1
|
Papargyriou A, Reichert M. The Biology in the Pattern: Metastatic Organotropism and Clinical Outcome Depend on DNA Damage Response and Immune Interactions in Pancreatic Cancer. Cancer Res 2025; 85:1571-1573. [PMID: 40067920 DOI: 10.1158/0008-5472.can-25-1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Metastatic cancer remains a leading cause of cancer-related mortality, with a 5-year survival rate of just 8% for pancreatic ductal adenocarcinoma (PDAC). Among patients with metastatic PDAC, those with liver metastases experience significantly worse outcomes compared with the rare cases of isolated lung metastases. Recent findings by Link and colleagues reveal that these distinct metastatic patterns reflect underlying biological differences beyond established molecular subtypes. Specifically, the authors curated a primary organotropism (pORG) gene signature that is enriched in the liver cohort. In detail they found that high-pORG/liver-avid tumors are characterized by high replication stress, enriched DNA repair pathways, and an immunosuppressive microenvironment, whereas low-pORG/lung-avid tumors display stronger immune infiltration, higher T-cell density, reduced richness of T-cell receptor repertoire, and better survival outcomes. These insights suggest that the clinical pattern of metastasis provides meaningful information about tumor biology and prognosis, complementing current subtype classifications in PDAC.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, München, Germany
- Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, München, Germany
- Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| |
Collapse
|
2
|
Zhao B, Fang R, Schürmann H, Hemmer EJ, Mayer GL, Trajkovic-Arsic M, Althoff K, Yang J, Godfrey L, Liffers ST, Savvatakis K, Dorsch M, Grüner BM, Hahn S, Remke M, Lueong SS, Siveke JT. PLK1 blockade enhances the anti-tumor effect of MAPK inhibition in pancreatic ductal adenocarcinoma. Cell Rep 2025; 44:115541. [PMID: 40188436 DOI: 10.1016/j.celrep.2025.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025] Open
Abstract
Despite constitutive Ras/Raf/MAPK pathway activation in most pancreatic ductal adenocarcinomas (PDACs), treatment approaches targeting this pathway have primarily been unsuccessful. We conduct a drug library screen on an MEK inhibitor (MEKi)-resistant PDAC model and perform complementary pathway analysis to identify cellular resistance phenotypes. We use syngeneic models to investigate the molecular determinants of identified drug synergism. Our study reveals an enrichment for the hallmarks of G2/M checkpoints in MEKi-resistant phenotypes from all investigated models. We find overexpression of Polo-like kinase 1 (PLK1) and other G2/M checkpoint-related proteins in MEKi-resistant cells. We identify synergistic activity between MEK and PLK1 inhibition both in vitro and in vivo and mechanistically show that dual inhibition of the PLK1 and MEK pathways activates the JNK/c-JUN pathway. This causes the accumulation of DNA damage, ultimately leading to apoptotic cell death. Dual PLK1/MEK inhibition emerges as a promising targeted approach in PDAC.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Erik Jan Hemmer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Gina Lauren Mayer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Kristina Althoff
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Jiajin Yang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Laura Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Konstantinos Savvatakis
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Barbara M Grüner
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany; Department of Internal Medicine, Ruhr University Bochum, Knappschaftskrankenhaus, 44780 Bochum, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 40225 Düsseldorf, Germany
| | - Smiths S Lueong
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
3
|
Jiang S, Wang X, Ma Z. Efficacy of combined immunotherapy and targeted therapy in overcoming barriers to postoperative recurrence in squamous subtype anaplastic thyroid carcinoma with abscess: a case report and literature review. Front Oncol 2025; 15:1477954. [PMID: 40177243 PMCID: PMC11961886 DOI: 10.3389/fonc.2025.1477954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Molecularly targeted therapies and immunotherapy are increasingly being employed in the treatment of aggressive, recurrent thyroid cancer. Evidence from several studies indicates that a significant proportion of tumor patients derive limited benefit from immunotherapy as a monotherapy, with vascular abnormalities in solid tumors contributing to immune evasion. Numerous studies, both domestic and international, have assessed the efficacy of combining immune checkpoint inhibitors with antiangiogenic agents across various tumor types. These studies suggest that such combination therapies are effective in controlling disease progression and extending survival, among other outcomes. Nevertheless, further research is warranted to substantiate these findings and optimize treatment protocols. Methods This study aims to describe a patient diagnosed with anaplastic thyroid carcinoma (ATC) combined with primary squamous cell carcinoma of the thyroid (PSCCT) and concurrent thyroid abscess. The patient experienced local recurrence and metastasis following surgical intervention, radiotherapy, and chemotherapy, and was found to be PD-1 negative. Disease progression was effectively controlled through combination therapy with anlotinib and tislelizumab. Additionally, a comprehensive review of the relevant literature was conducted. Results The patient exhibited disease recurrence 8 months postoperatively, notwithstanding the administration of adjuvant radiotherapy and chemotherapy. The local recurrent mass demonstrated minimal reduction following 4 cycles of targeted therapy with anlotinib. However, subsequent treatment with a combination of anlotinib and tislelizumab resulted in a substantial reduction of the neck mass and enlarged cervical lymph nodes after 12 cycles. The patient tolerated the combination therapy well, experiencing no significant adverse effects aside from pronounced fatigue. Thus, the combination therapy with anlotinib and tislelizumab proved effective in controlling the disease. Conclusion The management of postoperative recurrence of ATC-PSCCT presents significant challenges, as recurrent tumors typically demonstrate increased aggressiveness and resistance to pharmacological interventions, necessitating multimodal therapeutic approaches. Tislelizumab, an immune checkpoint inhibitor, may facilitate immune-mediated tumor clearance through the activation of various immune cells, including natural killer cells and macrophages. Despite the patient's PD-1 negativity, the combination of anlotinib and tislelizumab may exert synergistic effects through distinct mechanisms, thereby potentially enhancing therapeutic efficacy. The integration of a multi-targeted tyrosine kinase inhibitor within this combination therapy regimen warrants further investigation.
Collapse
Affiliation(s)
- Shuyun Jiang
- Department of Clinical Medicine, Qinghai University, Xining, Qinghai, China
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Xiaowu Wang
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Zhijun Ma
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| |
Collapse
|
4
|
Cox M, Vitello D, Chawla A. Translating the multifaceted use of liquid biopsy to management of early disease in pancreatic adenocarcinoma. Front Oncol 2025; 15:1520717. [PMID: 40182037 PMCID: PMC11966063 DOI: 10.3389/fonc.2025.1520717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality, primarily due to late stage at diagnosis. This review examines the multifaceted applications of liquid biopsy and circulating tumor DNA (ctDNA) analysis in the diagnosis and management of PDAC. We review the current literature on the technological advancements in liquid biopsy analysis such as next generation sequencing (NGS) and digital droplet PCR (ddPCR) as well as multi-omics technologies, highlighting their potential for accurate molecular subtyping through ctDNA analysis. This review highlights the significant role of ctDNA in the assessment of tumor behavior, disease subtyping, prediction and monitoring of treatment response, and evaluation of minimal residual disease. We discuss the implications of integrating liquid biopsy techniques into clinical practice as well as its challenges and limitations. By drawing insights from recent studies, this review aims to provide a comprehensive overview of how liquid biopsy and ctDNA analysis can enhance early disease management strategies in PDAC. We underscore the need for additional prospective studies and clinical trials to validate its feasibility and accuracy in order to establish clinical utility, with the ultimate goal of routine incorporation into practice to improve patient outcomes and transform the treatment landscape for PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
| | - Dominic Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Höfer S, Frasch L, Brajkovic S, Putzker K, Lewis J, Schürmann H, Leone V, Sakhteman A, The M, Bayer FP, Müller J, Hamood F, Siveke JT, Reichert M, Kuster B. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. Mol Syst Biol 2025; 21:231-253. [PMID: 39838187 PMCID: PMC11876601 DOI: 10.1038/s44320-025-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
The DNA-damaging agent Gemcitabine (GEM) is a first-line treatment for pancreatic cancer, but chemoresistance is frequently observed. Several clinical trials investigate the efficacy of GEM in combination with targeted drugs, including kinase inhibitors, but the experimental evidence for such rationale is often unclear. Here, we phenotypically screened 13 human pancreatic adenocarcinoma (PDAC) cell lines against GEM in combination with 146 clinical inhibitors and observed strong synergy for the ATR kinase inhibitor Elimusertib in most cell lines. Dose-dependent phosphoproteome profiling of four ATR inhibitors following DNA damage induction by GEM revealed a strong block of the DNA damage response pathway, including phosphorylated pS468 of CHEK1, as the underlying mechanism of drug synergy. The current work provides a strong rationale for why the combination of GEM and ATR inhibition may be useful for the treatment of PDAC patients and constitutes a rich phenotypic and molecular resource for further investigating effective drug combinations.
