gelatin Nanofibers as Smart Antimicrobial Medical Textiles: In Silico, In Vitro and Cell Studies. Pharmaceutics 2023; 15:2074. [PMID: 37631287 PMCID: PMC10457880 DOI: 10.3390/pharmaceutics15082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
A significant number of deaths are reported annually worldwide due to microbial and viral infections. The development of protective medical textiles for patients and healthcare professionals has attracted many researchers' attention. Therefore, this study aims to develop smart drug-eluting nanofibrous matrices to be used as a basic material for medical textile fabrication. First, chitosan/gelatin nanofibers were selected as the basic material owing to the wide antimicrobial activity of chitosan and the capability of gelatin to be hydrolyzed in the abundance of the papain-like protease (PLpro) enzyme secreted by SARS-CoV-2. Daclatasvir (DAC), an NS5A inhibitor, was selected as the model drug based on in silico studies where it showed high anti-SARS-CoV-2 potential compared to FDA-approved references. Due to their reported antimicrobial and antiviral activities, ZnO NPs were successfully prepared and incorporated with daclatasvir in chitosan/gelatin nanofibrous matrices through electrospinning. Afterward, an in vitro release study in a simulated buffer revealed the controlled release of DAC over 21 days from the nanofibers compared to only 6 h for free DAC. On the other hand, the abundance of PLpro induced the complete release of DAC from the nanofibers in only 4-8 h. Finally, the nanofibers demonstrated a wide antimicrobial activity against S. aureus, E. coli, and C. albicans.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt;
| | - Akram M. Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt;
| | - Mohamed A. Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt;
| | - Isra H. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt;
| |
Collapse
|
21
|
Gidari A, Sabbatini S, Schiaroli E, Bastianelli S, Pierucci S, Busti C, Saraca LM, Capogrossi L, Pasticci MB, Francisci D. Synergistic Activity of Remdesivir-Nirmatrelvir Combination on a SARS-CoV-2 In Vitro Model and a Case Report. Viruses 2023; 15:1577. [PMID: 37515263 PMCID: PMC10385213 DOI: 10.3390/v15071577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. METHODS A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. RESULTS Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h, with an HSA score of 52.8 and 28.6, respectively (p < 0.0001). These data were confirmed by performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir until she tested negative. CONCLUSIONS Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Lavinia Maria Saraca
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Luca Capogrossi
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Maria Bruna Pasticci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
22
|
Mohandoss S, Velu KS, Stalin T, Ahmad N, Alomar SY, Lee YR. Tenofovir antiviral drug solubility enhancement with β-cyclodextrin inclusion complex and in silico study of potential inhibitor against SARS-CoV-2 main protease (M pro). J Mol Liq 2023; 377:121544. [PMID: 36874474 PMCID: PMC9968670 DOI: 10.1016/j.molliq.2023.121544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Tenofovir (TFR) is an antiviral drug commonly used to fight against viral diseases infection due to its good potency and high genetic barrier to drug resistance. In physiological conditions, TFR is less water soluble, more unstable, and less permeable, limiting its effective therapeutic applications. In addition to their use in treating the Coronavirus disease 2019 (COVID-19), cyclodextrins (CDs) are also being used as a molecule to develop therapies for other diseases due to its enhance solubility and stability. This study is designed to synthesize and characterization of β-CD:TFR inclusion complex and its interaction against SARS-CoV-2 (MPro) protein (PDB ID;7cam). Several techniques were used to characterize the prepared β-CD:TFR inclusion complex, including UV-Visible, FT-IR, XRD, SEM, TGA, and DSC, which provided appropriate evidence to confirm the formation. A 1:1 stoichiometry was determined for β-CD:TFR inclusion complex in aqueous medium from UV-Visible absorption spectra by using the Benesi-Hildebrand method. Phase solubility studies proposed that β-CD enhanced the excellent solubility of TFR and the stability constant was obtained at 863 ± 32 M-1. Moreover, the molecular docking confirmed the experimental results demonstrated the most desirable mode of TFR encapsulated into the β-CD nanocavity via hydrophobic interactions and possible hydrogen bonds. Moreover, TFR was validated in the β-CD:TFR inclusion complex as potential inhibitors against SARS-CoV-2 main protease (Mpro) receptors by using in silico methods. The enhanced solubility, stability, and antiviral activity against SARS-CoV-2 (MPro) suggest that β-CD:TFR inclusion complexes can be further used as feasible water-insoluble antiviral drug carriers in viral disease infection.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kuppu Sakthi Velu
- Department of Industrial Chemistry, Alagappa University, Karikudi 630003, Tamilnadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karikudi 630003, Tamilnadu, India
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Yousef Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
23
|
Shannon A, Canard B. Kill or corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2. Antiviral Res 2023; 210:105501. [PMID: 36567022 PMCID: PMC9773703 DOI: 10.1016/j.antiviral.2022.105501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France.
