1
|
Bhattacharya I, Maity DK, Kumar A, Sarkar S, Bhattacharya T, Sahu A, Sreedhar R, Arumugam S. Beyond obesity: lean metabolic dysfunction-associated steatohepatitis from unveiling molecular pathogenesis to therapeutic advancement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04257-x. [PMID: 40366398 DOI: 10.1007/s00210-025-04257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), now known by the name of metabolic dysfunction-associated fatty liver disease (MAFLD), with increased global incidence, has been recognized as a significant metabolic disorder. NAFLD includes a spectrum liver disease from hepatocellular fat accumulation (isolated steatosis) to an advanced form of liver injury known as nonalcoholic steatohepatitis (NASH), which refers to distinct histologic features, including hepatocellular steatosis and injury, necroinflammation, and eventually fibrosis. Nonobese or lean individuals associated with metabolic dysregulation usually demonstrated diverse risk factors compared to obese MAFLD. The presence of normal range body mass index (BMI) and excess visceral adiposity with increased cardiometabolic and renal comorbidities, along with sarcopenia, has been evidenced to be associated with lean MASH. Genetic predispositions accompanying lifestyle and environmental factors contribute to disease initiation and progression. The genetic influence in pathophysiology indicated the significant contributions of the following genes: PNPLA3, TM6SF2, APOB, LIPA, MBOAT7, and HSD17B13, and the impact of their disease-specific variants in the development of obesity-independent MASH. The epigenetic modifications exhibited differential DNA methylation patterns in the genes involved in lipid metabolism, particularly hypomethylation of PEMT. Diet-induced and genetic animal models of lean MASH, including Slc: Wistar/ST rats, PPAR-α, PTEN, and MAT1A knockout mice models, are indicated to be pivotal in the exploration of disease progression and observing the effect of therapeutic interventions. This comprehensive review comprises the molecular and genetic pathophysiology, molecular diagnostics, and therapeutic aspects of lean MASH to enunciate a diagnostic approach that combines detailed clinical phenotyping regarding genomic analysis.
Collapse
Affiliation(s)
- Indrajit Bhattacharya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Deep Kumar Maity
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Amit Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Sampriti Sarkar
- School of Biosciences & Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Teeshyo Bhattacharya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Amrita Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, DG Block, Action Area I, 1/2, Newtown, Kolkata, 700156, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
2
|
Song Y, Li N, Jiang S, Wang K, Lv G, Fan Z, Du X, Gao W, Lei L, Wang Z, Liu G, Li X. Microbiota-derived H 2S induces c-kit + cDC1 autophagic cell death and liver inflammation in metabolic dysfunction-associated steatohepatitis. Nat Commun 2025; 16:2222. [PMID: 40044736 PMCID: PMC11882788 DOI: 10.1038/s41467-025-57574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Immune dysregulation-induced inflammation serves as a driving force in the progression of metabolic dysfunction-associated steatohepatitis (MASH), while the underlying cellular and molecular mechanisms remain largely uncharted. A Western diet (WD) is employed to construct mouse models of metabolic dysfunction associated steatotic liver disease (MASLD) or MASH. Mass cytometry identifies a c-kit+ cDC1 subset whose frequency is reduced in the livers of mice and patients with MASH compared with healthy controls. Adoptive cell transfer of c-kit+ cDC1 protects the progression of MASH. Moreover, analysis of gut microbe sequence shows that WD-fed mice and MASLD/MASH patients exhibit gut microbiota dysbiosis, with an elevated abundance of H2S-producing Desulfovibrio_sp. Transplanting of MASH-derived fecal flora, Desulfovibrio_sp., or injecting H2S intraperitoneally into MASLD mice decreases the c-kit+cDC1 population and exacerbates liver inflammation. Mechanistically, H2S induces autophagic cell death of cDC1 in a c-kit-dependent manner in cDC-specific c-kit-/- and Atg5-/- mice. We thus uncover that microbiota-derived H2S triggers the autophagic cell death of c-kit+ cDC1 and ignites the liver inflammatory cascade in MASH.
Collapse
Affiliation(s)
- Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kexin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
4
|
Li Z, Wang L, Tian C, Wang Z, Zhao H, Qi Y, Chen W, Wuyun Q, Amin B, Lian D, Zhu J, Zhang N, Zheng L, Xu G. Identification of hub biomarkers in liver post-metabolic and bariatric surgery using comprehensive machine learning (experimental studies). Int J Surg 2025; 111:1814-1824. [PMID: 39728595 DOI: 10.1097/js9.0000000000002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD. OBJECTIVE In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS. METHODS Differential expression and univariate logistic regression analyses were performed on lipid metabolism-related genes in a training dataset (GSE83452) and two validation datasets (GSE106737 and GSE48452) to identify consensus-predicted genes (CPGs). Subsequently, 13 machine learning algorithms were integrated into 99 combinations; among which the optimal combination was selected based on the total score of the area under the curve, accuracy, F-score, and recall in the two validation datasets. Hub genes were selected based on their importance ranking in the algorithms and the frequency of their occurrence. Finally, a mouse model of MBS was established, and the mRNA expression of the hub genes was validated via quantitative PCR. RESULTS A total of 12 CPGs were identified after intersecting the results of differential expression and logistic regression analyses on a Venn diagram. Four machine learning algorithms with the highest total scores were identified as optimal models. Additionally, PPARA, PLIN2, MED13, INSIG1, CPT1A, and ALOX5AP were identified as hub genes. The mRNA expression patterns of these genes in mice subjected to MBS were consistent with those observed in the three datasets. CONCLUSION Altogether, the six hub genes identified in this study are important for the treatment of NAFLD via MBS and hold substantial promise in guiding personalized treatment of NAFLD in clinical settings.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chenxu Tian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hao Zhao
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqige Wuyun
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
6
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
7
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Wen YQ, Zou ZY, Zhao GG, Zhang MJ, Zhang YX, Wang GH, Shi JJ, Wang YY, Song YY, Wang HX, Chen RY, Zheng DX, Duan XQ, Liu YM, Gonzalez FJ, Fan JG, Xie C. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin 2024; 45:2313-2327. [PMID: 38992119 PMCID: PMC11489735 DOI: 10.1038/s41401-024-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Ying-Quan Wen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Yuan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Guan-Guan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Jiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gai-Hong Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Jing-Jing Shi
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Yuan-Yang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ye-Yu Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Hui-Xia Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Ru-Ye Chen
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | | | - Xiao-Qun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Cen Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Mori T, Yoshio S, Kakazu E, Kanto T. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae089. [PMID: 39411101 PMCID: PMC11479709 DOI: 10.1093/gastro/goae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a complex multifactorial disease that progresses from steatohepatitis (MASH) to liver cirrhosis and liver cancer. Recent research has revealed that crosstalk between innate immune cells and hepatic parenchymal and non-parenchymal cells is involved in the pathogenesis of liver disease in MASLD/MASH. Of particular importance, novel inflammatory mechanisms, including macrophage diversity, neutrophil NETosis, B-cell biology, auto-reactive T cells, unconventional T cells, and dendritic cell-T cell interactions, are considered key drivers for disease progression. These mechanisms and factors are potential targets for the therapeutic intervention of MASLD/MASH. In this review, we focus on recent discoveries related to liver inflammation and discuss the role of innate immune cell subsets in MASLD/MASH.