Collapse
Affiliation(s)
- Stefanie Höfer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Larissa Frasch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sarah Brajkovic
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Joe Lewis
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Valentina Leone
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Firas Hamood
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Maximilian Reichert
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
6
|
Tapia Contreras C, Falke JD, Seifert D, Schneider C, Krauß L, Fang X, Müller D, Demirdizen E, Spitzner M, De Oliveira T, Schneeweis C, Gaedcke J, Kaulfuß S, Mirzakhani K, Wollnik B, Conrads K, Beißbarth T, Salinas G, Hügel J, Beyer N, Rheinländer S, Sax U, Wirth M, Conradi L, Reichert M, Ellenrieder V, Ströbel P, Ghadimi M, Grade M, Saur D, Hessmann E, Schneider G. KRAS G 12C-inhibitor-based combination therapies for pancreatic cancer: insights from drug screening. Mol Oncol 2025; 19:295-310. [PMID: 39253995 PMCID: PMC11792994 DOI: 10.1002/1878-0261.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.
Collapse
Affiliation(s)
| | - Jonas Dominik Falke
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Dana‐Magdalena Seifert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Xin Fang
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical CenterGöttingenGermany
| | - Engin Demirdizen
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Melanie Spitzner
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University MunichGermany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
| | - Silke Kaulfuß
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Institute of Human GeneticsUniversity Medical Center GöttingenGermany
| | - Kimia Mirzakhani
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Institute of Human GeneticsUniversity Medical Center GöttingenGermany
| | - Bernd Wollnik
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Institute of Human GeneticsUniversity Medical Center GöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
| | - Karly Conrads
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
| | - Tim Beißbarth
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
- Campus‐Institute Data Science (CIDAS)GöttingenGermany
| | - Gabriela Salinas
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- NGS Integrative Genomics Core Unit (NIG)University Medical Center Göttingen (UMG)Germany
| | - Jonas Hügel
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Department of Medical InformaticsUniversity Medical CenterGöttingenGermany
| | - Nils Beyer
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Department of Medical InformaticsUniversity Medical CenterGöttingenGermany
| | - Sophia Rheinländer
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Department of Medical InformaticsUniversity Medical CenterGöttingenGermany
| | - Ulrich Sax
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- Campus‐Institute Data Science (CIDAS)GöttingenGermany
- Department of Medical InformaticsUniversity Medical CenterGöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- Department of Hematology, Oncology and Cancer ImmunologyCampus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinGermany
| | - Lena‐Christin Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der IsarTechnical University MunichGermany
- Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum rechts der IsarTechnical University MunichGermany
- Center for Protein Assemblies (CPA)Technical University of MunichGarchingGermany
- Center for Organoid Systems and Tissue Engineering (COS)Technical University MunichGarchingGermany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Hospital Klinikum rechts der IsarMunichGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
- Department of Gastroenterology, Gastrointestinal Oncology and EndocrinologyUniversity Medical Center GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical CenterGöttingenGermany
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University MunichGermany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Hospital Klinikum rechts der IsarMunichGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
- Department of Gastroenterology, Gastrointestinal Oncology and EndocrinologyUniversity Medical Center GöttingenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University MunichGermany
- Clinical Research Unit 5002, KFO5002University Medical Center GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)GöttingenGermany
| |
Collapse
|
7
|
Zhang D, Zhang E, Cai Y, Sun Y, Zeng P, Jiang X, Lian Y. Deciphering the potential ability of DExD/H-box helicase 60 (DDX60) on the proliferation, diagnostic and prognostic biomarker in pancreatic cancer: a research based on silico, RNA-seq and molecular biology experiment. Hereditas 2025; 162:6. [PMID: 39844327 PMCID: PMC11753068 DOI: 10.1186/s41065-024-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most malignant abdominal tumors. DDX60 has been shown to be associated with a variety of tumor biological processes. However, DDX60 in pancreatic cancer has not been reported. Our study confirmed that DDX60 can serve as a novel biomarker for diagnosis and treatment of pancreatic cancer. MATERIALS AND METHODS We downloaded pancreatic cancer datasets from GEO and TCGA databases, respectively. To investigate the relationship between DDX60 expression and prognosis in pancreatic cancer. GSEA analysis was performed on DDX60. We performed RNA-seq to further explore the downstream biological targets of DDX60 and the signaling pathways that may be involved in pancreatic cancer. Finally, we tested it through molecular biology experiments. First, we constructed the plasmid and tested the plasmid effect by WB. Then MTT assay was performed to explore the effect of DDX60 knockout on the proliferation of pancreatic cancer cells. LDH assay was performed to explore the effect of DDX60 on the release of lactate dehydrogenase from tumor cells. The effect of DDX60 on cell proliferation was further explored by clonal formation experiment. Continue to explore clinical therapeutic drugs sensitive to DDX60 targets. RESULTS By analyzing the GSE71729, GSE183795, GSE16515, GSE28735 and GSE62452 data sets, we found that DDX60 was highly expressed in pancreatic cancer. And is associated with poorer outcomes for pancreatic patients. The mRNA expression level of DDX60 was correlated with lymph node metastasis and grade in clinical pancreatic patients. Through the results of RNA-seq analysis, GO and KEGG analysis showed that DDX60 may be associated with cell cycle in pancreatic cancer. Through molecular biology experiments (MTT, LDH, and clonal formation experiment), we found that When DDX60 is knocked down in pancreatic cancer cells, the proliferation ability of tumor cells is significantly decreased. Several drugs targeting about DDX60 have been found, such as JW-7-52-1, this could provide direction for drug therapy against the DDX60 target. CONCLUSION In summary, DDX60 can be used as a novel biomarker related to the diagnosis and treatment of pancreatic cancer, participate in tumor proliferation, and is associated with poor prognosis in patients.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Enze Zhang
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Ying Cai
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yixin Sun
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
- 3National Institute for Data Science in Health and Medicine, Xiamen UniversityXiamen, Fujian, 361000, China
| | - Peiji Zeng
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Xiaohua Jiang
- Department of Orthopedics, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China.
| | - Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| |
Collapse
|
8
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Amabile A, Phelan M, Yu Z, Silva P, Marks A, Morla-Folch J, Sohn M, Mollaoglu G, Falcomata C, Teunissen AJP, Brody JD, Dong Y, Brown BD. Bispecific antibody targeting of lipid nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629467. [PMID: 39763831 PMCID: PMC11702604 DOI: 10.1101/2024.12.20.629467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Lipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up. Here, we developed an approach to generate antibody-conjugated LNPs that utilizes a bispecific antibody (bsAb) as the targeting bridge. As a docking site for the bsAb, we generated LNPs with a short epitope, derived from hemagglutinin antigen (HA), embedded in the PEG component of the particle (LNPHA). We generated bsAb in which one domain binds HA and the other binds different cell surface proteins, including PD-L1, CD4, CD5, and SunTag. Non-chemical conjugation of the bsAb and LNP resulted in a major increase in the efficiency and specificity of transfecting cells expressing the cognate target. LNP/bsAb mediated a 4-fold increase in in vivo transfection of PD-L1 expressing cancer cells, and a 26-fold increase in ex vivo transfection of quiescent primary human T cells. Additionally, we created a universal bsAb recognizing HA and anti-rat IgG2, enabling LNP tethering to off-the-shelf antibodies such as CD4, CD8, CD20, CD45, and CD3. By utilizing a molecular dock and bsAb technology, these studies demonstrate a simple and effective strategy to generate antibody-conjugated LNPs, enabling precise and efficient mRNA delivery.
