1
|
Baptista FBO, da Silva AF, Cordeiro LM, de Souza LI, da Silveira TL, Soares MV, Michelotti P, Corte CLD, da Silva RS, Rodrigues OED, Arantes LP, Soares FAA. Biosafety assessment of novel organoselenium zidovudine derivatives in the Caenorhabditis elegans model. Toxicol Appl Pharmacol 2024; 491:117045. [PMID: 39127352 DOI: 10.1016/j.taap.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Antiretrovirals have improved considerably since the introduction of 3'-azido-3'-deoxythymidine (zidovudine or AZT), a molecule with also anticancer effects. Subsequently, a variety of other nucleosides have been synthesized. However, these medications are often associated with serious adverse events and the onset or exacerbation of degenerative processes, diseases, and syndromes, affecting mainly the mitochondria. In this study, we used Caenorhabditis elegans to investigate the toxicity potential of AZT and three new organoselenium derivatives with modifications in the 5' position of the sugar ring in place of the 5'-OH group, with the insertion of a neutral, an electron-withdrawing and an electron-donating group attached to the aryl selenol moiety: 5'-seleno-(4-chloro-phenyl)-3-(amino)-thymidine (ASAT-4-Cl), 5'-seleno-(phenyl)-3-(amino)-thymidine (ASAT-Ph), and 5'-seleno-(4-methoxyphenyl)-3-(amino)- thymidine (ASAT-4-OMe). Analyzes included worm survival, behavior parameters, high-resolution respirometry, citrate synthase activity, and ATP levels. Although all compounds negatively affected C. elegans, ASAT-4-Cl and ASAT-Ph showed lower toxicity compared to AZT, especially in mitochondrial viability and ATP production. Therefore, more studies must be carried out on the use of these new compounds as pharmacological interventions.
Collapse
Affiliation(s)
- Fabiane Bicca Obetine Baptista
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Larissa Ilha de Souza
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Tássia Limana da Silveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Marcell Valandro Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Paula Michelotti
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Lenz Dalla Corte
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Rafael Santos da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Postgraduate Program in Extension and Research in the Field of Organic Chemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Oscar Endrigo Dorneles Rodrigues
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Postgraduate Program in Extension and Research in the Field of Organic Chemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- State University of Minas Gerais, Department of Biomedical Sciences and Health, Belo Horizonte, Zip code 37900-106 Passos, MG, Brazil
| | - Félix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Józkowiak M, Kobylarek D, Bryja A, Gogola-Mruk J, Czajkowski M, Skupin-Mrugalska P, Kempisty B, Spaczyński RZ, Piotrowska-Kempisty H. Steroidogenic activity of liposomal methylated resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) in human luteinized granulosa cells in a primary three-dimensional in vitro model. Endocrine 2023; 82:681-694. [PMID: 37572199 PMCID: PMC10618382 DOI: 10.1007/s12020-023-03458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.
Collapse
Affiliation(s)
- Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
3
|
Fragopoulou E, Gkotsi K, Petsini F, Gioti K, Kalampaliki AD, Lambrinidis G, Kostakis IK, Tenta R. Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules 2023; 28:5547. [PMID: 37513418 PMCID: PMC10386404 DOI: 10.3390/molecules28145547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Resveratrol, a naturally occurring stilbene, exhibits numerous beneficial health effects. Various studies have demonstrated its diverse biological actions, including anti-oxidant, anti-inflammatory, and anti-platelet properties, thereby supporting its potential for cardio protection, neuroprotection, and anti-cancer activity. However, a significant limitation of resveratrol is its weak bioavailability. To overcome this challenge, multiple research groups have investigated the synthesis of new resveratrol derivatives to enhance bioavailability and pharmacological activities. Nevertheless, there are limited data on the effects of resveratrol derivatives on platelet function. Therefore, the objective of this study was to synthesize resveratrol methoxy derivatives and evaluate their anti-platelet and anti-proliferative activity. Platelet-rich plasma (PRP) obtained from healthy volunteers was utilized to assess the derivatives' ability to inhibit platelet aggregation induced by platelet activating factor (PAF), adenosine diphosphate (ADP), and thrombin receptor activating peptide (TRAP). Additionally, the derivatives' anti-tumor activity was evaluated against the proliferation of PC-3 and HCT116 cells. The results revealed that some methoxy derivatives of resveratrol exhibited comparable or even superior anti-platelet activity compared to the original compound. The most potent derivative was the 4'-methoxy derivative, which demonstrated approximately 2.5 orders of magnitude higher anti-platelet activity against TRAP-induced platelet aggregation, indicating its potential as an anti-platelet agent. Concerning in silico studies, the 4'-methyl group of 4'-methoxy derivative is oriented similarly to the fluorophenyl-pyridyl group of Vorapaxar, buried in a hydrophobic cavity. In terms of their anti-tumor activity, 3-MRESV exhibited the highest potency in PC-3 cells, while 3,4'-DMRESV and TMRESV showed the greatest efficacy in HCT116 cells. In conclusion, methoxy derivatives of resveratrol possess similar or improved anti-platelet and anti-cancer effects, thereby holding potential as bioactive compounds in various pathological conditions.
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gkotsi
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Filio Petsini
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gioti
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Amalia D Kalampaliki
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis K Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Roxane Tenta
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| |
Collapse
|
4
|
Nowicki A, Wawrzyniak D, Czajkowski M, Józkowiak M, Pawlak M, Wierzchowski M, Rolle K, Skupin-Mrugalska P, Piotrowska-Kempisty H. Enhanced biological activity of liposomal methylated resveratrol analog 3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214) in 3D patient-derived ovarian cancer model. Drug Deliv 2022; 29:2459-2468. [PMID: 35892260 PMCID: PMC9336483 DOI: 10.1080/10717544.2022.2103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214) belongs to methoxystilbenes family and is an active metabolite of 3,4,5,4′-tetramethoxystilbene (DMU-212). In several of our previous studies, the anti-apoptotic activity of DMU-214 was significantly higher than that of the parent compound, especially in ovarian cancer cells. Due to increased lipophilicity and limited solubility, methoxystilbenes require a solubilization strategy enabling DMU-214 administration to the aqueous environment. In this study, DMU-214-loaded liposomes were developed for the first time, and its antitumor activity was tested in the ovarian cancer model. First, several liposomal formulations of DMU-214 were obtained by the thin lipid film hydration method followed by extrusion and then characterized. The diameter of the resulting vesicles was in the range of 118.0-155.5 nm, and samples presented monodisperse size distribution. The release of DMU-214 from the studied liposomes was governed by the contribution of two mechanisms, Fickian diffusion and liposome relaxation. Subsequently, in vitro activity of DMU-214 in the form of a free compound or liposome-bound was studied, including commercial cell line SK-OV-3 and patient-derived ovarian cancer cells in monolayer and spheroid cell culture models. DMU-214 liposomal formulations were found to be more potent (had lower IC50 values) than the free DMU-214 both in the monolayer and, more significantly, in both examined spheroid models. The above results, with particular emphasis on the patient-derived ovarian cancer model, indicate the importance of further development of liposomal DMU-214 as a potential anticancer formulation for ovarian cancer treatment.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, PL, Poland