Collapse
Affiliation(s)
- Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
10
|
Alisi A, McCaughan G, Grønbæk H. Role of gut microbiota and immune cells in metabolic-associated fatty liver disease: clinical impact. Hepatol Int 2024; 18:861-872. [PMID: 38995341 DOI: 10.1007/s12072-024-10674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 07/13/2024]
Abstract
In 2020, a revised definition of fatty liver disease associated with metabolic dysfunction (MAFLD) was proposed to replace non-alcoholic fatty liver (NAFLD). Liver steatosis and at least one of the three metabolic risk factors, including type 2 diabetes, obesity, or signs of metabolic dysregulation, are used to diagnose MAFLD. MAFLD, similarly to NAFLD, is characterized by a spectrum of disease ranging from simple steatosis to advanced metabolic steatohepatitis with or without fibrosis, and may progress to cirrhosis and liver cancer, including increased risk of other critical extrahepatic diseases. Even though the pathophysiology of MAFLD and potential therapeutic targets have been explored in great detail, there is yet no Food and Drug Administration approved treatment. Recently, gut microbiome-derived products (e.g., endotoxins and metabolites) involved in intestinal barrier disruption, systemic inflammation, and modification of intrahepatic immunity have been associated with MAFLD development and progression. Therefore, different strategies could be adopted to modify the gut microbiome to improve outcomes in early and progressive MAFLD. Here, we provide an overview of mechanisms that may link the gut microbiome and immune response during the onset of liver steatosis and progression to steatohepatitis and fibrosis in patients with MAFLD. Finally, gut microbiota-based approaches are discussed as potential personalized treatments against MAFLD.
Collapse
Affiliation(s)
- Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesu' Children Hospital, IRCCS, Rome, Italy.
| | - Geoffrey McCaughan
- A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, University of Sydney, Sydney, Australia
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Liu W, You D, Lin J, Zou H, Zhang L, Luo S, Yuan Y, Wang Z, Qi J, Wang W, Ye X, Yang X, Deng Y, Teng F, Zheng X, Lin Y, Huang Z, Huang Y, Yang Z, Zhou X, Zhang Y, Chen R, Xu L, Li J, Yang W, Zhang H. SGLT2 inhibitor promotes ketogenesis to improve MASH by suppressing CD8 + T cell activation. Cell Metab 2024; 36:2245-2261.e6. [PMID: 39243758 DOI: 10.1016/j.cmet.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
During the progression of metabolic dysfunction-associated steatohepatitis (MASH), the accumulation of auto-aggressive CD8+ T cells significantly contributes to liver injury and inflammation. Empagliflozin (EMPA), a highly selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), exhibits potential therapeutic benefits for liver steatosis; however, the underlying mechanism remains incompletely elucidated. Here, we found that EMPA significantly reduced the hepatic accumulation of auto-aggressive CD8+ T cells and lowered granzyme B levels in mice with MASH. Mechanistically, EMPA increased β-hydroxybutyric acid by promoting the ketogenesis of CD8+ T cells via elevating 3-hydroxybutyrate dehydrogenase 1 (Bdh1) expression. The β-hydroxybutyric acid subsequently inhibited interferon regulatory factor 4 (Irf4), which is crucial for CD8+ T cell activation. Furthermore, the ablation of Bdh1 in T cells aggravated the manifestation of MASH and hindered the therapeutic efficacy of EMPA. Moreover, a case-control study also showed that SGLT2 inhibitor treatment repressed CD8+ T cell infiltration and improved liver injury in patients with MASH. In summary, our study indicates that SGLT2 inhibitors can target CD8+ T cells and may be an effective strategy for treating MASH.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Danming You
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huren Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyi Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Qi
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhao Lin
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiwei Huang
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxin Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Xu
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jin Li
- Division of Endocrinology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Wei Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Cell Metabolic Homeostasis and Major Chronic Diseases, Guangzhou, China.
