1
|
Wang Y, Wei M, Naz S, Zheng X, Wu X. Genome-wide analysis reveals the evolutionary history of TAG intracellular lipases and their roles in different molting stages of Decapods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101444. [PMID: 39985982 DOI: 10.1016/j.cbd.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Intracellular lipases can be broadly divided into two categories: neutral lipases and acid lipases. Adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol lipase (MAGL) are three key neutral lipases responsible for the hydrolysis of triacylglycerol (TAG) in lipid droplets (LDs). Although these three TAG intracellular lipase genes have been identified and characterized in multiple model species, their evolutionary history remains largely unknown. For the TAG intracellular lipase genes in Decapoda, there is also a large knowledge gap. Thus, in this study, we performed a genome-wide identification and investigation of TAG intracellular lipase genes in Decapoda and outgroups, analyzing their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 22 ATGL genes, 23 HSL genes and 21 MAGL genes were identified in 17 selected species. HSL is the oldest and most conserved gene to exist in any species. Furthermore, RNA-seq analysis was conducted on two representative Decapod species, Chinese mitten crab (Eriocheir sinensis) and swimming crab (Portunus trituberculatus), which represent freshwater and marine environments, respectively. The analysis revealed a positive correlation between the expression levels of TAG intracellular lipase genes and the energy demand during different molting stages. Overall, the results of this study provide valuable insights into the evolutionary history of TAG intracellular lipase genes, which could enhance our understanding for the role of these genes during key physiological processes of Decapods.
Collapse
Affiliation(s)
- Yufan Wang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Maolei Wei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Saira Naz
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xirui Zheng
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai 201306, China.
| |
Collapse
|
2
|
Steigemann P, Braeuer N, Puetter V, Zablowsky N, Juenemann K, von Nussbaum F, Lesche R, Dittmar N, Schaller D, Makowska Z, Klironomos F, Schwarz S, Launhardt D, Bader B, Lange M, Steuber H, Black MH, Packer JS, Romeo S, Fasler S, Bedford L, Dewey FE. Identification of NUV-244 as a PNPLA3 I148M degrading small molecule. iScience 2025; 28:112384. [PMID: 40322074 PMCID: PMC12049818 DOI: 10.1016/j.isci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The PNPLA3 I148M variant is a key genetic determinant of metabolic dysfunction-associated steatotic liver disease (MASLD) and related conditions, contributing to lipid metabolism dysregulation and disease progression. To identify small molecules that modulate PNPLA3 I148M, we conducted a high-content screen of over 820,000 compounds and identified NUV-244, a potent degrader of PNPLA3 I148M in liver-derived cells. NUV-244 reduces PNPLA3 I148M levels on lipid droplets via the ubiquitin-proteasome system, involving the E3 ligase BFAR, without affecting PNPLA2. It restores lipid droplet morphology and improves cellular fitness in PNPLA3 I148M-expressing cells. These findings provide a tool to investigate PNPLA3 I148M function and offer a potential strategy for developing targeted therapies for MASLD and related diseases. By enabling selective degradation of PNPLA3 I148M, this approach expands therapeutic possibilities beyond genetic manipulation, addressing a critical need in metabolic liver disease research.
Collapse
Affiliation(s)
| | - Nico Braeuer
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - Vera Puetter
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - Nina Zablowsky
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | | | | | - Ralf Lesche
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - Nicole Dittmar
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - David Schaller
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | | | | | | | | | - Benjamin Bader
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - Martin Lange
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | - Holger Steuber
- Nuvisan ICB GmbH, Müllerstrasse 178, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Wang Y, Hong S, Hudson H, Kory N, Kinch LN, Kozlitina J, Cohen JC, Hobbs HH. PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by inhibiting ATGL-mediated triglyceride hydrolysis. J Hepatol 2025; 82:871-881. [PMID: 39550037 DOI: 10.1016/j.jhep.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND & AIMS PNPLA3(148M) (patatin-like phospholipase domain-containing protein 3) is the most impactful genetic risk factor for steatotic liver disease. A key unresolved issue is whether PNPLA3(148M) confers a loss- or gain-of-function. Here we test the hypothesis that PNPLA3 causes steatosis by sequestering ABHD5 (α/β hydrolase domain-containing protein 5), the cofactor of ATGL (adipose TG lipase), thus limiting mobilization of hepatic triglyceride (TG). METHODS We quantified and compared the physical interactions between ABHD5 and PNPLA3/ATGL in cultured hepatocytes using NanoBiT complementation assays and immunocytochemistry. Recombinant proteins purified from human cells were used to compare TG hydrolytic activities of PNPLA3 and ATGL in the presence or absence of ABHD5. Adenoviruses and adeno-associated viruses were used to express PNPLA3 in liver-specific Atgl-/- mice and to express ABHD5 in livers of Pnpla3M/M mice, respectively. RESULTS ABHD5 interacted preferentially with PNPLA3 relative to ATGL in cultured hepatocytes. No differences were seen in the strength of the interactions between ABHD5 with PNPLA3(WT) and PNPLA3(148M). In contrast to prior findings, we found that PNPLA3, like ATGL, is activated by ABHD5 in in vitro assays using purified proteins. PNPLA3(148M)-associated inhibition of TG hydrolysis required that ATGL be expressed and that PNPLA3 be located on lipid droplets. Finally, overexpression of ABHD5 reversed the hepatic steatosis in Pnpla3M/M mice. CONCLUSIONS These findings support the premise that PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by accumulating on lipid droplets and inhibiting ATGL-mediated lipolysis in an ABHD5-dependent manner. Our results predict that reducing, rather than increasing, PNPLA3 expression will be the best strategy to treat PNPLA3(148M)-associated steatotic liver disease. IMPACT AND IMPLICATIONS Steatotic liver disease (SLD) is a common complex disorder associated with both environmental and genetic risk factors. PNPLA3(148M) is the most impactful genetic risk factor for SLD and yet its pathogenic mechanism remains controversial. Herein, we provide evidence that PNPLA3(148M) promotes triglyceride (TG) accumulation by sequestering ABHD5, thus limiting its availability to activate ATGL. Although the substitution of methionine for isoleucine reduces the TG hydrolase activity of PNPLA3, the loss of enzymatic function is not directly related to the steatotic effect of the variant. It is the resulting accumulation of PNPLA3 on LDs that confers a gain-of-function by interfering with ATGL-mediated TG hydrolysis. These findings have implications for the design of potential PNPLA3(148M)-based therapies. Reducing, rather than increasing, PNPLA3 levels is predicted to reverse steatosis in susceptible individuals.
