1
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
2
|
Yang K, Wang Y. Dandelion root extracts and taraxasterol inhibit LPS‑induced colorectal cancer cell viability by blocking TLR4‑NFκB‑driven ACE2 and TMPRSS2 pathways. Exp Ther Med 2024; 27:256. [PMID: 38766306 PMCID: PMC11099608 DOI: 10.3892/etm.2024.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer-related death worldwide. Notably, abnormalities in intestinal bacteria may contribute to the initiation or progression of colorectal cancer. Lipopolysaccharide (LPS), a bacterial endotoxin, is elevated in patients with colorectal cancer. The present study investigated the protective effects of dandelion root extracts and taraxasterol (TS; a major pharmacologically active compound in dandelion root extracts) on LPS-induced colorectal cancer cell viability, as well as the underlying mechanisms. Cell viability was assessed by MTT assay, and protein and gene expression levels were determined by western blotting and quantitative PCR. It was revealed that LPS at a low dose (0.5 µg/ml) significantly promoted the viability of human colorectal cancer cells but did not affect normal colon epithelial cells. The addition of dandelion root extracts (0.1-1 mg/ml) or TS (0.05-1 µg/ml) was able to reverse the LPS-induced increase in colorectal cancer cell viability and colony formation. Mechanistically, dandelion root extracts or TS may inhibit the LPS-promoted toll-like receptor 4 (TLR4)/NFκB-p65 pathway and transcription levels of pro-inflammatory genes (TNFα, IL4 and IL6). Compared with normal colon epithelial cells, human colorectal cancer cells had higher expression levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which could be further enhanced by LPS treatment but this was reversed by co-incubation with dandelion root extracts or TS. In addition, suppression of the TLR4/NFκB-p65 pathway with CLI095 significantly reversed the stimulatory effect of LPS on the expression levels of ACE2 and TMPRSS2, whereas TNFα (10 ng/ml) markedly induced the expression levels of ACE2 and TMPRSS2. In conclusion, the present study suggested that dandelion root extracts and TS could be used as prevention strategies for reversing bacteria-driven colorectal cancer cell viability.
Collapse
Affiliation(s)
- Kerry Yang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Yuehong Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
3
|
Ke J, Zhang CJ, Wang LZ, Xie FS, Wu HY, Li T, Bian CW, Wu RL. Lipopolysaccharide promotes cancer cell migration and invasion through METTL3/PI3K/AKT signaling in human cholangiocarcinoma. Heliyon 2024; 10:e29683. [PMID: 38681552 PMCID: PMC11053196 DOI: 10.1016/j.heliyon.2024.e29683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose As a major structural component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) has been detected in the blood circulation and tissues in patients with chronic diseases and cancers, which plays a critical role in the tumor formation and progression. However, the biological role of LPS in human intrahepatic cholangiocarcinoma remains unclear. The aims of this study were to investigate the role of LPS in the malignant progression of intrahepatic cholangiocarcinoma. Methods The cell migration and invasion capacities of cholangiocarcinoma cell lines were evaluated by Boyden chamber assays. Expression levels of the key molecules involved in the PI3K/AKT signaling and METTL3 were detected by qPCR and western blot. The molecular mechanism by which LPS promotes the malignant behaviors was investigated by using siRNAs, plasmids and small molecule inhibitors. Results In vitro experiments showed that exogenous LPS treatment promoted cell migration and invasion capacities in both QBC939 and HUCCT1 cell lines, while did not affect cell proliferation and apoptosis. Mechanistically, exogenous LPS treatment had been proved to induce the increased expression of METTL3 and activate the downstream PI3K/AKTsignaling pathway. In addition, suppression of METTL3 expression reduced cell proliferation, migration and invasion capacities in both cell lines. Furthermore, inhibition of METTL3 expression or inhibition of PI3K/AKT signaling decreased LPS-induced cell migration and invasion capacities. Moreover, knockdown of METTL3 or inhibition of METTL3 significantly inhibited LPS-induced activation of the PI3K/AKT signaling. Conclusion In general, these results suggest that the LPS-METTL3-PI3K/AKT signal axis promotes cell migration and invasion in ICC, which contributes to a reduced overall survival in patients with ICC. It may broaden the horizon of cancer therapy with potential therapeutic targets.
Collapse
Affiliation(s)
- Jing Ke
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang-jiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lian-zi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng-shuo Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yu Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cong-Wen Bian
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruo-Lin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Wei P, Han W, Zhang Z, Tian X, Yang C, Wang Q, Xie W, Liu Y, Gao Y, Chang H. Microbiota in colorectal cancer related to liver metastasis. Chin J Cancer Res 2024; 36:17-24. [PMID: 38455371 PMCID: PMC10915638 DOI: 10.21147/j.issn.1000-9604.2024.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
The prevalence of colorectal cancer (CRC) is increasing annually and metastasis is the principal cause of death in patients with CRC, with the liver being the most frequently affected site. Many studies have shown a strong interplay between the gut flora, particularly Fusobacterium nucleatum (F. nucleatum), Escherichia coli, and Bacteroides fragilis, and the development of gut tumors. Some strains can induce gut inflammation and produce toxins that directly harm gut epithelial cells, ultimately accelerating the onset and progression of CRC. However, little clinical evidence exists on the specific interplay between the gut microflora and colorectal cancer liver metastasis (CRLM). Some research showed the existence of viable F. nucleatum in distant metastasis of CRC. Subsequently, gut microbiota products, such as lipopolysaccharides, sodium butyrate, and protein cathepsin K, were also found to affect the development of CRC. This article summarizes the mechanism and research status of the interplay between gut microflora and CRLM, discusses the importance of gut microflora in the treatment of CRLM, and proposes a new approach to understanding the mechanism of CRLM and potential treatments for the microbiome. It is anticipated that the gut microbiota will be a formidable therapeutic and prophylactic tool for treating and preventing CRLM.
Collapse
Affiliation(s)
- Peijun Wei
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weiming Han
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zitong Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xue Tian
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen Yang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiaoxuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weihao Xie
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ying Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuanhong Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Chang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
5
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Yin L, Li H, Shi L, Chen K, Pan H, Han W. Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. Int J Cancer 2023; 152:807-821. [PMID: 35984398 DOI: 10.1002/ijc.34256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
The systematic treatment of colorectal cancer (CRC) still has room for improvement. The efficacy of chemotherapy, that of anti-vascular therapy, and that of immunotherapy have been unsatisfactory. In recent years, nanomaterials have been used as carriers to improve the bioavailability of anticancer drugs. For the treatment of colorectal cancer, nanodrugs increase the possibility of more precise targeted delivery. However, the actual benefits may cover more aspects. Nanocarriers can produce synergistic effects with anticancer drugs, including the scavenging of reactive oxygen species and co-delivery of a variety of drugs. Currently, immunotherapy has very limited clinical applications in CRC. Modified nanocarriers can activate the immune microenvironment, which can be used for staging antigen recognition or the immune response. Cancer vaccines based on nanomaterials and modified immune checkpoint inhibitors have shown therapeutic potential in animal models. Considering the direct or indirect relationship between the intestinal microflora and CRC, a variety of nanodrugs that regulate microbial function have been explored as an anticancer strategy, and the special structure of microorganisms can also be used as a basis for improving the delivery of traditional nanoparticles (NPs). This review summarizes recent research performed on nanocarriers in in vivo and in vitro models and the synergistic anticancer effects of nanocarriers, focusing on the interaction between NPs and the body, resulting in enhanced efficacy and immune activation. Furthermore, this review describes the current trend of NPs used in the treatment of CRC.
Collapse
Affiliation(s)
- Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haozhe Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Manilla V, Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship. Microorganisms 2023; 11:microorganisms11020267. [PMID: 36838231 PMCID: PMC9963870 DOI: 10.3390/microorganisms11020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the membrane of gram-negative bacteria and a well-recognized marker of sepsis. In case of disruption of the intestinal barrier, as occurs with unhealthy diets, alcohol consumption, or during chronic diseases, the microbiota residing in the gastrointestinal tract becomes a crucial factor in amplifying the systemic inflammatory response. Indeed, the translocation of LPS into the bloodstream and its interaction with toll-like receptors (TLRs) triggers molecular pathways involved in cytokine release and immune dysregulation. This is a critical step in the exacerbation of many diseases, including metabolic disorders and cancer. Indeed, the role of LPS in cancer development is widely recognized, and examples include gastric tumor related to Helicobacter pylori infection and hepatocellular carcinoma, both of which are preceded by a prolonged inflammatory injury; in addition, the risk of recurrence and development of metastasis appears to be associated with endotoxemia. Here, we review the mechanisms that link the promotion and progression of tumorigenesis with endotoxemia, and the possible therapeutic interventions that can be deployed to counteract these events.