| |
Collapse
|
24
|
Zapata-Cardona MI, Florez-Alvarez L, Guerra-Sandoval AL, Chvatal-Medina M, Guerra-Almonacid CM, Hincapie-Garcia J, Hernandez JC, Rugeles MT, Zapata-Builes W. In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach. AIMS Microbiol 2023; 9:20-40. [PMID: 36891537 PMCID: PMC9988408 DOI: 10.3934/microbiol.2023002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Background Drug repurposing is a valuable strategy for rapidly developing drugs for treating COVID-19. This study aimed to evaluate the antiviral effect of six antiretrovirals against SARS-CoV-2 in vitro and in silico. Methods The cytotoxicity of lamivudine, emtricitabine, tenofovir, abacavir, efavirenz and raltegravir on Vero E6 was evaluated by MTT assay. The antiviral activity of each of these compounds was evaluated via a pre-post treatment strategy. The reduction in the viral titer was assessed by plaque assay. In addition, the affinities of the antiretroviral interaction with viral targets RdRp (RNA-dependent RNA polymerase), ExoN-NSP10 (exoribonuclease and its cofactor, the non-structural protein 10) complex and 3CLpro (3-chymotrypsin-like cysteine protease) were evaluated by molecular docking. Results Lamivudine exhibited antiviral activity against SARS-CoV-2 at 200 µM (58.3%) and 100 µM (66.7%), while emtricitabine showed anti-SARS-CoV-2 activity at 100 µM (59.6%), 50 µM (43.4%) and 25 µM (33.3%). Raltegravir inhibited SARS-CoV-2 at 25, 12.5 and 6.3 µM (43.3%, 39.9% and 38.2%, respectively). The interaction between the antiretrovirals and SARS-CoV-2 RdRp, ExoN-NSP10 and 3CLpro yielded favorable binding energies (from -4.9 kcal/mol to -7.7 kcal/mol) using bioinformatics methods. Conclusion Lamivudine, emtricitabine and raltegravir showed in vitro antiviral effects against the D614G strain of SARS-CoV-2. Raltegravir was the compound with the greatest in vitro antiviral potential at low concentrations, and it showed the highest binding affinities with crucial SARS-CoV-2 proteins during the viral replication cycle. However, further studies on the therapeutic utility of raltegravir in patients with COVID-19 are required.