| |
Collapse
|
12
|
Gao C, Wang S, Xie X, Ramadori P, Li X, Liu X, Ding X, Liang J, Xu B, Feng Y, Tan X, Wang H, Zhang Y, Zhang H, Zhang T, Mi P, Li S, Zhang C, Yuan D, Heikenwalder M, Zhang P. Single-cell Profiling of Intrahepatic Immune Cells Reveals an Expansion of Tissue-resident Cytotoxic CD4 + T Lymphocyte Subset Associated With Pathogenesis of Alcoholic-associated Liver Diseases. Cell Mol Gastroenterol Hepatol 2024; 19:101411. [PMID: 39349248 PMCID: PMC11719870 DOI: 10.1016/j.jcmgh.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS The immunological mechanisms underpinning the pathogenesis of alcoholic-associated liver disease (ALD) remain incompletely elucidated. This study aims to explore the transcriptomic profiles of hepatic immune cells in ALD compared with healthy individuals and those with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We utilized single-cell RNA sequencing to analyze liver samples from healthy subjects and patients with MASLD and ALD, focusing on the immune cell landscapes within the liver. Key alterations in immune cell subsets were further validated using liver biopsy samples from additional patient cohorts. RESULTS We observed a significant accumulation of CD4+ T cells in livers of patients with ALD, surpassing the prevalence of CD8+ T cells, in contrast to patients with MASLD and healthy counterparts, whereas natural killer (NK) cells and γδT cells exhibited reduced intrahepatic infiltration. In-depth transcriptional and developmental trajectory analyses unveiled that a distinct CD4+ subset characterized by granzyme K (GZMK) expression, displaying a tissue-resident signature and terminal effector state, prominently enriched among CD4+ T cells infiltrating the livers of patients with ALD. Subsequent examination of an independent ALD patient cohort corroborated the substantial enrichment of GZMK+CD4+ T lymphocytes, primarily within liver fibrotic zones, suggesting their potential involvement in disease progression. Additionally, we noted shifts in myeloid populations, with expanded APOE+ macrophage and FCGR3B+ monocyte subsets in ALD samples relative to MASLD and healthy tissues. CONCLUSIONS In summary, this study unravels the intricate cellular diversity within hepatic immune cell populations, highlighting the pivotal immune pathogenic role of the GZMK+CD4+ T lymphocyte subset in ALD pathogenesis.
Collapse
Affiliation(s)
- Chao Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiguan Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Liu
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Xue Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueying Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoran Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haiyan Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong, China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany.
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Goodus MT, Alfredo AN, Carson KE, Dey P, Pukos N, Schwab JM, Popovich PG, Gao J, Mo X, Bruno RS, McTigue DM. Spinal cord injury-induced metabolic impairment and steatohepatitis develops in non-obese rats and is exacerbated by premorbid obesity. Exp Neurol 2024; 379:114847. [PMID: 38852834 PMCID: PMC11874686 DOI: 10.1016/j.expneurol.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired sensorimotor functions are prominent complications of spinal cord injury (SCI). A clinically important but less obvious consequence is development of metabolic syndrome (MetS), including increased adiposity, hyperglycemia/insulin resistance, and hyperlipidemia. MetS predisposes SCI individuals to earlier and more severe diabetes and cardiovascular disease compared to the general population, which trigger life-threatening complications (e.g., stroke, myocardial infarcts). Although each comorbidity is known to be a risk factor for diabetes and other health problems in obese individuals, their relative contribution or perceived importance in propagating systemic pathology after SCI has received less attention. This could be explained by an incomplete understanding of MetS promoted by SCI compared with that from the canonical trigger diet-induced obesity (DIO). Thus, here we compared metabolic-related outcomes after SCI in lean rats to those of uninjured rats with DIO. Surprisingly, SCI-induced MetS features were equal to or greater than those in obese uninjured rats, including insulin resistance, endotoxemia, hyperlipidemia, liver inflammation and steatosis. Considering the endemic nature of obesity, we also evaluated the effect of premorbid obesity in rats receiving SCI; the combination of DIO + SCI exacerbated MetS and liver pathology compared to either alone, suggesting that obese individuals that sustain a SCI are especially vulnerable to metabolic dysfunction. Notably, premorbid obesity also exacerbated intraspinal lesion pathology and worsened locomotor recovery after SCI. Overall, these results highlight that normal metabolic function requires intact spinal circuitry and that SCI is not just a sensory-motor disorder, but also has significant metabolic consequences.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony N Alfredo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlin E Carson
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Nicole Pukos
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jan M Schwab
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Gao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
L'homme L, Sermikli BP, Haas JT, Fleury S, Quemener S, Guinot V, Barreby E, Esser N, Caiazzo R, Verkindt H, Legendre B, Raverdy V, Cheval L, Paquot N, Piette J, Legrand-Poels S, Aouadi M, Pattou F, Staels B, Dombrowicz D. Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH. Nat Commun 2024; 15:7173. [PMID: 39169003 PMCID: PMC11339436 DOI: 10.1038/s41467-024-51078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Benan Pelin Sermikli
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sébastien Fleury
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Valentine Guinot
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nathalie Esser
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Robert Caiazzo
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Hélène Verkindt
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Benjamin Legendre
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Violeta Raverdy
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - François Pattou
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
15
|
Chen S, Zeng Q, Cai X, Xue J, Yin G, Song P, Tang L, Klein C, Tacke F, Guillot A, Liu H. Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy. Int J Biol Sci 2024; 20:4438-4457. [PMID: 39247824 PMCID: PMC11380448 DOI: 10.7150/ijbs.98362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (Ppara, Cyp2e1 and Cyp7a1) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris 75014, France
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | | | - Jiaming Xue
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Peng Song
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Liming Tang
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Hanyang Liu
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| |
Collapse
|
16
|
Qian S, Wang X, Chen Y, Zai Q, He Y. Inflammation in Steatotic Liver Diseases: Pathogenesis and Therapeutic Targets. Semin Liver Dis 2024; 44:319-332. [PMID: 38838739 DOI: 10.1055/a-2338-9261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Alcohol-related liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), two main types of steatotic liver disease (SLDs), are characterized by a wide spectrum of several different liver disorders, including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Multiple immune cell-mediated inflammatory responses not only orchestrate the killing and removal of infected/damaged cells but also exacerbate the development of SLDs when excessive or persistent inflammation occurs. In recent years, single-cell and spatial transcriptome analyses have revealed the heterogeneity of liver-infiltrated immune cells in ALD and MASLD, revealing a new immunopathological picture of SLDs. In this review, we will emphasize the roles of several key immune cells in the pathogenesis of ALD and MASLD and discuss inflammation-based approaches for effective SLD intervention. In conclusion, the study of immunological mechanisms, especially highly specific immune cell population functions, may provide novel therapeutic opportunities for this life-threatening disease.
