1
|
Tang Y, Yi X, Ai J. mRNA vaccines for prostate cancer: A novel promising immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189333. [PMID: 40288658 DOI: 10.1016/j.bbcan.2025.189333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of advanced prostate cancer (PCa) primarily based on androgen deprivation therapy (ADT); however, patients inevitably progress to the castration-resistant prostate cancer (CRPC) stage. Despite the recent advancements in CRPC treatment with novel endocrine drugs that further inhibit androgen receptor signaling, resistance ultimately develops, underscoring the urgent need for new effective therapeutic strategies. Therapeutic cancer vaccines, a form of immunotherapy, exert anti-cancer effects by activating the host's immune system. Over the past few decades, various conventional therapeutic PCa vaccines based on cells, microbes, proteins, peptides, or DNA have been developed and tested in patients with advanced PCa. These attempts have largely failed to improve survival, with the sole exception of sipuleucel-T, which extended the median overall survival of asymptomatic or minimally symptomatic metastatic CRPC (mCRPC) patients by four months. The rapid development and high efficacy of mRNA vaccines during the COVID-19 pandemic have garnered worldwide attention. Compared to conventional vaccines, mRNA vaccines offer several unique advantages, including high production efficiency, low cost, high safety, strong immune response induction, and high adaptability and precision. These attributes make mRNA vaccines a promising frontier in the treatment of advanced PCa.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
2
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2025; 28:260-269. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
3
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
4
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Li D, Wang Z, Yu Q, Wang J, Wu R, Tuo Z, Yoo KH, Wusiman D, Ye L, Guo Y, Yang Y, Shao F, Shu Z, Okoli U, Cho WC, Wei W, Feng D. Tracing the Evolution of Sex Hormones and Receptor-Mediated Immune Microenvironmental Differences in Prostate and Bladder Cancers: From Embryonic Development to Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407715. [PMID: 40007149 PMCID: PMC11967776 DOI: 10.1002/advs.202407715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 02/27/2025]
Abstract
The bladder and prostate originate from the urogenital sinus. However, bladder cancer (BC) is usually classified as an immune "hot" tumor, whereas prostate cancer (PCa) is deemed as an immune "cold" tumor according to the tumor microenvironment (TME) and clinical outcomes. To investigate the immune differences between BC and PCa, studies are compared focusing on immune regulation mediated by sex hormones and receptors to identify key genes and pathways responsible for the immune differences. From a developmental perspective, it is shown that PCa and BC activate genes and pathways similar to those in the developmental stage. During prostate development, the differential expression and function of the androgen receptor (AR) across cell types may contribute to its dual role in promoting and inhibiting immunity in different cells. Androgen deprivation therapy affects AR function in different cells within the TME, influencing immune cell infiltration and antitumor function. Additionally, estrogenα and estrogenβ exert contrasting effects in PCa and BC, which may hold the potential for modifying the "cold" and "hot" tumor phenotypes. Future research should target key genes and pathways involved in bladder development to clarify the immune regulatory similarities and differences between BC and PCa.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhipeng Wang
- Department of UrologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Qingxin Yu
- Department of pathologyNingbo Clinical Pathology Diagnosis CenterNingbo CityZhejiang Province315211China
| | - Jie Wang
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Ruicheng Wu
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhouting Tuo
- Department of Urological SurgeryDaping HospitalArmy Medical Center of PLAArmy Medical UniversityChongqing404100China
| | - Koo Han Yoo
- Department of UrologyKyung Hee UniversitySeoul04510South Korea
| | - Dilinaer Wusiman
- Department of Comparative PathobiologyCollege of Veterinary MedicinePurdue UniversityWest LafayetteIN47907USA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteIN47907USA
| | - Luxia Ye
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yiqing Guo
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yubo Yang
- Department of UrologyThree Gorges HospitalChongqing UniversityWanzhouChongqing404000China
| | - Fanglin Shao
- Department of RehabilitationThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Ziyu Shu
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education)Chongqing UniversityChongqing400045China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
- Basic and Translational Cancer Research GroupDepartment of Pharmacology and TherapeuticsCollege of MedicineUniversity of NigeriaEnugu StateNsukka410001Eastern part of Nigeria
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongSAR999077China
| | - Wuran Wei
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Dechao Feng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
6
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Lin H, Gao Y, Zhu L, Guo Y, Zhang L, Xie J, Yang D, Liu J, Dong Q, Zhu Z. Rational Design of Single‐Atom Nanozymes for Combination Cancer Immunotherapy. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202416563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Indexed: 02/03/2025]
Abstract
AbstractRemodeling of the tumor immune microenvironment and enhancement of antitumor immune responses are necessary to overcome immunotherapy resistance in tumors. However, tumor heterogeneity and complexity of immune evasion mechanisms pose significant therapeutic challenges. Nanozymes exhibit enzyme‐like characteristics and unique nanomaterial properties, showing potential for tumor therapy. However, design of effective nanozymes remains complex, inefficient, and functionally limited. Therefore, in this study, a novel strategy combining rationally designed single‐atom nanozymes (SAzymes) with immune checkpoint blockade (ICB) therapy is established. Molybdenum SAzymes supported on graphitic carbon nitride (Mo SAs) are constructed using 25 transition metal candidates from the 4th to 6th periods based on high‐throughput calculations and optimal piezoelectric‐enhanced multienzyme‐like activities. Upon activation by ultrasound, Mo SAs exerted potent therapeutic effects against ICB‐resistant tumors and remodeled the tumor immune microenvironment by inducing tumor immunogenic cell death, alleviating tumor hypoxia, and modulating chemokine expression in tumors. Combination of Mo SAs with anti‐programmed death protein‐1 antibodies further enhanced their antitumor efficacy, highlighting their potential to treat ICB‐resistant tumors.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole‐Period Monitoring and Precise Intervention of Digestive Cancer Shanghai Municipal Health Commission Minhang Hospital Fudan University 170 Xingsong Road Shanghai 201199 China