Collapse
Affiliation(s)
- Angelo Amabile
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Matthew Phelan
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Zhixin Yu
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
| | - Pedro Silva
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
| | - Adam Marks
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, ISMMS, New Yok, NY, USA
| | - Moah Sohn
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Gurkan Mollaoglu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Chiara Falcomata
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | | | - Joshua D Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
- Hematology and Medical Oncology, ISMMS, New York, New York, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| |
Collapse
|
10
|
Papargyriou A, Najajreh M, Cook DP, Maurer CH, Bärthel S, Messal HA, Ravichandran SK, Richter T, Knolle M, Metzler T, Shastri AR, Öllinger R, Jasper J, Schmidleitner L, Wang S, Schneeweis C, Ishikawa-Ankerhold H, Engleitner T, Mataite L, Semina M, Trabulssi H, Lange S, Ravichandra A, Schuster M, Mueller S, Peschke K, Schäfer A, Dobiasch S, Combs SE, Schmid RM, Bausch AR, Braren R, Heid I, Scheel CH, Schneider G, Zeigerer A, Luecken MD, Steiger K, Kaissis G, van Rheenen J, Theis FJ, Saur D, Rad R, Reichert M. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma. Nat Biomed Eng 2024:10.1038/s41551-024-01273-9. [PMID: 39658630 DOI: 10.1038/s41551-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Mulham Najajreh
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carlo H Maurer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sakthi K Ravichandran
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Till Richter
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Moritz Knolle
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Akul R Shastri
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jacob Jasper
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Laura Schmidleitner
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Schneeweis
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Mataite
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Mariia Semina
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Hussein Trabulssi
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aashreya Ravichandra
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Schuster
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Arlett Schäfer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Andreas R Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), München, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Institute for Machine Learning in Biomedical Imaging, Helmholtz Zentrum München, München, Germany
- Department of Computing, Imperial College London, London, UK
- Munich Center for Machine Learning (MCML), München, Germany
- School of Computation, Information and Technology, Technische Universität München, München, Germany
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany.
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Veghini L, Pasini D, Fang R, Delfino P, Filippini D, Neander C, Vicentini C, Fiorini E, Lupo F, D'Agosto SL, Carbone C, Agostini A, Piro G, Rosa D, Bevere M, Markus P, Behrens D, Luchini C, Lawlor RT, Scarpa A, Biffi G, Cheung PF, Siveke JT, Corbo V. Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer. Nat Commun 2024; 15:10534. [PMID: 39627211 PMCID: PMC11615044 DOI: 10.1038/s41467-024-54975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Fibroblast heterogeneity is increasingly recognised across cancer conditions. Given their important contribution to disease progression, mapping fibroblasts' heterogeneity is critical to devise effective anti-cancer therapies. Cancer-associated fibroblasts (CAFs) represent the most abundant cell population in pancreatic ductal adenocarcinoma (PDAC). Whether CAF phenotypes are differently specified by PDAC cell lineages remains to be elucidated. Here, we reveal an important role for the MAPK signalling pathway in defining PDAC CAF phenotypes. We show that epithelial MAPK activity promotes the myofibroblastic differentiation of CAFs by sustaining the expression and secretion of TGF-β1. We integrate single-cell profiling of post-perturbation transcriptional responses from mouse models with cellular and spatial profiles of human tissues to define a MAPKhigh CAF (mapCAF) phenotype. We show that this phenotype associates with basal-like tumour cells and reduced frequency of CD8+ T cells. In addition to elevated MAPK activity, this mapCAF phenotype is characterized by TGF-β signalling, hypoxia responsive signatures, and immunoregulatory gene programs. Furthermore, the mapCAF signature is enriched in myofibroblastic CAFs from various cancer conditions and correlates with reduced response to immune checkpoint inhibition in melanoma. Altogether, our data expand our knowledge on CAF phenotype heterogeneity and reveal a potential strategy for targeting myofibroblastic CAFs in vivo.
Collapse
Affiliation(s)
- Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rui Fang
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dea Filippini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caterina Vicentini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Sabrina L D'Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Agostini
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Geny Piro
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Diego Rosa
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Peter Markus
- Department of General, Visceral, and Trauma Surgery, Elisabeth Hospital Essen, Essen, Germany
| | - Diana Behrens
- EPO-Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Phyllis F Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Spatiotemporal Tumor Heterogeneity, DKTK, Partner Site Essen, A Partnership Between DKFZ and University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
12
|
Zhao Y, Li Y, Zou J, Guo T, Zhong Z, Li Y, Chen S, Li J, Huang K, Lian G, Huang Y. Low-dose arsenic trioxide inhibits pancreatic stellate cell activation via LOXL3 expression to enhance immunotherapy in pancreatic cancer. Br J Cancer 2024; 131:1928-1941. [PMID: 39501090 PMCID: PMC11628614 DOI: 10.1038/s41416-024-02880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is characterized by abnormally fibrotic mesenchyme, which notably influences on the effectiveness of immunotherapy. Low-dose arsenic trioxide (ATO, 1.0 μM) can inhibit the activation of pancreatic stellate cells (PSCs) and affect fibrosis, which is a potential strategy for enhancing the sensitivity to immunotherapy. METHODS Extracellular matrix (ECM) models were employed to assess the regulatory effects of ATO on ECM and peripheral blood mononuclear cells. Orthotopic C57BL/6J models were utilized to evaluate the influence of ATO on CD8+T cell infiltration and immunotherapy in PC. Additionally, nanomaterials loaded with ATO designed to specifically target PSCs (scAbFAP-α-HMSNs-PAA-ATO) were produced to enhance targeting effects of ATO. RESULTS Low-dose ATO (1.0 μM) suppressed PSCs activation, exhibiting potential for synergistic immunotherapy. Under low-dose ATO intervention, ECM underwent remodeling, leading to increases in CD8+T cell infiltration, thereby enhancing anti-PD-L1 therapy effect. We further demonstrated that low-dose ATO remodeled ECM by regulating the expression of LOXL3 in PSCs. scAbFAP-α-HMSNs-PAA-ATO exhibited improved targeting capabilities, and enhanced capacity to inhibit fibrosis and sensitize immunotherapy. CONCLUSIONS Our research reveals that low-dose ATO, by regulating LOXL3, remodels the ECM and enhances CD8+T cell infiltration, thus sensitizing the efficacy of immunotherapy, which provides a novel strategy for comprehensive treatment to PC.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tairan Guo
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhou Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Pedde AM, Kim H, Donakonda S, Baumann T, Bayerl F, Meiser P, Hirschberger A, Klement C, Grassmann S, Öllinger R, Hüser N, Hartmann D, Laschinger M, Trapani JA, Zippelius A, Bald T, Wiedemann GM, Rad R, Sun JC, Höchst B, Böttcher JP. Tissue-colonizing disseminated tumor cells secrete prostaglandin E2 to promote NK cell dysfunction and evade anti-metastatic immunity. Cell Rep 2024; 43:114855. [PMID: 39541209 DOI: 10.1016/j.celrep.2024.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Natural killer (NK) cells are critical for anti-metastatic immunity and can eliminate metastasizing tumor cells within circulation and sites of metastatic seeding. Here, we show that disseminated tumor cells (DTCs) colonizing the mouse lung secrete prostaglandin E2 (PGE2) to locally induce NK cell dysfunction, allowing outgrowing metastases to escape immune control and establish metastatic disease. Mechanistically, PGE2 signaling through its receptors EP2 and EP4 mediates NK cell dysfunction, which leads to reprogramming of NK cell gene expression and results in impaired production of anti-metastatic cytokines. In human cancer patients, the PGE2-EP2/EP4 axis is associated with NK cell dysfunction within distant organ metastases. Disabling EP2/EP4 signaling in NK cells prevents their dysfunction in DTC-colonized lungs and achieves effective NK cell-mediated control of metastatic disease. Our findings reveal a suppressive signaling axis exploited by metastasizing tumor cells to escape immune control in distant organs that could be targeted for metastatic cancer therapy.