Collapse
Affiliation(s)
- Vittoria Manilla
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Natalia Di Tommaso
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Patel M, McAllister M, Nagaraju R, Badran SSFA, Edwards J, McBain AJ, Barriuso J, Aziz O. The intestinal microbiota in colorectal cancer metastasis – Passive observer or key player? Crit Rev Oncol Hematol 2022; 180:103856. [DOI: 10.1016/j.critrevonc.2022.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
9
|
Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022; 13:1027124. [PMID: 36341334 PMCID: PMC9630919 DOI: 10.3389/fimmu.2022.1027124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Immune checkpoint blockade (ICB) has gained unparalleled success in the treatment of colorectal cancer (CRC). However, undesired side effects, unsatisfactory response rates, tumor metastasis, and drug resistance still hinder the further application of ICB therapy against CRC. Advancing ICB with nanotechnology can be game-changing. With the development of immuno-oncology and nanomaterials, various nanoplatforms have been fabricated to enhance the efficacy of ICB in CRC treatment. Herein, this review systematically summarizes these recent nano-strategies according to their mechanisms. Despite their diverse and complex designs, these nanoplatforms have four main mechanisms in enhancing ICB: 1) targeting immune checkpoint inhibitors (ICIs) to tumor foci, 2) increasing tumor immunogenicity, 3) remodeling tumor microenvironment, and 4) pre-sensitizing immune systems. Importantly, advantages of nanotechnology in CRC, such as innovating the mode-of-actions of ICB, modulating intestinal microbiome, and integrating the whole process of antigen presentation, are highlighted in this review. In general, this review describes the latest applications of nanotechnology for CRC immunotherapy, and may shed light on the future design of ICB platforms.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yucheng Xiang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yaxian Zheng
- Department of Pharmacy, Third People’s Hospital of Chengdu, Chengdu, China
| | - Xin Kang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
10
|
Nandi SK, Basu S, Bhattacharjya A, Ghosh RD, Bose CK, Mukhopadhyay S, Bhattacharya R. Interplay of gut microbiome, fatty acids and the endocannabinoid system in regulating development, progression, immunomodulation and chemoresistance of cancer. Nutrition 2022; 103-104:111787. [DOI: 10.1016/j.nut.2022.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/17/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
|
11
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
12
|
Endotoxin Triggers Tumor Initiation Events in Nontumorigenic Breast Epithelial Cells and Enhances Invasion-Related Phenotype in Pretumorigenic and Tumorigenic Breast Epithelial Cells. Int J Inflam 2021; 2021:4666380. [PMID: 34868543 PMCID: PMC8642002 DOI: 10.1155/2021/4666380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Inflammation is associated with the development of several cancers, including breast cancer. However, the molecular mechanisms driving breast cancer initiation or enhancement by inflammation are yet to be deciphered. Hence, we opted to investigate the role of inflammation in initiating and enhancing tumor-like phenotypes in nontumorigenic, pretumorigenic, and tumorigenic breast epithelial cells. Noncytotoxic endotoxin (ET) concentrations capable of inducing an inflammatory phenotype were determined for the different cell lines. Results showed that short-term ET exposure upregulated matrix metalloproteinase-9 (MMP-9) activity in nontumorigenic mammary epithelial cells of mouse (SCp2) and human origins (HMT-3522 S1; S1) and upregulated inflammatory mediators including nitric oxide (NO) and interleukin 1-β in tumorigenic human breast cells (MDA-MB-231), all in a dose-dependent manner. Long-term ET treatment, but not short-term, triggered the migration of SCp2 cells, and proliferation and migration of tumorigenic human breast cells MCF-7 and MDA-MB-231. Both short- and long-term ET exposures preferentially enhanced the invasion of pretumorigenic S1-connexin 43 knockout (Cx43-KO S1) cells compared to their nontumorigenic S1 counterparts. Moreover, both ET exposures disrupted lumen formation and apicolateral distribution of β-catenin in 3D cultures of S1 cells. In conclusion, ET treatment at concentrations that elicited inflammatory phenotype triggered tumor initiation events in nontumorigenic and pretumorigenic breast cells, and increased tumorigenicity of breast cancer cells. Our findings highlight the role of inflammation in enhancing migration, invasion, and loss of normal 3D morphology and suggest that such inflammatory insults can "add injury" to pretumorigenic and tumorigenic breast epithelial cells.
Collapse
|
13
|
Shende P, Gupta S. Role of lipopolysaccharides in potential applications of nanocarrier systems. Curr Pharm Des 2021; 28:1000-1010. [PMID: 34818999 DOI: 10.2174/1381612827666211124094302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. OBJECTIVE This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. METHODS A narrative review of all the relevant papers known to the author was conducted. CONCLUSION Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| | - Shubham Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| |
Collapse
|
14
|
Panyathep A, Punturee K, Chewonarin T. Gamma-Oryzanol-Rich Fraction from Purple Rice Extract Attenuates Lipopolysaccharide-Stimulated Inflammatory Responses, Migration and VEGFA Production in SW480 Cells via Modulation of TLR4 and NF-κB Pathways. Nutr Cancer 2021; 74:2254-2264. [PMID: 34766845 DOI: 10.1080/01635581.2021.2002921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inflammatory response facilitating colorectal cancer (CRC) progression is a serious event following operative infection, which can occur in CRC patients. This event is mainly mediated by bacterial lipopolysaccharide (LPS), via a toll like receptor 4 (TLR4) and NF-κB. Hexane soluble fraction (HSF) from purple rice extract (PRE) has been identified as a γ-oryzanol (OR)-rich fraction. Recently, HSF possessed inhibitory effect of LPS-stimulated metastasis of human colon cancer SW480 cells, however the related mechanism was unknown. Thus, this study aimed to investigate the effect of HSF on inflammatory response-associated cancer progression of LPS-stimulated SW480 cells. The various inflammatory mediators, vascular endothelial growth factor-A (VEGFA) and related pathways were evaluated by Western blot and ELISA. Furthermore, cell migration was also determined by migration assays. Of all, HSF seemed to be stronger than OR to attenuate the responsiveness of LPS on various inflammatory mediators, which was related to an obvious reduction of cancer cell migration as well as indistinct disruption on VEGFA production in SW480 cells, via downregulation of TLR4 and NF-κB. Therefore, OR-rich fraction from PRE, against the subsequent inflammatory response and CRC progression following surgery, which could be combined with conventional treatments to increase the survival rate.
Collapse
Affiliation(s)
- Atita Panyathep
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Khanittha Punturee
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculties of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Tumor Microenvironment in Metastatic Colorectal Cancer: The Arbitrator in Patients' Outcome. Cancers (Basel) 2021; 13:cancers13051130. [PMID: 33800796 PMCID: PMC7961499 DOI: 10.3390/cancers13051130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer accounts for approximately 10% of all annually diagnosed cancers worldwide being liver metastasis, the most common cause of death in patients with colorectal cancer. The interplay between tumor and stromal cells in the primary tumor microenvironment and at distant metastases are rising in importance as potential mechanisms of the tumor progression. In this review we discuss the new biomarkers derived from tumor microenvironment and liquid biopsy as emerging prognostic and treatments response markers for metastatic colorectal cancer. We also review the developing new clinical strategies based on tumor microenvironmental cells to tackle metastatic disease in metastatic colorectal cancer patients. Abstract Colorectal cancer (CRC) is one of the most common cancers in western countries. Its mortality rate varies greatly, depending on the stage of the disease. The main cause of CRC mortality is metastasis, which most commonly affects the liver. The role of tumor microenvironment in tumor initiation, progression and metastasis development has been widely studied. In this review we summarize the role of the tumor microenvironment in the liver pre-metastatic niche formation, paying attention to the distant cellular crosstalk mediated by exosomes. Moreover, and based on the prognostic and predictive capacity of alterations in the stromal compartment of tumors, we describe the role of tumor microenvironment cells and related liquid biopsy biomarkers in the delivery of precise medication for metastatic CRC. Finally, we evaluate the different clinical strategies to prevent and treat liver metastatic disease, based on the targeting of the tumor microenvironment. Specifically, targeting angiogenesis pathways and regulating immune response are two important research pipelines that are being widely developed and promise great benefits.