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute Fudan University 12 Middle Urumuqi Road Shanghai 200040 China
| | - Yonghui Gao
- College of Materials Science and Engineering Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao Shandong 266042 China
| | - Le Zhu
- Key Laboratory of Whole‐Period Monitoring and Precise Intervention of Digestive Cancer Shanghai Municipal Health Commission Minhang Hospital Fudan University 170 Xingsong Road Shanghai 201199 China
| | - Yu Guo
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute Fudan University 12 Middle Urumuqi Road Shanghai 200040 China
| | - Lumin Zhang
- Key Laboratory of Whole‐Period Monitoring and Precise Intervention of Digestive Cancer Shanghai Municipal Health Commission Minhang Hospital Fudan University 170 Xingsong Road Shanghai 201199 China
| | - Jiali Xie
- College of Materials Science and Engineering Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao Shandong 266042 China
| | - Dongqin Yang
- Department of Laboratory Medicine Huashan Hospital Fudan University 12 Middle Urumqi Road Shanghai 200040 China
| | - Jing Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao Shandong 266042 China
| | - Qiongzhu Dong
- Key Laboratory of Whole‐Period Monitoring and Precise Intervention of Digestive Cancer Shanghai Municipal Health Commission Minhang Hospital Fudan University 170 Xingsong Road Shanghai 201199 China
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute Fudan University 12 Middle Urumuqi Road Shanghai 200040 China
| | - Zhiling Zhu
- College of Materials Science and Engineering Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao Shandong 266042 China
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science MOE; Shandong Key Laboratory of Biochemical Analysis Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao Shandong 266042 China
| |
Collapse
|
8
|
Ai X, Guo T, Yang J, Zhang C, Zhang Y, Zhao W, Zhu S, Feng N. Dissolving microneedle synergistic rocaglamide-loaded liposome to regulate abnormal neutrophils for anti-psoriasis. Int J Pharm 2025; 670:125180. [PMID: 39761709 DOI: 10.1016/j.ijpharm.2025.125180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Psoriasis seriously affects the physical and mental health of patients. Rocaglamide (RocA), derived from Aglaia odorata, exhibits potent pharmacological activities. Although its efficacy in psoriasis is unclear, RocA could be a promising therapeutic drug. In this work, RocA showed a good therapeutic effect in psoriasis mice induced by imiquimod, and subsequent TMT-based proteomics analysis verified that the effect of RocA was related to IL-1 family cytokines. Furthermore, a RocA-loaded liposome (RocA@Lipo) was developed and encapsulated in the tip-layer of microneedles (MNs) to construct a MN-based nano drug delivery system (RocA@Lipo-MNs). In vitro HaCaT cell assays demonstrated that RocA@Lipo enhanced the cytotoxicity and cell uptake of RocA. In vivo, RocA@Lipo-MNs outperformed other RocA formulations in inhibiting psoriasis epidermal thickening and spleen enlargement. Immunohistochemical, ELISA, western blot, and PCR experiments further proved that RocA@Lipo-MNs could inhibit neutrophil infiltration in the skin, revealing that the anti-psoriasis mechanism of RocA was deemed to inhibit the binding of IL-1α and IL-1R1 to regulate the activation of MAPK and NF-κB pathways. Thus, the production of inflammatory factors and neutrophil chemokines was reduced, which was associated with apoptosis inhibition. Importantly, RocA@Lipo-MNs significantly improved the transdermal properties of RocA and exhibited good skin and blood safety. This work provides new ideas for the clinical application of RocA and the treatment options for psoriasis.
Collapse
Affiliation(s)
- Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Yangyang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Weimin Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049 China.
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China.
| |
Collapse
|
9
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
11
|
Derbal Y. Adaptive Treatment of Metastatic Prostate Cancer Using Generative Artificial Intelligence. Clin Med Insights Oncol 2025; 19:11795549241311408. [PMID: 39776668 PMCID: PMC11701910 DOI: 10.1177/11795549241311408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC). The case explores the design of GPT-supported adaptive intermittent therapy for mPC. Testosterone and prostate-specific antigen (PSA) are assumed to be repeatedly monitored while treatment may involve a combination of androgen deprivation therapy (ADT), androgen receptor-signalling inhibitors (ARSI), chemotherapy, and radiotherapy. The analysis covers various questions relevant to the configuration, training, and inferencing of GPTs for the case of mPC treatment with a particular attention to risk mitigation regarding the hallucination problem and its implications to clinical integration of GenAI technologies. The case study provides elements of an actionable pathway to the realization of GenAI-assisted adaptive treatment of metastatic prostate cancer. As such, the study is expected to help facilitate the design of clinical trials of GenAI-supported cancer treatments.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
12
|