Collapse
Affiliation(s)
- Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Tobias Baumann
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Anna Hirschberger
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany; Department of Surgery, University Clinic Tübingen, M3 Research Center, Tübingen, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, Australia
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Tobias Bald
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Gabriela M Wiedemann
- Department of Internal Medicine II, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bastian Höchst
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
14
|
Shiau C, Cao J, Gong D, Gregory MT, Caldwell NJ, Yin X, Cho JW, Wang PL, Su J, Wang S, Reeves JW, Kim TK, Kim Y, Guo JA, Lester NA, Bae JW, Zhao R, Schurman N, Barth JL, Ganci ML, Weissleder R, Jacks T, Qadan M, Hong TS, Wo JY, Roberts H, Beechem JM, Castillo CFD, Mino-Kenudson M, Ting DT, Hemberg M, Hwang WL. Spatially resolved analysis of pancreatic cancer identifies therapy-associated remodeling of the tumor microenvironment. Nat Genet 2024; 56:2466-2478. [PMID: 39227743 PMCID: PMC11816915 DOI: 10.1038/s41588-024-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
In combination with cell-intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with neoadjuvant chemotherapy and radiotherapy. We developed spatially constrained optimal transport interaction analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid coculture system. We identified enrichment in interleukin-6 family signaling that functionally confers resistance to chemotherapy. Overall, this study demonstrates that characterization of the tumor microenvironment using single-cell spatial transcriptomics allows for the identification of molecular interactions that may play a role in the emergence of therapeutic resistance and offers a spatially based analysis framework that can be broadly applied to other contexts.
Collapse
Affiliation(s)
- Carina Shiau
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Cao
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Gong
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
| | | | - Nicholas J Caldwell
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xunqin Yin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Won Cho
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter L Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Su
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Jimmy A Guo
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Nicole A Lester
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jung Woo Bae
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Zhao
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jamie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria L Ganci
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah Roberts
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Park MD, Berichel JL, Hamon P, Wilk CM, Belabed M, Yatim N, Saffon A, Boumelha J, Falcomatà C, Tepper A, Hegde S, Mattiuz R, Soong BY, LaMarche NM, Rentzeperis F, Troncoso L, Halasz L, Hennequin C, Chin T, Chen EP, Reid AM, Su M, Cahn AR, Koekkoek LL, Venturini N, Wood-isenberg S, D’souza D, Chen R, Dawson T, Nie K, Chen Z, Kim-Schulze S, Casanova-Acebes M, Swirski FK, Downward J, Vabret N, Brown BD, Marron TU, Merad M. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 2024; 386:eadn0327. [PMID: 39236155 PMCID: PMC7616710 DOI: 10.1126/science.adn0327] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. In this study, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of interleukin (IL)-1⍺, which drives the enhanced myeloid response. The age-associated decline of DNA methyltransferase 3A enhances IL-1⍺ production, and disrupting IL-1 receptor 1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1⍺-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D. Park
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Jessica Le Berichel
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Pauline Hamon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - C. Matthias Wilk
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Meriem Belabed
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nader Yatim
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexis Saffon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- INSERM U932, Immunity and Cancer, Institut Curie, Paris-Cité University; Paris, France
| | - Jesse Boumelha
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Chiara Falcomatà
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexander Tepper
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Samarth Hegde
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Raphaël Mattiuz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian Y. Soong
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nelson M. LaMarche
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Frederika Rentzeperis
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Leanna Troncoso
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laszlo Halasz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Clotilde Hennequin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Theodore Chin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Earnest P. Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Amanda M. Reid
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Matthew Su
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Ashley Reid Cahn
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laura L. Koekkoek
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nicholas Venturini
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Shira Wood-isenberg
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Darwin D’souza
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Rachel Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Travis Dawson
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Kai Nie
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Zhihong Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Seunghee Kim-Schulze
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Maria Casanova-Acebes
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Filip K. Swirski
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute; London, UK
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research; London, UK
| | - Nicolas Vabret
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian D. Brown
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Thomas U. Marron
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Miriam Merad
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| |
Collapse
|
16
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Li G, Zhang W, Yang J. Time - The fourth dimension of immune cells. MedComm (Beijing) 2024; 5:e682. [PMID: 39105196 PMCID: PMC11298545 DOI: 10.1002/mco2.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Guiming Li
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenjun Zhang
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jing Yang
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
18
|
Schneider C, Hilbert J, Genevaux F, Höfer S, Krauß L, Schicktanz F, Contreras CT, Jansari S, Papargyriou A, Richter T, Alfayomy AM, Falcomatà C, Schneeweis C, Orben F, Öllinger R, Wegwitz F, Boshnakovska A, Rehling P, Müller D, Ströbel P, Ellenrieder V, Conradi L, Hessmann E, Ghadimi M, Grade M, Wirth M, Steiger K, Rad R, Kuster B, Sippl W, Reichert M, Saur D, Schneider G. A Novel AMPK Inhibitor Sensitizes Pancreatic Cancer Cells to Ferroptosis Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307695. [PMID: 38885414 PMCID: PMC11336956 DOI: 10.1002/advs.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.
Collapse
Affiliation(s)
- Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Jorina Hilbert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Franziska Genevaux
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Stefanie Höfer
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Felix Schicktanz
- Institute of PathologyTechnical University of Munich81675MunichGermany
| | - Constanza Tapia Contreras
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Shaishavi Jansari
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Aristeidis Papargyriou
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Institute of Stem Cell ResearchHelmholtz Zentrum MuenchenD‐85764NeuherbergGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
| | - Thorsten Richter
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Abdallah M. Alfayomy
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
- Department of Pharmaceutical ChemistryAl‐Azhar UniversityAssiut71524Egypt
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Ruppert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
| | - Florian Wegwitz
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Lena Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Department of HematologyOncology and Cancer ImmunologyCampus Benjamin FranklinCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin12203BerlinGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Bernhard Kuster
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Wolfgang Sippl
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
- Center for Protein Assemblies (CPA)Technical University of Munich85747GarchingGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| |
Collapse
|
19
|
Nicoletti A, Paratore M, Vitale F, Negri M, Quero G, Esposto G, Mignini I, Alfieri S, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era. Int J Mol Sci 2024; 25:7623. [PMID: 39062863 PMCID: PMC11276793 DOI: 10.3390/ijms25147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is an increasing cause of cancer-related death, with a dismal prognosis caused by its aggressive biology, the lack of clinical symptoms in the early phases of the disease, and the inefficacy of treatments. PC is characterized by a complex tumor microenvironment. The interaction of its cellular components plays a crucial role in tumor development and progression, contributing to the alteration of metabolism and cellular hyperproliferation, as well as to metastatic evolution and abnormal tumor-associated immunity. Furthermore, in response to intrinsic oncogenic alterations and the influence of the tumor microenvironment, cancer cells undergo a complex oncogene-directed metabolic reprogramming that includes changes in glucose utilization, lipid and amino acid metabolism, redox balance, and activation of recycling and scavenging pathways. The advent of omics sciences is revolutionizing the comprehension of the pathogenetic conundrum of pancreatic carcinogenesis. In particular, metabolomics and genomics has led to a more precise classification of PC into subtypes that show different biological behaviors and responses to treatments. The identification of molecular targets through the pharmacogenomic approach may help to personalize treatments. Novel specific biomarkers have been discovered using proteomics and metabolomics analyses. Radiomics allows for an earlier diagnosis through the computational analysis of imaging. However, the complexity, high expertise required, and costs of the omics approach are the main limitations for its use in clinical practice at present. In addition, the studies of extracellular vesicles (EVs), the use of organoids, the understanding of host-microbiota interactions, and more recently the advent of artificial intelligence are helping to make further steps towards precision and personalized medicine. This present review summarizes the main evidence for the application of omics sciences to the study of PC and the identification of future perspectives.