Collapse
|
17
|
Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R. A Holistic Appraisal of Stromal Differentiation in Colorectal Cancer: Biology, Histopathology, Computation, and Genomics. Pathol Res Pract 2021; 220:153378. [PMID: 33690050 DOI: 10.1016/j.prp.2021.153378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Cancer comprises epithelial tumor cells and associated stroma, often times referred to as the "tumoral microenvironment". Cancer-associated fibroblasts (CAFs) are the most notable components of the tumor mesenchyme. CAFs promote the initiation of cancer through angiogenesis, invasion and metastasis. Histologically, the differentiation of stroma has been reported to correlate with prognostic outcomes in patients with colorectal cancer. This review summarizes our current understanding of the extracellular matrix (ECM) in colorectal carcinoma (CRC), showcasing the functions of CAFs and its role in stromal differentiation (SD). We also review current state-of-the-art biology, histopathology, computation, and genomics in the setting of the stroma. SD is distinctive morphologically, and is easily recognized by a surgical pathologist; we offer a lexicon and guide for discovering the essence of stroma, as well as an incipient vision of the future for computation and molecular genomics. We propose that the mesenchymal phenotype, which encompasses a cancer migratory/metastatic capacity, could occur through the process of SD. Looking forward, pathologists will need to invest time and energy into SD, embracing the concept and propagating its use. For patients with colorectal cancer, stroma is a brave new frontier, one not only rich in biologic diversity, but also potentially critical for therapeutic decision making.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States.
| | - Baidarbhi Chakraborty
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | | | - Taisia Vitkovski
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Rebecca Thomas
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| |
Collapse
|
18
|
Chu XD, Zhang YR, Lin ZB, Zhao Z, Huangfu SC, Qiu SH, Guo YG, Ding H, Huang T, Chu XL, Pan JH, Pan YL. A network pharmacology approach for investigating the multi-target mechanisms of Huangqi in the treatment of colorectal cancer. Transl Cancer Res 2021; 10:681-693. [PMID: 35116401 PMCID: PMC8798599 DOI: 10.21037/tcr-20-2596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer globally. In the treatment of CRC, surgical resection is commonly adopted, and neoadjuvant chemotherapy or immunotherapy is mainly administered for patients with advanced disease. However, despite the developments in the field of cancer treatment, the mortality rate of CRC has remained high. Therefore, novel treatments for CRC need to be explored. Astragalus membranaceus, commonly known in China as Huangqi (HQ), a traditional Chinese medicine, has been reported to be a potential antitumorigenic agent. This study aimed to investigate the mechanisms of action of HQ. METHODS Active ingredients and putative targets of HQ were obtained through a comprehensive search of the Traditional Chinese Medicine Systems Pharmacology database. CRC-related targets were retrieved from the GeneCards database and then overlapping targets were acquired. After visualization of the compound-disease network and protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the overlapping genes were performed. Additionally, HCT116 cells were treated with the active components of HQ at a 20-µM concentration. Cell Counting Kit-8 was used to detect cell activity, and real-time quantitative polymerase chain reaction was carried out to detect the expression of genes downstream of the interleukin (IL)-17 signaling pathway. RESULTS A PPI network comprising 177 nodes and 318 edges was obtained. The GO analysis of the overlapping genes showed enrichment in response to lipopolysaccharide and oxidative process. For the KEGG analysis, the AGE-RAGE signaling pathway and inflammation-related pathways, such as the IL-17 and tumor necrosis factor (TNF) signaling pathways, were enriched. The in vitro experiments showed that HQ promoted the apoptosis of CRC cells by inhibiting the expression of the CCL2, CXCL8, CXCL10, and PTGS2 genes. CONCLUSIONS This study systematically revealed the multitarget mechanism of HQ in CRC through a network pharmacology approach. We verified that HQ promotes CRC cell death via the IL-17 signaling pathway. This finding provides indications for further mechanistic studies and the development of HQ as a potential treatment for CRC patients.
Collapse
Affiliation(s)
- Xiao-Dong Chu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Ran Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng-Bin Lin
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhan Zhao
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Chen Huangfu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sheng-Hui Qiu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan-Guan Guo
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Clinical Pathology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Li Chu
- School of Economics and Management, Xidian University, Xi’an, China
- Center of Network, Guangdong AIB Polytechnic, Guangzhou, China
| | - Jing-Hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Sugioka K, Fukuda K, Nishida T, Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp Eye Res 2021; 204:108459. [PMID: 33493476 DOI: 10.1016/j.exer.2021.108459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea is a relatively unique tissue in the body in that it possesses specific features such as a lack of blood vessels that contribute to its transparency. The cornea is supplied with soluble blood components such as albumin, globulin, and fibrinogen as well as with nutrients, oxygen, and bioactive substances by diffusion from aqueous humor and limbal vessels as well as a result of its exposure to tear fluid. The healthy cornea is largely devoid of cellular components of blood such as polymorphonuclear leukocytes, monocytes-macrophages, and platelets. The location of the cornea at the ocular surface renders it susceptible to external insults, and its avascular nature necessitates the operation of healing and defense mechanisms in a manner independent of a direct blood supply. The fibrinolytic system, which was first recognized for its role in the degradation of fibrin clots in the vasculature, has also been found to contribute to various biological processes outside of blood vessels. Fibrinolytic factors thus play an important role in biological defense of the cornea. In this review, we address the function of the fibrinolytic system in corneal defense including wound healing and the inflammatory response.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan.
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku City, Kochi, 783-8505, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan; Division of Cornea and Ocular Surface, Ohshima Eye Hospital, 11-8 Kamigofukumachi, Hakata-ku, Fukuoka City, Fukuoka, 812-0036, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan
| |
Collapse
|
20
|
Wang Y, Wan X, Wu X, Zhang C, Liu J, Hou S. Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathog 2021; 13:2. [PMID: 33436075 PMCID: PMC7805161 DOI: 10.1186/s13099-020-00396-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease caused by microbial dysbiosis is an important factor contributing to colorectal cancer (CRC) initiation. The 'driver-passenger' model in human gut microbial dysbiosis suggests that 'driver' bacteria may colonize with low relative abundance on tumor site but persistently induce chronic change in normal intestinal epithelium and initiate CRC. They are gradually replaced by 'passenger' bacteria later on, due to their low adaptability to the on-tumor site niche. RESULTS To reveal site-specific bacterial taxon markers in CRC patients, we analyzed the gut mucosal microbiome of 75 paired samples of on-tumor and tumor-adjacent sites, 75 off-tumor sites, and 26 healthy controls. Linear discriminant analysis of relative abundance profiles revealed unique bacterial taxon distribution correlated with specific tumor sites, with Eubacterium having the distribution characteristic of potential driver bacteria. We further show that Eubacterium rectale endotoxin activates the transcription factor NF-κΒ, which regulates multiple aspects of innate and adaptive immune responses in normal colon epithelial cells. Unlike the 'passenger' bacterium Fusobacterium nucleatum, E. rectale promotes dextran sodium sulfate-induced colitis in Balb/c mice. CONCLUSIONS Our findings reveal that E. rectale functions as a 'driver' bacterium and contributes to cancer initiation via promoting inflammation.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300071, China
| | - Xiaojing Wu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Chunze Zhang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China
| | - Jun Liu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, No. 190 Jieyuan Rd., Hongqiao district, Tianjin, 300121, China.