Yu Y, Yin H, Wu B, Zhao W, Wang Y, Aili A, Yang M, Yu Q, Yuan X. Fusobacterium nucleatum promotes colorectal cancer liver metastasis via miR-5692a/IL-8 axis by inducing epithelial-mesenchymal transition. J Biomed Sci 2025; 32:5. [PMID: 39757156 DOI: 10.1186/s12929-024-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/09/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The association between the intestinal microbiota and colorectal cancer (CRC) has been extensively studied, with Fusobacterium nucleatum (F. nucleatum, FN) being found in high abundance in colorectal cancer tissues. Previous research has emphasized the significant role of F. nucleatum in the occurrence of CRC. However, the impact of F. nucleatum on CRC liver metastasis has not been well understood. METHODS The effects of F. nucleatum on metastasis ability of CRC cell were evaluated in vitro were examined by wound-healing assay and transwell assay. The mouse model of CRC liver metastasis was constructed by spleen injection, and the degree of liver metastasis was assessed by in vivo bioluminescence imaging. The gene expression changes in CRC cells after co-culture with F. nucleatum was analyzed through transcriptome sequencing. qRT-PCR and Western Blot assays were performed to validate the expression of related genes and proteins. RESULTS The metastasis ability of CRC cells was significantly enhanced after co-culture with F. nucleatum in vitro. In the mouse model, F. nucleatum also promoted the development of liver metastasis in CRC. Mechanistically, F. nucleatum infection increased the expression of IL-8 by downregulated the level of miR-5692a, a regulatory microRNA of IL-8. This led to the activation of the ERK pathway and resulted in the epithelial-mesenchymal transition (EMT) of CRC cells. CONCLUSIONS Our results suggest that F. nucleatum promotes CRC liver metastasis by inducing epithelial-mesenchymal transition through the miR-5692a/IL-8 axis. These findings provide new insights for the prevention and treatment of colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Yulong Yu
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Yin
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aifeina Aili
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Lyu A, Fan Z, Clark M, Lea A, Luong D, Setayesh A, Starzinski A, Wolters R, Arias-Badia M, Allaire K, Wu K, Gurunathan V, Valderrábano L, Wei XX, Miller RA, Van Allen EM, Fong L. Evolution of myeloid-mediated immunotherapy resistance in prostate cancer. Nature 2025; 637:1207-1217. [PMID: 39633050 PMCID: PMC11779626 DOI: 10.1038/s41586-024-08290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Patients with advanced metastatic castration-resistant prostate cancer (mCRPC) are refractory to immune checkpoint inhibitors (ICIs)1,2, partly because there are immunosuppressive myeloid cells in tumours3,4. However, the heterogeneity of myeloid cells has made them difficult to target, making blockade of the colony stimulating factor-1 receptor (CSF1R) clinically ineffective. Here we use single-cell profiling on patient biopsies across the disease continuum and find that a distinct population of tumour-associated macrophages with elevated levels of SPP1 transcripts (SPP1hi-TAMs) becomes enriched with the progression of prostate cancer to mCRPC. In syngeneic mouse modelling, an analogous macrophage population suppresses CD8+ T cell activity in vitro and promotes ICI resistance in vivo. Furthermore, Spp1hi-TAMs are not responsive to anti-CSF1R antibody treatment. Pathway analysis identifies adenosine signalling as a potential mechanism for SPP1hi-TAM-mediated immunotherapeutic resistance. Indeed, pharmacological inhibition of adenosine A2A receptors (A2ARs) significantly reverses Spp1hi-TAM-mediated immunosuppression in CD8+ T cells in vitro and enhances CRPC responsiveness to programmed cell death protein 1 (PD-1) blockade in vivo. Consistent with preclinical results, inhibition of A2ARs using ciforadenant in combination with programmed death 1 ligand 1 (PD-L1) blockade using atezolizumab induces clinical responses in patients with mCRPC. Moreover, inhibiting A2ARs results in a significant decrease in SPP1hi-TAM abundance in CRPC, indicating that this pathway is involved in both induction and downstream immunosuppression. Collectively, these findings establish SPP1hi-TAMs as key mediators of ICI resistance in mCRPC through adenosine signalling, emphasizing their importance as both a therapeutic target and a potential biomarker for predicting treatment efficacy.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zenghua Fan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew Clark
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Averey Lea
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Setayesh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alec Starzinski
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Wolters
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kate Allaire
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kai Wu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vibha Gurunathan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Valderrábano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eliezer M Van Allen
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Zhang J, Huang C, Wang X, He J, Wang H, Liang C. Interleukin expression patterns and immune cell infiltration in prostate adenocarcinoma: Implications for recurrence risk. Int J Immunopathol Pharmacol 2025; 39:3946320251328476. [PMID: 40119682 PMCID: PMC11938863 DOI: 10.1177/03946320251328476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 03/24/2025] Open
Abstract
OBJECTIVE This study aims to comprehensively investigate the expression profiles of interleukins in prostate adenocarcinoma (PRAD) and their relationship with immune cell infiltration, tumor progression, and patient prognosis. By establishing an interleukin-related risk score, we seek to enhance the understanding of the tumor immune microenvironment and facilitate the development of tailored immunotherapeutic strategies for PRAD patients. INTRODUCTION Interleukins can nurture a tumor promoting environment and simultaneously regulate immune cell infiltration. However, the potential roles of interleukins in the prostate adenocarcinoma immune landscape remain abstruse. METHODS We comprehensively investigated the interleukin expression patterns and tumor immune landscape of prostate adenocarcinoma patients. And explored the interleukin expression patterns with immune infiltration landscape. The interleukin score was established using LASSO cox regression analysis. Multivariate Cox regression analysis was employed to assess the prognostic value of the interleukin score. RESULTS We identified two distinct interleukin clusters, characterized by different immune cell infiltration, tumor promoting signaling pathways activation and prognosis. The interleukin score was established to estimate the prognosis of individual prostate adenocarcinoma (PRAD) patient. Further analysis demonstrated that the interleukin score was an independent prognostic factor of PRAD. Finally, we investigated the predictive value of interleukin score in the programmed cell death protein (PD-1) blockade therapy of patients with prostate adenocarcinoma. At the same time, the differences in related genes among different prostate cell lines were also identified. CONCLUSIONS This study demonstrated the correlation between interleukin and tumor immune landscape in prostate adenocarcinoma. The comprehensive evaluation of interleukin expression patterns in individual prostate patients contribute to our understanding of the immune landscape and helps clinicians selecting proper immunotherapy strategies for prostate patients.