Collapse
Affiliation(s)
- Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA.
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Hannah Hudson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lisa N Kinch
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA
| | - Jonathan C Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Center for Human Nutrition, UTSW, Dallas, TX 75390, USA
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA; The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
5
|
Roy A, Paul I, Chakraborty P, Saha A, Ray S. Unlocking the influence of PNPLA3 mutations on lipolysis: Insights into lipid droplet formation and metabolic dynamics in metabolic dysfunction-associated steatotic liver disease. Biochim Biophys Acta Gen Subj 2025; 1869:130766. [PMID: 39832620 DOI: 10.1016/j.bbagen.2025.130766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a range of liver conditions marked by the buildup of fat, spanning from simple fatty liver to more advanced stages like metabolic dysfunction-associated steatohepatitis and cirrhosis. METHODS Our in-depth analysis of PNPLA3_WT and mutants (I148M (MT1) and C15S (MT2)) provides insights into their structure-function dynamics in lipid metabolism, especially lipid droplet hydrolysis and ABHD5 binding. Employing molecular docking, binding affinity, MD analysis, dissociation constant, and MM/GBSA analysis, we delineated distinct binding characteristics between wild-type and mutants. RESULTS Structural dynamics analysis revealed that unbound mutants exhibited higher flexibility, increased Rg and SASA values, and broader energy landscapes, indicating multiple inactive states. Mutations, especially in PNPLA3_MT1, reduced the exposure of the catalytic serine, potentially impairing enzymatic activity and LD hydrolysis efficiency. Altered interaction patterns and dynamics, particularly a shift in ABHD5 binding regions towards the C-terminal domain, underscore its role in LD metabolism. Energy dynamics analysis of the protein complexes revealed PNPLA3_WT exhibited multiple low-energy macrostates, whereas the mutants displayed narrower energy landscapes, suggesting a more stable functional state. PNPLA3_MT1 demonstrated the highest affinity towards ABHD5, highlighting the complex interplay between protein structure, dynamics, and lipid metabolism regulation. CONCLUSION PNPLA3_MT1 mutant exhibits the highest flexibility and significantly reduced catalytic serine accessibility, leading to impaired lipolysis. Contrarily, PNPLA3_WT maintains stable catalytic efficiency and effective LD hydrolysis, with PNPLA3_MT2 displaying intermediate behavior. GENERAL SIGNIFICANCE Our research provides valuable insights into the metabolic implications of PNPLA3 mutations, offering a path for potential therapeutic interventions in MASLD.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Adrija Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
6
|
Teskey G, Tiwari N, Butcko AJ, Kumar A, Yadav A, Huang YMM, Kelly CV, Granneman JG, Perfield JW, Mottillo EP. Lipid droplet targeting of the lipase coactivator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis. J Biol Chem 2025; 301:108186. [PMID: 39814233 PMCID: PMC11849118 DOI: 10.1016/j.jbc.2025.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β Hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD-bound protein that functions as a co-activator of patatin-like phospholipase domain-containing 2 (PNPLA2; also known as adipose triglyceride lipase) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). We previously demonstrated that ABHD5 interacted with PNPLA3, a closely related family member to PNPLA2. Importantly, a common missense variant in PNPLA3 (I148M) is the greatest genetic risk factor for MASLD. PNPLA3 148M functions to sequester ABHD5 and prevent coactivation of PNPLA2, which has implications for initiating MASLD; however, the exact mechanisms involved are not understood. Here, we demonstrate that LD targeting of both ABHD5 and PNPLA3 I148M is required for the interaction. Molecular modeling demonstrates important residues in the C terminus of PNPLA3 for LD binding and fluorescence cross-correlation spectroscopy demonstrates that PNPLA3 I148M has greater association with ABHD5 than WT PNPLA3. Moreover, the C terminus of PNPLA3 is sufficient for functional targeting of PNPLAs to LD and the interaction with ABHD5. In addition, ABHD5 is a general binding partner of LD-bound PNPLAs. Finally, PNPLA3 I148M targeting to LD is required to promote steatosis in vitro and in the liver. Overall results suggest that the interaction of PNPLA3 I148M with ABHD5 on LD is required to promote liver steatosis.
Collapse
Affiliation(s)
- Grace Teskey
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Nivedita Tiwari
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Andrew J Butcko
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Amit Kumar
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Anuradha Yadav
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis Indiana, USA
| | - Emilio P Mottillo
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
7
|
Pei Y, Goh GBB. Genetic Risk Factors for Metabolic Dysfunction-Associated Steatotic Liver Disease. Gut Liver 2025; 19:8-18. [PMID: 39774124 PMCID: PMC11736312 DOI: 10.5009/gnl240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common cause of liver disease, and its burden on health systems worldwide continues to rise at an alarming rate. MASLD is a complex disease in which the interactions between susceptible genes and the environment influence the disease phenotype and severity. Advances in human genetics over the past few decades have provided new opportunities to improve our understanding of the multiple pathways involved in the pathogenesis of MASLD. Notably, the PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 single nucleotide polymorphisms have been demonstrated to be robustly associated with MASLD development and disease progression. These genetic variants play crucial roles in lipid droplet remodeling, secretion of hepatic very low-density lipoprotein and lipogenesis, and understanding the biology has brought new insights to this field. This review discusses the current body of knowledge regarding these genetic drivers and how they can lead to development of MASLD, the complex interplay with metabolic factors such as obesity, and how this information has translated clinically into the development of risk prediction models and possible treatment targets.
Collapse
Affiliation(s)
- Yiying Pei
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| |
Collapse
|
8
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Chen VL, Brady GF. Recent advances in MASLD genetics: Insights into disease mechanisms and the next frontiers in clinical application. Hepatol Commun 2025; 9:e0618. [PMID: 39774697 PMCID: PMC11717516 DOI: 10.1097/hc9.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the world and a growing cause of liver-related morbidity and mortality. Yet, at the same time, our understanding of the pathophysiology and genetic underpinnings of this increasingly common yet heterogeneous disease has increased dramatically over the last 2 decades, with the potential to lead to meaningful clinical interventions for patients. We have now seen the first pharmacologic therapy approved for the treatment of MASLD, and multiple other potential treatments are currently under investigation-including gene-targeted RNA therapies that directly extend from advances in MASLD genetics. Here we review recent advances in MASLD genetics, some of the key pathophysiologic insights that human genetics has provided, and the ways in which human genetics may inform our clinical practice in the field of MASLD in the near future.