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics, and Bioinformatics, University of Hawaii At Manoa, 2538 McCarthy Mall, Snyder Hall, Honolulu, HI, 96822, USA.
| |
Collapse
|
21
|
Ohadi E, Bakhshi B, Talebi M, Irajian G. A genomic concept in cellular interaction of clinical Campylobacter spp. with human epithelial colorectal adenocarcinoma cells. INFECTION GENETICS AND EVOLUTION 2020; 86:104596. [PMID: 33075509 DOI: 10.1016/j.meegid.2020.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to realize the genomic concept of cellular interaction of clinical Campylobacter spp. with human epithelial colorectal adenocarcinoma cells. It was indicated that the mean adherence and invasion rate of C.jejuni isolates was significantly higher than C.coli and the highest adhesion rate among the C.jejuni and C.coli belonged to strains harboring 4 (flaA, cadF, peb1A, and flpA) and 3 (flaA, cadF, and peb1A) adherence genes, respectively, which indicates that the adhesion potential of C.coli and C.jejuni strains is associated with the coordinate function and cumulative effect of selected virulence-associated genes. The highest invasion rate in C.jejuni (10.3%) and C.coli (8.4%) isolates belonged to strains which concomitantly contained 3 (ciaB, iamA, and tlp1) and 2 (ciaB and iamA) invasion-associated genes which emphasizes on the cooperative roles of these genes in C.jejuni and C.coli invasion to Caco-2 cells. The toxicity of C.jejuni for Caco-2 cells was proved higher than that of C.coli. There was a positive correlation between adherence, invasion and toxicity of both C.jejuni and C.coli isolates. Moreover, the expression levels of CDT-producing genes in C.jejuni strains was significantly higher than that of C.coli. The average cytotoxicity of the strains with all three CDT-encoding genes (cdtA, cdtB and cdtC) was statistically higher than those lacking one or more CDT subunits. A crucial contribution of CdtB to the cytotoxicity of Campylobacter strains was detected. Following the treatment of epithelial cells with C.jejuni or C.coli, IL-8 and TNF-α were significantly increased compared to untreated Caco-2 cells, and the highest IL-8 expression was observed in both C.jejuni and C.coli expressing all CDTs (cdtA, cdtB, and cdtC). We, for the first time, indicated the major contribution of TLR2 and TLR4 in campylobacter initiation of pathogenesis, while increased invasiveness and cytotoxicity was significantly associated with the increased expression of TLR4 in C.jejuni isolates.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maliheh Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Panyathep A, Chewonarin T. Inhibitory effect of a gamma-oryzanol-rich fraction from purple rice extract on lipopolysaccharide-induced metastasis in human colon cancer cells. J Food Biochem 2020; 44:e13487. [PMID: 33029825 DOI: 10.1111/jfbc.13487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023]
Abstract
The incidence of colon cancer recurrence and metastasis is known to increase as an adverse effect related to postoperative infection. Lipopolysaccharide or LPS, which is derived from gram-negative bacteria, is a key inducer of inflammatory-related tumor metastasis. Although there are numerous known biological effects of purple rice extract (PRE), its protective effect on colon metastasis was unknown. This study first evaluated the effects of hexane soluble fraction (HSF) or γ-oryzanol-rich fraction of PRE on LPS-induced colon cancer adhesion and invasion, which was accomplished using adhesive and invasive assay. Gelatin zymography was also utilized for gelatinase activity and secretion. Its chelating activity was also further analyzed by reverse gelatin zymography with zinc chloride. The study findings support the synergistic effect of HSF in protection against adverse events from LPS-induced colon cancer metastasis, as shown by effects on adhesive and invasive ability as well as matrix metalloproteinase-2 secretion and activity. PRACTICAL APPLICATIONS: Bacterial infection is still one of the main adverse events following abdominal cancer surgery and is associated with an increased incidence of colon cancer metastasis. Lipopolysaccharide (LPS) is a major component of this pathogen-mediated response. This first study investigated the efficiency of a gamma-oryzanol (OR) rich fraction, collected from purple rice extract (PRE), against LPS-induced colon cancer metastasis that occurs via three main steps; adhesion to the extracellular matrix, the secretion, and activity of gelatinase and further tissue invasion. The acquired data supported the role of an OR-rich fraction from PRE as a potential inhibitor to LPS-induced colon cancer progression. This finding, related to PRE, could be further developed to create a new adjunctive treatment to reduce operative complications related to bowel cancer surgery as well as increasing the value of this crop in Thailand.
Collapse
Affiliation(s)
- Atita Panyathep
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Urokinase-type plasminogen activator receptor is required for impairing toll-like receptor 7 signaling on macrophage efferocytosis in lupus. Mol Immunol 2020; 127:38-45. [PMID: 32911323 DOI: 10.1016/j.molimm.2020.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023]
Abstract
The accumulation of apoptotic cells is one of the pathological characteristics of systemic lupus erythematosus (SLE). The expression of urokinase-type plasminogen activator receptor (uPAR) has been reported to be increased in SLE patients and to be involved in macrophage efferocytosis. Although the toll-like receptor 7 (TLR7) is also over-expressed in lupus, its relationship to uPAR and its role in macrophage efferocytosis in lupus is still unclear. In the present study, we revealed that apoptotic cells accumulate in the spleen, macrophage efferocytosis is impaired, and uPAR is increased in the spleen and peritoneal macrophages of the TLR7 agonist imiquimod (IMQ)-induced SLE mouse model. Moreover, TLR7 upregulated uPAR expression in the mouse macrophage RAW 264.7 cells in vitro. The same results were also obtained using peritoneal macrophages of female Balb/c mice. When uPAR levels in peritoneal macrophages were knocked down by siRNA or inhibited by the peptide inhibitor UPARANT, and cells further treated with the TLR7 agonist R848, efferocytosis of peritoneal macrophages on apoptotic cells was restored. These results indicated that TLR7 activation impaired efferocytosis via uPAR in mouse peritoneal macrophages. Furthermore, TLR7 regulated uPAR expression via ERK/JNK signaling in macrophages. These results suggest that uPAR may be an important factor related to the accumulation of apoptotic cells in SLE.
Collapse
|
24
|
Ye P, Xi Y, Huang Z, Xu P. Linking Obesity with Colorectal Cancer: Epidemiology and Mechanistic Insights. Cancers (Basel) 2020; 12:cancers12061408. [PMID: 32486076 PMCID: PMC7352519 DOI: 10.3390/cancers12061408] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of obesity and colorectal cancer (CRC) has risen rapidly in recent decades. More than 650 million obese and 2 billion overweight individuals are currently living in the world. CRC is the third most common cancer. Obesity is regarded as one of the key environmental risk factors for the pathogenesis of CRC. In the present review, we mainly focus on the epidemiology of obesity and CRC in the world, the United States, and China. We also summarize the molecular mechanisms linking obesity to CRC in different aspects, including nutriology, adipokines and hormones, inflammation, gut microbiota, and bile acids. The unmet medical needs for obesity-related CRC are still remarkable. Understanding the molecular basis of these associations will help develop novel therapeutic targets and approaches for the treatment of obesity-related CRC.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China;
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-412-708-4694
| |
Collapse
|
25
|
Gasser M, Lissner R, Nawalaniec K, Hsiao LL, Waaga-Gasser AM. KMP01D Demonstrates Beneficial Anti-inflammatory Effects on Immune Cells: An ex vivo Preclinical Study of Patients With Colorectal Cancer. Front Immunol 2020; 11:684. [PMID: 32425932 PMCID: PMC7205007 DOI: 10.3389/fimmu.2020.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is frequently associated with dysbiosis of the gut microbiome which, together with a compromised gut barrier, can result in perioperative endotoxin leakage into the circulation. Constant local and systemic inflammatory activity is suggested to facilitate metastases formation. Previous studies have pointed to the capacity of a colostrum preparation to neutralize endotoxins within the gastrointestinal tract which could ameliorate associated inflammatory responses and tumor recurrence in affected patients. This study aimed to examine the effects of the colostrum preparation, KMP01D, on the inflammatory activity of patient-derived immune cells. Methods: The effects of KMP01D on pro-/anti-inflammatory cytokine responses and apoptosis were examined ex vivo using immune cells from CRC patients (stages I-IV, n = 48). The expression of CD14, CD68, Toll-like receptor (TLR)4, and insulin-like growth factor (IGF)-1 was also analyzed. Results: KMP01D increased interleukin (IL)-10 and IL-13 anti-inflammatory cytokine expression in patient-derived peripheral blood mononuclear cells (PBMCs). Interestingly, KMP01D also decreased the secretion of IL-1β, IL-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-12 inflammatory cytokines, and IGF-1 in these cells. Moreover, CD14 and TLR4 expression involved in endotoxin signaling was downregulated in PBMCs and tumor-derived cells. Apoptosis of immune cells and tumor-derived cells was likewise enhanced with KMP01D. Addition of vitamin D3 as a cofactor demonstrated enhanced anti-inflammatory effects. Conclusions: KMP01D demonstrated beneficial ex vivo effects on inflammatory cytokine responses in PBMCs and enhanced apoptosis of immune cells from CRC patients. In line with previous clinical trials, we present new evidence endorsing KMP01D as a treatment strategy to regulate stage-dependent local and systemic inflammation in CRC patients.