Collapse
Affiliation(s)
- Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Giuseppe Quero
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| |
Collapse
|
20
|
Li Z, Sun S, Wang Y, Hua Y, Liu M, Zhou Y, Zhong L, Li T, Zhao H, Zhou X, Zeng X, Chen Q, Li J. PA28γ coordinates the cross-talk between cancer-associated fibroblasts and tumor cells to promote OSCC progression via HDAC1/E2F3/IGF2 signaling. Cancer Lett 2024; 594:216962. [PMID: 38768680 DOI: 10.1016/j.canlet.2024.216962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
PA28γ overexpression is aberrant and accompanied by poor patient prognosis in various cancers, the precise regulatory mechanism of this crucial gene in the tumor microenvironment remains incompletely understood. In this study, using oral squamous cell carcinoma as a model, we demonstrated that PA28γ exhibits high expression in cancer-associated fibroblasts (CAFs), and its expression significantly correlates with the severity of clinical indicators of malignancy. Remarkably, we found that elevated levels of secreted IGF2 from PA28γ+ CAFs can enhance stemness maintenance and promote tumor cell aggressiveness through the activation of the MAPK/AKT pathway in a paracrine manner. Mechanistically, PA28γ upregulates IGF2 expression by stabilizing the E2F3 protein, a transcription factor of IGF2. Further mechanistic insights reveal that HDAC1 predominantly mediates the deacetylation and subsequent ubiquitination and degradation of E2F3. Notably, PA28γ interacts with HDAC1 and accelerates its degradation via a 20S proteasome-dependent pathway. Additionally, PA28γ+ CAFs exert an impact on the tumor immune microenvironment by secreting IGF2. Excitingly, our study suggests that targeting PA28γ+ CAFs or secreted IGF2 could increase the efficacy of PD-L1 therapy. Thus, our findings reveal the pivotal role of PA28γ in cell interactions in the tumor microenvironment and propose novel strategies for augmenting the effectiveness of immune checkpoint blockade in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Zaiye Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yufei Hua
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Du X, Yang S, Bian J, Zhang Y, Wang Y, Lv Z. Role of vascular endothelial growth factor D in lung adenocarcinoma immunotherapy response. Am J Transl Res 2024; 16:2263-2277. [PMID: 39006287 PMCID: PMC11236651 DOI: 10.62347/oxro7113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To identify key genes associated with tumor-associated macrophages (TAMs), tumor immunotherapy, in the prognosis of lung adenocarcinoma (LUAD). METHODS The mRNA expression profiles of LUAD samples were obtained from The Cancer Genome Atlas (TCGA) database. The "CIBERSORT" R package was employed to calculate the proportion of innate immune cell infiltration in both tumor and adjacent normal tissues. TAM-associated genes in LUAD were identified to construct a prognostic risk model using weighted gene correlation network analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses (COX). The IMvigor210 cohort was utilized to validate the roles of these genes as predictors of immunotherapy response. Tissue microarrays, immunofluorescence staining, and mRNA level detection methods were used to determine the correlation of risk factors in LUAD tissues. RESULTS CIBERSORT analysis revealed significant differences in innate immune cells between tumor and adjacent tissues. Seventy-four differential genes linked to these cells were identified from WGCNA. Four hub genes (endothelin receptor type B, vascular endothelial growth factor D (VEGFD), latent transforming growth factor beta binding protein 4 (LTBP4), and fibroblast growth factor receptor 4 (FGFR4)) in the TAM prognostic model were identified as independent prognostic risk factors (P < 0.05). VEGFD expression was identified as a low-risk factor for LUAD prognosis prediction (P < 0.05). Moreover, low-risk patients exhibited higher sensitivity to anti-PD-L1 therapy compared to high-risk patients (P < 0.05). VEGFD levels were negatively correlated with programmed cell death 1 (PD-1) levels (r = -0.363; P < 0.05), suggesting that VEGFD may serve as a predictor for anti-PD-1 treatment. CONCLUSIONS VEGFD is associated with innate immunity in LUAD, it can predict LUAD prognosis, and therefor may be a potential predictor for anti-PD-1 treatment in patients with LUAD.
Collapse
Affiliation(s)
- Xiaoling Du
- Department of Pharmacy, North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| | - Sha Yang
- Department of Pharmacy, North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| | - Jiaojiao Bian
- Department of Pharmacy, North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| | - Ying Zhang
- Department of Pharmacy, North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| | - Yuquan Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| | - Zhan Lv
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College Nanchong 637000, Sichuan, P. R. China
| |
Collapse
|
22
|
Sha H, Tong F, Ni J, Sun Y, Zhu Y, Qi L, Li X, Li W, Yang Y, Gu Q, Zhang X, Wang X, Zhu C, Chen D, Liu B, Du J. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase II trial. Signal Transduct Target Ther 2024; 9:143. [PMID: 38844468 PMCID: PMC11156675 DOI: 10.1038/s41392-024-01857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Metastatic pancreatic cancer (mPC) has a dismal prognosis. Herein, we conducted a prospective, multicentre, single-arm, phase II trial evaluating the efficacy and safety of penpulimab and anlotinib in combination with nab-paclitaxel/gemcitabine (PAAG) in patients with first-line mPC (NCT05493995). The primary endpoints included the objective response rate (ORR) and disease control rate (DCR), while secondary endpoints encompassed progression-free survival (PFS), overall survival (OS), and safety. In 66 patients analysed for efficacy, the best response, indicated by the ORR, was recorded at 50.0% (33/66) (95% CI, 37.4-62.6%), with 33 patients achieving partial response (PR). Notably, the DCR was 95.5% (63/66, 95% CI, 87.3-99.1%). The median PFS (mPFS) and OS (mOS) were 8.8 (95% CI, 8.1-11.6), and 13.7 (95% CI, 12.4 to not reached) months, respectively. Grade 3/4 treatment-related adverse events (TRAEs) were reported in 39.4% of patients (26/66). In prespecified exploratory analysis, patients with altered SWI/SNF complex had a poorer PFS. Additionally, low serum CA724 level, high T-cell recruitment, low Th17 cell recruitment, and high NK CD56dim cell scores at baseline were potential predicative biomarkers for more favourable efficacy. In conclusion, PAAG as a first-line therapy demonstrated tolerability with promising clinical efficacy for mPC. The biomolecular findings identified in this study possess the potential to guide the precise clinical application of the triple-combo regimen.
Collapse
Affiliation(s)
- Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fan Tong
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayao Ni
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Sun
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yahui Zhu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Liang Qi
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Yang
- Department of Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Gu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China
| | - Xing Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xiaoxuan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Chan Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Dongsheng Chen
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Juan Du
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Wirth M, Schneider G. A Hypoxia-Epigenetics Axis Drives EMT in Pancreatic Cancer. Cancer Res 2024; 84:1739-1741. [PMID: 38831749 DOI: 10.1158/0008-5472.can-23-3578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 06/05/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a classical cellular plasticity process induced by various cell-intrinsic and -extrinsic triggers. Although prominent factors, such as TGFβ, mediate EMT via well-characterized pathways, alternative avenues are less well understood. Transcriptomic subtyping of pancreatic ductal adenocarcinoma (PDAC) has demonstrated that basal-like PDACs enrich a mesenchymal-like expression program, emphasizing the relevance of EMT in the disease. In this issue of Cancer Research, Brown and colleagues demonstrate the tight connection of EMT to hypoxia. Through a detailed mechanistic analysis, the authors deciphered that hypoxia-induced signals are integrated by the histone H3 lysine 36 di-methylation (H3K36me2) mark. On the one hand, hypoxia decreased activity of the H3K36me2 eraser KDM2A, while on the other hand promoting stabilization of the H3K36me2 writer NSD2. Hypoxia diminished the expression of a set of serine-threonine phosphatases, subsequently resulting in SRC kinase family-dependent activation of canonical MEK, ERK, and JNK signaling to impinge on NSD2 expression. In addition, reduced expression of the protein phosphatase PP2Cδ was linked to increased NSD2 protein expression. These discoveries illuminate the close relationship of hypoxia signaling to the epigenetic machinery and cellular plasticity processes. See related article by Brown et al., p. 1764.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Max Delbrück Center, Berlin, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Gianluca Mucciolo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Cecilia Roux
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Giorgia Guadagnin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dario Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Demis Grosso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Judith A Varner
- Moores Cancer Center, Department of Pathology, University of California, San Diego, CA, USA
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy.