Collapse
|
10
|
Teskey G, Tiwari N, Butcko AJ, Kumar A, Yadav A, Huang YM, Kelly CV, Granneman JG, Perfield JW, Mottillo EP. Lipid droplet targeting of ABHD5 and PNPLA3 I148M is required to promote liver steatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616525. [PMID: 39605541 PMCID: PMC11601262 DOI: 10.1101/2024.10.03.616525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). We previously demonstrated that ABHD5 interacted with PNPLA3, a closely related family member to PNPLA2. Importantly, a common missense variant in PNPLA3 (I148M) is the greatest genetic risk factor for MASLD. PNPLA3 148M functions to sequester ABHD5 and prevent co-activation of PNPLA2, which has implications for initiating MASLD; however, the exact mechanisms involved are not understood. Here we demonstrate that LD targeting of both ABHD5 and PNPLA3 I148M is required for the interaction. Molecular modeling demonstrates important resides in the C-terminus of PNPLA3 for LD binding and fluorescence cross-correlation spectroscopy demonstrates that PNPLA3 I148M greater associates with ABHD5 than WT PNPLA3. Moreover, the C-terminus of PNPLA3 is sufficient for functional targeting of PNPLAs to LD and the interaction with ABHD5. In addition, ABHD5 is a general binding partner of LD-bound PNPLAs. Finally, PNPLA3 I148M targeting to LD is required to promote steatosis in vitro and in the liver. Overall results suggest that PNPLA3 I148M is a gain of function mutation and that the interaction with ABHD5 on LD is required to promote liver steatosis.
Collapse
Affiliation(s)
- Grace Teskey
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202
| | - Nivedita Tiwari
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202
| | - Andrew J. Butcko
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202
| | - Amit Kumar
- Department of Physics and Astronomy, Detroit, MI 48201, USA
| | - Anu Yadav
- Department of Physics and Astronomy, Detroit, MI 48201, USA
| | | | | | - James G. Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA 48202
| | - James W. Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis IN 46285 U.S.A
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202
| |
Collapse
|
11
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Méndez-Sánchez N, Brouwer WP, Lammert F, Yilmaz Y. Metabolic dysfunction associated fatty liver disease in healthy weight individuals. Hepatol Int 2024; 18:884-896. [PMID: 39052203 PMCID: PMC11449956 DOI: 10.1007/s12072-024-10662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 07/27/2024]
Abstract
Metabolic dysfunction associated fatty liver disease (MAFLD) is an increasing public health problem, affecting one third of the global population. Contrary to conventional wisdom, MAFLD is not exclusive to obese or overweight individuals. Epidemiological studies have revealed a remarkable prevalence among healthy weight individuals, leading investigations into the genetic, lifestyle, and dietary factors that contribute to the development of MAFLD in this population. This shift in perspective requires reconsideration of preventive strategies, diagnostic criteria and therapeutic approaches tailored to address the unique characteristics of MAFLD healthy weight individuals. It also underscores the importance of widespread awareness and education, within the medical community and among the general population, to promote a more inclusive understanding of liver metabolic disorders. With this review, we aim to provide a comprehensive exploration of MAFLD in healthy weight individuals, encompassing epidemiological, pathophysiological, and clinical aspects.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Willem Pieter Brouwer
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Erasmus MC Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Frank Lammert
- Health Sciences, Hannover Medical School, Hannover, Germany
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
13
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Geier A, Trost J, Wang K, Schmid C, Krawczyk M, Schiffels S. PNPLA3 fatty liver allele was fixed in Neanderthals and segregates neutrally in humans. Gut 2024; 73:1008-1014. [PMID: 38458749 DOI: 10.1136/gutjnl-2023-331594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Fat deposition is modulated by environmental factors and genetic predisposition. Genome-wide association studies identified PNPLA3 p.I148M (rs738409) as a common variant that increases risk of developing liver steatosis. When and how this variant evolved in humans has not been studied to date. DESIGN Here we analyse ancient DNA to track the history of this allele throughout human history. In total, 6444 published ancient (modern humans, Neanderthal, Denisovan) and 3943 published present day genomes were used for analysis after extracting genotype calls for PNPLA3 p.I148M. To quantify changes through time, logistic and, by grouping individuals according to geography and age, linear regression analyses were performed. RESULTS We find that archaic human individuals (Neanderthal, Denisovan) exclusively carried a fixed PNPLA3 risk allele, whereas allele frequencies in modern human populations range from very low in Africa to >50% in Mesoamerica. Over the last 15 000 years, distributions of ancestral and derived alleles roughly match the present day distribution. Logistic regression analyses did not yield signals of natural selection during the last 10 000 years. CONCLUSION Archaic human individuals exclusively carried a fixed PNPLA3 allele associated with fatty liver, whereas allele frequencies in modern human populations are variable even in the oldest samples. Our observation might underscore the advantage of fat storage in cold climate and particularly for Neanderthal under ice age conditions. The absent signals of natural selection during modern human history does not support the thrifty gene hypothesis in case of PNPLA3 p.I148M.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Medicine II, Division of Hepatology, University Hospital Wurzburg, Würzburg, Germany
| | - Jonas Trost
- Department of Medicine II, Division of Hepatology, University Hospital Wurzburg, Würzburg, Germany
| | - Ke Wang
- Department Archaeogenetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Life Sciences, Fudan University, Shanghai, China
| | - Clemens Schmid
- Department Archaeogenetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- International Max Planck Research School for the Science of Human History, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Stephan Schiffels
- Department Archaeogenetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
Duan X, Savage DB. The role of lipid droplet associated proteins in inherited human disorders. FEBS Lett 2024; 598:1205-1206. [PMID: 38016936 PMCID: PMC7617339 DOI: 10.1002/1873-3468.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Proteins which associate with the surface of lipid droplets are intimately involved in the regulation of the droplets. Several human inherited disorders have now been linked to loss- and, in some cases, likely gain-of-function mutations in the genes encoding these proteins. These are summarised in this Graphical Review.
Collapse
Affiliation(s)
- Xiaowen Duan
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - David B. Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| |
Collapse
|
17
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
18
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318619121. [PMID: 38657050 PMCID: PMC11067037 DOI: 10.1073/pnas.2318619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA94080
| | | | | | | | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | | | | |
Collapse
|
19
|
Meng M, Cao Y, Qiu J, Shan G, Wang Y, Zheng Y, Guo M, Yu J, Ma Y, Xie C, Hu C, Xu L, Mueller E, Ma X. Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner. Metabolism 2024; 152:155784. [PMID: 38211696 DOI: 10.1016/j.metabol.2024.155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND AND AIM Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice. METHODS We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis. RESULTS Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis. CONCLUSION We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.