Collapse
Affiliation(s)
- Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Zai
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Popov J, Despot T, Avelar Rodriguez D, Khan I, Mech E, Khan M, Bojadzija M, Pai N. Implications of Microbiota and Immune System in Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1668. [PMID: 38892602 PMCID: PMC11175128 DOI: 10.3390/nu16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.
Collapse
Affiliation(s)
- Jelena Popov
- Boston Combined Residency Program, Boston Children’s Hospital & Boston Medical Center, Boston, MA 02115, USA;
| | - Tijana Despot
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada;
| | - Irfan Khan
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - Eugene Mech
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Mahrukh Khan
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Milan Bojadzija
- Department of Internal Medicine, Subotica General Hospital, 24000 Subotica, Serbia;
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Wang CJ, Hu YX, Bai TY, Li J, Wang H, Lv XL, Zhang MD, Chang FH. Identification of disease-specific genes related to immune infiltration in nonalcoholic steatohepatitis using machine learning algorithms. Medicine (Baltimore) 2024; 103:e38001. [PMID: 38758850 PMCID: PMC11098182 DOI: 10.1097/md.0000000000038001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.
Collapse
Affiliation(s)
- Chao-Jie Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yu-Xia Hu
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Tu-Ya Bai
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Han Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xiao-Li Lv
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Meng-Di Zhang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Fu-Hou Chang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
19
|
Pinto AT, Lukacs-Kornek V. The role of dendritic cells in MASH: friends or foes? Front Immunol 2024; 15:1379225. [PMID: 38650949 PMCID: PMC11033439 DOI: 10.3389/fimmu.2024.1379225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and adaptive immunity. Hepatic DCs are less activated and contribute to maintain the tolerogenic environment of the liver under steady state. Several studies indicated DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a substantial burden on healthcare systems due to its association with liver-related morbidity and mortality. Studies highlighted the potential disease-promoting role of liver DCs in the development of MASH while other experimental systems suggested their protective role. This review discusses this controversy and the current understanding of how DCs affect the pathogenesis of MASH.
Collapse
Affiliation(s)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
20
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
21
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
22
|
Topchieva LV, Kurbatova IV, Dudanova OP, Vasileva AV, Zhulai GA. Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease. GENES & CELLS 2024; 19:105-125. [DOI: 10.17816/gc610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread chronic, slowly progressive metabolic multifactorial disease. It is represented by several clinical and morphological forms: steatosis, nonalcoholic steatohepatitis (NASH) (with or without fibrosis), and liver cirrhosis. The search for minimally invasive and cost-effective biomarkers of NAFLD is a key task in the diagnosis, staging of progression, and long-term monitoring of NAFLD. This article discusses the possibility of using immune cell balance as potential minimally invasive peripheral markers of NAFLD progression. In the progression of NASH from steatosis to fibrosis and cirrhosis, inflammation plays an important role because of the activation of Kupffer cells and increased migration of monocytes, dendritic cells, neutrophils, and activated T lymphocytes into the tissues. Macrophages originating from monocytes, with NASH progression, gradually begin to prevail over the pool of resident macrophages. The risk of NASH and fibrosis development in patients with NAFLD increases with the ratio of neutrophils/lymphocytes in the liver. An increase in the Th17 cell count and a decrease in T-regulatory cell count can contribute to increased hepatic steatosis and inflammation development in NAFLD and accelerate the transition from simple steatosis to steatohepatitis and fibrosis. Information on the participation of noncoding RNAs in the regulation of the balance of immune cells in NAFLD is presented, which also allows us to consider them as additional, along with cellular, markers of disease progression.
Collapse
|
23
|
Lei X, Ishida E, Yoshino S, Matsumoto S, Horiguchi K, Yamada E. Calorie Restriction Using High-Fat/Low-Carbohydrate Diet Suppresses Liver Fat Accumulation and Pancreatic Beta-Cell Dedifferentiation in Obese Diabetic Mice. Nutrients 2024; 16:995. [PMID: 38613031 PMCID: PMC11013071 DOI: 10.3390/nu16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In diabetes, pancreatic β-cells gradually lose their ability to secrete insulin with disease progression. β-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by β-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of β-cell dysfunction. Previously, we reported β-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on β-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, β-cell dedifferentiation did not improve in the db-HC group, and β-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and β-cell dedifferentiation.
Collapse
Affiliation(s)
| | - Emi Ishida
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | | | | | | | | |
Collapse
|
24
|
Du H, Yu H, Zhou M, Hui Q, Hou Y, Jiang Y. The effect of STAT1, miR-99b, and MAP2K1 in alcoholic liver disease (ALD) mouse model and hepatocyte. Aging (Albany NY) 2024; 16:4224-4235. [PMID: 38431286 PMCID: PMC10968706 DOI: 10.18632/aging.205579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.
Collapse
Affiliation(s)
- Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Hao Yu
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Meiyue Zhou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Quan Hui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Yixin Hou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Yuyong Jiang
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| |
Collapse
|
25
|
Gaucher J, Montellier E, Vial G, Chuffart F, Guellerin M, Bouyon S, Lemarie E, Yamaryo-Botté Y, Dirani A, Ben Messaoud R, Faure MJ, Ribuot DG, Costentin C, Tamisier R, Botté CY, Khochbin S, Rousseaux S, Pépin JL. Long-term intermittent hypoxia in mice induces inflammatory pathways implicated in sleep apnea and steatohepatitis in humans. iScience 2024; 27:108837. [PMID: 38303705 PMCID: PMC10830848 DOI: 10.1016/j.isci.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.