Collapse
Affiliation(s)
- Maria I. Zapata-Cardona
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Lizdany Florez-Alvarez
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mateo Chvatal-Medina
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Jaime Hincapie-Garcia
- Grupo de investigacion, Promocion y prevencion farmaceutica, Facultad de ciencias farmaceuticas yalimentarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| |
Collapse
|
25
|
Souza TML, Pinho VD, Setim CF, Sacramento CQ, Marcon R, Fintelman-Rodrigues N, Chaves OA, Heller M, Temerozo JR, Ferreira AC, Mattos M, Momo PB, Dias SSG, Gesto JSM, Pereira-Dutra F, Viola JPB, Queiroz-Junior CM, Guimarães LC, Chaves IM, Guimarães PPG, Costa VV, Teixeira MM, Bou-Habib DC, Bozza PT, Aguillón AR, Siqueira-Junior J, Macedo-Junior S, Andrade EL, Fadanni GP, Tolouei SEL, Potrich FB, Santos AA, Marques NF, Calixto JB, Rabi JA. Preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral able to attenuate virus-induced inflammation. Nat Commun 2023; 14:199. [PMID: 36639383 PMCID: PMC9837764 DOI: 10.1038/s41467-023-35928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thiago Moreno L Souza
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Vagner D Pinho
- Microbiológica Química e Farmacêutica, Doutor Nicanor, 238 Inhaúma, Rio de Janeiro, RJ, Brazil
| | - Cristina F Setim
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Carolina Q Sacramento
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Marcon
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otavio A Chaves
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Melina Heller
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Jairo R Temerozo
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Pesquisa sobre o Timo, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C Ferreira
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
- Universidade Iguaçu, Nova Iguaçu, RJ, Brazil
| | - Mayara Mattos
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia B Momo
- Microbiológica Química e Farmacêutica, Doutor Nicanor, 238 Inhaúma, Rio de Janeiro, RJ, Brazil
| | - Suelen S G Dias
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - João S M Gesto
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Filipe Pereira-Dutra
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rua André Cavalcanti 37, 5th floor, Centro, Rio de Janeiro, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Lays Cordeiro Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ian Meira Chaves
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Dumith Chequer Bou-Habib
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Pesquisa sobre o Timo, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Anderson R Aguillón
- Microbiológica Química e Farmacêutica, Doutor Nicanor, 238 Inhaúma, Rio de Janeiro, RJ, Brazil
| | - Jarbas Siqueira-Junior
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Sergio Macedo-Junior
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Edineia L Andrade
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Guilherme P Fadanni
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Sara E L Tolouei
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Francine B Potrich
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Adara A Santos
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - Naiani F Marques
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil
| | - João B Calixto
- Centro de Inovação e Ensaios Pré-clínicos and National Institute for Science and Technology on Innovation in Medicines and Identification of New Therapeutics Targets (INCT-INOVAMED). Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000, Florianópolis, SC, Brazil.
| | - Jaime A Rabi
- Microbiológica Química e Farmacêutica, Doutor Nicanor, 238 Inhaúma, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Computational investigation into Nirematrelvir/Ritonavir synergetic efficiency compared with some approved antiviral drugs targeting main protease (Mpro) SARS-CoV-2 Omicron variant. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Nelfinavir: An Old Ally in the COVID-19 Fight? Microorganisms 2022; 10:microorganisms10122471. [PMID: 36557724 PMCID: PMC9783559 DOI: 10.3390/microorganisms10122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After almost three years of the pandemic, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still spreading around the world, causing notable sanitary and social issues. New antiviral therapies are constantly under investigation. However, few options have been approved for the treatment of COVID-19. Clinical trials are currently ongoing to evaluate the efficacy of nelfinavir on mild−moderate COVID-19. This study aims to investigate the activity of this compound on SARS-CoV-2 “Variants of Concern” (VOCs), comparing its effectiveness with the approved drugs remdesivir and molnupiravir. The experiments were conducted in a biosafety level 3 facility. In this study, we used a Vero-E6-cell-based infection assay to investigate the in vitro activity of nelfinavir, molnupiravir, and remdesivir. Four strains of SARS-CoV-2 were tested: 20A.EU1, B.1.1.7, P.1, and B.1.617.2. All compounds reached micromolar/submicromolar EC50, EC90, and EC99. Furthermore, the Cmax/EC50 and Cmax/EC90 ratios were >1 for all compounds and all variants tested. Our study demonstrated that nelfinavir, as molnupiravir, and remdesivir are effective in vitro on SARS-CoV-2 variants.