Collapse
Affiliation(s)
- Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Guangyu Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingwen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Elisabetta Mueller
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine New York University, Grossman School of Medicine, New York, NY, USA
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
20
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Colaço-Gaspar M, Hofer P, Oberer M, Zechner R. PNPLA-mediated lipid hydrolysis and transacylation - At the intersection of catabolism and anabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159410. [PMID: 37951382 DOI: 10.1016/j.bbalip.2023.159410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Patatin-like phospholipase domain containing proteins (PNPLAs) play diverse roles in lipid metabolism. In this review, we focus on the enzymatic properties and predicted 3D structures of PNPLA1-5. PNPLA2-4 exert both catabolic and anabolic functions. Whereas PNPLA1 is predominantly expressed in the epidermis and involved in sphingolipid biosynthesis, PNPLA2 and 4 are ubiquitously expressed and exhibit several enzymatic activities, including hydrolysis and transacylation of various (glycero-)lipid species. This review summarizes known biological roles for PNPLA-mediated hydrolysis and transacylation reactions and highlights open questions concerning their physiological function.
Collapse
Affiliation(s)
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
22
|
Shi B, Zhang Z, Lv X, An K, Li L, Xia Z. Screening of Genes Related to Fat Deposition of Pekin Ducks Based on Transcriptome Analysis. Animals (Basel) 2024; 14:268. [PMID: 38254437 PMCID: PMC10812498 DOI: 10.3390/ani14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Subcutaneous fat deposition is an important index with which to evaluate meat-producing ducks, and affects their meat quality and feed conversion rate. Studying the differentially expressed genes in subcutaneous fat will help to comprehensively understand the potential mechanisms regulating fat deposition in ducks. In this study, 72 Nankou 1 Pekin Ducks and 72 Jingdian Pekin Ducks (half male and half female) at 42 days of age were selected for slaughter performance and transcriptome analysis. The results showed that the breast-muscle yield of Nankou 1 ducks was significantly higher than that of Jingdian ducks, but that the abdominal fat yield and subcutaneous fat yield were higher than that of Jingdian ducks. Thousands of DEGs, including many important genes involved in fat metabolism regulation, were detected by transcriptome. KEGG enrichment analysis showed that the DEGs were significantly enriched on pathways such as regulation of lipolysis in adipocytes, primary bile acid biosynthesis, and biosynthesis of unsaturated fatty acids. SCD, FGF7, LTBP1, PNPLA3, ADCY2, and ACOT8 were selected as candidate genes for regulating subcutaneous fat deposition. The results indicated that Nankou 1 had superior fat deposition ability compared to Jingdian ducks, and that the candidate genes regulated fat deposition by regulating fat synthesis and decomposition.
Collapse
Affiliation(s)
- Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650500, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| |
Collapse
|
23
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Chen J, Chan TTH, Zhou J. Lipid metabolism in the immune niche of tumor-prone liver microenvironment. J Leukoc Biol 2024; 115:68-84. [PMID: 37474318 DOI: 10.1093/jleuko/qiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The liver is a common primary site not only for tumorigenesis, but also for cancer metastasis. Advanced cancer patients with liver metastases also show reduced response rates and survival benefits when treated with immune checkpoint inhibitors. Accumulating evidence has highlighted the importance of the liver immune microenvironment in determining tumorigenesis, metastasis-organotropism, and immunotherapy resistance. Various immune cells such as T cells, natural killer and natural killer T cells, macrophages and dendritic cells, and stromal cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes are implicated in contributing to the immune niche of tumor-prone liver microenvironment. In parallel, as the major organ for lipid metabolism, the increased abundance of lipids and their metabolites is linked to processes crucial for nonalcoholic fatty liver disease and related liver cancer development. Furthermore, the proliferation, differentiation, and functions of hepatic immune and stromal cells are also reported to be regulated by lipid metabolism. Therefore, targeting lipid metabolism may hold great potential to reprogram the immunosuppressive liver microenvironment and synergistically enhance the immunotherapy efficacy in the circumstance of liver metastasis. In this review, we describe how the hepatic microenvironment adapts to the lipid metabolic alterations in pathologic conditions like nonalcoholic fatty liver disease. We also illustrate how these immunometabolic alterations promote the development of liver cancers and immunotherapy resistance. Finally, we discuss the current therapeutic options and hypothetic combination immunotherapies for the treatment of advanced liver cancers.
Collapse
Affiliation(s)
- Jintian Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Thomas T H Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
25
|
Cho CH, Patel S, Rajbhandari P. Adipose tissue lipid metabolism: lipolysis. Curr Opin Genet Dev 2023; 83:102114. [PMID: 37738733 DOI: 10.1016/j.gde.2023.102114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
White adipose tissue stores fatty acid (FA) as triglyceride in the lipid droplet organelle of highly specialized cells known as fat cells or adipocytes. Depending on the nutritional state and energy demand, hormonal and biochemical signals converge on activating an elegant and fundamental process known as lipolysis, which involves triglyceride hydrolysis to FAs. Almost six decades of work have vastly expanded our knowledge of lipolysis from enzymatic processes to complex protein assembly, disassembly, and post-translational modification. Research in recent decades ushered in the discovery of new lipolytic enzymes and coregulators and the characterization of numerous factors and signaling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels. This review will discuss recent developments with particular emphasis on the past two years in enzymatic lipolytic pathways and transcriptional regulation of lipolysis. We will summarize the positive and negative regulators of lipolysis, the adipose tissue microenvironment in lipolysis, and the systemic effects of lipolysis. The dynamic nature of adipocyte lipolysis is emerging as an essential regulator of metabolism and energy balance, and we will discuss recent developments in this area.
Collapse
Affiliation(s)
- Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Department of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place New York, NY 10029 USA.
| |
Collapse
|
26
|
Zhu H, Ahmad S, Duan Z, Shi J, Tang X, Dong Q, Xi C, Ge L, Wu T, Tan Y. The Jinggangmycin-induced Mthl2 gene regulates the development and stress resistance in Nilaparvata lugens Stål (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105630. [PMID: 37945234 DOI: 10.1016/j.pestbp.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
Methuselah (Mth) belongs to the GPCR family B, which regulates various biological processes and stress responses. The previous transcriptome data showed jinggangmycin (JGM)-induced Mthl2 expression. However, its detailed functional role remained unclear in brown planthopper, Nilaparvata lugens Stål. In adult N. lugens, the Mthl2 gene showed dominant expressions, notably in ovaries and fat body tissues. The 3rd instar nymphs treated with JGM increased starvation, oxidative stress, and high temperature (34 °C) tolerance of the adults. On the contrary, under dsMthl2 treatment, completely opposite phenotypes were observed. The lipid synthesis genes (DGAT1and PNPLA3) of both females and males treated with JGM in the nymphal stage were observed with high expressions, while the lipolysis of the Lipase 3 gene was observed with low expressions. The JGM increased triglyceride (TG) content, fat body droplet size, and the number of fat body droplets. The same treatment also increased the Glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. An increase in the heat shock protein (HSP70 and HSP90) expression levels was also observed under JGM treatment but not dsMthl2. The current study demonstrated the influential role of the Mthl genes, particularly the Mthl2 gene, in modulating the growth and development and stress-responsiveness in N. lugens. Thus, providing a platform for future applied research programs controlling N. lugens population in rice fields.