Collapse
Affiliation(s)
| | | | | | - Jun He
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| | - Hongzhi Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| | - Chaozhao Liang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| |
Collapse
|
15
|
Morel KL, Germán B, Hamid AA, Nanda JS, Linder S, Bergman AM, van der Poel H, Hofland I, Bekers EM, Trostel SY, Burkhart DL, Wilkinson S, Ku AT, Kim M, Kim J, Ma D, Plummer JT, You S, Su XA, Zwart W, Sowalsky AG, Sweeney CJ, Ellis L. Low tristetraprolin expression activates phenotypic plasticity and primes transition to lethal prostate cancer in mice. J Clin Invest 2024; 135:e175680. [PMID: 39560993 PMCID: PMC11735106 DOI: 10.1172/jci175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Phenotypic plasticity is a hallmark of cancer and is increasingly realized as a mechanism of resistance to androgen receptor-targeted (AR-targeted) therapy. Now that many prostate cancer (PCa) patients are treated upfront with AR-targeted agents, it is critical to identify actionable mechanisms that drive phenotypic plasticity, to prevent the emergence of resistance. We showed that loss of tristetraprolin (TTP; gene ZFP36) increased NF-κB activation, and was associated with higher rates of aggressive disease and early recurrence in primary PCa. We also examined the clinical and biological impact of ZFP36 loss with co-loss of PTEN, a known driver of PCa. Analysis of multiple independent primary PCa cohorts demonstrated that PTEN and ZFP36 co-loss was associated with increased recurrence risk. Engineering prostate-specific Zfp36 deletion in vivo induced prostatic intraepithelial neoplasia, and, with Pten codeletion, resulted in rapid progression to castration-resistant adenocarcinoma. Zfp36 loss altered the cell state driven by Pten loss, as demonstrated by enrichment of epithelial-mesenchymal transition (EMT), inflammation, TNF-α/NF-κB, and IL-6-JAK/STAT3 gene sets. Additionally, our work revealed that ZFP36 loss also induced enrichment of multiple gene sets involved in mononuclear cell migration, chemotaxis, and proliferation. Use of the NF-κB inhibitor dimethylaminoparthenolide (DMAPT) induced marked therapeutic responses in tumors with PTEN and ZFP36 co-loss and reversed castration resistance.
Collapse
Affiliation(s)
- Katherine L. Morel
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Beatriz Germán
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anis A. Hamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Jagpreet S. Nanda
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | - Elise M. Bekers
- Division of Pathology; Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Shana Y. Trostel
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah L. Burkhart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wilkinson
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anson T. Ku
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Minhyung Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jina Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jasmine T. Plummer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sungyong You
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California, USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Adam G. Sowalsky
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Dallos MC, Obradovic AZ, McCann P, Chowdhury N, Pratapa A, Aggen DH, Gaffney C, Autio KA, Virk RK, De Marzo AM, Antonarakis ES, Scher HI, Drake CG, Rathkopf DE. Androgen Deprivation Therapy Drives a Distinct Immune Phenotype in Localized Prostate Cancer. Clin Cancer Res 2024; 30:5218-5230. [PMID: 39269310 PMCID: PMC11905119 DOI: 10.1158/1078-0432.ccr-24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Androgen deprivation therapy (ADT) remains the backbone of prostate cancer treatment. Beyond the suppression of testosterone and tumor cell growth, emerging evidence suggests that ADT also modulates the immune tumor microenvironment. However, a more precise understanding of the timing and intricacies of these immunologic shifts is needed. EXPERIMENTAL DESIGN In this study, we analyzed 49 primary prostate cancers, comparing those surgically removed either without treatment or following treatment with degarelix at 4, 7, and 14 days before surgery. Utilizing next-generation DNA and RNA sequencing and multiplexed immunofluorescence, we examined alterations in immune phenotypes in the presence or absence of ADT. RESULTS Our findings reveal that ADT rapidly transforms the typically bland prostate tumor microenvironment into an inflamed environment within days. Notably, we observed an increase in activated CD8 T cells along with an increase in suppressive regulatory T cells (Treg). We also found an expansion of the myeloid compartment, particularly proinflammatory M1-like tumor-associated macrophages. Intriguingly, discernable changes which have not previously been described also occurred in tumor cells, including upregulation of antigen presentation by MHC classes I and II and, unexpectedly, a decrease in the "do not eat me" signal CD47. CONCLUSIONS These observations underscore the critical role of timing and disease context in order to optimize the therapeutic efficacy of immune modulators combined with androgen ablation, for which the presurgical neoadjuvant setting may be ideal. Our findings warrant future prospective validation, which is currently underway.
Collapse
Affiliation(s)
- Matthew C. Dallos
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Aleksandar Z. Obradovic
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Patrick McCann
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, USA
| | | | | | - David H. Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Karen A. Autio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Renu K. Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charles G. Drake
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Dana E. Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Xiong X, Zhang S, Zhu W, Du J, Liao X, Hu S, Yang J, Zheng W, Qiu S, Xu H, Wei Q, Yang L. Androgen-ablative therapies inducing CXCL8 regulates mTORC1/SREBP2-dependent cholesterol biosynthesis to support progression of androgen receptor negative prostate cancer cells. Oncogene 2024; 43:3456-3468. [PMID: 39369166 DOI: 10.1038/s41388-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Treatment with androgen-ablative therapies effectively inhibited androgen receptor (AR)-positive (AR+) prostate cancer (PCa) cell subtypes, but it resulted in an increase in AR-negative (AR-) PCa cell subtypes. The present study aimed to investigate the debated mechanisms responsible for the changing proportion of cell types, identifying CXCL8 as a synthetic essential effector of AR- PCa cells. AR- PCa cells were found to be susceptible to CXCL8 depletion or inhibition, which impaired their survival. Mechanistically, androgen-ablative therapies resulted in the suppression of AR signaling, leading to the upregulation of CXCL8 gene transcription. CXCL8, in turn, activated the mTORC1 pathway, which increased de novo cholesterol synthesis by activating sterol regulatory element-binding protein-2 (SREBP2). Together, these results suggested that the CXCL8-mTORC1-SREBP2 axis contributed to the exacerbation of tumorigenicity in AR- PCa cells under androgen-ablative therapies.
Collapse
Affiliation(s)
- Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Jiajia Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Siping Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Jie Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Weitao Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China
- Center of Biomedical Big Data, West China Hospital Sichuan University, Chengdu, SC, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, SC, China.