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
5
|
Jozkowiak M, Skupin-Mrugalska P, Nowicki A, Borys-Wojcik S, Wierzchowski M, Kaczmarek M, Ramlau P, Jodynis-Liebert J, Piotrowska-Kempisty H. The Effect of 4'-hydroxy-3,4,5-trimetoxystilbene, the Metabolite of Resveratrol Analogue DMU-212, on Growth, Cell Cycle and Apoptosis in DLD-1 and LOVO Colon Cancer Cell Lines. Nutrients 2020; 12:nu12051327. [PMID: 32392733 PMCID: PMC7285027 DOI: 10.3390/nu12051327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Resveratrol is a phytoalexin that naturally occurs in grapes, blueberries, cranberries, peanuts and many other plants. Although resveratrol inhibits carcinogenesis in all three stages, its clinical application is restricted due to poor pharmacokinetics. The methylated analogues of resveratrol have been found to have higher bioavailability and cytotoxic activity than that of the prototupe compound. Among the various methoxy derivatives of resveratrol, 3,4,5,4′-tetrametoxystilbene (DMU-212) is suggested to be one of the strongest activators of cytotoxicity and apoptosis. DMU-212 has been shown to exert anti-tumor activity in DLD-1 and LOVO colon cancer cells. Since colorectal cancer is the third most common cause of cancer-related deaths worldwide, the development of new anticancer agents is nowadays of high significance. The aim of the present study was to assess the anticancer activity of 4′-hydroxy-3,4,5-trimetoxystilbene (DMU-281), the metabolite of DMU-212, in DLD-1 and LOVO cell lines. We showed for the first time the cytotoxic activity of DMU-281 triggered via cell cycle arrest at G2/M phase and apoptosis induction accompanied by the activation of caspases-9, -8, -3/7. Furthermore, DMU-281 has been found to change the expression pattern of genes and proteins related to intrinsic as well as extrinsic apoptosis. Since the activation of these pathways of apoptosis is still the most desired strategy in anticancer research, DMU-281 seems to provide a promising approach to the treatment of colon cancer.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Sylwia Borys-Wojcik
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland;
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 St., PL-60-780 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., PL-61-866 Poznan, Poland;
- Gene Therapy Unit, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland
| | - Piotr Ramlau
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61847-07-21
| |
Collapse
|
6
|
Yousuf M, Jinka S, Adhikari SS, Banerjee R. Methoxy-enriched cationic stilbenes as anticancer therapeutics. Bioorg Chem 2020; 98:103719. [PMID: 32171988 DOI: 10.1016/j.bioorg.2020.103719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 12/26/2022]
Abstract
Stilbene-based compounds are largely described for their antioxidant activity. But their use as anticancer chemotherapeutics is hampered by poor pharmacokinetic properties and non-selectivity towards cancer and non-cancer potency. To overcome these drawbacks, twin chain cationic lipid conjugated, methoxy-enriched stilbene derivatives were designed, synthesized and evaluated for their anticancer potency. Our findings reveal that HMSC16, a molecule with the highest number of methoxy groups and with C16-twin chain lipid, is the most potent as well as the most selective anticancer agent when compared to the other synthesized derivatives and commercially available stilbene-based drug, tamoxifen, and resveratrol. To justify these results, we have conducted a series of mechanistic experiments where we found that HMSC16 induced ROS generation, apoptosis, and autophagy by affecting the mitochondrial, lysosomal and nuclear pathways. Further cell cycle analysis data reveals that HMSC16 not only induces cell death but is also involved in the arrest of the cell cycle at the sub-G1 phase. Moreover, HMSC16 showed self-aggregation property owing to a possibly favorable hydrophilic-lipophilic balance. The self-aggregation property of HMSC16 allowed it to entrap hydrophobic drugs, withaferin. With entrapped withaferin, HMSC16 showed additive if not synergistic cell killing effect in HeLa cells. From the above results, we concluded that HMSC16 can be used not just as a drug but also as a drug delivery agent.
Collapse
Affiliation(s)
- Md Yousuf
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; SERB-National Postdoctoral Fellow, DST New Delhi, India.
| | - Sudhakar Jinka
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | | | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
7
|
The Effect of 3'-Hydroxy-3,4,5,4'-Tetramethoxy -stilbene, the Metabolite of the Resveratrol Analogue DMU-212, on the Motility and Proliferation of Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21031100. [PMID: 32046103 PMCID: PMC7037107 DOI: 10.3390/ijms21031100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Targeting tumor cell motility and proliferation is an extremely important challenge in the prevention of metastasis and improving the effectiveness of cancer treatment. We recently published data revealing that DMU-214, the metabolite of firmly cytotoxic resveratrol analogue DMU-212, exerted significantly higher biological activity than the parent compound in ovarian cancer cells. The aim of the present study was to assess the molecular mechanism of the potential anti-migration and anti-proliferative effect of DMU-214 in ovarian cancer cell line SKOV-3. We showed that DMU-214 reduced the migratory capacity of SKOV-3 cells. The microarray analysis indicated ontology groups of genes involved in processes of negative regulation of cell motility and proliferation. Furthermore, we found DMU-214 triggered changes in expression of several migration- and proliferation-related genes (SMAD7, THBS1, IGFBP3, KLF4, Il6, ILA, SOX4, IL15, SRF, RGCC, GPR56) and proteins (GPR56, RGCC, SRF, SMAD7, THBS1), which have been shown to interact to each other to reduce cell proliferation and motility. Our study showed for the first time that DMU-214 displayed anti-migratory and anti-proliferative activity in SKOV-3 ovarian cancer cells. On the basis of whole transcriptome analysis of these cells, we provide new insight into the role of DMU-214 in inhibition of processes related to metastasis.
Collapse
|
8
|
Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7180284. [PMID: 31885813 PMCID: PMC6914940 DOI: 10.1155/2019/7180284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/14/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol (RSV) is a naturally occurring polyphenol that exhibits pleiotropic health benefits, including anticolitis and colon cancer-protective activity. Recently, we identified the novel imine RSV analog (IRA), 2-methoxyl-3,6-dihydroxyl-IRA 3,4,5,4-tetramethoxystilbene (C33), as a putative activator of nuclear factor erythroid 2-related factor 2 (Nrf2). The present study was designed to evaluate the ability of C33 to activate the Nrf2 signaling pathway and its anticolitis effect in comparison to RSV. The anticolitis action of C33 was assessed in a mouse model of colitis induced by dextran sulfate sodium (DSS). The effect of C33 on the Nrf2 signaling pathway was examined in vitro and in vivo. Compared to RSV, C33 triggered a more dramatic increase in the expression of genes downstream of Nrf2 in LS174T cells as well as in the small intestine and colon of wild-type (WT) mice. Correlated with its superior ability to activate the cytoprotective Nrf2 pathway, C33 was significantly better in ameliorating DSS-induced colitis by improving the inflammation score, as well as downregulating the markers of inflammation in WT mice. Moreover, induction of the NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome by colitis was also significantly inhibited by the IRA. Nrf2 knockout completely abolished the effects of C33, indicating that Nrf2 is the important mechanistic target of C33 in vivo. In conclusion, the novel IRA, C33, has stronger anticolitis effects than RSV. Further studies are warranted to evaluate C33 as a potential therapeutic agent for inflammatory bowel disease and cancer chemoprevention.