Collapse
|
28
|
Pagliano P, Sellitto C, Ascione T, Scarpati G, Folliero V, Piazza O, Franci G, Filippelli A, Conti V. The preclinical discovery and development of molnupiravir for the treatment of SARS-CoV-2 (COVID-19). Expert Opin Drug Discov 2022; 17:1299-1311. [PMID: 36508255 DOI: 10.1080/17460441.2022.2153828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Molnupiravir (MOV) is a broad-spectrum oral antiviral agent approved for the treatment of COVID-19. The results from in vitro and in vivo studies suggested MOV activity against many RNA viruses such as influenza virus and some alphaviruses agents of epidemic encephalitis. MOV is a prodrug metabolized into the ribonucleoside analog β-D-N4-hydroxycytidine. It is incorporated into the viral RNA chain causing mutations impairing coding activity of the virus, thereby inhibiting viral replication. AREAS COVERED This review analyzes the in vitro and in vivo studies that have highlighted the efficacy of MOV and the main pre-authorization randomized controlled trials evaluating its safety, tolerability, and pharmacokinetics, as well as its antiviral efficacy against SARS-COV-2 infection. EXPERT OPINION MOV is an antiviral agent with an excellent tolerability profile with few drug-drug interactions. Treatment of mild-to-moderate COVID-19 can benefit from MOV administration in the precocious phases of the disease, prior to the trigger of an aberrant immune response responsible for the parenchymal damage to pulmonary and extrapulmonary tissues. However, its suspected mutagenic effect can be a factor limiting its use at least in selected populations and studies on its teratogen effects should be planned before it is authorized for use in the pediatric population or in pregnant women.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
29
|
Mares-Carbajal FJ, Espinosa-Arzate MC, Ramírez-Montoya LA, Pat-Espadas AM, Ramírez JE, Rangel-Mendez JR, Ascacio-Valdes JA, Aguilar CN, Mijaylova P, Buitrón G, Cervantes FJ. Biocatalyst developed with recovered iron-rich minerals enhances the biotransformation of SARS-CoV-2 antiviral drugs in anaerobic bioreactors. JOURNAL OF WATER PROCESS ENGINEERING 2022; 50:103337. [PMID: 36407934 PMCID: PMC9663753 DOI: 10.1016/j.jwpe.2022.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The biotransformation of the SARS-CoV-2 antiviral drugs, ribavirin and tenofovir, was studied in methanogenic bioreactors. The role of iron-rich minerals, recovered from a metallurgic effluent, on the biotransformation process was also assessed. Enrichment of anaerobic sludge with recovered minerals promoted superior removal efficiency for both antivirals (97.4 % and 94.7 % for ribavirin and tenofovir, respectively) as compared to the control bioreactor lacking minerals, which achieved 58.5 % and 37.9 % removal for the same drugs, respectively. Further analysis conducted by liquid chromatography coupled to mass spectroscopy revealed several metabolites derived from the biotransformation of both antivirals. Interestingly, tracer analysis with 13CH4 revealed that anaerobic methane oxidation coupled to Fe(III) reduction occurred in the enriched bioreactor, which was reflected in a lower content of methane in the biogas produced from this system, as compared to the control bioreactor. This treatment proposal is suitable within the circular economy concept, in which recovered metals from an industrial wastewater are applied in bioreactors to create a biocatalyst for promoting the biotransformation of emerging pollutants. This strategy may be appropriate for the anaerobic treatment of wastewaters originated from hospitals, as well as from the pharmaceutical and chemical sectors.
Collapse
Affiliation(s)
- Francisco J Mares-Carbajal
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - M Carolina Espinosa-Arzate
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Luis A Ramírez-Montoya
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Aurora M Pat-Espadas
- CONACYT-UNAM Instituto de Geología, Estación Regional del Noroeste (ERNO), Luis D. Colosio y Madrid, Hermosillo, Sonora, Mexico
| | - J Ernesto Ramírez
- Unidad Académica de Ingeniería I, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - J René Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4 Sección, 78216 San Luis Potosí, Mexico
| | - Juan A Ascacio-Valdes
- Facultad de Ciencias Químicas, Departamento de Investigación en Alimentos (DIA-UAdeC), Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Facultad de Ciencias Químicas, Departamento de Investigación en Alimentos (DIA-UAdeC), Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Petia Mijaylova
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec 62550, Morelos, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|
30
|
Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. Int J Mol Sci 2022; 23:ijms232012649. [PMID: 36293509 PMCID: PMC9604226 DOI: 10.3390/ijms232012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.