Collapse
Affiliation(s)
- Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Reinhard Lissner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Karol Nawalaniec
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Marceca GP, Londhe P, Calore F. Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Front Oncol 2020; 10:298. [PMID: 32195193 PMCID: PMC7064558 DOI: 10.3389/fonc.2020.00298] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome characterized by systemic inflammation, uncontrolled weight loss and dramatic metabolic alterations. This includes myofibrillar protein breakdown, increased lipolysis, insulin resistance, elevated energy expediture, and reduced food intake, hence impairing the patient's response to anti-cancer therapies and quality of life. While a decade ago the syndrome was considered incurable, over the most recent years much efforts have been put into the study of such disease, leading to the development of potential therapeutic strategies. Several important improvements have been reached in the management of CC from both the diagnostic-prognostic and the pharmacological viewpoint. However, given the heterogeneity of the disease, it is impossible to rely only on single variables to properly treat patients presenting this metabolic syndrome. Moreover, the cachexia symptoms are strictly dependent on the type of tumor, stage and the specific patient's response to cancer therapy. Thus, the attempt to translate experimentally effective therapies into the clinical practice results in a great challenge. For this reason, it is of crucial importance to further improve our understanding on the interplay of molecular mechanisms implicated in the onset and progression of CC, giving the opportunity to develop new effective, safe pharmacological treatments. In this review we outline the recent knowledge regarding cachexia mediators and pathways involved in skeletal muscle (SM) and adipose tissue (AT) loss, mainly from the experimental cachexia standpoint, then retracing the unimodal treatment options that have been developed to the present day.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Xing WY, Zhang ZH, Xu S, Hong Q, Tian QX, Ye QL, Wang H, Yu DX, Xu DX, Xie DD. Calcitriol inhibits lipopolysaccharide-induced proliferation, migration and invasion of prostate cancer cells through suppressing STAT3 signal activation. Int Immunopharmacol 2020; 82:106346. [PMID: 32120344 DOI: 10.1016/j.intimp.2020.106346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidence suggests that infection promotes the initiation and progression of prostate cancer. This study investigated the effects of lipopolysaccharide (LPS), a major component of Gram-negative bacilli, on proliferation, migration and invasion of prostate cancer cells and the protective effects of 1α,25(OH)2D3 (calcitriol). PC-3 and DU145 cells were stimulated with LPS (2.0 μg/mL) in the presence or absence of 1α,25(OH)2D3 (100 nM). Our results shown that 1α,25(OH)2D3 reduced the proportion of S phase cells in LPS-stimulated PC-3 and DU145 cells, and down-regulated the nuclear protein levels of Cyclin D1 and PCNA in LPS-stimulated PC-3 cells. In addition, 1α,25(OH)2D3 inhibited migration and invasion, as determined by wound healing and transwell assay, in LPS-stimulated PC-3 and DU145 cells. Of interest, we observed that 1α,25(OH)2D3 inhibits NF-κB activation and subsequent synthesis and secretion of IL-6 and IL-8 by promoting VDR and NF-κB p65 interaction. Surprisingly, 1α,25(OH)2D3 blocks nuclear translocation of pSTAT3 by promoting physical interaction between VDR and pSTAT3 (Tyr705) in LPS-stimulated PC-3 and DU145 cells. These results suggest that 1α,25(OH)2D3 inhibits LPS-induced proliferation, migration and invasion in prostate cancer cells by directly and indirectly blocking STAT3 signal transduction.
Collapse
Affiliation(s)
- Wei-Yang Xing
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qian Hong
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qi-Xing Tian
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qing-Lin Ye
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
28
|
Sharma Y, Bala K. Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 2020; 14:456. [PMID: 32477468 PMCID: PMC7246341 DOI: 10.4081/oncol.2020.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common type of head and neck squamous cell carcinoma and one of the multifactorial process that consists of most contributing factors such as tobacco smoking, chewing and alcohol consumption that altered the intracellular environment. Recent studies have shown relevance of Toll like receptor (TLR) associated with carcinogenesis. This review aim’s to explore that how TLR associates with progression and suppression of OSCC. This review is a classical review that has confined to articles published in the past 19 years (i.e. 2000-2019) and has summarized the perspective of the authors. 62 articles were reviewed and it was found that progression and suppression of OSCC is associated with different TLRs promoting tumor development and also inhibiting the progression of oral neoplasm. It was found that TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9 are associated with tumor development i.e. in progression of OSCC, where as suppression of OSCC through TLR3 and TLR7. We authors would like to conclude that literature survey has indicated effective TLR’s against OSCC development and can be explored to investigate other TLRs that can be used for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020; 24:44-52. [PMID: 32158615 PMCID: PMC7048231 DOI: 10.1080/19768354.2020.1726811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
30
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Song W, Tiruthani K, Wang Y, Shen L, Hu M, Dorosheva O, Qiu K, Kinghorn KA, Liu R, Huang L. Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805007. [PMID: 30387230 PMCID: PMC6580426 DOI: 10.1002/adma.201805007] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Indexed: 05/09/2023]
Abstract
The development and progression of colorectal cancer (CRC) is closely related to gut microbiome. Here, the impact of lipopolysaccharide (LPS), one of the most prevalent products in the gut microbiome, on CRC immunotherapy is investigated. It is found that LPS is abundant in orthotopic CRC tissue and is associated with low responses to anti-PD-L1 mAb therapy, and clearance of Gram-negative bacteria from the gut using polymyxin B (PmB) or blockade of Toll-like receptor 4 using TAK-242 will both relieve the immunosuppressive microenvironment and boost T-cell infiltration into the CRC tumor. Further, an engineered LPS-targeting fusion protein is designed and its coding sequence is loaded into a lipid-protamine-DNA (LPD) nanoparticle system for selective expression of LPS trap protein and blocking LPS inside the tumor, and this nanotrapping system significantly relieves the immunosuppressive microenvironment and boosts anti-PD-L1 mAb therapy against CRC tumors. This LPS trap system even attenuates CRC liver metastasis when applied, suggesting the importance of blocking LPS in the gut-liver axis. The strategy applied here may provide a useful new way for treating CRC as well as other epithelial cancers that interact with mucosa microbiome.