Collapse
|
9
|
Dusek J, Skoda J, Holas O, Horvatova A, Smutny T, Linhartova L, Hirsova P, Kucera O, Micuda S, Braeuning A, Pavek P. Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicol Lett 2019; 313:1-10. [PMID: 31170421 DOI: 10.1016/j.toxlet.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lenka Linhartova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Otto Kucera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Toxicology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
10
|
Yang L, Qin X, Liu H, Wei Y, Zhu H, Jiang M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190125. [PMID: 31598278 PMCID: PMC6774960 DOI: 10.1098/rsos.190125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A series of novel resveratrol derivatives were designed, synthesized and evaluated as anti-cancer agents. Most of the compounds showed significant anti-proliferative activities against three human cancer cell lines (HepG2, A549 and Hela). Among these compounds, compound r displayed the most potent inhibitory activity and showed low cytotoxic activity. Cell apoptosis and cell cycle assays demonstrated that compound r significantly induced apoptosis (p < 0.001) and arrested cell cycle at S phase. Immunofluorescence microscopy analysis showed compound r disrupted the tubulin network. Docking simulations supported the pharmacological results of compound r. It is believed that this work would be very useful for designing a new series of tubulin inhibitors.
Collapse
Affiliation(s)
- Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Xuemei Qin
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|
11
|
Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor Properties of Stilbene-based Resveratrol Analogues: Recent Results. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent literature about stilbene-based analogues of resveratrol (1) has been reviewed, and a total of 94 compounds are reported (see structures 4 – 97), selected either for their promising anti-tumor properties or as comparative terms in SAR studies. As a general outline, these recent literature data confirm the previously reported observation that minimal modification in the nature and position of the substituents on the stilbene nucleus may cause large variations in their biological activity and, more specifically, in their anti-tumor properties. Among the polyhydroxylated stilbenes, it has been established that those with either a catechol or pyrogallol moiety are far better radical scavengers than either 1 or other analogues lacking an ortho-dihydroxy group, and this property was shown to be related to pro-apoptotic activity. In the large majority of cases where couples of E- and Z-isomers were evaluated for either cytotoxic or pro-apoptotic activity, the Z-isomers were significantly more active than their E analogues; nevertheless, a general rule stating that stilbenoids with Z configuration of the double bond display a considerably higher antiproliferative activity than their E-isomers cannot be considered as established. A variety of methoxystilbenes has been reported recently: in many cases these analogues showed either potent antiproliferative and pro-apoptotic activity or strong inhibition of TNFα-induced activation of NF- kB. Globally considered, polymethoxystilbenes are a sub-group of great interest among the resveratrol analogues: these analogues appear worthy of a deeper evaluation also in connection with their potential anti-angiogenic properties. In addition, in vivo studies indicate that methoxystilbenes undergo different metabolic conversion and have a higher bioavailability than resveratrol. The potent activity of some amino- and halogenated stilbenes is undoubtedly worthy of attention, but the toxicity of these compounds to normal cells has rarely been evaluated. In conclusion, the synthesis and evaluation of stilbene-based resveratrol analogues proved to be a highly active field of research and has recently afforded compounds with either cytotoxic or pro-apoptotic activity in the nanomolar range. Nevertheless, the exact structural determinants to optimize the anti-tumor properties of these compounds and details of their mechanism of action remain to be clarified.
Collapse
Affiliation(s)
- Rosa Chillemi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
12
|
Nizami B, Sarasia EM, Momin MIK, Honarparvar B. Estrogenic Active Stilbene Derivatives as Anti-Cancer Agents: A DFT and QSAR Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:560-568. [PMID: 29990200 DOI: 10.1109/tcbb.2017.2779505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exploring different quantum chemical quantities for lead compounds is an ongoing approach in identifying crucial structural activity related features that are contributing into their biological activities. Herein, activity-related quantum chemical calculations were performed for the selected estrogenic stilbene derivatives using density functional theory (DFT) with B3LYP functional and 6-311++G** basis set. In addition, specific activity-related geometry-independent drug-like properties are discussed for these derivatives. To obtain the mathematical model that correlates the chemical descriptors with their measured estrogenic activities, the quantitative structure activity relationship (QSAR) is established using multiple linear regression (MLR) and support vector regression (SVR) methods. Satisfactory fit with a reasonable regression correlation coefficient (${\rm{R}}^{2}= 0.78$R2=0.78) between predicted and experimental $pEC_{50}$pEC50 values is observed using MLR method. The present study identifies the essential physicochemical descriptors that effectively contribute in the estrogenic activity. The applied approach provides helpful insight into the designing novel estrogenic agents with improved anticancer activities.
Collapse
|
13
|
Li G, Zou Y, Zhang X. An Efficient Synthesis of Resveratrol and a Hydroxyl Derivative via the Perkin Reaction: cis to trans Isomerisation in a Demethylation Process. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823407x266234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two trans polyphenolic stilbenes, Resveratrol and 3,4,4′,5- trans-tetrahydroxystilbene, were prepared in three steps from 4-methoxy phenylacetic acid and methoxylated benzaldehydes via a Perkin reaction. An interesting cis to trans isomerisation occured in the demethylation process in the presence of AlI3 and acetonitrile to give resveratrol and 3,4,4′,5- trans-tetrahydroxystilbene with overall yields of 51% and 48% respectively.
Collapse
Affiliation(s)
- Guoxing Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Yong Zou
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Xuejing Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| |
Collapse
|
14
|
Natural products hybrids: 3,5,4′-Trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur J Med Chem 2019; 161:559-580. [DOI: 10.1016/j.ejmech.2018.10.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022]
|
15
|
Latruffe N, Vervandier-Fasseur D. Strategic Syntheses of Vine and Wine Resveratrol Derivatives to Explore their Effects on Cell Functions and Dysfunctions. Diseases 2018; 6:diseases6040110. [PMID: 30545015 PMCID: PMC6313602 DOI: 10.3390/diseases6040110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Trans-resveratrol, the most well-known polyphenolic stilbenoid, is found in grapes and accordingly in wine and it is considered to be beneficial for human health, especially towards the aging-linked cell alterations by providing numerous biological activities, such as anti-oxidant, antitumoral, antiviral, anti-inflammatory, neuroprotective, and platelet anti-aggregation properties. Although trans-resveratrol is a promising molecule, it cannot be considered as a drug, due to its weak bio-availability and fast metabolism. To overcome these weaknesses, several research teams have undertaken the synthesis of innovative trans-resveratrol derivatives, with the aim to increase its solubility in water and pharmacological activities towards cell targets. The aim of this review is to show the chronological evolution over the last 25 years of different strategies to develop more efficient trans-resveratrol derivatives towards organism physiology and, therefore, to enhance various pharmacological activities. While the literature on the development of new synthetic derivatives is impressive, this review will focus on selected strategies regarding the substitution of trans-resveratrol phenyl rings, first with hydroxy, methoxy, and halogen groups, and next with functionalized substituents. The effects on cell functions and dysfunctions of interesting resveratrol analogs will be addressed in this review.