| |
Collapse
|
18
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
19
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
21
|
Yu J, Zhang M, Li T, Gao W, Yang Z, Wang K, Liu Z, Zhu S, Wen S, Zhao Y, Cai Q, Shang Z, Wang Y, Niu Y. Monoacylglycerol lipase blockades the senescence-associated secretory phenotype by interfering with NF-κB activation and promotes docetaxel efficacy in prostate cancer. Oncogene 2024; 43:2835-2849. [PMID: 39155296 DOI: 10.1038/s41388-024-03132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Metabolic reprogramming and cellular senescence greatly contribute to cancer relapse and recurrence. In aging and treated prostate, persistent accumulating senescence-associated secretory phenotype (SASP) of cancer cells often limits the overall survival of patients. Novel strategic therapy with monoacylglycerol lipase (MGLL) upregulation that counters the cellular and docetaxel induced SASP might overcome this clinical challenge in prostate cancer (PCa). With primary comparative expression and survival analysis screening of fatty acid (FA) metabolism signature genes in the TCGA PCa dataset and our single center cohort, MGLL was detected to be downregulated in malignancy prostate tissues and its low expression predicted worse progression-free and overall survival. Functionally, overexpression of MGLL mainly suppresses NF-κB-driven SASP (N-SASP) which mostly restricts the cancer cell paracrine and autocrine tumorigenic manners and the corresponding cellular senescence. Further investigating metabolites, we determined that MGLL constitutive expression prevents lipid accumulation, decreases metabolites preferably, and consequently downregulates ATP levels. Overexpressed MGLL inhibited IκBα phosphorylation, NF-κB p65 phosphorylation, and NF-κB nuclear translocation to deactivate NF-κB transcriptional activities, and be responsible for the repressed N-SASP, partially through reducing ATP levels. Preclinically, combinational treatment with MGLL overexpression and docetaxel chemotherapy dramatically delays tumor progression in mouse models. Taken together, our findings identify MGLL as a switch for lipase-related N-SASP suppression and provide a potential drug candidate for promoting docetaxel efficacy in PCa.
Collapse
Affiliation(s)
- Jianpeng Yu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Minghao Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
- Department of Urology, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Taipeng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Wenlong Gao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zhao Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Keruo Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zihao Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Shimiao Zhu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yang Zhao
- Tianjin Institute of Urology, Tianjin, 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qiliang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Zhiqun Shang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
22
|
McClelland S, Maxwell PJ, Branco C, Barry ST, Eberlein C, LaBonte MJ. Targeting IL-8 and Its Receptors in Prostate Cancer: Inflammation, Stress Response, and Treatment Resistance. Cancers (Basel) 2024; 16:2797. [PMID: 39199570 PMCID: PMC11352248 DOI: 10.3390/cancers16162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
Collapse
Affiliation(s)
- Shauna McClelland
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Pamela J. Maxwell
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Cristina Branco
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Simon T. Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| |
Collapse
|
23
|
Wang Y, Ding W, Hao W, Gong L, Peng Y, Zhang J, Qian Z, Xu K, Cai W, Gao Y. CXCL3/TGF-β-mediated crosstalk between CAFs and tumor cells augments RCC progression and sunitinib resistance. iScience 2024; 27:110224. [PMID: 39040058 PMCID: PMC11261419 DOI: 10.1016/j.isci.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a significant role in tumor development and treatment failure, yet the precise mechanisms underlying their contribution to renal cell carcinoma (RCC) remains underexplored. This study explored the interaction between CAFs and tumor cells, and related mechanisms. CAFs isolated from tumor tissues promoted the tumor progression and drugs resistance both in vivo and in vitro. Mechanistically, chemokine (C-X-C motif) ligand (CXCL) 3 secreted from CAFs mediated its effects. CXCL3 activated its receptor CXCR2 to active the downstream ERK1/2 signaling pathway, subsequently promoting epithelial-mesenchymal transition and cell stemness. Blocking the crosstalk between CAFs and tumor cells by CXCR2 inhibitor SB225002 attenuated the functions of CAFs. Furthermore, Renca cells facilitated the transformation of normal interstitial fibroblasts (NFs) into CAFs and the expression of CXCL3 through TGF-β-Smad2/3 signaling pathway. In turn, transformed NFs promoted the tumor progression and drug resistance of RCC. These findings may constitute potential therapeutic strategies for RCC treatment.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjing Hao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luyao Gong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yeheng Peng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jun Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhiyu Qian
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
24
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
25
|
Li X, Xie G, Chen J, Wang Y, Zhai J, Shen L. Tumour cell-derived serglycin promotes IL-8 secretion of CAFs in gastric cancer. Br J Cancer 2024; 131:271-282. [PMID: 38862740 PMCID: PMC11263384 DOI: 10.1038/s41416-024-02735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs)-derived IL-8 plays important roles in chemoresistance, immunosuppression, and lymph node metastasis of gastric cancer. However, the mechanisms underlying IL-8 production in CAFs remains unclear. METHODS DNA pulldown assay was performed to identify the transcription factors responsible for IL-8 expression in CAFs, which was further verified using CHIP-qPCR and DNA agarose gel electrophoresis assays. The cellular localisation of IL-8 was analysed using multiplex immunofluorescence (MxIF). RESULTS MxIF demonstrated that IL-8 was mainly produced by CAFs in gastric cancer. Lysine[K]-specific demethylase 5B (KDM5B) was identified as an IL-8 transcription factor in CAFs, and the binding of KDM5B to phosphorylated RB1 limited the transcriptional regulation of IL-8 in gastric cancer cells. Serglycin (SRGN) secreted by tumour cells activated the CD44/c-Myc pathway to upregulate KDM5B expression, thereby promoting IL-8 production in CAFs. Furthermore, tumour-associated neutrophils (TANs)-derived regenerating family member 4 (REG4) upregulates SRGN expression by activating cAMP-responsive element binding protein 1 (CREB1) in gastric cancer cells. Thus, the SRGN-IL-8-TANs-SRGN loop, which facilitates tumour progression, has been explored in gastric cancer. CONCLUSIONS This study revealed the mechanisms of the preferential production of IL-8 by CAFs in gastric cancer, and paves the way for potential new therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guiping Xie
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jia Chen
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lizong Shen
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
27
|
Bian X, Wang W, Abudurexiti M, Zhang X, Ma W, Shi G, Du L, Xu M, Wang X, Tan C, Sun H, He X, Zhang C, Zhu Y, Zhang M, Ye D, Wang J. Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305724. [PMID: 38483933 PMCID: PMC11095148 DOI: 10.1002/advs.202305724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/25/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaojie Bian
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wenfeng Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mierxiati Abudurexiti
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of UrologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Xingming Zhang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weiwei Ma
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Guohai Shi
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Leilei Du
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Midie Xu
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xin Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Hui Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiadi He
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Chenyue Zhang
- Department of Integrated TherapyFudan University Shanghai Cancer CenterShanghai200032China
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease InstituteShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jianhua Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
28
|
Muralidhar A, Hernandez R, Morris ZS, Comas Rojas H, Bio Idrissou M, Weichert JP, McNeel DG. Myeloid-derived suppressor cells attenuate the antitumor efficacy of radiopharmaceutical therapy using 90Y-NM600 in combination with androgen deprivation therapy in murine prostate tumors. J Immunother Cancer 2024; 12:e008760. [PMID: 38663936 PMCID: PMC11043705 DOI: 10.1136/jitc-2023-008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.