Collapse
Affiliation(s)
- Jonathan Gaucher
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Emilie Montellier
- Cancers and Biomarkers Team, Institute for Advanced Biosciences, University, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Guillaume Vial
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Florent Chuffart
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Maëlle Guellerin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Sophie Bouyon
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Emeline Lemarie
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Aya Dirani
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Raoua Ben Messaoud
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Marie Joyeux Faure
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Diane Godin Ribuot
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Charlotte Costentin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Renaud Tamisier
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Saadi Khochbin
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Sophie Rousseaux
- Epigenetics Regulation Team, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- Hypoxia and Physio-Pathology Laboratory (HP2) INSERM U1300, University Grenoble Alpes, INSERM U1300, and Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
26
|
Clavreul L, Bernard L, Cotte AK, Hennuyer N, Bourouh C, Devos C, Helleboid A, Haas JT, Verrijken A, Gheeraert C, Derudas B, Guille L, Chevalier J, Eeckhoute J, Vallez E, Dorchies E, Van Gaal L, Lassailly G, Francque S, Staels B, Paumelle R. The ubiquitin-like modifier FAT10 is induced in MASLD and impairs the lipid-regulatory activity of PPARα. Metabolism 2024; 151:155720. [PMID: 37926201 DOI: 10.1016/j.metabol.2023.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND AIMS Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.
Collapse
Affiliation(s)
- Ludivine Clavreul
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Lucie Bernard
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Alexia K Cotte
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Nathalie Hennuyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Cyril Bourouh
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Claire Devos
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Audrey Helleboid
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Loïc Guille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Julie Chevalier
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Jérôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emilie Dorchies
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Guillaume Lassailly
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 1 place de Verdun, 59000 Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Réjane Paumelle
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France.
| |
Collapse
|
27
|
Meng Z, Zhou L, Hong S, Qiu X, Chen Z, Liu T, Inoki K, Lin JD. Myeloid-specific ablation of Basp1 ameliorates diet-induced NASH in mice by attenuating pro-inflammatory signaling. Hepatology 2024; 79:409-424. [PMID: 37505219 PMCID: PMC10808272 DOI: 10.1097/hep.0000000000000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.
Collapse
Affiliation(s)
- Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Sungki Hong
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ken Inoki
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
29
|
Singh C, Jin B, Shrestha N, Markhard AL, Panda A, Calvo SE, Deik A, Pan X, Zuckerman AL, Ben Saad A, Corey KE, Sjoquist J, Osganian S, AminiTabrizi R, Rhee EP, Shah H, Goldberger O, Mullen AC, Cracan V, Clish CB, Mootha VK, Goodman RP. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits. Cell Metab 2024; 36:144-158.e7. [PMID: 38101397 PMCID: PMC10842884 DOI: 10.1016/j.cmet.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.
Collapse
Affiliation(s)
- Charandeep Singh
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Byungchang Jin
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nirajan Shrestha
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Apekshya Panda
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xingxiu Pan
- The Scintillon Institute, San Diego, CA 92121, USA
| | - Austin L Zuckerman
- The Scintillon Institute, San Diego, CA 92121, USA; Program in Mathematics and Science Education, University of California, San Diego, La Jolla, CA 92093; Program in Mathematics and Science Education, San Diego State University, San Diego, CA 92120
| | - Amel Ben Saad
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia Sjoquist
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephanie Osganian
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Eugene P Rhee
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Valentin Cracan
- The Scintillon Institute, San Diego, CA 92121, USA; Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P Goodman
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Johanns M, Haas JT, Raverdy V, Vandel J, Chevalier-Dubois J, Guille L, Derudas B, Legendre B, Caiazzo R, Verkindt H, Gnemmi V, Leteurtre E, Derhourhi M, Bonnefond A, Froguel P, Eeckhoute J, Lassailly G, Mathurin P, Pattou F, Staels B, Lefebvre P. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD. JHEP Rep 2024; 6:100948. [PMID: 38125300 PMCID: PMC10730870 DOI: 10.1016/j.jhepr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background & Aims Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Collapse
Affiliation(s)
- Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Violetta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Jimmy Vandel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Chevalier-Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loic Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Helene Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | | | | | - Mehdi Derhourhi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Philippe Froguel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | | | | | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
31
|
Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA, McLean CA, Sadoshima J, Watt MJ, Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 2023; 134:e162533. [PMID: 38060313 PMCID: PMC10849767 DOI: 10.1172/jci162533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.
Collapse
Affiliation(s)
- Spencer Greatorex
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Supreet Kaur
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pei K. Goh
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Florian Wiede
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Amanda J. Genders
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology
| | - YaoYao Jia
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Arthe Raajendiran
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Wendy A. Brown
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
32
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Bai J, Zhu L, Mi W, Gao Z, Ouyang M, Sheng W, Song L, Bao L, Ma Y, Xu Y. Multiscale integrative analyses unveil immune-related diagnostic signature for the progression of MASLD. Hepatol Commun 2023; 7:e0298. [PMID: 37851406 PMCID: PMC10586828 DOI: 10.1097/hc9.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease prevalent worldwide, with an increasing incidence associated with obesity, diabetes, and metabolic syndrome. The progression of MASLD to metabolic dysfunction-associated steatohepatitis (MASH) poses a pressing health concern, highlighting the significance of accurately identifying MASLD and its progression to MASH as a primary challenge in the field. In this study, a systematic integration of 66 immune cell types was conducted. Comprehensive analyses were performed on bulk, single-cell RNA-Seq, and clinical data to investigate the immune cell types implicated in MASLD progression thoroughly. Multiple approaches, including immune infiltration, gene expression trend analysis, weighted gene coexpression network analysis, and 4 machine learning algorithms, were used to examine the dynamic changes in genes and immune cells during MASLD progression. C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 have been identified as potential diagnostic biomarkers for MASLD progression. Furthermore, cell communication analysis at the single-cell level revealed that the involvement of C-X-C motif chemokine receptor 4 and dedicator of cytokinesis 8 in MASLD progression is mediated through their influence on T cells. Overall, our study identified vital immune cells and a 2-gene diagnostic signature for the progression of MASLD, providing a new perspective on the diagnosis and immune-related molecular mechanisms of MASLD. These findings have important implications for developing innovative diagnostic tools and therapies for MASLD.