Collapse
Affiliation(s)
- Norbert Latruffe
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, EA 7270, Université de Bourgogne Franche-Comté, 6, boulevard Gabriel, 21078 DIJON CEDEX, France.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, Université de Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 DIJON CEDEX, France.
| |
Collapse
|
16
|
|
17
|
Parida PK, Mahata B, Santra A, Chakraborty S, Ghosh Z, Raha S, Misra AK, Biswas K, Jana K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis 2018; 9:448. [PMID: 29670107 PMCID: PMC5906627 DOI: 10.1038/s41419-018-0476-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Resveratrol, a trans-stilbene polyphenolic compound and its synthetic analogs are widely used bioactive molecules due to their remarkable chemo-preventive potential. Here, we have identified a novel synthetic trans-stilbene compound, Z-DAN-11 ((Z)-3-(3, 4-dimethoxyphenyl)-2-(3, 4, 5-trimethoxyphenyl) acrylonitrile) which shows remarkable efficacy in blocking tumor growth and progression both in vitro and in vivo. Z-DAN-11 inhibits proliferation of cancer cells in vitro through microtubule depolymerization that induced G2/M arrest and consequently leads to apoptotic cell death. More importantly, Z-DAN-11 shows limited cytotoxicity to normal cells as compared to cancer cells. Quite interestingly, we have found that Z-DAN-11-mediated ROS production helps in dramatic alteration in the mitochondrial redox status which critically contributes to the apoptosis. Mechanistic studies reveal that Z-DAN-11 induces the expression of pro-apoptotic proteins and decreases anti-apoptotic protein expression that decisively helps in the activation of caspase 8, caspase 9, and caspase 3, leading to cleavage of PARP1 and cell death via intrinsic and extrinsic pathways of apoptosis. Moreover, Z-DAN-11-mediated apoptosis of cancer cells is through a partial p53-dependent pathway, since both HCT116 p53-/- cells as well as p53-silenced cells (siRNA) were able to block apoptosis partially but significantly. Importantly, Z-DAN-11 also imparts its anti-tumorigenic effect by inhibiting clonogenic property and anchorage-independent growth potential of cancer cells at concentrations at least 10 times lower than that required for inducing apoptosis. Finally, in vivo study with immuno-competent syngeneic mice shows Z-DAN-11 to be able to impede tumor progression without any adverse side-effects. Hence, we identified a novel, synthetic trans-stilbene derivative with anti-tumorigenic potential which might tremendously help in devising potential therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Abhisek Santra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Sohini Chakraborty
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | | | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
18
|
Chatterjee K, AlSharif D, Mazza C, Syar P, Al Sharif M, Fata JE. Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer Cells. Nutrients 2018; 10:E243. [PMID: 29485619 PMCID: PMC5852819 DOI: 10.3390/nu10020243] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/04/2023] Open
Abstract
Cervical cancer is one of the most common cancers in women living in developing countries. Due to a lack of affordable effective therapy, research into alternative anticancer compounds with low toxicity such as dietary polyphenols has continued. Our aim is to determine whether two structurally similar plant polyphenols, resveratrol and pterostilbene, exhibit anticancer and anti-HPV (Human papillomavirus) activity against cervical cancer cells. To determine anticancer activity, extensive in vitro analyses were performed. Anti-HPV activity, through measuring E6 protein levels, subsequent downstream p53 effects, and caspase-3 activation, were studied to understand a possible mechanism of action. Both polyphenols are effective agents in targeting cervical cancer cells, having low IC50 values in the µM range. They decrease clonogenic survival, reduce cell migration, arrest cells at the S-phase, and reduce the number of mitotic cells. These findings were significant, with pterostilbene often being more effective than resveratrol. Resveratrol and to a greater extent pterostilbene downregulates the HPV oncoprotein E6, induces caspase-3 activation, and upregulates p53 protein levels. Results point to a mechanism that may involve the downregulation of the HPV E6 oncoprotein, activation of apoptotic pathways, and re-establishment of functional p53 protein, with pterostilbene showing greater efficacy than resveratrol.
Collapse
Affiliation(s)
- Kaushiki Chatterjee
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY 10016, USA.
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| | - Dina AlSharif
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| | - Christina Mazza
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| | - Palwasha Syar
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| | - Mohamed Al Sharif
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| | - Jimmie E Fata
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY 10016, USA.
- Department of Biology, College of Staten Island, New York, NY 10314, USA.
| |
Collapse
|
19
|
Zhang W, Zhang S, Zhang M, Yang L, Cheng B, Li J, Shan A. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N -acetylcysteine. Food Chem Toxicol 2018; 111:27-43. [DOI: 10.1016/j.fct.2017.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022]
|
20
|
Resveratrol induces mitochondria-mediated, caspase-independent apoptosis in murine prostate cancer cells. Oncotarget 2017; 8:20895-20908. [PMID: 28157696 PMCID: PMC5400554 DOI: 10.18632/oncotarget.14947] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Found in the skins of red fruits, including grapes, resveratrol (RES) is a polyphenolic compound with cancer chemopreventive activity. Because of this activity, it has gained interest for scientific investigations. RES inhibits tumor growth and progression by targeting mitochondria-dependent or -independent pathways. However, further investigations are needed to explore the underlying mechanisms. The present study is focused on examining the role of RES-induced, mitochondria-mediated, caspase-independent apoptosis of prostate cancer cells, namely transgenic adenocarcinoma of mouse prostate (TRAMP) cells. These cells were exposed to RES for various times, and cell killing, cell morphology, mitochondrial membrane potential (Δψm), expression of Bax and Bcl2 proteins, the role of caspase-3, and DNA fragmentation were analyzed. TRAMP cells exposed to RES showed decreased cell viability, altered cell morphology, and disrupted Δψm, which led to aberrant expression of Bax and Bcl2 proteins. Furthermore, since the caspase-3 inhibitor, z-VAD-fmk (benzyloxycarbonyl-valine-alanine-aspartic acid-fluoromethyl ketone), had no appreciable impact on RES-induced cell killing, the killing was evidently caspase-independent. In addition, RES treatment of TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells caused an appreciable breakage of genomic DNA into low-molecular-weight fragments. These findings show that, in inhibition of proliferation of TRAMP cells, RES induces mitochondria-mediated, caspase-independent apoptosis. Therefore, RES may be utilized as a therapeutic agent to control the proliferation and growth of cancer cells.
Collapse
|
21
|
Klupczynska A, Sulej-Suchomska AM, Piotrowska-Kempisty H, Wierzchowski M, Jodynis-Liebert J, Kokot ZJ. Development and validation of HPLC-MS/MS procedure for determination of 3,4,4',5-tetra-methoxystilbene (DMU-212) and its metabolites in ovarian cancer cells and culture medium. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:30-35. [PMID: 28582662 DOI: 10.1016/j.jchromb.2017.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
The synthetic resveratrol analogue DMU-212 (3,4,4',5-tetramethoxystilbene) has been shown to possess stronger anticancer activity than resveratrol in a variety of tumour cells. To date, there has been no appropriate procedure that would ensure a reliable data about levels of metabolic products of DMU-212 in cancer cell lines. The purpose of this study was to develop a new procedure for determination of DMU-212 and its three metabolites (DMU-214, DMU-281, DMU-291) in cell lines. Analyses were performed using an HPLC system coupled with a triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Separation was conducted using a C18 column at a flow rate 800μL/min with a mobile phase consisting of 5mM ammonium acetate with 0.1% formic acid (solvent A) and acetonitrile (solvent B). The new methodology is fast, simple and has excellent specificity. Moreover, it showed good linearity in two matrices - cell lysates and culture media. Accuracy values for analytes evaluated at different concentration levels ranged from 0.43 to 18% (%bias). The intra-day and inter-day precision, expressed as CV, was in a range 0.49-5.5% and 0.83-13%, respectively. The validated procedure was successfully applied to quantify the resveratrol analogues in the human ovarian cancer cell line SKOV3.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Anna Maria Sulej-Suchomska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznan, Poland
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznan, Poland
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland.