Collapse
Affiliation(s)
- Haowen Zhu
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Zhirou Duan
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Junting Shi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Chuanyuan Xi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, PR China.
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
27
|
Shihana F, Cholan PM, Fraser S, Oehlers SH, Seth D. Investigating the role of lipid genes in liver disease using fatty liver models of alcohol and high fat in zebrafish (Danio rerio). Liver Int 2023; 43:2455-2468. [PMID: 37650211 DOI: 10.1111/liv.15716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Accumulation of lipid in the liver is the first hallmark of both alcohol-related liver disease (ALD) and non-alcohol-related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol-related and non-alcohol-related fatty liver. METHODS We used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post-fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high-fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye-specific live imaging) were analysed across treatment groups to test the functions of these genes. RESULTS Exposure of 5-day post-fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR-Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2-fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism-related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β-oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD. CONCLUSIONS We identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
Collapse
Affiliation(s)
- Fathima Shihana
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, New South Wales, Australia
| | - Pradeep Manuneedhi Cholan
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stuart Fraser
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Camperdown, New South Wales, Australia
| | - Stefan H Oehlers
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Camperdown, New South Wales, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Dewidar B, Mastrototaro L, Englisch C, Ress C, Granata C, Rohbeck E, Pesta D, Heilmann G, Wolkersdorfer M, Esposito I, Reina Do Fundo M, Zivehe F, Yavas A, Roden M. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine 2023; 94:104714. [PMID: 37454552 PMCID: PMC10384226 DOI: 10.1016/j.ebiom.2023.104714] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Disturbed hepatic energy metabolism contributes to non-alcoholic fatty liver (NAFLD), but the development of changes over time and obesity- or diabetes-related mechanisms remained unclear. METHODS Two-day old male C57BL/6j mice received streptozotocin (STZ) or placebo (PLC) and then high-fat (HFD) or regular chow diet (RCD) from week 4 (W4) to either W8 or W16, yielding control [CTRL = PLC + RCD], diabetes [DIAB = STZ + RCD], obesity [OBES = PLC + HFD] and diabetes-related non-alcoholic steatohepatitis [NASH = STZ + HFD] models. Mitochondrial respiration was measured by high-resolution respirometry and insulin-sensitive glucose metabolism by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FINDINGS NASH showed higher steatosis and NAFLD activity already at W8 and liver fibrosis at W16 (all p < 0.01 vs CTRL). Ballooning was increased in DIAB and NASH at W16 (p < 0.01 vs CTRL). At W16, insulin sensitivity was 47%, 58% and 75% lower in DIAB, NASH and OBES (p < 0.001 vs CTRL). Hepatic uncoupled fatty acid oxidation (FAO)-associated respiration was reduced in OBES at W8, but doubled in DIAB and NASH at W16 (p < 0.01 vs CTRL) and correlated with biomarkers of unfolded protein response (UPR), oxidative stress and hepatic expression of certain enzymes (acetyl-CoA carboxylase 2, Acc2; carnitine palmitoyltransferase I, Cpt1a). Tricarboxylic acid cycle (TCA)-driven respiration was lower in OBES at W8 and doubled in DIAB at W16 (p < 0.0001 vs CTRL), which positively correlated with expression of genes related to lipolysis. INTERPRETATION Hepatic mitochondria adapt to various metabolic challenges with increasing FAO-driven respiration, which is linked to dysfunctional UPR, systemic oxidative stress, insulin resistance and altered lipid metabolism. In a diabetes model, higher TCA-linked respiration reflected mitochondrial adaptation to greater hepatic lipid turnover. FUNDING Funding bodies that contributed to this study were listed in the acknowledgements section.
Collapse
Affiliation(s)
- Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cornelia Englisch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Claudia Ress
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Insulin Resistance, Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Martin Wolkersdorfer
- Landesapotheke Salzburg, Department of Production, Hospital Pharmacy, Salzburg, Austria
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michelle Reina Do Fundo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Fariba Zivehe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
29
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
30
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in the United States and has a strong heritable component. Advances in understanding the genetic underpinnings of NAFLD have revealed important insights into NAFLD pathogenesis, prognosis, and potential therapeutic targets. The purpose of this review is to summarize data on common and rare variants associated with NAFLD, combining risk variants into polygenic scores to predict NAFLD and cirrhosis as well as emerging evidence on using gene silencing as a novel therapeutic target in NAFLD. RECENT FINDINGS Protective variants in HSD17B13, MARC1 and CIDEB have been identified and a confer 10-50% lower risk of cirrhosis. Together, these as well as other NAFLD risk variants, including those in PNPLA3 and TM6SF2, can be combined to create polygenic risk scores associated with liver fat, cirrhosis, and hepatocellular carcinoma. Genomic analysis of extreme phenotypes including patients with lean NAFLD without visceral adiposity may uncover rare monogenic disorders with pathogenic and therapeutic implications and gene silencing strategies targeting HSD17B13 and PNPLA3 are being evaluated in early phase human studies as treatments for NAFLD. SUMMARY Advances in our understanding of the genetics of NAFLD will enable clinical risk stratification and yield potential therapeutic targets.