Collapse
Affiliation(s)
| | | | - Zachary S Morris
- Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hansel Comas Rojas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
30
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Xu YX, Liu LD, Zhu JY, Zhu SS, Ye BQ, Yang JL, Huang JY, Huang ZH, You Y, Li WK, He JL, Xia M, Liu Y. Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia. Cell Host Microbe 2024; 32:366-381.e9. [PMID: 38412863 DOI: 10.1016/j.chom.2024.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.
Collapse
Affiliation(s)
- Ying-Xi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Lu-Di Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jiang-Yuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Shan-Shan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing-Qi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jing-Yi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Zhi-Hao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yi You
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wen-Kang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China.
| |
Collapse
|
32
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
33
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Lin X, Zhao X, Chen Y, Yang R, Dai Z, Li W, Lin C, Cao W. CXC ligand 13 orchestrates an immunoactive microenvironment and enhances immunotherapy response in head and neck squamous cell carcinoma. Int J Immunopathol Pharmacol 2024; 38:3946320241227312. [PMID: 38252495 PMCID: PMC10807398 DOI: 10.1177/03946320241227312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Objectives: This study aims to systematically explore the role of chemokine CXC ligand 13 (CXCL13) in head and neck squamous cell carcinoma (HNSCC). Methods: The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases provided the RNA-seq data for cancer and normal tissues, respectively. Gene set enrichment analysis was applied to search the cancer hallmarks associated with CXCL13 expression. TIMER2.0 was the main platform used to investigate the immune cell infiltration related to CXCL13. Immunohistochemistry was applied to explore the relationship between CXCL13 and patients' prognosis and the relationship between CXCL13 and tertiary lymphoid structures (TLSs). Results: The expression of CXCL13 was upregulated in most tumors, including HNSCC. The higher expression of CXCL13 was closely related to the positive prognosis of HNSCC. CXCL13 was mainly expressed in B cells and CD8 + T cells, revealing the relationship between its expression and immune activation in the tumor microenvironment. Furthermore, immunohistochemistry and multiple fluorescence staining analysis of HNSCC samples showed a powerful correlation between CXCL13 expression, TLSs formation, and positive prognosis. Finally, CXCL13 significantly increased the response to cancer immunotherapy. Conclusions: CXCL13 may function as a potential biomarker for predicting prognosis and immunotherapy response and associate with TLSs in HNSCC.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaomei Zhao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiming Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenlin Dai
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Li
- Xuchang Central Hospital, Henan, China
| | - Chengzhong Lin
- Department of Oral Maxillofacial Surgery, Zhongshan Hospital, Fu Dan University, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
35
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
36
|
Olivera I, Luri-Rey C, Teijeira A, Eguren-Santamaria I, Gomis G, Palencia B, Berraondo P, Melero I. Facts and Hopes on Neutralization of Protumor Inflammatory Mediators in Cancer Immunotherapy. Clin Cancer Res 2023; 29:4711-4727. [PMID: 37522874 DOI: 10.1158/1078-0432.ccr-22-3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
In cancer pathogenesis, soluble mediators are responsible for a type of inflammation that favors the progression of tumors. The mechanisms chiefly involve changes in the cellular composition of the tumor tissue stroma and in the functional modulation of myeloid and lymphoid leukocytes. Active immunosuppression, proangiogenesis, changes in leukocyte traffic, extracellular matrix remodeling, and alterations in tumor-antigen presentation are the main mechanisms linked to the inflammation that fosters tumor growth and metastasis. Soluble inflammatory mediators and their receptors are amenable to various types of inhibitors that can be combined with other immunotherapy approaches. The main proinflammatory targets which can be interfered with at present and which are under preclinical and clinical development are IL1β, IL6, the CXCR1/2 chemokine axis, TNFα, VEGF, leukemia inhibitory factor, CCL2, IL35, and prostaglandins. In many instances, the corresponding neutralizing agents are already clinically available and can be repurposed as a result of their use in other areas of medicine such as autoimmune diseases and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Belen Palencia
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Xu F, Wang X, Huang Y, Zhang X, Sun W, Du Y, Xu Z, Kou H, Zhu S, Liu C, Wei X, Li X, Jiang Q, Xu Y. Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8 + T cell. Cell Rep 2023; 42:113424. [PMID: 37963015 DOI: 10.1016/j.celrep.2023.113424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/12/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Depletion of CD8+ T cells is a major obstacle in immunotherapy; however, the relevant mechanisms remain largely unknown. Here, we showed that prostate cancer (PCa) cell-derived exosomes hamper CD8+ T cell function by transporting interleukin-8 (IL-8). Compared to the low IL-8 levels detected in immune cells, PCa cells secreted the abundance of IL-8 and further accumulated in exosomes. The delivery of PCa cell-derived exosomes into CD8+ T cells exhausted the cells through enhanced starvation. Mechanistically, exosomal IL-8 overactivated PPARα in recipient cells, thereby decreasing glucose utilization by downregulating GLUT1 and HK2 but increasing fatty acid catabolism via upregulation of CPT1A and ACOX1. PPARα further activates uncoupling protein 1 (UCP1), leading to fatty acid catabolism for thermogenesis rather than ATP synthesis. Consequently, inhibition of PPARα and UCP1 restores CD8+ T cell proliferation by counteracting the effect of exosomal IL-8. This study revealed that the tumor exosome-activated IL-8-PPARα-UCP1 axis harms tumor-infiltrating CD8+ T cells by interfering with energy metabolism.