| |
Collapse
|
22
|
E -Stilbene derivatives synthesized by stereoselective reductive coupling of benzylic gem -dibromide promoted by Cu/polyamine. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Urbaniak A, Delgado M, Kacprzak K, Chambers TC. Activity of resveratrol triesters against primary acute lymphoblastic leukemia cells. Bioorg Med Chem Lett 2017; 27:2766-2770. [DOI: 10.1016/j.bmcl.2017.04.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
|
24
|
Piotrowska H, Kujawska M, Nowicki M, Petzke E, Ignatowicz E, Krajka-Kuźniak V, Zawierucha P, Wierzchowski M, Murias M, Jodynis-Liebert J. Effect of resveratrol analogue, DMU-212, on antioxidant status and apoptosis-related genes in rat model of hepatocarcinogenesis. Hum Exp Toxicol 2017; 36:160-175. [PMID: 27048571 DOI: 10.1177/0960327116641734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the study was to examine whether antioxidant properties of 3,4,4',5-tetramethoxystilbene (DMU-212) contribute to its anticarcinogenic activity and whether DMU-212 affects the expression of apoptosis-related genes. Two-stage model of hepatocarcinogenesis was used; male Wistar rats were challenged with N-nitrosodiethylamine (NDEA), 200 mg/kg body weight (b.w.), intraperitoneal, then phenobarbital (PB) in drinking water (0.05%) was administered. Simultaneously, DMU-212 was given per os at a dose 20 or 50 mg/kg b.w. two times a week for 16 weeks. DMU-212 caused a moderate decrease in hepatic thiobarbituric acid reactive substances and protein carbonyls concentration elevated in rats treated with NDEA/PB. The activity of antioxidant enzymes examined reduced by NDEA/PB treatment was not restored in rats coadministered with DMU-212. Effects of DMU-212 on messenger RNA (mRNA) expression of antioxidant enzymes in rats challenged with NDEA/PB were diversified; no changes in their protein expression were noted in any of the groups. The expression of 17,000 genes was analyzed by Affymetrix® Rat Gene 1.1 ST Array; 15 apoptosis-related genes were selected and validated by RT-q PCR. The combined treatment with NDEA/PB and DMU-212 increased the mRNA level of some genes driving mitochondria-mediated apoptosis, whereas the mRNA expression of some anti-apoptotic genes triggering receptor-mediated apoptosis was reduced. The expression of genes encoding caspases-4, -8, -9, and -12 was also increased in rats treated with DMU-212. Although antioxidant effect of DMU-212 in rats challenged with NDEA/PB was moderate, its potential anticarcinogenic properties were demonstrated as evidenced by modulation of apoptosis-related genes.
Collapse
Affiliation(s)
- H Piotrowska
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Kujawska
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Nowicki
- 2 Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - E Petzke
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - E Ignatowicz
- 3 Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - V Krajka-Kuźniak
- 3 Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - P Zawierucha
- 2 Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Wierzchowski
- 4 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznań, Poland
| | - M Murias
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - J Jodynis-Liebert
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
25
|
Piotrowska-Kempisty H, Klupczyńska A, Trzybulska D, Kulcenty K, Sulej-Suchomska AM, Kucińska M, Mikstacka R, Wierzchowski M, Murias M, Baer-Dubowska W, Kokot Z, Jodynis-Liebert J. Role of CYP1A1 in the biological activity of methylated resveratrol analogue, 3,4,5,4′-tetramethoxystilbene (DMU-212) in ovarian cancer A-2780 and non-cancerous HOSE cells. Toxicol Lett 2017; 267:59-66. [DOI: 10.1016/j.toxlet.2016.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/02/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022]
|
26
|
3'-hydroxy-3,4,5,4'-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Sci Rep 2016; 6:32627. [PMID: 27585955 PMCID: PMC5009320 DOI: 10.1038/srep32627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment.
Collapse
|
27
|
|
28
|
Chen Z, Zhang L, Yu J, Chen L, Zhou B. Identification of resveratrol derivative 3,3',4,4',5,5'-hexamethoxy- trans-stilbene as a novel pro-angiogenic small-molecule compound. Eur J Pharmacol 2016; 791:185-194. [PMID: 27590357 DOI: 10.1016/j.ejphar.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/21/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
The potential to promote neovascularization in ischemic tissues using exogenous agents is an attractive avenue for therapeutics. To identify novel pro-angiogenic small-molecule compound, we screened a series of resveratrol methylated derivatives and identified 3,3',4,4', 5,5'-hexamethoxy-trans-stilbene (3,3',4,4',5,5'-HMS) potently promotes proliferation, migration, invasion and tube formation of human umbilical vein VECs (HUVECs) in vitro. Furthermore, 3,3',4,4',5,5'-HMS accelerates neo-vessels sprouting of rat aortic rings ex vivo, and neovascularization of chick chorioallantoic membrane (CAM) and mouse matrigel plugs in vivo. Microarray analyses show that the level of early growth response 1 (EGR-1), an inducible pro-angiogenic gene regulatory factor, was upregulated. The upregulation of EGR-1 was confirmed by semiquantitative RT-PCR, quantitative real-time PCR and western blotting analyses. In addition, the levels of several pro-angiogenic factors including transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), nitric oxide (NO), and the activity of endothelial NO synthase (eNOS) were elevated in 3,3',4,4',5,5'-HMS-treated HUVECs. Inhibition of NO synthase by l-NAME blocked the pro-angiogenic effects of 3,3',4,4',5,5'-HMS. Our research shows that 3,3',4,4',5,5'-HMS dramatically promoted angiogenesis in vitro, ex vivo and in vivo, which might represent a novel potential agent for the development of therapeutic drugs to treat ischemic diseases.
Collapse
Affiliation(s)
- ZhiQiang Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - JingTing Yu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - LiangKe Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Abstract
The present study was designed to synthesize derivatives of E-resveratrol and evaluate their cytotoxic activity in vitro. Different functional groups were conjugated with the phenolic hydroxyl group of E-resveratrol, and the double bond of E-resveratrol was reduced. The in vitro cytotoxicity of the synthetic derivatives was evaluated against three tumor cell lines (A549, LAC, and HeLa) using the MTT assay. Twenty-six E-resveratrol derivatives were synthesized and their structures were confirmed by (1)H NMR, MS, IR, and elemental analyses. Compounds 1-6, 12, 15-21, and 23-26 were reported for the first time. Among them, Compounds 1, 2, 4, 5, and 9-11, showed significant cytotoxicity against tumor cells; especially, Compound 1 showed an IC50 value of 4.38 μmol · L(-1) in the A549 cells which was 15-fold more active than E-resveratrol; Compound 9 showed an IC50 value of 1.41 μmol · L(-1) in the HeLa cell line which was 90-fold more active than E-resveratrol, and close to adriamycin. The structure-activity relationships were also investigated. Compounds 1, 2 and 9-11 may serve as potential lead compounds for the discovery of new anticancer drugs.
Collapse
|
30
|
Sun Q, Heilmann J, König B. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view. Beilstein J Org Chem 2015; 11:249-64. [PMID: 25815077 PMCID: PMC4361970 DOI: 10.3762/bjoc.11.28] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022] Open
Abstract
Considering the many secondary natural metabolites available from plants, phenolic compounds play a particularly important role in human health as they occur in significant amounts in many fruits, vegetables and medicinal plants. In this review natural phenolic compounds of plant origin with significant anti-angiogenic properties are discussed. Thirteen representatives from eight different natural or natural-like phenolic subclasses are presented with an emphasis on their synthesis and methods to modify the parent compounds. When available, the consequence of structural variation on the pharmacological activity of the molecules is described.