Collapse
Affiliation(s)
- Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
- School of Public Health, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
33
|
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159262. [PMID: 36521736 DOI: 10.1016/j.bbalip.2022.159262] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver. In this paper, an overview is presented of our current understanding of the effects of fasting on adipose tissue metabolism. Fasting leads to reduced uptake of circulating triacylglycerols by adipocytes through inhibition of the activity of the rate-limiting enzyme lipoprotein lipase. In addition, fasting stimulates the degradation of stored triacylglycerols by activating the key enzyme adipose triglyceride lipase. The mechanisms underlying these events are discussed, with a special interest in insights gained from studies on humans. Furthermore, an overview is presented of the effects of fasting on other metabolic pathways in the adipose tissue, including fatty acid synthesis, glucose uptake, glyceroneogenesis, autophagy, and the endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
34
|
Mottillo EP, Mladenovic-Lucas L, Zhang H, Zhou L, Kelly CV, Ortiz PA, Granneman JG. A FRET sensor for the real-time detection of long chain acyl-CoAs and synthetic ABHD5 ligands. CELL REPORTS METHODS 2023; 3:100394. [PMID: 36936069 PMCID: PMC10014278 DOI: 10.1016/j.crmeth.2023.100394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Intracellular long-chain acyl-coenzyme As (LC-acyl-CoAs) are thought to be under tight spatial and temporal controls, yet the ability to image LC-acyl-CoAs in live cells is lacking. Here, we developed a fluorescence resonance energy transfer (FRET) sensor for LC-acyl-CoAs based on the allosterically regulated interaction between α/β hydrolase domain-containing 5 (ABHD5) and Perilipin 5. The genetically encoded sensor rapidly detects intracellular LC-acyl-CoAs generated from exogenous and endogenous fatty acids (FAs), as well as synthetic ABHD5 ligands. Stimulation of lipolysis in brown adipocytes elevated intracellular LC-acyl-CoAs in a cyclic fashion, which was eliminated by inhibiting PNPLA2 (ATGL), the major triglyceride lipase. Interestingly, inhibition of LC-acyl-CoA transport into mitochondria elevated intracellular LC-acyl-CoAs and dampened their cycling. Together, these observations reveal an intimate feedback control between LC-acyl-CoA generation from lipolysis and utilization in mitochondria. We anticipate that this sensor will be an important tool to dissect intracellular LC-acyl-CoA dynamics as well to discover novel synthetic ABHD5 ligands.
Collapse
Affiliation(s)
- Emilio P. Mottillo
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
35
|
PNPLA3(I148M) Inhibits Lipolysis by Perilipin-5-Dependent Competition with ATGL. Cells 2022; 12:cells12010073. [PMID: 36611868 PMCID: PMC9818421 DOI: 10.3390/cells12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The single nucleotide polymorphism I148M of the lipase patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an unfavorable prognosis in alcoholic and non-alcoholic steatohepatitis (ASH, NASH), with progression to liver cirrhosis and development of hepatocellular carcinoma. In this study, we investigated the mechanistic interaction of PNPLA3 with lipid droplet (LD)-associated proteins of the perilipin family, which serve as gatekeepers for LD degradation. In a collective of 106 NASH, ASH and control liver samples, immunohistochemical analyses revealed increased ballooning, inflammation and fibrosis, as well as an accumulation of PNPLA3-perilipin 5 complexes on larger LDs in patients homo- and heterozygous for PNPLA3(I148M). Co-immunoprecipitation demonstrated an interaction of PNPLA3 with perilipin 5 and the key enzyme of lipolysis, adipose triglyceride lipase (ATGL). Localization studies in cell cultures and human liver showed colocalization of perilipin 5, ATGL and PNPLA3. Moreover, the lipolytic activity of ATGL was negatively regulated by PNPLA3 and perilipin 5, whereas perilipin 1 displaced PNPLA3 from the ATGL complex. Furthermore, ballooned hepatocytes, the hallmark of steatohepatitis, were positive for PNPLA3 and perilipins 2 and 5, but showed decreased perilipin 1 expression with respect to neighboured hepatocytes. In summary, PNPLA3- and ATGL-driven lipolysis is significantly regulated by perilipin 1 and 5 in steatohepatitis.
Collapse
|
36
|
Hudert CA, Mann JP. Reply. Hepatol Commun 2022; 6:3279. [PMID: 35593156 PMCID: PMC9592745 DOI: 10.1002/hep4.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Christian A. Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
37
|
Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol 2022; 46:102003. [PMID: 35963605 DOI: 10.1016/j.clinre.2022.102003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Worldwide non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of liver disease and its burden increasing at an alarming rate. NAFLD entails steatosis, fibrosis, cirrhosis, and, finally, hepatocellular carcinoma (HCC). The substantial inter-patient variation during disease progression is the hallmark of individuals with NAFLD. The variability of NAFLD development and related complications among individuals is determined by genetic and environmental factors. Genome-wide association studies (GWAS) have discovered reproducible and robust associations between gene variants such as PNPLA3, TM6SF2, HSD17B13, MBOAT7, GCKR and NAFLD. Evidences have provided the new insights into the NAFLD biology and underlined potential pharmaceutical targets. Ideally, the candidate genes associated with the hereditability of NAFLD are mainly involved in assembly of lipid droplets, lipid remodeling, lipoprotein packing and secretion, redox status mitochondria, and de novo lipogenesis. In recent years, the ability to translate genetics into a clinical context has emerged substantially by combining genetic variants primarily associated with NAFLD into polygenic risk scores (PRS). These score in combination with metabolic factors could be utilized to identify the severe liver diseases in patients with the gene regulatory networks (GRNs). Hereby, we even have highlighted the current understanding related to the schedule therapeutic approach of an individual based on microbial colonization and dysbiosis reversal as a therapy for NAFLD. The premise of this review is to concentrate on the potential of genetic factors and their translation into the design of novel therapeutics, as well as their implications for future research into personalized medications using microbiota.
Collapse
Affiliation(s)
- Dixa Sharma
- P.D. Patel Institute of Applied Science, Charusat University of Science and Technology, Changa Dist, Anand, Gujarat, 388421, India
| | - Palash Mandal
- P.D. Patel Institute of Applied Science, Charusat University of Science and Technology, Changa Dist, Anand, Gujarat, 388421, India.
| |
Collapse
|
38
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
39
|
Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, Suemizu H, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40:111321. [PMID: 36103835 PMCID: PMC11587767 DOI: 10.1016/j.celrep.2022.111321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.
Collapse
Affiliation(s)
- Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Sandra Steensels
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Clifton G Fulmer
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Briana Zeck
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Meredith Pittman
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Neil D Theise
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | | | - Markus Grompe
- Yecuris Corporation, Tualatin, OR 97062, USA; Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Baran A Ersoy
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA.
| |
Collapse
|
40
|
Fang T, Wang H, Pan X, Little PJ, Xu S, Weng J. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. Int J Biol Sci 2022; 18:5681-5697. [PMID: 36263163 PMCID: PMC9576517 DOI: 10.7150/ijbs.65044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) increases year by year, and as a consequence, NAFLD has become one of the most prevalent liver diseases worldwide. Unfortunately, no pharmacotherapies for NAFLD have been approved by the United States Food and Drug Administration despite promising pre-clinical benefits; this situation highlights the urgent need to explore new therapeutic targets for NAFLD and for the discovery of effective therapeutic drugs. The mouse is one of the most commonly used models to study human disease and develop novel pharmacotherapies due to its small size, low-cost and ease in genetic engineering. Different mouse models are used to simulate various stages of NAFLD induced by dietary and/or genetic intervention. In this review, we summarize the newly described patho-mechanisms of NAFLD and review the preclinical mouse models of NAFLD (based on the method of induction) and appraises the use of these models in anti-NAFLD drug discovery. This article will provide a useful resource for researchers to select the appropriate model for research based on the research question being addressed.