Collapse
Affiliation(s)
- Fan Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Xiumei Wang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Ying Huang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Xiaoqian Zhang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Yuanyuan Du
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Zhi Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Hengyuan Kou
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Shuyi Zhu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Caidong Liu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiao Li
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| | - Qin Jiang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China.
| | - Yong Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| |
Collapse
|
38
|
Guo C, Sharp A, Gurel B, Crespo M, Figueiredo I, Jain S, Vogl U, Rekowski J, Rouhifard M, Gallagher L, Yuan W, Carreira S, Chandran K, Paschalis A, Colombo I, Stathis A, Bertan C, Seed G, Goodall J, Raynaud F, Ruddle R, Swales KE, Malia J, Bogdan D, Tiu C, Caldwell R, Aversa C, Ferreira A, Neeb A, Tunariu N, Westaby D, Carmichael J, Fenor de la Maza MD, Yap C, Matthews R, Badham H, Prout T, Turner A, Parmar M, Tovey H, Riisnaes R, Flohr P, Gil J, Waugh D, Decordova S, Schlag A, Calì B, Alimonti A, de Bono JS. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 2023; 623:1053-1061. [PMID: 37844613 PMCID: PMC10686834 DOI: 10.1038/s41586-023-06696-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | | | - Suneil Jain
- Northern Ireland Cancer Centre, Belfast, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | | | | | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | | | - Khobe Chandran
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | - Ruth Ruddle
- The Institute of Cancer Research, London, UK
| | | | - Jason Malia
- The Institute of Cancer Research, London, UK
| | | | - Crescens Tiu
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Nina Tunariu
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Daniel Westaby
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | | | - Toby Prout
- The Institute of Cancer Research, London, UK
| | | | - Mona Parmar
- The Institute of Cancer Research, London, UK
| | - Holly Tovey
- The Institute of Cancer Research, London, UK
| | | | - Penny Flohr
- The Institute of Cancer Research, London, UK
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Waugh
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | | | - Anna Schlag
- The Institute of Cancer Research, London, UK
| | - Bianca Calì
- Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Alimonti
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Institute of Oncology Research, Bellinzona, Switzerland
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
- Department of Medicine, Veneto Institute of Molecular Medicine, University of Padova, Padua, Italy
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
39
|
Abdul Kadir FFN, Che Nordin MA, S M N Mydin RB, Choong YS, Che Omar MT. Molecular interaction analysis of anti-IL-8 scFv-10F8-6His against IL-8 monomer through molecular docking and molecular dynamic simulations. J Biomol Struct Dyn 2023; 42:12293-12303. [PMID: 37837430 DOI: 10.1080/07391102.2023.2269254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Muhamad Alif Che Nordin
- Biological Section, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia
| | - Rabiatul Basria S M N Mydin
- Biomedical Sciences Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
40
|
Chang CH, Chen CJ, Yu CF, Tsai HY, Chen FH, Chiang CS. Targeting M-MDSCs enhances the therapeutic effect of BNCT in the 4-NQO-induced murine head and neck squamous cell carcinoma model. Front Oncol 2023; 13:1263873. [PMID: 37886177 PMCID: PMC10598372 DOI: 10.3389/fonc.2023.1263873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose Malignant head and neck squamous cell carcinoma (HNSCC) is characterized by a poor prognosis and resistance to conventional radiotherapy. Infiltrating myeloid-derived suppressive cells (MDSCs) is prominent in HNSCC and is linked to immune suppression and tumor aggressiveness. This study aimed to investigate the impact of boron neutron capture therapy (BNCT) on the MDSCs in the tumor microenvironment and peripheral blood and to explore the potential for MDSCs depletion combined with BNCT to reactivate antitumor immunity. Methods and materials Carcinogen, 4-NQO, -induced oral tumors were irradiated with a total physical dose of 2 Gy BNCT in Tsing Hua Open Reactor (THOR). Flow cytometry and immunohistochemistry accessed the dynamics of peripheral MDSCs and infiltrated MDSCs within the tumor microenvironment. Mice were injected with an inhibitor of CSF-1 receptor (CSF-1R), PLX3397, to determine whether modulating M-MDSCs could affect mice survival after BNCT. Results Peripheral CD11b+Ly6ChighLy6G- monocytic-MDSCs (M-MDSCs), but not CD11b+Ly6CloLy6Ghigh polymorphonuclear-MDSCs (PMN-MDSCs), increased as tumor progression. After BNCT treatment, there were temporarily decreased and persistent increases of M-MDSCs thereafter, either in peripheral blood or in tumors. The administration of PLX-3397 hindered BNCT-caused M-MDSCs infiltration, prolonged mice survival, and activated tumor immunity by decreasing tumor-associated macrophages (TAMs) and increasing CD8+ T cells. Conclusion M-MDSCs were recruited into 4-NQO-induced tumors after BNCT, and their number was also increased in peripheral blood. Assessment of M-MDSCs levels in peripheral blood could be an index to determine the optimal intervention window. Their temporal alteration suggests an association with tumor recurrence after BNCT, making M-MDSCs a potential intervention target. Our preliminary results showed that PLX-3397 had strong M-MDSCs, TAMs, and TIL (tumor-infiltrating lymphocyte) modulating effects that could synergize tumor control when combined with BNCT.
Collapse
Affiliation(s)
- Chun-Hsiang Chang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Jui Chen
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fang Yu
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Hui-Yu Tsai
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
41
|
Conteduca V, Brighi N, Schepisi G, De Giorgi U. Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer. Br J Cancer 2023; 129:1050-1060. [PMID: 37443349 PMCID: PMC10539309 DOI: 10.1038/s41416-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer but the management of advanced prostate cancer remains a therapeutic challenge, despite the survival benefits imparted by several therapeutic discoveries targeting different molecular pathways. The mechanisms of resistance to androgen deprivation and tumour progression to lethal metastatic variants are often regulated by androgen receptor (AR) bypass mechanisms and/or neuroendocrine differentiation. Moreover, recent data also suggested the involvement of adaptive and innate infiltrated immune cells in prostate tumour progression. Improvements in cancer genome analyses contributed to a better understanding of antitumour immunity and provided solutions for targeting highly cancer-specific neoantigens generated from somatic mutations in individual patients. In this review, we investigated the current knowledge on the interplay between cancer development and the complex mechanisms of immune regulation. Particularly, we focused on the role of tumour immune microenvironment, generally characterised by strong barriers for immunotherapy, and we discuss the rationale for the potential application of single agent and combination immune-targeting strategies that could lead to improved outcomes. Careful selection based on clinical and genomic factors may allow identification of patients who could benefit from this treatment approach in multiple settings (from localised to advanced prostate tumour) and in different histological subtypes (from adenocarcinoma to neuroendocrine prostate cancer).