Collapse
Affiliation(s)
- Qiu Sun
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Jörg Heilmann
- Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Morris VL, Toseef T, Nazumudeen FB, Rivoira C, Spatafora C, Tringali C, Rotenberg SA. Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells. Mol Cell Biochem 2015; 402:83-91. [PMID: 25567208 DOI: 10.1007/s11010-014-2316-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/23/2014] [Indexed: 02/06/2023]
Abstract
Resveratrol (E-3,5,4'-trihydroxystilbene) is a polyphenol found in red wine that has been shown to have multiple anti-cancer properties. Although cis-(Z)- and trans-(E)-isomers of resveratrol occur in nature, the cis form is not biologically active. However, methylation at key positions of the cis form results in more potent anti-cancer properties. This study determined that synthetic cis-polymethoxystilbenes (methylated analogs of cis-resveratrol) inhibited cancer-related phenotypes of metastatic B16 F10 and non-metastatic B16 F1 mouse melanoma cells. In contrast with cis- or trans-resveratrol and trans-polymethoxystilbene which were ineffective at 10 μM, cis-polymethoxystilbenes inhibited motility and proliferation of melanoma cells with low micromolar specificity (IC50 < 10 μM). Inhibitory effects by cis-polymethoxystilbenes were significantly stronger with B16 F10 cells and were accompanied by decreased expression of β-tubulin and pleckstrin homology domain-interacting protein, a marker of metastatic B16 cells. Thus, cis-polymethoxystilbenes have potential as chemotherapeutic agents for metastatic melanoma.
Collapse
Affiliation(s)
- Valery L Morris
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Suzuki-Karasaki Y, Suzuki-Karasaki M, Uchida M, Ochiai T. Depolarization Controls TRAIL-Sensitization and Tumor-Selective Killing of Cancer Cells: Crosstalk with ROS. Front Oncol 2014; 4:128. [PMID: 24910845 PMCID: PMC4038927 DOI: 10.3389/fonc.2014.00128] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 01/22/2023] Open
Abstract
Conventional genotoxic anti-cancer drugs target the proliferative advantage of tumor cells over normal cells. This kind of approach lacks the selectivity of treatment to cancer cells, because most of the targeted pathways are essential for the survival of normal cells. As a result, traditional cancer treatments are often limited by undesirable damage to normal cells (side-effects). Ideal anti-cancer drugs are expected to be highly effective against malignant tumor cells with minimal cytotoxicity toward normal cells. Such selective killing can be achieved by targeting pathways essential for the survival of cancer cells, but not normal cells. As cancer cells are characterized by their resistance to apoptosis, selective apoptosis induction is a promising approach for selective killing of cancer cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising tumor-selective anti-cancer drug. However, the congenital and acquired resistance of some cancer cell types, including malignant melanoma cells, currently impedes effective TRAIL therapy, and an innovative approach that can override TRAIL resistance is urgently required. Apoptosis is characterized by cell shrinkage caused by disruption of the maintenance of the normal physiological concentrations of K(+) and Na(+) and intracellular ion homeostasis. The disrupted ion homeostasis leads to depolarization and apoptosis. Recent evidence suggests that depolarization is an early and prerequisite event during TRAIL-induced apoptosis. Moreover, diverse natural products and synthetic chemicals capable of depolarizing the cell membrane exhibit tumor-selective killing and TRAIL-sensitizing effects. Here, we discuss the role of depolarization in selective killing of cancer cells in connection with the emerging concept that oxidative stress is a critical mediator of mitochondrial and endoplasmic reticulum dysfunctions and serves as a tumor-selective target in cancer treatment.
Collapse
Affiliation(s)
- Yoshihiro Suzuki-Karasaki
- Division of Physiology, Department of Biomedical Sciences, Nihon University School of Medicine , Tokyo , Japan ; Innovative Therapy Research Group, Nihon University Research Institute of Medical Science , Tokyo , Japan
| | | | - Mayumi Uchida
- Department of Dermatology, Nihon University Surugadai Hospital , Tokyo , Japan
| | - Toyoko Ochiai
- Department of Dermatology, Nihon University Surugadai Hospital , Tokyo , Japan
| |
Collapse
|
33
|
Forbes AM, Lin H, Meadows GG, Meier GP. Synthesis and anticancer activity of new flavonoid analogs and inconsistencies in assays related to proliferation and viability measurements. Int J Oncol 2014; 45:831-42. [PMID: 24859601 PMCID: PMC4091967 DOI: 10.3892/ijo.2014.2452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/14/2014] [Indexed: 12/15/2022] Open
Abstract
Flavonoids have been studied intensely for their ability to act as anti-carcinogenic, anti-inflammatory, anti-viral and anti-aging agents and are often marketed as supplements related to their anti-inflammatory activity. Previous studies have primarily focused on the effects of polar natural flavonoids. We examined the activity of novel hydrophobic and lipophilic flavonols against human DU-145 and PC-3 prostate cancer cell lines. All flavonol analogs were more active than the naturally occurring flavonols quercetin, kaempferol, kaempferide and galangin. The most potent analogs were 6.5-fold more active against DU-145 and PC-3 cells than quercetin and fell within the biologically relevant concentration range (low micromolar). We also evaluated the potential toxic effects of flavonol analogs on normal cells, an assessment that has frequently been ignored when studying the anticancer effects of flavonoids. During these analyses, we discovered that various metabolic and DNA staining assays were unreliable methods for assessing cell viability of flavonoids. Flavonoids reduce colorimetric dyes such as MTT and Alamar Blue in the absence of cells. We showed that flavonol-treated prostate cancer cells were stained less intensely with crystal violet than untreated cells at non-toxic concentrations. The trypan blue exclusion assay was selected as a reliable alternative for measuring cell viability.
Collapse
Affiliation(s)
- Alaina M Forbes
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | - Huimin Lin
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-4630, USA
| | - Gary G Meadows
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-4630, USA
| | - G Patrick Meier
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| |
Collapse
|
34
|
Joseph L, Sajan D, Chaitanya K, Isac J. Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:375-386. [PMID: 24317264 DOI: 10.1016/j.saa.2013.11.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP).
Collapse
Affiliation(s)
- Lynnette Joseph
- Department of Physics, Bishop Moore College, Mavelikara, Alappuzha 690110, Kerala, India; Department of Physics, CMS College, Kottayam 686001, Kerala, India
| | - D Sajan
- Department of Physics, Bishop Moore College, Mavelikara, Alappuzha 690110, Kerala, India.
| | - K Chaitanya
- Department of Chemistry, Nanjing University of Science and Technology, Xialingwei 200, Nanjing, People's Republic of China
| | - Jayakumary Isac
- Department of Physics, CMS College, Kottayam 686001, Kerala, India
| |
Collapse
|
35
|
DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer. Biomed Pharmacother 2014; 68:397-400. [PMID: 24768110 DOI: 10.1016/j.biopha.2014.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/28/2014] [Indexed: 12/20/2022] Open
Abstract
DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy.