Collapse
|
31
|
Wu Z, Han Z, Liu B, Shen N. Remdesivir in treating hospitalized patients with COVID-19: A renewed review of clinical trials. Front Pharmacol 2022; 13:971890. [PMID: 36160434 PMCID: PMC9493488 DOI: 10.3389/fphar.2022.971890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Since December 2019, COVID-19 has spread across the world almost through 2.5 years. As of 16 June 2022, the cumulative number of confirmed cases of COVID-19 worldwide has reached 542.62 million, and the death toll has risen to 6.33 million. With the increasing number of deaths, it is urgent to find effective treatment drugs. Remdesivir, an investigational broad-spectrum antiviral drug produced by Gilead has been shown to inhibit SARS-CoV-2, in vitro and in vivo. This review is aimed to analyze the feasibility of remdesivir in COVID-19 and put forward the shortcomings of present clinical studies. We systematically searched PubMed and Web of Science up until 24 May 2022, using several specific terms such as “remdesivir” or “GS-5734” and “COVID-19” or “SARS-CoV-2” and retrieved basic researches and clinical studies of remdesivir in COVID-19. In this review, we summarized and reviewed the mechanism of remdesivir in SARS-COV-2, clinical trials of using remdesivir in COVID-19, analyzed the efficacy and safety of remdesivir, and judged whether the drug was effective for the treatment of COVID-19. In different clinical trials, remdesivir showed a mixed result in the treatment of COVID-19. It seemed that remdesivir shortened the time to recovery and had an acceptable safety profile. However, more clinical trials are needed to test the efficacy and safety of remdesivir.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Zhifei Han
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- School of Basic and Clinical Medicine, Shandong First Medical University, Jinan, China
| | - Beibei Liu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing, China
- *Correspondence: Beibei Liu, ; Ning Shen,
| | - Ning Shen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing, China
- *Correspondence: Beibei Liu, ; Ning Shen,
| |
Collapse
|
32
|
The Combination of Molnupiravir with Nirmatrelvir or GC376 Has a Synergic Role in the Inhibition of SARS-CoV-2 Replication In Vitro. Microorganisms 2022; 10:microorganisms10071475. [PMID: 35889194 PMCID: PMC9323947 DOI: 10.3390/microorganisms10071475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using five two-fold serial dilution of compound concentrations ≤EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were performed in triplicate, each being repeated at least three times. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p < 0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p < 0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p = 0.01) and 13.08 (p < 0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro.
Collapse
|
33
|
Askari FS, Ebrahimi M, Parhiz J, Hassanpour M, Mohebbi A, Mirshafiey A. Digging for the discovery of SARS-CoV-2 nsp12 inhibitors: a pharmacophore-based and molecular dynamics simulation study. Future Virol 2022; 17:10.2217/fvl-2022-0054. [PMID: 35983350 PMCID: PMC9370102 DOI: 10.2217/fvl-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
Abstract
Aim: COVID-19 is a global health threat. Therapeutics are urgently needed to cure patients severely infected with COVID-19. Objective: to investigate potential candidates of nsp12 inhibitors by searching for druggable cavity pockets within the viral protein and drug discovery. Methods: A virtual screening of ZINC natural products on SARS-CoV-2 nsp12's druggable cavity was performed. A lead compound with the highest affinity to nsp12 was simulated dynamically for 10 ns. Results: ZINC03977803 was nominated as the lead compound. The results showed stable interaction between ZINC03977803 and nsp12 during 10 ns. Discussion: ZINC03977803 showed stable interaction with the catalytic subunit of SARS-CoV-2, nsp12. It could inhibit the SARS-CoV-2 life cycle by direct interaction with nsp12 and inhibit RdRp complex formation.