- Molecular Biotechnology Center, University of Torino, Turin, Italy.
| |
Collapse
|
25
|
Zhou H, Li G, Kan L, Yang M, Liu Y, Miu X, Shi L, Yang Z, Zheng X, Chen H, Ren C. Synergistic induction of autophagy in gastric cancer by targeting CDK4/6 and MEK through AMPK/mTOR pathway. Heliyon 2024; 10:e30475. [PMID: 38726124 PMCID: PMC11079098 DOI: 10.1016/j.heliyon.2024.e30475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
KRAS is a commonly mutated oncogene in human gastric cancer and is often associated with drug resistance and poor prognosis. Co-clinical trial of combined MEK-CDK4/6 inhibition in KRAS mutated cancers demonstrated therapeutic efficacy in patient-derived xenografts and safety in patients. Here, present research focuses on targeting CDK4/6 and MEK synergistically block the proliferation of KRAS-mutated gastric cancer cells in vitro and in vivo and induced autophagy through the AMPK/mTOR pathway. Furthermore, autophagy inhibitor combined with targeting CDK4/6 and MEK therapy had significant antitumor effects on KRAS mutant gastric cancer cells. Clinical trials are needed to determine the mechanism behind this finding and its clinical utility. In conclusion, our results demonstrate autophagy inhibitor combined targeting MEK and CDK4/6 that concurrently block multiple metabolic processes may be an effective therapeutic approach for gastric cancer.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Guiling Li
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Liuyue Kan
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Mingyu Yang
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Yu Liu
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Xiaye Miu
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Lei Shi
- Department of Gastrointestinal Surgery, Clinical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhanjun Yang
- Department of Chemistry, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Xucai Zheng
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Hui Chen
- Department of Geriatrics, Clinical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
- Department of Laboratory Medicine, Clinical College of Xuzhou Medica University, Yangzhou, Jiangsu, 225001, China
| |
Collapse
|
26
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
27
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
28
|
Kim J, Lee TS, Lee MH, Cho IR, Ryu JK, Kim YT, Lee SH, Paik WH. Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib. Cancers (Basel) 2024; 16:1056. [PMID: 38473413 DOI: 10.3390/cancers16051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Junyeol Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Seung Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myeong Hwan Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
29
|
Dong X, Wang L, Wang D, Yu M, Yang XJ, Cai H. Proteomic study on nintedanib in gastric cancer cells. PeerJ 2024; 12:e16771. [PMID: 38406279 PMCID: PMC10893871 DOI: 10.7717/peerj.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024] Open
Abstract
Background Gastric cancer is a very common gastrointestinal tumor with a high mortality rate. Nintedanib has been shown to significantly reduce tumor cell proliferation and increase apoptosis in gastric cancer cells in vitro. However, its systemic action mechanism on gastric cancer cells remains unclear. A high-throughput proteomic approach should help identify the potential mechanisms and targets of nintedanib on gastric cancer cells. Methods The effects of nintedanib on the biological behavior of gastric cancer cells were evaluated. A cytotoxic proliferation assay was performed to estimate the half maximal inhibitory concentration (IC50). AGS cells were divided into control, and nintedanib-treated groups (5 µM, 48 h), and differential protein expression was investigated using tandem mass tags (TMT) proteomics. The molecular mechanisms of these differentially expressed proteins and their network interactions were then analyzed using bioinformatics, and potential nintedanib targets were identified. Results This study identified 845 differentially expressed proteins in the nintedanib-treated group (compared to the control group), comprising 526 up-regulated and 319 down-regulated proteins. Bioinformatics analysis revealed that the differentially expressed proteins were primarily enriched in biological pathways for branched-chain amino acid metabolism, steroid biosynthesis, propionate metabolism, fatty acid metabolism, lysosome, peroxisome, and ferroptosis. Key driver analysis revealed that proteins, such as enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), isocitrate dehydrogenase 1 (IDH1), acyl-CoA oxidase 1 (ACOX1), acyl-CoA oxidase 2 (ACOX2), acyl-CoA oxidase 3 (ACOX3), and acetyl-CoA acyltransferase 1 (ACAA1) could be linked with nintedanib action. Conclusion Nintedanib inhibits the proliferation, invasion, and metastasis of gastric cancer cells. The crossover pathways and protein networks predicted by proteomics should provide more detailed molecular information enabling the use of nintedanib against gastric cancer.
Collapse
Affiliation(s)
- Xiaohua Dong
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Liuli Wang
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
| | - Da Wang
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
| | - Miao Yu
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Xiao jun Yang
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Hui Cai
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| |
Collapse
|
30
|
Jiang X, Yin S, Yin X, Wang Y, Fang T, Yang S, Bian X, Li G, Xue Y, Zhang L. A prognostic marker LTBP1 is associated with epithelial mesenchymal transition and can promote the progression of gastric cancer. Funct Integr Genomics 2024; 24:30. [PMID: 38358412 DOI: 10.1007/s10142-024-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
LTBP1 is closely related to TGF-β1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-β and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, Inner Mongolia Autonomous Region, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
31
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
32
|
Luo W, Wen T, Qu X. Tumor immune microenvironment-based therapies in pancreatic ductal adenocarcinoma: time to update the concept. J Exp Clin Cancer Res 2024; 43:8. [PMID: 38167055 PMCID: PMC10759657 DOI: 10.1186/s13046-023-02935-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. The tumor immune microenvironment (TIME) formed by interactions among cancer cells, immune cells, cancer-associated fibroblasts (CAF), and extracellular matrix (ECM) components drives PDAC in a more immunosuppressive direction: this is a major cause of therapy resistance and poor prognosis. In recent years, research has advanced our understanding of the signaling mechanism by which TIME components interact with the tumor and the evolution of immunophenotyping. Through revolutionary technologies such as single-cell sequencing, we have gone from simply classifying PDACs as "cold" and "hot" to a more comprehensive approach of immunophenotyping that considers all the cells and matrix components. This is key to improving the clinical efficacy of PDAC treatments. In this review, we elaborate on various TIME components in PDAC, the signaling mechanisms underlying their interactions, and the latest research into PDAC immunophenotyping. A deep understanding of these network interactions will contribute to the effective combination of TIME-based therapeutic approaches, such as immune checkpoint inhibitors (ICI), adoptive cell therapy, therapies targeting myeloid cells, CAF reprogramming, and stromal normalization. By selecting the appropriate integrated therapies based on precise immunophenotyping, significant advances in the future treatment of PDAC are possible.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
33
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
34
|
Liu Z, Zhang Y, Wu C. Single-cell sequencing in pancreatic cancer research: A deeper understanding of heterogeneity and therapy. Biomed Pharmacother 2023; 168:115664. [PMID: 37837881 DOI: 10.1016/j.biopha.2023.115664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Pancreatic cancer, including pancreatic ductal adenocarcinomas (PDACs), is a malignant tumor with characteristics of tumor-stroma interactions. Patients often have a poor prognosis and a poor long-term survival rate. In recent years, rapidly-developing single-cell sequencing techniques have been used to analyze cell populations at a single-cell resolution, so that it is now possible to have a more in-depth and clearer understanding of the genetic composition of pancreatic cancer. In this review, we provide an overview of the current single-cell sequencing techniques and their applications in the exploration of intratumoral heterogeneity, the tumor microenvironment, therapy resistance, and novel treatments. Our hope is to provide new insight into the potential of precision therapy, which will perhaps one day lead to significant advances in PDAC treatment.