Collapse
Affiliation(s)
- Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Oleksandra Dorosheva
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karina A Kinghorn
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
Riaz Rajoka MS, Zhao H, Li N, Lu Y, Lian Z, Shao D, Jin M, Li Q, Zhao L, Shi J. Origination, change, and modulation of geriatric disease-related gut microbiota during life. Appl Microbiol Biotechnol 2018; 102:8275-8289. [PMID: 30066188 DOI: 10.1007/s00253-018-9264-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
The age-related changes in the diversity and composition of the gut microbiota are well described in recent studies. These changes have been suggested to be influenced by age-associated weakening of the immune system and low-grade chronic inflammation, resulting in numerous age-associated pathological conditions. Gut microbiota homeostasis is important throughout the life of the host by providing vital functions to regulate various immunological functions and homeostasis. Based on published results, we summarize the relationship between the gut microbiota and aging-related diseases, especially Parkinson's disease, immunosenescence, rheumatoid arthritis, bone loss, and metabolic syndrome. The change in composition of the gut microbiota and gut ecosystem during life and its influence on the host immunologic and metabolic phenotype are also analyzed to determine factors that affect aging-related diseases. Approaches to maintain host health and prevent or cure geriatric diseases are also discussed.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Na Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Yao Lu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
33
|
Redmond HP, Neary PM, Jinih M, O'Connell E, Foley N, Pfirrmann RW, Wang JH, O'Leary DP. RandomiSed clinical trial assessing Use of an anti-inflammatoRy aGent in attenUating peri-operatiVe inflAmmatioN in non-meTastatic colon cancer - the S.U.R.G.U.V.A.N.T. trial. BMC Cancer 2018; 18:794. [PMID: 30081854 PMCID: PMC6091184 DOI: 10.1186/s12885-018-4641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
Background Peri-operative inflammation has been extensively highlighted in cancer patients as detrimental. Treatment strategies to improve survival for cancer patients through targeting peri-operative inflammation have yet to be devised. Methods We conducted a multi-centre, randomised controlled clinical trial using Taurolidine in non-metastatic colon cancer patients. Patients were randomly assigned to receive Taurolidine or a placebo. The primary endpoint for the study was the mean difference in day 1 IL-6 levels. Secondary clinical endpoints included rates of post-operative infections and tumor recurrence. Results A total of 293 patients were screened for trial inclusion. Sixty patients were randomised. Twenty-eight patients were randomised to placebo and 32 patients to Taurolidine. IL-6 levels were equivalent on day 1 post-operatively in both groups. However, IL-6 levels were significantly attenuated over the 7 day study period in the Taurolidine group compared to placebo (p = 0.04). In addition, IL-6 levels were significantly lower at day 7 in the Taurolidine group (p = 0.04). There were 2 recurrences in the placebo group at 2 years and 1 in the Taurolidine group. The median time to recurrence was 19 months in the Placebo group and 38 months in the Taurolidine group (p = 0.27). Surgical site infection was reduced in the Taurolidine treated group (p = 0.09). Conclusion Peri-operative use of Taurolidine significantly attenuated circulating IL-6 levels in the initial 7 day post-operative period in a safe manner. Future studies are required to establish the impact of IL-6 attenuation on survival outcomes in colon cancer. Trial registration The trial was registered with EudraCT (year = 2008, registration number = 005570–12) and ISRCTN (year = 2008, registration number = 77,829,558).
Collapse
Affiliation(s)
- H Paul Redmond
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Peter M Neary
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Marcel Jinih
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Emer O'Connell
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Niamh Foley
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Rolf W Pfirrmann
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - Jiang H Wang
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland
| | - D Peter O'Leary
- Surguvant Research Centre, Cork University Hospital, Cork, Ireland.
| |
Collapse
|
34
|
Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Dissemination of cancer cells from the primary tumor and their spread to distant sites of the body is the leading cause of mortality in metastatic cancer patients. Metastatic cancer cells invade surrounding tissues and blood vessels by forming F-actin-rich protrusions known as invadopodia, which degrade the extracellular matrix and enable invasion of tumor cells through it. Invadopodia have now been observed in vivo, and recent evidence demonstrates direct molecular links between assembly of invadopodia and cancer metastasis in both mouse models and in human patients. While significant progress has been achieved in the last decade in understanding the molecular mechanisms and signaling pathways regulating invadopodia formation and function, the application of this knowledge to development of prognostic and therapeutic approaches for cancer metastasis has not been discussed before. Here, we provide a detailed overview of current prognostic markers and tests for cancer metastasis and discuss their advantages, disadvantages, and their predicted efficiency. Using bioinformatic patient database analysis, we demonstrate, for the first time, a significant correlation between invadopodia-associated genes to breast cancer metastasis, suggesting that invadopodia could be used as both a prognostic marker and as a therapeutic target for blocking cancer metastasis. We include here a novel network interaction map of invadopodia-associated proteins with currently available inhibitors, demonstrating a central role for the recently identified EGFR-Pyk2-Src-Arg-cortactin invadopodial pathway, to which re-purposing of existent inhibitors could be used to block breast cancer metastasis. We then present an updated overview of current cancer-related clinical trials, demonstrating the negligible number of trials focusing on cancer metastasis. We also discuss the difficulties and complexity of performing cancer metastasis clinical trials, and the possible development of anti-metastasis drug resistance when using a prolonged preventive treatment with invadopodia inhibitors. This review presents a new perspective on invadopodia-mediated tumor invasiveness and may lead to the development of novel prognostic and therapeutic approaches for cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
35
|
Role of TOPK in lipopolysaccharide-induced breast cancer cell migration and invasion. Oncotarget 2018; 8:40190-40203. [PMID: 28212583 PMCID: PMC5522254 DOI: 10.18632/oncotarget.15360] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation has been known to be linked to invasion or metastasis of breast cancer, which has poor prognosis, although the regulatory mechanism remains to be undiscovered. Here we show that T-LAK cell-originated protein kinase (TOPK) mediates pro-inflammatory endotoxin lipopolysaccharide (LPS)-induced breast cancer cell migration and invasion. The mRNA or protein level of TOPK, toll- like receptor4 (TLR4), interleukin (IL)-6, vascular endothelial growth factor (VEGF) or matrix metalloproteinase9 (MMP9) genes related to TLR4 signaling or tumor progression was induced by LPS treatment in MCF7 breast cancer cells, but the induction was abolished by stable knocking down of TOPK in MCF7 cells. Also, TOPK depletion decreased LPS-induced phosphorylation of p38, but not ERK and JNK among mitogen-activated protein kinases (MAPKs). On the other hand, we revealed that TOPK is essential for transcriptional activity of NF-κB or MMP9 promoter triggered by LPS. The induced promoter activity of NF-κB or MMP9 but not AP-1 was inhibited by knocking down of TOPK. Furthermore, we demonstrated that inhibitor of TOPK or MMP9 as well as MMP9 siRNA efficiently blocked LPS-induced migration or invasion of breast cancer cell lines. Interestingly, both of expression of TOPK and TLR4 were markedly increased in high-grade breast cancer. Collectively, we conclude that TOPK functions as a key mediator of LPS/TLR4-induced breast cancer cell migration and invasion through regulation of MMP9 expression or activity, implying a potential role of TOPK as a therapeutic target linking LPS-induced inflammation to breast cancer development.