Collapse
|
36
|
Gosslau A, Chen KY, Ho CT, Li S. Anti-inflammatory effects of characterized orange peel extracts enriched with bioactive polymethoxyflavones. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Kumar D, Raj KK, Malhotra SV, Rawat DS. Synthesis and anticancer activity evaluation of resveratrol–chalcone conjugates. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00329a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Different susceptibility of colon cancer DLD-1 and LOVO cell lines to apoptosis induced by DMU-212, a synthetic resveratrol analogue. Toxicol In Vitro 2013; 27:2127-34. [DOI: 10.1016/j.tiv.2013.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 11/15/2022]
|
39
|
Design, synthesis, and evaluation of methoxylated resveratrol derivatives as potential antitumor agents. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1382-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Chen LK, Qiang PF, Xu QP, Zhao YH, Dai F, Zhang L. Trans-3,4,5,4'-tetramethoxystilbene, a resveratrol analog, potently inhibits angiogenesis in vitro and in vivo. Acta Pharmacol Sin 2013; 34:1174-82. [PMID: 23770989 PMCID: PMC3764339 DOI: 10.1038/aps.2013.60] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
Aim: Trans-3,4,5,4′-tetramethoxystilbene (DMU-212) has shown strong antiproliferative activities against a variety of cancer cells. The aim of this study was to investigate the anti-angiogenic effects of DMU-212 in vitro and in vivo. Methods: Human umbilical vein endothelial cells (HUVECs) were used in this study. Cell viability was studied with MTT assay, and cell apoptosis was evaluated using TUNEL assay and morphological observation. The expression of the related genes and proteins was analyzed with qRT-PCR and Western blot, respectively. Angiogenesis of HUVECs were studied using cell migration and capillary-like tube formation assays in vitro, and mouse Matrigel plug assay and chick chorioallantoic membrane (CAM) assay in vivo. The tyrosine kinase activities of VEGFR1 and VEGFR2 were measured using commercial kits. Results: DMU-212 (5–80 μmol/L) significantly inhibited VEGF-stimulated proliferation of HUVECs (IC50 value was approximately 20 μmol/L), and induced apoptosis. Furthermore, DMU-212 concentration-dependently inhibited VEGF-induced migration of HUVECs and capillary-like structure formation in vitro. DMU-212 also inhibited VEGF-induced generation of new vasculature in Matrigel plugs in vivo with significantly decreased area of infiltrating CD31-positive endothelial cells, and inhibited newly formed microvessels in chick CAMs. Moreover, DMU-212 concentration-dependently suppressed VEGF-induced phosphorylation of VEGFR2, and inhibited phosphorylation of multiple downstream signaling components in the VEGFR2 pathway, including c-Src, FAK, Erk1/2, Akt, mTOR, and p70S6K in HUVECs. DMU-212 had no effect on VEGF-induced phosphorylation of VEGFR1. Conclusion: DMU-212 is a potent inhibitor of angiogenesis that exerts anti-angiogenic activity at least in part through the VEGFR2 signaling pathway.
Collapse
|
41
|
Exploiting the Role of Resveratrol in Rat Mitochondrial Permeability Transition. J Membr Biol 2013; 246:365-73. [DOI: 10.1007/s00232-013-9540-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/22/2013] [Indexed: 01/03/2023]
|
42
|
Piotrowska H, Myszkowski K, Ziółkowska A, Kulcenty K, Wierzchowski M, Kaczmarek M, Murias M, Kwiatkowska-Borowczyk E, Jodynis-Liebert J. Resveratrol analogue 3,4,4',5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol Appl Pharmacol 2012; 263:53-60. [PMID: 22687606 DOI: 10.1016/j.taap.2012.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 05/31/2012] [Indexed: 01/01/2023]
Abstract
In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4'5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC(50)=0.71 μM) and SKOV-3 (IC(50)=11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212.
Collapse
Affiliation(s)
- Hanna Piotrowska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Glavnik V, Simonovska B, Albreht A, Vovk I. TLC and HPLC screening ofp-coumaric acid,trans-resveratrol, and pterostilbene in bacterial cultures, food supplements, and wine. JPC-J PLANAR CHROMAT 2012. [DOI: 10.1556/jpc.25.2012.3.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Roslie H, Chan KM, Rajab NF, Velu SS, Kadir SAIASA, Bunyamin I, Weber JFF, Thomas NF, Majeed ABA, Myatt G, Inayat-Hussain SH. 3,5-dibenzyloxy-4'-hydroxystilbene induces early caspase-9 activation during apoptosis in human K562 chronic myelogenous leukemia cells. J Toxicol Sci 2012; 37:13-21. [PMID: 22293408 DOI: 10.2131/jts.37.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A series of 22 stilbene derivatives based on resveratrol were synthesized incorporating acetoxy-, benzyloxy-, carboxy-, chloro-, hydroxy- and methoxy functional groups. We examined the cytotoxicity of these 22 stilbenes in human K562 chronic myelogenous leukemia cells. Only four compounds were cytotoxic namely 4'-hydroxy-3-methoxystilbene (15), 3'-acetoxy-4-chlorostilbene (19), 4'-hydroxy-3,5-dimethoxystilbene or pterostilbene (3) and 3,5-dibenzyloxy-4'-hydroxystilbene (28) with IC(50)s of 78 µM, 38 µM, 67 µM and 19.5 µM respectively. Further apoptosis assessment on the most potent compound, 28, confirmed that the cells underwent apoptosis based on phosphatidylserine externalization and loss of mitochondrial membrane potential. Importantly, we observed a concentration-dependent activation of caspase-9 as early as 2 hr with resultant caspase-3 cleavage in 28-induced apoptosis. Additionally, a structure-activity relationship (SAR) study proposed a possible mechanism of action for compound 28. Taken together, our data suggests that the pro-apoptotic effects of 28 involve the intrinsic mitochondrial pathway characterized by an early activation of caspase-9.
Collapse
Affiliation(s)
- Haslan Roslie
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Selangor, Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reddy MA, Jain N, Yada D, Kishore C, Vangala JR, P Surendra R, Addlagatta A, Kalivendi SV, Sreedhar B. Design and synthesis of resveratrol-based nitrovinylstilbenes as antimitotic agents. J Med Chem 2011; 54:6751-60. [PMID: 21851083 DOI: 10.1021/jm200639r] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new series of resveratrol analogues was designed, synthesized, and demonstrated to be tubulin polymerization inhibitors. Most of these compounds exhibited antiproliferative activity and inhibited in vitro tubulin polymerization effectively at concentrations of 4.4-68.1 and 17-62 μM, respectively. Flow cytometry studies showed that compounds 7c, 7e, and 7g arrested cells in the G2/M phase of the cell cycle. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 7c and 7e. Docking of compounds 7c and 7e with tubulin suggested that the A-ring of the compounds occupies the colchicine binding site of tubulin, which coordinates with Cys241, Leu242, Ala250, Val318, Val328, and I378, and that the nitrovinyl side chain forms two hydrogen bonds with the main loop of the β-chain at Asn249 and Ala250.