Collapse
Affiliation(s)
- Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhengzheng Gao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minyue Ouyang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanlu Sheng
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lin Song
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
34
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
35
|
Silvestri A, Gil-Gomez A, Vitale M, Braga D, Demitri C, Brescia P, Madaghiele M, Spadoni I, Jones B, Fornasa G, Mouries J, Carloni S, Lizier M, Romero-Gomez M, Penna G, Sannino A, Rescigno M. Biomimetic superabsorbent hydrogel acts as a gut protective dynamic exoskeleton improving metabolic parameters and expanding A. muciniphila. Cell Rep Med 2023; 4:101235. [PMID: 37852177 PMCID: PMC10591066 DOI: 10.1016/j.xcrm.2023.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.
Collapse
Affiliation(s)
| | - Antonio Gil-Gomez
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Milena Vitale
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Ilaria Spadoni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | | | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Juliette Mouries
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Manuel Romero-Gomez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, Boston, MA 02116, USA
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
36
|
Wang C, Bai Y, Li T, Liu J, Wang Y, Ju S, Yao W, Xiong B, Zhou G. Beneficial effects of ginkgetin on improving nonalcoholic steatohepatitis characterized by bulk and single-cell RNA sequencing analysis. Front Pharmacol 2023; 14:1267445. [PMID: 37860111 PMCID: PMC10582714 DOI: 10.3389/fphar.2023.1267445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background and aims: Nonalcoholic steatohepatitis (NASH) has become one of the major causes of cirrhosis and liver failure. However, there are currently no approved medications for managing NASH. Our study was designed to assess the effects of ginkgetin on NASH and the involved mechanisms. Methods: We constructed a mouse model of NASH by high-fat diet for 24 weeks. The effects of ginkgetin on NASH were evaluated by histological study, Western blot, and biochemical analysis. RNA Sequencing (RNA-Seq) analysis was used to investigate the alteration in gene expression and signaling pathways at bulk and single-cell levels. Results: Administration of ginkgetin resulted in a marked improvement in hepatic lipid accumulation, inflammation, and fibrosis in the NASH model. And these results were supported by bulk RNA-Seq analysis, in which the related signaling pathways and gene expression were markedly downregulated. Furthermore, single-cell RNA-Seq (scRNA-Seq) analysis revealed that the effects of ginkgetin on NASH were associated with the reprogramming of macrophages, hepatic stellate cells, and endothelial cells. Especially, ginkgetin induced a marked decrease in macrophages and a shift from pro-inflammatory to anti-inflammatory phenotype in NASH mice. And the NASH-associated macrophages (NAMs), which emerge during NASH, were also significantly downregulated by ginkgetin. Conclusion: Ginkgetin exhibits beneficial effects on improving NASH, supported by bulk and single-cell RNA-Seq. Our study may promote pharmacological therapy for NASH and raise the existent understanding of NASH.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongqiang Li
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
38
|
Singla T, Muneshwar KN, Pathade AG, Yelne S. Hepatocytic Ballooning in Non-alcoholic Steatohepatitis: Bridging the Knowledge Gap and Charting Future Avenues. Cureus 2023; 15:e45884. [PMID: 37885505 PMCID: PMC10598508 DOI: 10.7759/cureus.45884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a significant global health concern, characterized by hepatic lipid accumulation, inflammation, and hepatocellular injury. Hepatocytic ballooning, a histological feature of NASH, has gained prominence for its role in disease progression and potential as a therapeutic target. This review provides an overview of the current knowledge regarding hepatocytic ballooning in NASH, highlighting the key molecular and cellular mechanisms implicated in its development. We delve into the intricate interplay of metabolic dysregulation, oxidative stress, and lipid toxicity as drivers of hepatocytic ballooning, shedding light on the pathways responsible for its initiation and perpetuation. Furthermore, we explore the diagnostic challenges associated with hepatocytic ballooning and its significance as a prognostic indicator in NASH patients. While hepatocytic ballooning holds promise as a therapeutic target, this abstract discusses the various experimental and clinical approaches to ameliorate this histological hallmark. Potential interventions, including lifestyle modifications, pharmacological agents, and emerging therapies, are evaluated in terms of their efficacy and safety profiles. In conclusion, this review underscores the need to bridge the knowledge gap surrounding hepatocytic ballooning in NASH and emphasizes its importance in understanding disease pathogenesis and progression. By charting future research avenues and clinical strategies, we aspire to advance our comprehension of NASH and ultimately improve patient outcomes in this rapidly evolving field of hepatology.