Collapse
Affiliation(s)
| | - Mohsen Ebrahimi
- Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Jabbar Parhiz
- Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Mina Hassanpour
- Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran
| | - Alireza Mohebbi
- Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
34
|
Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors Than Isoflavone and Flavones. Viruses 2022; 14:v14071458. [PMID: 35891437 PMCID: PMC9324382 DOI: 10.3390/v14071458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3′–5′ exonuclease (ExoN).
Collapse
|
35
|
Wang X, Tao C, Morozova I, Kalachikov S, Li X, Kumar S, Russo JJ, Ju J. Identifying Structural Features of Nucleotide Analogues to Overcome SARS-CoV-2 Exonuclease Activity. Viruses 2022; 14:1413. [PMID: 35891393 PMCID: PMC9324094 DOI: 10.3390/v14071413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN. Here, we have selected and evaluated nucleotide analogues with a variety of structural features for resistance to ExoN removal when they are attached at the 3' RNA terminus. We found that dideoxynucleotides and other nucleotides lacking both 2'- and 3'-OH groups were most resistant to ExoN excision, whereas those possessing both 2'- and 3'-OH groups were efficiently removed. We also found that the 3'-OH group in the nucleotide analogues was more critical than the 2'-OH for excision by ExoN. Since the functionally important sequences in Nsp14/10 are highly conserved among all SARS-CoV-2 variants, these identified structural features of nucleotide analogues offer invaluable insights for designing effective RdRp inhibitors that can be simultaneously efficiently incorporated by the RdRp and substantially resist ExoN excision. Such newly developed RdRp terminators would be good candidates to evaluate their ability to inhibit SARS-CoV-2 in cell culture and animal models, perhaps combined with additional exonuclease inhibitors to increase their overall effectiveness.
Collapse
Affiliation(s)
- Xuanting Wang
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - James J. Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027, USA; (X.W.); (C.T.); (I.M.); (S.K.); (X.L.); (S.K.); (J.J.R.)
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
36
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
37
|
Jungwirth J, Häring C, König S, Giebeler L, Doshi H, Brandt C, Deinhardt-Emmer S, Löffler B, Ehrhardt C. D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir. Int J Mol Sci 2022; 23:ijms23136880. [PMID: 35805887 PMCID: PMC9266999 DOI: 10.3390/ijms23136880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.
Collapse
Affiliation(s)
- Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Sarah König
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Liane Giebeler
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Heena Doshi
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany;
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany;
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (S.D.-E.); (B.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (S.D.-E.); (B.L.)
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
- Correspondence: ; Tel.: +49-(0)3641-939-5700
| |
Collapse
|
38
|
Deval J, Gurard-Levin ZA. Opportunities and Challenges in Targeting the Proofreading Activity of SARS-CoV-2 Polymerase Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092918. [PMID: 35566268 PMCID: PMC9103157 DOI: 10.3390/molecules27092918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription. The proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein 14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and describe the assays that have been developed to assess the ExoN function. We also review the nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in combination with chain-terminating nucleosides may be a promising avenue for the development of anti-CoV agents.
Collapse
Affiliation(s)
- Jerome Deval
- Aligos Therapeutics, Inc., San Francisco, CA 94080, USA
- Correspondence:
| | | |
Collapse
|
39
|
Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B 2022; 12:581-599. [PMID: 34485029 PMCID: PMC8405450 DOI: 10.1016/j.apsb.2021.08.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| |
Collapse
|
40
|
Ianevski A, Ahmad S, Anunnitipat K, Oksenych V, Zusinaite E, Tenson T, Bjørås M, Kainov DE. Seven classes of antiviral agents. Cell Mol Life Sci 2022; 79:605. [PMID: 36436108 PMCID: PMC9701656 DOI: 10.1007/s00018-022-04635-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Shahzaib Ahmad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Kraipit Anunnitipat
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway ,Institute of Technology, University of Tartu, 50411 Tartu, Estonia ,Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|