Collapse
Affiliation(s)
- M Amarnath Reddy
- Inorganic and Physical Chemistry Division , Indian Institute of Chemical Technology (Council of Scientific and Industrial Research), Hyderabad 500607, India
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tang JJ, Fan GJ, Dai F, Ding DJ, Wang Q, Lu DL, Li RR, Li XZ, Hu LM, Jin XL, Zhou B. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic Biol Med 2011; 50:1447-57. [PMID: 21376113 DOI: 10.1016/j.freeradbiomed.2011.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/16/2011] [Accepted: 02/23/2011] [Indexed: 12/26/2022]
Abstract
Resveratrol is the subject of intense research as a natural antioxidant and cancer chemopreventive agent. There has been a great deal of interest and excitement in understanding its action mechanism and developing analogs with antioxidant and cancer chemoprevention activities superior to that of the parent compound in the past decade. This work delineates that elongation of the conjugated links is an important strategy to improve the antioxidant activity of resveratrol analogs, including hydrogen atom- or electron-donating ability in homogeneous solutions and antihemolysis activity in heterogeneous media. More importantly, C3, a triene bearing 4,4'-dihydroxy groups, surfaced as an important lead compound displaying remarkably increased antioxidant, cytotoxic, and apoptosis-inducing activities compared with resveratrol.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin HS, Zhang W, Go ML, Tringali C, Spatafora C, Ho PC. Quantification of trans-3,4,5,4'-Tetramethoxystilbene in rat plasma by HPLC: application to pharmacokinetic study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1072-1077. [PMID: 21229986 DOI: 10.1021/jf1043019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A simple HPLC method was established to quantify trans-3,4,5,4'-tetramethoxystilbene (MR-4 or DMU-212) in rat plasma. Chromatographic separation was obtained with a reversed-phase HPLC column through an 11 min gradient delivery of a mixture of acetonitrile and water at a flow rate of 1.5 mL/min at 50 °C. The limit of quantification was 15 ng/mL. The intra- and interday precisions in terms of relative standard deviation were <9% at all concentrations. Similarly, the accuracy was good, and the bias rates ranged within ±7%. The pharmacokinetic profiles of MR-4 were subsequently assessed in rats using 2-hydroxypropyl-β-cyclodextrin as a dosing vehicle. Upon intravenous administration, MR-4 displayed moderate clearance (46.5 ± 7.6 mL/min/kg) and terminal elimination half-life (154 ± 80 min). However, the absolute oral bioavailability of MR-4 was low (6.31 ± 3.30%). Future investigation on MR-4 as a chemotherapeutic agent should be focused on colorectal cancers.
Collapse
Affiliation(s)
- Hai-Shu Lin
- Department of Pharmacy, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | | | | | |
Collapse
|
48
|
Gosslau A, En Jao DL, Huang MT, Ho CT, Evans D, Rawson NE, Chen KY. Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res 2011; 55:198-208. [PMID: 20669245 PMCID: PMC3033565 DOI: 10.1002/mnfr.201000165] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SCOPE Theaflavin-2 (TF-2), a major component of black tea extract, induces apoptosis of human colon cancer cells and suppresses serum-induced cyclooxygenase-2 (COX-2) expression 1. Here, we explored the mechanisms for activation of apoptosis, evaluated the impact on inflammatory genes in a broader panel of cells and tested whether topical anti-inflammatory effects could be observed in vivo. METHODS AND RESULTS TF-2 triggered apoptosis in five other transformed cancer cell lines, inducing cell shrinkage, membrane blebbing, and mitochondrial clustering within 3 h of treatment. Among a set of pro-apoptotic genes, TF-2 quickly induced the up-regulation of P53 and BAX, suggesting mitochondria as the primary target. Using a cell model for inflammatory response, we showed that TF-2 suppressed the 12-O-tetradecanoylphorbol-13-acetate-induced COX-2 gene expression, and also down-regulated TNF-α, iNOS, ICAM-1, and NFκB. A reporter gene assay showed that TF-2 down-regulated COX-2 at the transcriptional level. We also demonstrated that TF-2 exhibited anti-inflammatory activity in two mouse models of inflammation. Topical application with TF-2 significantly reduced ear edema and produced a pattern of gene down-regulation similar to that observed in the cell model. CONCLUSION These results suggest that the anti-inflammatory and pro-apoptotic activity of TF-2 may be exploited therapeutically in cancer and other diseases associated with inflammation.
Collapse
Affiliation(s)
- Alexander Gosslau
- WellGen Inc., Commercialization Center for Innovative Technologies, North Brunswick, NJ 08854-8087, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhang W, Go ML. Methoxylation of resveratrol: effects on induction of NAD(P)H quinone-oxidoreductase 1 (NQO1) activity and growth inhibitory properties. Bioorg Med Chem Lett 2010; 21:1032-5. [PMID: 21215623 DOI: 10.1016/j.bmcl.2010.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/08/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022]
Abstract
A series of methoxystilbenes (E and Z isomers) related to resveratrol were investigated for their effects on NQO1 induction in murine hepatoma cells and growth inhibitory effects on human cancer cell lines. Both activities were enhanced in compounds with methoxy groups on rings A and B of resveratrol but methoxylation of the di-meta (3,5) hydroxyl groups on ring A of resveratrol was found to be more critical for improving activity. Strikingly different structure-activity trends were observed, namely the association of E isomers with potent NQO1 induction activity and Z isomers with growth inhibitory properties. The introduction of ortho-methoxy groups on ring A greatly benefited NQO1 induction activity while meta/para methoxy groups on ring A were preferred for potent growth inhibitory effects. These results serve to highlight the contrasting effects on different activities brought about by methoxylation, which is widely employed as a structural modification approach to improve potency and bioavailability of resveratrol. It serves as a timely reminder that in the course of structural modification, a balance between optimizing desired outcomes against unwanted effects is necessary and the most potent analog need not always be the most desirable.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
50
|
Li H, Wu WKK, Li ZJ, Chan KM, Wong CCM, Ye CG, Yu L, Sung JJY, Cho CH, Wang M. 2,3',4,4',5'-Pentamethoxy-trans-stilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice. Br J Pharmacol 2010; 160:1352-61. [PMID: 20590626 DOI: 10.1111/j.1476-5381.2010.00785.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Resveratrol, a naturally occurring polyphenolic antioxidant, has been shown to exhibit chemoprophylactic effects on cancer development. Previously, we reported that 2,3',4,4',5'-pentamethoxy-trans-stilbene (PMS), a methoxylated resveratrol derivative, exerted a highly potent anti-proliferative effect on human colon cancer cells as compared with its parent compound. In the present study, the chemopreventive effect of PMS was evaluated in a mouse model of colitis-associated colon carcinogenesis. EXPERIMENTAL APPROACH Seven-week-old Balb/c mice were injected i.p. with 10 mg.kg(-1) azoxymethane (AOM). After 1 week, 3% dextran sodium sulphate (DSS) was administered in the drinking water for 7 days followed by 14 days of tap water for recovery, and this cycle was repeated twice. KEY RESULTS Intragastric administration of PMS (25, 50 mg.kg(-1) body weight) for 16 weeks significantly reduced the multiplicity of colonic neoplasms by 15% and 35% (P < 0.01) respectively. Moreover, PMS at 50 mg.kg(-1) inhibited colon cancer cell proliferation and promoted apoptosis. Such changes were accompanied by reduction of Akt (protein kinase B) phosphorylation, inactivation of beta-catenin and down-regulation of inducible nitric oxide synthase. In parallel, in vitro studies also demonstrated that PMS inhibited proliferation and induced apoptosis in the murine colon adenocarcinoma cell line Colon26 with concomitant inhibition of Akt phosphorylation and inactivation of beta-catenin. CONCLUSIONS AND IMPLICATIONS PMS effectively suppressed colon carcinogenesis in an AOM/DSS animal model and may merit further clinical investigation as a chemoprophylactic agent against colitis-associated colon cancer in humans.
Collapse
Affiliation(s)
- Haitao Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|