Collapse
Affiliation(s)
- Tingyu Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
41
|
Hudert CA, Adams LA, Alisi A, Anstee QM, Crudele A, Draijer LG, EU‐PNAFLD investigators, Furse S, Hengstler JG, Jenkins B, Karnebeek K, Kelly DA, Koot BG, Koulman A, Meierhofer D, Melton PE, Mori TA, Snowden SG, van Mourik I, Vreugdenhil A, Wiegand S, Mann JP. Variants in mitochondrial amidoxime reducing component 1 and hydroxysteroid 17-beta dehydrogenase 13 reduce severity of nonalcoholic fatty liver disease in children and suppress fibrotic pathways through distinct mechanisms. Hepatol Commun 2022; 6:1934-1948. [PMID: 35411667 PMCID: PMC9315139 DOI: 10.1002/hep4.1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies in adults have identified variants in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) and mitochondrial amidoxime reducing component 1 (MTARC1) as protective against nonalcoholic fatty liver disease (NAFLD). We aimed to test their association with pediatric NAFLD liver histology and investigate their function using metabolomics. A total of 1450 children (729 with NAFLD, 399 with liver histology) were genotyped for rs72613567T>TA in HSD17B13, rs2642438G>A in MTARC1, and rs738409C>G in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Genotype-histology associations were tested using ordinal regression. Untargeted hepatic proteomics and plasma lipidomics were performed in a subset of children. We found rs72613567T>TA in HSD17B13 to be associated with lower odds of NAFLD diagnosis (odds ratio, 0.7; 95% confidence interval, 0.6-0.9) and a lower grade of portal inflammation (p < 0.001). rs2642438G>A in MTARC1 was associated with a lower grade of hepatic steatosis (p = 0.02). Proteomics found reduced expression of HSD17B13 in carriers of the protective -TA allele. MTARC1 levels were unaffected by genotype. Both variants were associated with down-regulation of fibrogenic pathways. HSD17B13 perturbs plasma phosphatidylcholines and triglycerides. In silico modeling suggested p.Ala165Thr disrupts the stability and metal binding of MTARC1. Conclusion: Both HSD17B13 and MTARC1 variants are associated with less severe pediatric NAFLD. These results provide further evidence for shared genetic mechanisms between pediatric and adult NAFLD.
Collapse
Affiliation(s)
- Christian A. Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Leon A. Adams
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of HepatologySir Charles Gairdner HospitalPerthAustralia
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Quentin M. Anstee
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle National Institute for Health Research Biomedical Research CentreNewcastle upon Tyne Hospitals National Health Service Foundation TrustNewcastle upon TyneUK
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Laura G. Draijer
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Samuel Furse
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Jan G. Hengstler
- Systems ToxicologyLeibniz Research Center for Working Environment and Human Factors at the Technical University DortmundDortmundGermany
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Kylie Karnebeek
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Deirdre A. Kelly
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Bart G. Koot
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - David Meierhofer
- Max Planck Institute for Molecular GeneticsMass Spectrometry FacilityBerlinGermany
| | - Phillip E. Melton
- School of Global Population HealthFaculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- School of Pharmacy and Biomedical SciencesFaculty of Health SciencesCurtin UniversityPerthAustralia
- Menzies Institute for Medical ResearchCollege of Health and MedicineUniversity of TasmaniaHobartAustralia
| | - Trevor A. Mori
- Medical SchoolUniversity of Western AustraliaPerthAustralia
| | - Stuart G. Snowden
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Indra van Mourik
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Anita Vreugdenhil
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Susanna Wiegand
- Center for Chronically Sick ChildrenCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
42
|
Markussen LK, Rondini EA, Johansen OS, Madsen JGS, Sustarsic EG, Marcher AB, Hansen JB, Gerhart-Hines Z, Granneman JG, Mandrup S. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat Commun 2022; 13:3956. [PMID: 35803907 PMCID: PMC9270495 DOI: 10.1038/s41467-022-31525-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. We have used pharmacological inhibitors and a direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in cultured brown adipocytes. Here we show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, however, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on transcription and function of cultured brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Olivia Sveidahl Johansen
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - Jesper G S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elahu G Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark.
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
43
|
Shahoei R, Pangeni S, Sanders MA, Zhang H, Mladenovic-Lucas L, Roush WR, Halvorsen G, Kelly CV, Granneman JG, Huang YMM. Molecular Modeling of ABHD5 Structure and Ligand Recognition. Front Mol Biosci 2022; 9:935375. [PMID: 35836935 PMCID: PMC9274090 DOI: 10.3389/fmolb.2022.935375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha/beta hydrolase domain-containing 5 (ABHD5), also termed CGI-58, is the key upstream activator of adipose triglyceride lipase (ATGL), which plays an essential role in lipid metabolism and energy storage. Mutations in ABHD5 disrupt lipolysis and are known to cause the Chanarin-Dorfman syndrome. Despite its importance, the structure of ABHD5 remains unknown. In this work, we combine computational and experimental methods to build a 3D structure of ABHD5. Multiple comparative and machine learning-based homology modeling methods are used to obtain possible models of ABHD5. The results from Gaussian accelerated molecular dynamics and experimental data of the apo models and their mutants are used to select the most likely model. Moreover, ensemble docking is performed on representative conformations of ABHD5 to reveal the binding mechanism of ABHD5 and a series of synthetic ligands. Our study suggests that the ABHD5 models created by deep learning-based methods are the best candidate structures for the ABHD5 protein. The mutations of E41, R116, and G328 disturb the hydrogen bonding network with nearby residues and suppress membrane targeting or ATGL activation. The simulations also reveal that the hydrophobic interactions are responsible for binding sulfonyl piperazine ligands to ABHD5. Our work provides fundamental insight into the structure of ABHD5 and its ligand-binding mode, which can be further applied to develop ABHD5 as a therapeutic target for metabolic disease and cancer.