Collapse
|
36
|
Khajeh Alizadeh Attar M, Anwar MA, Eskian M, Keshavarz-Fathi M, Choi S, Rezaei N. Basic understanding and therapeutic approaches to target toll-like receptors in cancerous microenvironment and metastasis. Med Res Rev 2017; 38:1469-1484. [PMID: 29283184 DOI: 10.1002/med.21480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane components that sense danger signals, like damage- and pathogen-associated molecular pattern molecules, as receptors, and maintain homeostasis in tissues. They are mainly involved in immune system activation through a variety of mediators, which either carry out (1) elimination of pathogenic threats and redressing homeostatic imbalances or (2) contribution to the initiation and worsening of pathological conditions, including cancers. Under physiological conditions, TLRs coordinate the innate and adaptive immunity, and inhibit autoimmune disorders. In pathological conditions, such as cancer, they can present both tumor and receptor-specific roles. Although the roles of individual TLRs in various cancers have been described, the effects of targeting TLRs to treat cancer and prevent metastasis are still controversial. A growing body of literature has suggested contribution of both activators and inhibitors of TLR signaling pathway for cancer treatment, dependent on several context-specific factors. In short, TLRs can play dual roles with contradictory outcomes in neoplastic conditions. This hampers the development of TLR-based therapeutic interventions. A better understanding of the interwoven TLR pathways in cancerous microenvironment is necessary to design TLR-based therapies. In this review, we consider the molecular mechanisms of TLRs signaling and their involvement in tumor progression. Therapeutic modalities targeting TLRs for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Mojtaba Khajeh Alizadeh Attar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, United Kingdom
| |
Collapse
|
37
|
Mukherjee S, Ramesh A. Dual-label flow cytometry-based host cell adhesion assay to ascertain the prospect of probiotic Lactobacillus plantarum in niche-specific antibacterial therapy. MICROBIOLOGY-SGM 2017; 163:1822-1834. [PMID: 29091578 DOI: 10.1099/mic.0.000561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Host cell adhesion assays that provide quantitative insight on the potential of lactic acid bacteria (LAB) to inhibit adhesion of intestinal pathogens can be leveraged for the development of niche-specific anti-adhesion therapy. Herein, we report a dual-colour flow cytometry (FCM) analysis to assess the ability of probiotic Lactobacillus plantarum strains to impede adhesion of Enterococcus faecalis, Listeria monocytogenes and Staphylococcus aureus onto HT-29 cells. FCM in conjunction with a hierarchical cluster analysis could discern the anti-adhesion potential of L. plantarum strains, wherein the efficacy of L. plantarum DF9 was on a par with the probiotic L. rhamnosus GG. Combination of FCM with principal component analysis illustrated the relative influence of LAB strains on adhesion parameters kd and em of the pathogen and identified probiotic LAB suitable for anti-adhesion intervention. The analytical merit of the FCM analysis was captured in host cell adhesion assays that measured relative elimination of adhered LAB vis-à-vis pathogens, on exposure to either LAB bacteriocins or therapeutic antibiotics. It is envisaged that the dual-colour FCM-based adhesion assay described herein would enable a fundamental understanding of the host cell adhesion process and stimulate interest in probiotic LAB as safe anti-adhesion therapeutic agents against gastrointestinal pathogens.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
38
|
Bugge M, Bergstrom B, Eide OK, Solli H, Kjønstad IF, Stenvik J, Espevik T, Nilsen NJ. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 2017; 292:15408-15425. [PMID: 28717003 PMCID: PMC5602399 DOI: 10.1074/jbc.m117.784090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) are innate immune receptors for sensing microbial molecules and damage-associated molecular patterns released from host cells. Double-stranded RNA and the synthetic analog polyinosinic:polycytidylic acid (poly(I:C)) bind and activate TLR3. This stimulation leads to recruitment of the adaptor molecule TRIF (Toll/IL-1 resistance (TIR) domain-containing adapter-inducing interferon β) and activation of the transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3), classically inducing IFNβ production. Here we report that, unlike non-metastatic intestinal epithelial cells (IECs), metastatic IECs express TLR3 and that TLR3 promotes invasiveness of these cells. In response to poly(I:C) addition, the metastatic IECs also induced the chemokine CXCL10 in a TLR3-, TRIF-, and IRF3-dependent manner but failed to produce IFNβ. This was in contrast to healthy and non-metastatic IECs, which did not respond to poly(I:C) stimulation. Endolysosomal acidification and the endosomal transporter protein UNC93B1 was required for poly(I:C)-induced CXCL10 production. However, TLR3-induced CXCL10 was triggered by immobilized poly(I:C), was only modestly affected by inhibition of endocytosis, and could be blocked with an anti-TLR3 antibody, indicating that TLR3 can still signal from the cell surface of these cells. Furthermore, plasma membrane fractions from metastatic IECs contained both full-length and cleaved TLR3, demonstrating surface expression of both forms of TLR3. Our results imply that metastatic IECs express surface TLR3, allowing it to sense extracellular stimuli that trigger chemokine responses and promote invasiveness in these cells. We conclude that altered TLR3 expression and localization may have implications for cancer progression.
Collapse
Affiliation(s)
- Marit Bugge
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and.,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Bjarte Bergstrom
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Oda K Eide
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Helene Solli
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Ingrid F Kjønstad
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Jørgen Stenvik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Terje Espevik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Nadra J Nilsen
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and .,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
39
|
Korneev KV, Atretkhany KSN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 2017; 89:127-135. [DOI: 10.1016/j.cyto.2016.01.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
|
40
|
Djuric Z. Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Transl Res 2017; 179:155-167. [PMID: 27522986 PMCID: PMC5164980 DOI: 10.1016/j.trsl.2016.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Obesity increases the risks of many cancers. One important mechanism behind this association is the obesity-associated proinflammatory state. Although the composition of the intestinal microbiome undoubtedly can contribute to the proinflammatory state, perhaps the most important aspect of host-microbiome interactions is host exposure to components of intestinal bacteria that stimulate inflammatory reactions. Systemic exposures to intestinal bacteria can be modulated by dietary factors through altering both the composition of the intestinal microbiota and the absorption of bacterial products from the intestinal lumen. In particular, high-fat and high-energy diets have been shown to facilitate absorption of bacterial lipopolysaccharide (LPS) from intestinal bacteria. Biomarkers of bacterial exposures that have been measured in blood include LPS-binding protein, sCD14, fatty acids characteristic of intestinal bacteria, and immunoglobulins specific for bacterial LPS and flagellin. The optimal strategies to reduce these proinflammatory exposures, whether by altering diet composition, avoiding a positive energy balance, or reducing adipose stores, likely differ in each individual. Biomarkers that assess systemic bacterial exposures therefore should be useful to (1) optimize and personalize preventive approaches for individuals and groups with specific characteristics and to (2) gain insight into the possible mechanisms involved with different preventive approaches.
Collapse
Affiliation(s)
- Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor, Mich; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
41
|
Affiliation(s)
- Yoon Jin Choi
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Tong W, Wang Q, Sun D, Suo J. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol Lett 2016; 12:4139-4146. [PMID: 27895783 DOI: 10.3892/ol.2016.5148] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/01/2016] [Indexed: 01/31/2023] Open
Abstract
Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.
Collapse
Affiliation(s)
- Weihua Tong
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Quan Wang
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Donghui Sun
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Ke X, Zhang S, Wu M, Lou J, Zhang J, Xu T, Huang L, Huang P, Wang F, Pan S. Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer. Int Immunopharmacol 2016; 40:184-195. [PMID: 27608303 DOI: 10.1016/j.intimp.2016.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022]
Abstract
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruit into tumor microenvironment and display functions associated with tumor progression. The mechanisms by which TAMs display roles that associated with the invasion ability of ovarian cancer have not been well investigated. In our research, we found abundant TAMs infiltrate in ovarian cancer compared with benign ovarian tumor tissues. Levels of matrix metalloproteinase (MMP)-2, MMP-9 and MMP-10, and Toll-like receptors (TLRs) signaling proteins were evaluated in ovarian cancer. The high level of TAMs was associated with metastasis and advance of patients with ovarian cancer. TAMs and ovarian cancer cell line SKOV3 were cocultured in vitro, MMPs level and the invasion ability of SKOV3 cells were significantly up-regulated. The coculture process was correlated with the activation of TLRs signaling and downstream nuclear factor (NF)-κB p65 and microtubule-associated proteins (MAPs) kinases pathway in SKOV3. In addition, pre-incubation with TLRs signaling inhibitors remarkably suppressed invasion ability of SKOV3. Levels of TLRs signaling pathways proteins were also down-regulated in this blocking process. These findings demonstrated that TAMs promoted up-regulation of MMP-2, MMP-9 and MMP-10 expressions and enhanced ovarian cancer cells invasion via TLRs signaling pathway. We conclude that TAMs could enhance ovarian cancer cells invasion and ultimately promote ovarian cancer progression.
Collapse
Affiliation(s)
- Xing Ke
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Shuping Zhang
- Department of Laboratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, 210029 Nanjing, China
| | - Meng Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Jianfang Lou
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Peijun Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China.