Collapse
Affiliation(s)
- Zhuomiao Liu
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yalin Zhang
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunli Wu
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
35
|
Li M, Liu Y, Zhang Y, Yu N, Li J. Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305150. [PMID: 37870196 PMCID: PMC10724419 DOI: 10.1002/advs.202305150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Due to the complicated tumor microenvironment that compromises the efficacies of various therapies, the effective treatment of pancreatic cancer remains a big challenge. Sono-activatable semiconducting polymer nanoreshapers (SPNDN H) are constructed to multiply remodel tumor microenvironment of orthotopic pancreatic cancer for potent immunotherapy. SPNDN H contain a semiconducting polymer, hydrogen sulfide (H2 S) donor, and indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919), which are encapsulated by singlet oxygen (1 O2 )-responsive shells with modification of hyaluronidase (HAase). After accumulation in orthotopic pancreatic tumor sites, SPNDN H degrade the major content of tumor microenvironment hyaluronic acid to promote nanoparticle enrichment and immune cell infiltration, and also release H2 S to relieve tumor hypoxia via inhibiting mitochondrion functions. Moreover, the relieved hypoxia enables amplified sonodynamic therapy (SDT) under ultrasound (US) irradiation with generation of 1 O2 , which leads to immunogenic cell death (ICD) and destruction of 1 O2 -responsive components to realize sono-activatable NLG919 release for reversing IDO-based immunosuppression. Through such a multiple remodeling mechanism, a potent antitumor immunological effect is triggered after SPNDN H-based treatment. Therefore, the growths of orthotopic pancreatic tumors in mouse models are almost inhibited and tumor metastases are effectively restricted. This study offers a sono-activatable nanoplatform to multiply remodel tumor microenvironment for effective and precise immunotherapy of deep-tissue orthotopic tumors.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
36
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|
37
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
38
|
Liu Y, Xie B, Chen Q. RAS signaling and immune cells: a sinister crosstalk in the tumor microenvironment. J Transl Med 2023; 21:595. [PMID: 37670322 PMCID: PMC10481548 DOI: 10.1186/s12967-023-04486-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
The rat sarcoma virus (RAS) gene is the most commonly mutated oncogene in cancer, with about 19% of cancer patients carrying RAS mutations. Studies on the interaction between RAS mutation and tumor immune microenvironment (TIM) have been flourishing in recent years. More and more evidence has proved that RAS signals regulate immune cells' recruitment, activation, and differentiation while assisting tumor cells to evade immune surveillance. This review concluded the direct and indirect treatment strategies for RAS mutations. In addition, we updated the underlying mechanisms by which RAS signaling modulated immune infiltration and immune escape. Finally, we discussed advances in RAS-targeted immunotherapies, including cancer vaccines and adoptive cell therapies, with a particular focus on combination strategies with personalized therapy and great potential to achieve lasting clinical benefits.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
39
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
40
|
Sket T, Falcomatà C, Saur D. Dual Recombinase-Based Mouse Models Help Decipher Cancer Biology and Targets for Therapy. Cancer Res 2023; 83:2279-2282. [PMID: 37449355 PMCID: PMC10351565 DOI: 10.1158/0008-5472.can-22-2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
The advent of next-generation sequencing (NGS) and single-cell profiling technologies has revealed the complex and heterogenous ecosystem of human tumors under steady-state and therapeutic perturbation. Breakthroughs in the development of genetically engineered mouse models (GEMM) of human cancers that are based on the combination of two site-specific recombinase systems [dual-recombinase system (DRS)] offer fundamental new possibilities to elucidate and understand critical drivers of the diverse tumor phenotypes and validate potential targets for therapy. Here, we discuss opportunities DRS-based cancer GEMMs offer to model, trace, manipulate, and functionally investigate established cancers, their interactions with the host, and their response to therapy.
Collapse
Affiliation(s)
- Tina Sket
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Gustave L. Levy Pl, New York, New York
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Marani A, Gioacchini H, Paolinelli M, Offidani A, Campanati A. Potential drug-drug interactions with mitogen-activated protein kinase (MEK) inhibitors used to treat melanoma. Expert Opin Drug Metab Toxicol 2023; 19:555-567. [PMID: 37659065 DOI: 10.1080/17425255.2023.2255519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION The management of patients with BRAF-mutated advanced melanoma who are undergoing targeted therapy with MEK inhibitors can be complicated by the co-administration of multiple medications, which can give rise to drug-drug interactions of clinical significance. COVERED AREAS Our review presents a comprehensive analysis of the pharmacokinetic and pharmacodynamic interactions of the three approved for advanced melanoma MEK inhibitor drugs - binimetinib, cobimetinib, and trametinib. MEDLINE (PubMed) was utilized for the literature search, comprising clinical studies, observational studies, and preclinical research. The review discusses the impact of these interactions on efficacy and safety of the treatments and differentiates between interactions supported by pharmacokinetic or pharmacodynamic mechanisms, those encountered in clinical practice, and those observed in preclinical studies. EXPERT OPINION Physicians should be aware about potential benefits, but also increased toxicity caused by drug interactions between MEK inhibitors and other drugs in the management of patients with metastatic melanoma.
Collapse
Affiliation(s)
- A Marani
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - H Gioacchini
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - M Paolinelli
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - A Offidani
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - A Campanati
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| |
Collapse
|
42
|
Shiau C, Cao J, Gregory MT, Gong D, Yin X, Cho JW, Wang PL, Su J, Wang S, Reeves JW, Kim TK, Kim Y, Guo JA, Lester NA, Schurman N, Barth JL, Weissleder R, Jacks T, Qadan M, Hong TS, Wo JY, Roberts H, Beechem JM, Castillo CFD, Mino-Kenudson M, Ting DT, Hemberg M, Hwang WL. Therapy-associated remodeling of pancreatic cancer revealed by single-cell spatial transcriptomics and optimal transport analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546848. [PMID: 37425692 PMCID: PMC10327107 DOI: 10.1101/2023.06.28.546848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In combination with cell intrinsic properties, interactions in the tumor microenvironment modulate therapeutic response. We leveraged high-plex single-cell spatial transcriptomics to dissect the remodeling of multicellular neighborhoods and cell-cell interactions in human pancreatic cancer associated with specific malignant subtypes and neoadjuvant chemotherapy/radiotherapy. We developed Spatially Constrained Optimal Transport Interaction Analysis (SCOTIA), an optimal transport model with a cost function that includes both spatial distance and ligand-receptor gene expression. Our results uncovered a marked change in ligand-receptor interactions between cancer-associated fibroblasts and malignant cells in response to treatment, which was supported by orthogonal datasets, including an ex vivo tumoroid co-culture system. Overall, this study demonstrates that characterization of the tumor microenvironment using high-plex single-cell spatial transcriptomics allows for identification of molecular interactions that may play a role in the emergence of chemoresistance and establishes a translational spatial biology paradigm that can be broadly applied to other malignancies, diseases, and treatments.
Collapse
Affiliation(s)
- Carina Shiau
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Cao
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Dennis Gong
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
| | - Xunqin Yin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Won Cho
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter L Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Su
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Jimmy A Guo
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Nicole A Lester
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jamie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah Roberts
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
43
|
Vallés-Martí A, Mantini G, Manoukian P, Waasdorp C, Sarasqueta AF, de Goeij-de Haas RR, Henneman AA, Piersma SR, Pham TV, Knol JC, Giovannetti E, Bijlsma MF, Jiménez CR. Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma. Cell Rep 2023; 42:112581. [PMID: 37269289 DOI: 10.1016/j.celrep.2023.112581] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases. By using integrative inferred kinase activity (INKA) scoring, we identify multiple (parallel) activated kinases that are subsequently matched to kinase inhibitors. Compared with high-dose single-drug treatments, INKA-tailored low-dose 3-drug combinations against multiple targets demonstrate superior efficacy against PDAC cell lines, organoid cultures, and patient-derived xenografts. Overall, this approach is particularly more effective against the aggressive mesenchymal PDAC model compared with the epithelial model in both preclinical settings and may contribute to improved treatment outcomes in PDAC patients.