Collapse
Affiliation(s)
- Rezvan Shahoei
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States
| | - Susheel Pangeni
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States
| | - Matthew A. Sanders
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - William R. Roush
- Department of Chemistry, Scripps Florida, Jupiter, FL, United States
| | - Geoff Halvorsen
- Department of Chemistry, Scripps Florida, Jupiter, FL, United States
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
- Center for Integrative Metabolic and Endocrine Research, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Yu-ming M. Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, United States
| |
Collapse
|
44
|
Baicalin ameliorates alcohol-induced hepatic steatosis by suppressing SREBP1c elicited PNPLA3 competitive binding to ATGL. Arch Biochem Biophys 2022; 722:109236. [DOI: 10.1016/j.abb.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
|
45
|
Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Sci Rep 2022; 12:3666. [PMID: 35256633 PMCID: PMC8901764 DOI: 10.1038/s41598-022-07291-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.
Collapse
|
46
|
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front Physiol 2022; 13:826314. [PMID: 35283787 PMCID: PMC8907745 DOI: 10.3389/fphys.2022.826314] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adaptation to changes in energy availability is pivotal for the survival of animals. Adipose tissue, the body’s largest reservoir of energy and a major source of metabolic fuel, exerts a buffering function for fluctuations in nutrient availability. This functional plasticity ranges from energy storage in the form of triglycerides during periods of excess energy intake to energy mobilization via lipolysis in the form of free fatty acids for other organs during states of energy demands. The subtle balance between energy storage and mobilization is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance, type 2 diabetes and cancer cachexia. As a result, adipocyte lipolysis is tightly regulated by complex regulatory mechanisms involving lipases and hormonal and biochemical signals that have opposing effects. In thermogenic brown and brite adipocytes, lipolysis stimulation is the canonical way for the activation of non-shivering thermogenesis. Lipolysis proceeds in an orderly and delicately regulated manner, with stimulation through cell-surface receptors via neurotransmitters, hormones, and autocrine/paracrine factors that activate various intracellular signal transduction pathways and increase kinase activity. The subsequent phosphorylation of perilipins, lipases, and cofactors initiates the translocation of key lipases from the cytoplasm to lipid droplets and enables protein-protein interactions to assemble the lipolytic machinery on the scaffolding perilipins at the surface of lipid droplets. Although activation of lipolysis has been well studied, the feedback fine-tuning is less well appreciated. This review focuses on the molecular brakes of lipolysis and discusses some of the divergent fine-tuning strategies in the negative feedback regulation of lipolysis, including delicate negative feedback loops, intermediary lipid metabolites-mediated allosteric regulation and dynamic protein–protein interactions. As aberrant adipocyte lipolysis is involved in various metabolic diseases and releasing the brakes on lipolysis in thermogenic adipocytes may activate thermogenesis, targeting adipocyte lipolysis is thus of therapeutic interest.
Collapse
|
47
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. It refers to a range of liver conditions affecting people who drink little or no alcohol. NAFLD comprises non-alcoholic fatty liver and non-alcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. NASH is featured by steatosis, lobular inflammation, hepatocyte injury, and various degrees of fibrosis. Although much progress has been made over the past decades, the pathogenic mechanism of NAFLD remains to be fully elucidated. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear hormone receptor that is highly expressed in hepatocytes. Hepatic HNF4α expression is markedly reduced in NAFLD patients and mouse models of NASH. HNF4α has been shown to regulate bile acid, lipid, glucose, and drug metabolism. In this review, we summarize the recent advances in the understanding of the pathogenesis of NAFLD with a focus on the regulation of HNF4α and the role of hepatic HNF4α in NAFLD. Several lines of evidence have shown that hepatic HNF4α plays a key role in the initiation and progression of NAFLD. Recent data suggest that hepatic HNF4α may be a promising target for treatment of NAFLD.
Collapse
|
48
|
Tseng YY, Sanders MA, Zhang H, Zhou L, Chou CY, Granneman JG. Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Sci Rep 2022; 12:2565. [PMID: 35173175 PMCID: PMC8850477 DOI: 10.1038/s41598-021-04179-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
Alpha/beta hydrolase domain-containing protein 5 (ABHD5) is a highly conserved protein that regulates various lipid metabolic pathways via interactions with members of the perilipin (PLIN) and Patatin-like phospholipase domain-containing protein (PNPLA) protein families. Loss of function mutations in ABHD5 result in Chanarin-Dorfman Syndrome (CDS), characterized by ectopic lipid accumulation in numerous cell types and severe ichthyosis. Recent data demonstrates that ABHD5 is the target of synthetic and endogenous ligands that might be therapeutic beneficial for treating metabolic diseases and cancers. However, the structural basis of ABHD5 functional activities, such as protein-protein interactions and ligand binding is presently unknown. To address this gap, we constructed theoretical structural models of ABHD5 by comparative modeling and topological shape analysis to assess the spatial patterns of ABHD5 conformations computed in protein dynamics. We identified functionally important residues on ABHD5 surface for lipolysis activation by PNPLA2, lipid droplet targeting and PLIN-binding. We validated the computational model by examining the effects of mutating key residues in ABHD5 on an array of functional assays. Our integrated computational and experimental findings provide new insights into the structural basis of the diverse functions of ABHD5 as well as pathological mutations that result in CDS.
Collapse
Affiliation(s)
- Yan Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| | - Matthew A Sanders
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Chia-Yi Chou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
49
|
Fuchs CD, Radun R, Dixon ED, Mlitz V, Timelthaler G, Halilbasic E, Herac M, Jonker JW, Ronda OAHO, Tardelli M, Haemmerle G, Zimmermann R, Scharnagl H, Stojakovic T, Verkade HJ, Trauner M. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice. Hepatology 2022; 75:125-139. [PMID: 34387896 DOI: 10.1002/hep.32112] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. APPROACH AND RESULTS Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline-deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA-mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1β and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R-like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. CONCLUSIONS Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Richard Radun
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emmanuel D Dixon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute for Cancer Research, Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Onne A H O Ronda
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Guenter Haemmerle
- BioTechMed-Graz, Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Graz, Austria
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Cherubini A, Casirati E, Tomasi M, Valenti L. PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opin Ther Targets 2021; 25:1033-1043. [PMID: 34904923 DOI: 10.1080/14728222.2021.2018418] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. AREAS COVERED The scope of this review is to briefly describe the PNPLA3 gene and protein function before discussing therapeutic approaches for fatty liver aiming at this target. Literature review was carried out searching through PubMed and clinicaltrials.gov website and focusing on the most recent works and reviews. EXPERT OPINION The main therapeutic strategies under development for NAFLD have shown variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease susceptibility.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa Tomasi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|