Collapse
Affiliation(s)
- Tanvi Singla
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aniket G Pathade
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
39
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
40
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
He W, Huang Y, Shi X, Wang Q, Wu M, Li H, Liu Q, Zhang X, Huang C, Li X. Identifying a distinct fibrosis subset of NAFLD via molecular profiling and the involvement of profibrotic macrophages. J Transl Med 2023; 21:448. [PMID: 37415134 PMCID: PMC10326954 DOI: 10.1186/s12967-023-04300-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND There are emerging studies suggesting that non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disease with multiple etiologies and molecular phenotypes. Fibrosis is the key process in NAFLD progression. In this study, we aimed to explore molecular phenotypes of NAFLD with a particular focus on the fibrosis phenotype and also aimed to explore the changes of macrophage subsets in the fibrosis subset of NAFLD. METHODS To assess the transcriptomic alterations of key factors in NAFLD and fibrosis progression, we included 14 different transcriptomic datasets of liver tissues. In addition, two single-cell RNA sequencing (scRNA-seq) datasets were included to construct transcriptomic signatures that could represent specific cells. To explore the molecular subsets of fibrosis in NAFLD based on the transcriptomic features, we used a high-quality RNA-sequencing (RNA-seq) dataset of liver tissues from patients with NAFLD. Non-negative matrix factorization (NMF) was used to analyze the molecular subsets of NAFLD based on the gene set variation analysis (GSVA) enrichment scores of key molecule features in liver tissues. RESULTS The key transcriptomic signatures on NAFLD including non-alcoholic steatohepatitis (NASH) signature, fibrosis signature, non-alcoholic fatty liver (NAFL) signature, liver aging signature and TGF-β signature were constructed by liver transcriptome datasets. We analyzed two liver scRNA-seq datasets and constructed cell type-specific transcriptomic signatures based on the genes that were highly expressed in each cell subset. We analyzed the molecular subsets of NAFLD by NMF and categorized four main subsets of NAFLD. Cluster 4 subset is mainly characterized by liver fibrosis. Patients with Cluster 4 subset have more advanced liver fibrosis than patients with other subsets, or may have a high risk of liver fibrosis progression. Furthermore, we identified two key monocyte-macrophage subsets which were both significantly correlated with the progression of liver fibrosis in NAFLD patients. CONCLUSION Our study revealed the molecular subtypes of NAFLD by integrating key information from transcriptomic expression profiling and liver microenvironment, and identified a novel and distinct fibrosis subset of NAFLD. The fibrosis subset is significantly correlated with the profibrotic macrophages and M2 macrophage subset. These two liver macrophage subsets may be important players in the progression of liver fibrosis of NAFLD patients.
Collapse
Affiliation(s)
- Weiwei He
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Yinxiang Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Menghua Wu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Han Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Qiuhong Liu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
| | - Xuejun Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China.
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
| |
Collapse
|
42
|
Conway J, Pouryahya M, Gindin Y, Pan DZ, Carrasco-Zevallos OM, Mountain V, Subramanian GM, Montalto MC, Resnick M, Beck AH, Huss RS, Myers RP, Taylor-Weiner A, Wapinski I, Chung C. Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH. Cell Rep Med 2023; 4:101016. [PMID: 37075704 PMCID: PMC10140650 DOI: 10.1016/j.xcrm.2023.101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease globally and a leading cause for liver transplantation in the US. Its pathogenesis remains imprecisely defined. We combined two high-resolution modalities to tissue samples from NASH clinical trials, machine learning (ML)-based quantification of histological features and transcriptomics, to identify genes that are associated with disease progression and clinical events. A histopathology-driven 5-gene expression signature predicted disease progression and clinical events in patients with NASH with F3 (pre-cirrhotic) and F4 (cirrhotic) fibrosis. Notably, the Notch signaling pathway and genes implicated in liver-related diseases were enriched in this expression signature. In a validation cohort where pharmacologic intervention improved disease histology, multiple Notch signaling components were suppressed.
Collapse
|
43
|
Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol 2023:S0168-8278(23)00218-0. [PMID: 37061196 DOI: 10.1016/j.jhep.2023.03.038] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Successful development of treatments for non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH) has been challenging. Because NASH and fibrosis lead to NAFLD progression towards cirrhosis and to clinical outcomes, approaches have either sought to attenuate metabolic dysregulation and cell injury, or directly target the inflammation and fibrosis that ensue. Targets for reducing the activation of inflammatory cascades include nuclear receptor agonists (thyroid hormone receptor-beta, e.g. resmetirom, peroxisome proliferator-activated receptor [PPAR], e.g. lanifibranor, farnesoid X receptor [FXR], e.g. obeticholic acid), modulators of lipotoxicity (e.g. aramchol, acetyl-CoA carboxylase inhibitors) or modification of genetic variants (e.g. PNPLA3 gene silencing). Extrahepatic inflammatory signals from circulation, adipose tissue or gut are targets of hormonal agonists (e.g. glucagon-like peptide-1 [GLP-1] like semaglutide, fibroblast growth factor [FGF]-19 or FGF21), microbiota or lifestyle (weight loss, diet, exercise) interventions. Stress signals and hepatocyte death activate immune responses engaging innate (macrophages, lymphocytes) and adaptive (auto-aggressive T-cells) mechanisms. Therapies seek to blunt immune cell activation, recruitment (chemokine receptor inhibitors) and responses (e.g. galectin 3 inhibition, anti-platelet drugs). The disease-driving pathways of NASH converge to elicit fibrosis, which is reversible. The activation of hepatic stellate cells (HSC) into matrix-producing myofibroblasts can be inhibited by antagonizing soluble factors (e.g. integrins, cytokines), cellular crosstalk (e.g. with macrophages), and agonizing nuclear receptor signaling (e.g. FXR or PPAR agonists). In advanced fibrosis, cell therapy with restorative macrophages or reprogrammed T-cells (e.g., CAR T) may accelerate repair through HSC deactivation or killing, or by enhancing matrix degradation. Heterogeneity of disease - either due to genetics or divergent disease drivers - is an obstacle to defining effective drugs for all patients with NASH that will be incrementally overcome.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, United States.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
44
|
Deprince A, Hennuyer N, Kooijman S, Pronk ACM, Baugé E, Lienard V, Verrijken A, Dirinck E, Vonghia L, Woitrain E, Kloosterhuis NJ, Marez E, Jacquemain P, Wolters JC, Lalloyer F, Eberlé D, Quemener S, Vallez E, Tailleux A, Kouach M, Goossens J, Raverdy V, Derudas B, Kuivenhoven JA, Croyal M, van de Sluis B, Francque S, Pattou F, Rensen PCN, Staels B, Haas JT. Apolipoprotein F is reduced in humans with steatosis and controls plasma triglyceride-rich lipoprotein metabolism. Hepatology 2023; 77:1287-1302. [PMID: 35735979 PMCID: PMC10026963 DOI: 10.1002/hep.32631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sander Kooijman