Collapse
Affiliation(s)
- Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122, Foggia, Italy.
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| |
Collapse
|
42
|
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers (Basel) 2023; 15:4555. [PMID: 37760523 PMCID: PMC10526350 DOI: 10.3390/cancers15184555] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| |
Collapse
|
43
|
Abstract
Prostate cancer is a leading cause of death in men worldwide. For over 30 years, growing interest has focused on the development of vaccines as treatments for prostate cancer, with the goal of using vaccines to activate immune cells capable of targeting prostate cancer to either eradicate recurrent disease or at least delay disease progression. This interest has been prompted by the prevalence and long natural history of the disease and by the fact that the prostate is an expendable organ. Thus, an immune response elicited by vaccination might not need to target the tumour uniquely but could theoretically target any prostate tissue. To date, different vaccine approaches and targets for prostate cancer have been evaluated in clinical trials. Overall, five approaches have been assessed in randomized phase III trials and sipuleucel-T was approved as a treatment for metastatic castration-resistant prostate cancer, being the only vaccine approved to date by the FDA as a treatment for cancer. Most vaccine approaches showed safety and some evidence of immunological activity but had poor clinical activity when used as monotherapies. However, increased activity has been observed when these vaccines were used in combination with other immune-modulating therapies. This evidence suggests that, in the future, prostate cancer vaccines might be used to activate and expand tumour-specific T cells as part of combination approaches with agents that target tumour-associated immune mechanisms of resistance.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
44
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
45
|
Zhao C, Wang D, Li Z, Zhang Z, Xu Y, Liu J, Lei Q, Han D, Huo Y, Liu S, Li L, Zhang Y. IL8 derived from macrophages inhibits CD8 + T-cell function by downregulating TIM3 expression through IL8-CXCR2 axis in patients with advanced colorectal cancer. Int Immunopharmacol 2023; 121:110457. [PMID: 37331296 DOI: 10.1016/j.intimp.2023.110457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is a vital immune checkpoint that regulates the immune response. However, the specific role of TIM3 in patients with colorectal cancer (CRC) have rarely been studied. In this study, we investigated the effect of TIM3 on CD8+ T cells in CRC and explored the mechanism of TIM3 regulation in tumor microenvironment (TME). METHODS Peripheral blood and tumor tissues of patients with CRC were collected to evaluate TIM3 expression using flow cytometry. Cytokines in the serum of healthy donors and patients with early- and advanced-stage CRC were screened using a multiplex assay. The effects of interleukin-8 (IL8) on TIM3 expression on CD8+ T cells were analyzed using cell incubation experiments in vitro. The correlation between TIM3 or IL8 and prognosis was verified using bioinformatics analysis. RESULTS TIM3 expression on CD8+ T cells was obviously reduced in patients with advanced-stage CRC, whereas a lower TIM3 expression level was associated with poorer prognosis. Macrophage-derived IL8, which could inhibit TIM3 expression on CD8+ T cells, was significantly increased in the serum of patients with advanced CRC. In addition, the function and proliferation of CD8+ and TIM3+CD8+ T cells were inhibited by IL8, which was partly depending on TIM3 expression. The inhibitory effects of IL8 were reversed by anti-IL8 and anti-CXCR2 antibodies. CONCLUSIONS In summary, macrophages-derived IL8 suppresses TIM3 expression on CD8+ T cells through CXCR2. Targeting the IL8/CXCR2 axis may be an effective strategy for treating patients with advanced CRC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yujie Xu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qingyang Lei
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dong Han
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yachang Huo
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan 450052, China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China.
| |
Collapse
|
46
|
Brina D, Ponzoni A, Troiani M, Calì B, Pasquini E, Attanasio G, Mosole S, Mirenda M, D'Ambrosio M, Colucci M, Guccini I, Revandkar A, Alajati A, Tebaldi T, Donzel D, Lauria F, Parhizgari N, Valdata A, Maddalena M, Calcinotto A, Bolis M, Rinaldi A, Barry S, Rüschoff JH, Sabbadin M, Sumanasuriya S, Crespo M, Sharp A, Yuan W, Grinu M, Boyle A, Miller C, Trotman L, Delaleu N, Fassan M, Moch H, Viero G, de Bono J, Alimonti A. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF, SPP1 and BGN and recruit suppressive myeloid cells. NATURE CANCER 2023; 4:1102-1121. [PMID: 37460872 PMCID: PMC11331482 DOI: 10.1038/s43018-023-00594-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2023] [Indexed: 08/25/2023]
Abstract
Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.
Collapse
Affiliation(s)
- Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Adele Ponzoni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Ima Biotech, Lille, France
| | - Martina Troiani
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Bianca Calì
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Michela Mirenda
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Evotec, Toulouse, France
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Imperial College London, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Ilaria Guccini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Abdullah Alajati
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Department of Urology, Universitätklinikum Bonn, Bonn, Germany
| | - Toma Tebaldi
- Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deborah Donzel
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Nahjme Parhizgari
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Biosun Pharmed, Kordan, Iran
| | - Aurora Valdata
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Marco Bolis
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Simon Barry
- IMED Oncology AstraZeneca, Li Ka Shing Centre, Cambridge, UK
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Semini Sumanasuriya
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Mateus Crespo
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Wei Yuan
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Mathew Grinu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Alexandra Boyle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Cynthia Miller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Lloyd Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Matteo Fassan
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Johann de Bono
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
- The Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|
47
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
48
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
49
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
50
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|