Collapse
Affiliation(s)
- Andrea Vallés-Martí
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands
| | - Giulia Mantini
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Paul Manoukian
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | | | - Richard R de Goeij-de Haas
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Alex A Henneman
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Sander R Piersma
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Thang V Pham
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Jaco C Knol
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Connie R Jiménez
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Luo Y, Li C, Zhang Y, Liu P, Chen H, Zhao Z, Wang Y, Zhou Z, Song H, Su B, Li C, Li X, Zhang T, You H, Wu Y, Tian Z, Zhang S, Guo Y, Fan H, Chen Q, Jiang C, Sun T. Gradient Tumor Microenvironment-Promoted Penetrating Micelles for Hypoxia Relief and Immunosuppression Reversion in Pancreatic Cancer Treatment. Acta Biomater 2023:S1742-7061(23)00314-8. [PMID: 37276955 DOI: 10.1016/j.actbio.2023.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is the main block for the penetration of chemotherapy. In the tumor microenvironment, a dense matrix composed of fibrin is formed on the exterior, while the interior is featured by high reduction, hypoxia and low pH. How to match the special microenvironment to on-demand drug release is the key to improve chemotherapeutic efficacy. Herein, a microenvironment-responsive micellar system is developed to deepen tumoral penetration. Briefly, the conjugation of a fibrin-targeting peptide to PEG-poly amino acid has been utilized to achieve accumulation of micelles in the tumor stroma. By modification of micelles with hypoxia-reducible nitroimidazole which becomes protonated under acidic conditions, their surface charge is more positive, facilitating deeper penetration into tumors. Paclitaxel was loaded onto the micelles via a disulfide bond to enable glutathione (GSH)-responsive release. Therefore, the immunosuppressive microenvironment is relived through the alleviation of hypoxia and depletion of GSH. Hopefully, this work could establish paradigms by designing sophisticated drug-delivery systems to tactfully employ and retroact the tamed tumoral microenvironment to improve the therapeutic efficacy based on understanding the multiple hallmarks and learning the mutual regulation. STATEMENT OF SIGNIFICANCE: : Tumor microenvironment(TME) is an unique pathological feature of pancreatic cancer and an inherent barrier to chemotherapy. Numerous studies regard TME as the targets for drug delivery. In this work, we propose a hypoxia-responsive nanomicellar drug delivery system that aiming hypoxia TME of pancreatic cancer. The nanodrug delivery system could respond to the hypoxic microenvironment and enhance the penetration of the inner tumor at the same time preserving the outer tumor stroma, thus achieving targeted treatment of PDAC by preserving the integrity of the outer stroma. Simultaneously, the responsive group can reverse the degree of hypoxia in TME by disrupting the redox balance in the tumor region, thus achieving precise treatment of PDAC by matching the pathological characteristics of TME. We believe our article would provide new design ideas for the future treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Hongyi Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haoyu You
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Shilin Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yun Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| |
Collapse
|
45
|
Li Q, Qin S, Tian H, Liu R, Qiao L, Liu S, Li B, Yang M, Shi J, Nice EC, Li J, Lang T, Huang C. Nano-Econazole Enhanced PD-L1 Checkpoint Blockade for Synergistic Antitumor Immunotherapy against Pancreatic Ductal Adenocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207201. [PMID: 36899444 DOI: 10.1002/smll.202207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hailong Tian
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Shanshan Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jiayan Shi
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jingquan Li
- Department of Gastrointestinal Oncology Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan Province, Haikou, 570216, P. R. China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, 400030, P. R. China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400042, P. R. China
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
46
|
Duan Y, Zhang X, Ying H, Xu J, Yang H, Sun K, He L, Li M, Ji Y, Liang T, Bai X. Targeting MFAP5 in cancer-associated fibroblasts sensitizes pancreatic cancer to PD-L1-based immunochemotherapy via remodeling the matrix. Oncogene 2023:10.1038/s41388-023-02711-9. [PMID: 37156839 DOI: 10.1038/s41388-023-02711-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
47
|
Swietlik JJ, Bärthel S, Falcomatà C, Fink D, Sinha A, Cheng J, Ebner S, Landgraf P, Dieterich DC, Daub H, Saur D, Meissner F. Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation. Nat Commun 2023; 14:2642. [PMID: 37156840 PMCID: PMC10167354 DOI: 10.1038/s41467-023-38171-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jonathan J Swietlik
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Fink
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Martinsried, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
48
|
Marqués M, Corral S, Sánchez-Díaz M, Del Pozo N, Martínez de Villarreal J, Schweifer N, Zagorac I, Hilberg F, Real FX. Tumor and Stromal Cell Targeting with Nintedanib and Alpelisib Overcomes Intrinsic Bladder Cancer Resistance. Mol Cancer Ther 2023; 22:616-629. [PMID: 36805958 DOI: 10.1158/1535-7163.mct-21-0667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/10/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Bladder cancer is a highly prevalent tumor, requiring the urgent development of novel therapies, especially for locally advanced and metastatic disease. Nintedanib is a potent antifibrotic angio-kinase inhibitor, which has shown clinical efficacy in combination with chemotherapy in patients with locally advanced muscle-invasive bladder cancer. Nintedanib inhibits fibroblast growth factor receptors (FGFRs), validated targets in patients with bladder cancer harboring FGFR3/2 genetic alterations. Here, we aimed at studying its mechanisms of action to understand therapy resistance, identify markers predictive of response, and improve the design of future clinical trials. We have used a panel of genetically well-characterized human bladder cancer cells to identify the molecular and transcriptomic changes induced upon treatment with nintedanib, in vitro and in vivo, at the tumor and stroma cell levels. We showed that bladder cancer cells display an intrinsic resistance to nintedanib treatment in vitro, independently of their FGFR3 status. However, nintedanib has higher antitumor activity on mouse xenografts. We have identified PI3K activation as a resistance mechanism against nintedanib in bladder cancer and evidenced that the combination of nintedanib with the PI3K inhibitor alpelisib has synergistic antitumor activity. Treatment with this combination is associated with cell-cycle inhibition at the tumoral and stromal levels and potent nontumor cell autonomous effects on α-smooth muscle actin-positive tumor infiltrating cells and tumor vasculature. The combination of nintedanib with PI3K inhibitors not only reversed bladder cancer resistance to nintedanib but also enhanced its antiangiogenic effects.
Collapse
Affiliation(s)
- Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - María Sánchez-Díaz
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | | | | | - Ivana Zagorac
- Molecular Genetics of Angiogenesis Group, Spanish National Center for Cardiovascular Research-CNIC, Madrid, Spain
| | - Frank Hilberg
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
49
|
Bärthel S, Falcomatà C, Rad R, Theis FJ, Saur D. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. NATURE CANCER 2023; 4:454-467. [PMID: 36959420 DOI: 10.1038/s43018-023-00526-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer entity characterized by a heterogeneous genetic landscape and an immunosuppressive tumor microenvironment. Recent advances in high-resolution single-cell sequencing and spatial transcriptomics technologies have enabled an in-depth characterization of both malignant and host cell types and increased our understanding of the heterogeneity and plasticity of PDAC in the steady state and under therapeutic perturbation. In this Review we outline single-cell analyses in PDAC, discuss their implications on our understanding of the disease and present future perspectives of multimodal approaches to elucidate its biology and response to therapy at the single-cell level.
Collapse
Affiliation(s)
- Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium Partner Site Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- School of Computation, Information and Technology (CIT), Technische Universität München, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
50
|
Ben Guebila M, Wang T, Lopes-Ramos CM, Fanfani V, Weighill D, Burkholz R, Schlauch D, Paulson JN, Altenbuchinger M, Shutta KH, Sonawane AR, Lim J, Calderer G, van IJzendoorn DGP, Morgan D, Marin A, Chen CY, Song Q, Saha E, DeMeo DL, Padi M, Platig J, Kuijjer ML, Glass K, Quackenbush J. The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks. Genome Biol 2023; 24:45. [PMID: 36894939 PMCID: PMC9999668 DOI: 10.1186/s13059-023-02877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Des Weighill
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekka Burkholz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Genospace, LLC, Boston, MA, USA
| | - Joseph N Paulson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michael Altenbuchinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine H Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhijeet R Sonawane
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - James Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- Present Address: Monoceros Biosystems, LLC, San Diego, CA, USA
| | - Genis Calderer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - David G P van IJzendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Morgan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: School of Biomedical Sciences, Hong Kong University, Pokfulam, Hong Kong
| | | | - Cho-Yi Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Present Address: Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Qi Song
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marieke L Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University, Leiden, The Netherlands
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|