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C. M. Pronk
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Baugé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Viktor Lienard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Luisa Vonghia
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eloïse Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Niels J. Kloosterhuis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eléonore Marez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Pauline Jacquemain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Justina C. Wolters
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Lalloyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Jean‐Francois Goossens
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mikaël Croyal
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- CRNH‐Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Bart van de Sluis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Patrick C. N. Rensen
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| |
Collapse
|
45
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
46
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. What Do NAFLD, Liver Fibrosis, and Inflammatory Bowel Disease Have in Common? Review of the Current Literature. Metabolites 2023; 13:metabo13030378. [PMID: 36984818 PMCID: PMC10051776 DOI: 10.3390/metabo13030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Liver disease is one of the most common extraintestinal manifestations of inflammatory bowel disease (IBD). Often the course of liver disease is associated with an exacerbation of the underlying disease (Crohn’s Disease/Ulcerative Colitis). Nonalcoholic steatohepatitis encompasses a wide spectrum of liver damage. The most common form is nonalcoholic fatty liver disease (NAFLD) (75–80%), and the less common but more dangerous form is nonalcoholic steatohepatitis (NASH). NAFLD is now the most common cause of chronic liver disease in developed countries and the leading indication for liver transplantation in the United States. Genetic, demographic, clinical, and environmental factors can play a role in the pathogenesis of NAFLD. The increasing prevalence of NAFLD is associated with a widespread obesity epidemic, metabolic complications, including hypertension, type 2 diabetes, and dyslipidaemia. Some of the most common manifestations of IBD are liver, biliary tract, and gallbladder diseases. The liver fibrosis process has a complex pathophysiology and is often dependent on exogenous factors such as the treatment used and endogenous factors such as the gut microbiome. However, the factors that link IBD and liver fibrosis are not yet clear. The main purpose of the review is to try to find links between IBD and selected liver diseases and to identify knowledge gaps that will inform further research.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
47
|
Grzych G, Bernard L, Lestrelin R, Tailleux A, Staels B. [State of the art on the pathophysiology, diagnosis and treatment of non-alcoholic steatohepatitis (NASH)]. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:183-201. [PMID: 36126753 DOI: 10.1016/j.pharma.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
NAFLD or non-alcoholic fatty liver disease is one of the complications of obesity and diabetes, the prevalence of which is increasing. The causes of the pathology and its development towards its severe form, NASH or non-alcoholic steatohepatitis, are multiple and still poorly understood. Many different pharmacological classes are being tested in clinical trials to treat NASH, but no pharmaceutical treatment is currently on the market. Moreover, the diagnosis of certainty is only possible by liver biopsy and histological analysis, an invasive procedure with high risk for the patient. It is therefore necessary to better understand the natural history of the disease in order to identify therapeutic targets, but also to identify markers for the diagnosis and monitoring of the disease using a blood sample, which will allow an improvement in patient management.
Collapse
Affiliation(s)
- G Grzych
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - L Bernard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - R Lestrelin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - A Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - B Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
48
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
50
|
Waller KJ, Saihi H, Li W, Brindley JH, De Jong A, Syn WK, Bessant C, Alazawi W. Single-cell phenotypes of peripheral blood immune cells in early and late stages of non-alcoholic fatty liver disease. Clin Mol Hepatol 2022; 29:417-432. [PMID: 36727210 PMCID: PMC10121278 DOI: 10.3350/cmh.2022.0205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 02/03/2023] Open
Abstract
Background Immune and inflammatory cells respond to multiple pathological hits in the development of non-alcoholic steatohepatitis (NASH) and fibrosis. Relatively little is known about how their type and function change through the non-alcoholic fatty liver disease (NAFLD) spectrum. We used multi-dimensional mass cytometry and a tailored bioinformatic approach to study circulating immune cells sampled from healthy individuals and people with NAFLD. Methods Cytometry by time of flight (CyTOF) using 36 metal-conjugated antibodies was applied to peripheral blood mononuclear cells (PBMCs) from biopsy-proven NASH fibrosis (late disease), steatosis (early disease) and healthy patients. Supervised and unsupervised analyses were used, findings confirmed and mechanisms assessed using independent healthy and disease PBMC samples. Results Of 36 PBMC clusters, 21 changed between controls and disease samples. Significant differences between diseases stages with changes in T cells and myeloid cells throughout disease and B cell changes in late stages. Semi-supervised gating and re-clustering showed that disease stages were associated with fewer monocytes with active signalling and more inactive NK cells, while B and T cells bearing activation markers reduced in late stages, B cells bearing co-stimulatory molecules increased. Functionally, disease states were associated with fewer activated MAIT cells and reduced TLR-mediated cytokine production in late disease. Conclusions A range of innate and adaptive immune changes begin early in NAFLD and disease stages are associated with a functionally less active phenotype compared to controls. Further study of the immune response in NAFLD spectrum may give insight into mechanisms of disease with potential clinical application.
Collapse
Affiliation(s)
- Kathryn Jane Waller
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Hajar Saihi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Wenhao Li
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | | | - Anja De Jong
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del Pa S Vasco/Euskal Herriko Univertsitatea (UPV/EHU), Leioa, Spain.,Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Missouri, USA
| | - Conrad Bessant
- Centre for Computational Biology, Life Sciences Initiative, Queen Mary University of London, London, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - William Alazawi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|