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China.
| |
Collapse
|
44
|
Liu Y, Li T, Xu Y, Xu E, Zhou M, Wang B, Shen J. Effects of TLR4 gene silencing on the proliferation and apotosis of hepatocarcinoma HEPG2 cells. Oncol Lett 2016; 11:3054-3060. [PMID: 27123062 PMCID: PMC4841034 DOI: 10.3892/ol.2016.4338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are key factors in the innate immune system and initiate an inflammatory response to foreign pathogens, such as bacteria, fungi and viruses. TLR4-mediated signaling has been implicated in tumor cell proliferation and apoptosis in numerous cancers. The present study aimed to investigate the biological effect of TLR4 on the proliferation and apoptosis of human liver cancer cells and the mechanisms responsible for the regulation of cellular responses following TLR4 gene knockdown. Three TLR4 small interfering (si)RNA constructs, consisting of TLR4-siRNA-1, TLR4-siRNA-2 and TLR4-siRNA-3, were transiently transfected into HepG2 cells using Lipofectamine 2000. TLR4 knockdown was confirmed using reverse transcription-polymerase chain reaction and western blotting. The effect of the TLR4 siRNA on tumor cell proliferation was monitored by methyl thiazolyl tetrazolium assay and cell apoptosis was observed by flow cytometry. The expression of TLR4-associated proteins, consisting of myeloid differentiation primary response 88 (MyD88), Toll-interleukin-1R-domain-containing adapter-inducing interferon-β (TRIF), interferon regulatory factor-3 (IRF3), nuclear factor (NF)-κB, NF-κB inhibitor α (IκBα), phosphorylated IκBα (p-IκBα), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), was detected by western blot analysis. TLR4-siRNA-1 had the strongest knockdown effect and inhibited TLR4 messenger RNA and protein expression. TLR4 knockdown with TLR4-siRNA-1 reduced cell proliferation and promoted cell apoptosis. MyD88, TRIF, IRF3, IκBα, JNK and ERK were markedly suppressed in the cells transfected with TLR4 siRNA. However, nuclear expression of NF-κB and p-IκBα increased in HepG2 cells with TLR4 gene knockdown. The present study revealed that TLR4-mediated signaling plays a key role in the proliferation and apoptosis of cultured hepatocarcinoma cells. Therefore, RNA interference-directed targeting of TLR4 may raise the potential of the application of TLR4 knockdown for liver cancer therapy.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enjun Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Min Zhou
- ICU, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Baolong Wang
- Department of Clinical Laboratory, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jilong Shen
- Anhui Provincial Laboratory of Pathogen and Biology Zoonoses, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
45
|
Kong SY, Tran HQ, Gewirtz AT, McKeown-Eyssen G, Fedirko V, Romieu I, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Bastide N, Affret A, Kühn T, Kaaks R, Boeing H, Aleksandrova K, Trichopoulou A, Kritikou M, Vasilopoulou E, Palli D, Krogh V, Mattiello A, Tumino R, Naccarati A, Bueno-de-Mesquita HB, Peeters PH, Weiderpass E, Quirós JR, Sala N, Sánchez MJ, Castaño JMH, Barricarte A, Dorronsoro M, Werner M, Wareham NJ, Khaw KT, Bradbury KE, Freisling H, Stavropoulou F, Ferrari P, Gunter MJ, Cross AJ, Riboli E, Bruce WR, Jenab M. Serum Endotoxins and Flagellin and Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Cancer Epidemiol Biomarkers Prev 2016; 25:291-301. [PMID: 26823475 PMCID: PMC5576525 DOI: 10.1158/1055-9965.epi-15-0798] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are thought to be involved in colorectal cancer development. These processes may contribute to leakage of bacterial products, such as lipopolysaccharide (LPS) and flagellin, across the gut barrier. The objective of this study, nested within a prospective cohort, was to examine associations between circulating LPS and flagellin serum antibody levels and colorectal cancer risk. METHODS A total of 1,065 incident colorectal cancer cases (colon, n = 667; rectal, n = 398) were matched (1:1) to control subjects. Serum flagellin- and LPS-specific IgA and IgG levels were quantitated by ELISA. Multivariable conditional logistic regression models were used to calculate ORs and 95% confidence intervals (CI), adjusting for multiple relevant confouding factors. RESULTS Overall, elevated anti-LPS and anti-flagellin biomarker levels were not associated with colorectal cancer risk. After testing potential interactions by various factors relevant for colorectal cancer risk and anti-LPS and anti-flagellin, sex was identified as a statistically significant interaction factor (Pinteraction < 0.05 for all the biomarkers). Analyses stratified by sex showed a statistically significant positive colorectal cancer risk association for men (fully-adjusted OR for highest vs. lowest quartile for total anti-LPS + flagellin, 1.66; 95% CI, 1.10-2.51; Ptrend, 0.049), whereas a borderline statistically significant inverse association was observed for women (fully-adjusted OR, 0.70; 95% CI, 0.47-1.02; Ptrend, 0.18). CONCLUSION In this prospective study on European populations, we found bacterial exposure levels to be positively associated to colorectal cancer risk among men, whereas in women, a possible inverse association may exist. IMPACT Further studies are warranted to better clarify these preliminary observations.
Collapse
Affiliation(s)
- So Yeon Kong
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Hao Quang Tran
- Center for Inflammation, Immunity, and Infection, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Gail McKeown-Eyssen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Isabelle Romieu
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anne Tjønneland
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark
| | - Marie-Christine Boutron-Ruault
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes, and Health: Integrative Trans-Generational Epidemiology, Villejuif, France. University of Paris-South, Villejuif, France. Institute Gustave Roussy, Villejuif, France
| | - Nadia Bastide
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes, and Health: Integrative Trans-Generational Epidemiology, Villejuif, France. University of Paris-South, Villejuif, France. Institute Gustave Roussy, Villejuif, France
| | - Aurélie Affret
- INSERM, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes, and Health: Integrative Trans-Generational Epidemiology, Villejuif, France. University of Paris-South, Villejuif, France. Institute Gustave Roussy, Villejuif, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece. Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece
| | | | - Effie Vasilopoulou
- Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, IRCCS Foundation, National Cancer Institute, Milano, Italy
| | - Amalia Mattiello
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - MP Arezzo" Hospital, Ragusa, Italy
| | - Alessio Naccarati
- Human Genetics Foundation, Torino Molecular and Genetic Epidemiology Unit, Torino, Italy
| | - H B Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Epidemiology and Biostatistics, School of Public Health, Imperil College London, London, United Kingdom. Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands. MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Instituet, Stockholm, Sweden. Department of Genetic Epidemiology, Folkhälsan Research Center, Helsinki, Finland
| | | | - Núria Sala
- Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, and Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - María-José Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs, GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - José María Huerta Castaño
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Aurelio Barricarte
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain. Navarra Public Health Institute, Pamplona, Spain. Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and CIBERESP-Biodonostia Research Institute, Basque Regional Health Department, San Sebastian, Spain
| | - Mårten Werner
- Institution of Public Health and Medicine, Medicine Umeå University, Umeå, Sweden
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, United Kingdom
| | - Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Faidra Stavropoulou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperil College London, London, United Kingdom
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperil College London, London, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperil College London, London, United Kingdom
| | - W Robert Bruce
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|
46
|
Shen Z, Chen B, Gan X, Hu W, Zhong G, Li H, Xie X, Liu Y, Li H, Xu X, Huang Z, Chen J. Methylation of neurofilament light polypeptide promoter is associated with cell invasion and metastasis in NSCLC. Biochem Biophys Res Commun 2016; 470:627-634. [DOI: 10.1016/j.bbrc.2016.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/15/2016] [Indexed: 12/31/2022]
|
47
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern Recognition Receptors in Cancer Progression and Metastasis. CANCER GROWTH AND METASTASIS 2015; 8:25-34. [PMID: 26279628 PMCID: PMC4514171 DOI: 10.4137/cgm.s24314] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
The innate immune system is an integral component of the inflammatory response to pathophysiological stimuli. Toll-like receptors (TLRs) and inflammasomes are the major sensors and pattern recognition receptors (PRRs) of the innate immune system that activate stimulus (signal)-specific pro-inflammatory responses. Chronic activation of PRRs has been found to be associated with the aggressiveness of various cancers and poor prognosis. Involvement of PRRs was earlier considered to be limited to infection- and injury-driven carcinogenesis, where they are activated by pathogenic ligands. With the recognition of damage-associated molecular patterns (DAMPs) as ligands of PRRs, the role of PRRs in carcinogenesis has also been implicated in other non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells shed a plethora of DAMPs causing persistent activation of PRRs, leading to chronic inflammation and carcinogenesis. Such chronic activation of TLRs promotes tumor cell proliferation and enhances tumor cell invasion and metastasis by regulating pro-inflammatory cytokines, metalloproteinases, and integrins. Due to the decisive role of PRRs in carcinogenesis, targeting PRRs appears to be an effective cancer-preventive strategy. This review provides a brief account on the association of PRRs with various cancers and their role in carcinogenesis.
Collapse
Affiliation(s)
- Sanjay Pandey
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India. ; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Saurabh Singh
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - Vandana Anang
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Anant N Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - K Natarajan
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| |
Collapse
|
49
|
McGarry T, Veale DJ, Gao W, Orr C, Fearon U, Connolly M. Toll-like receptor 2 (TLR2) induces migration and invasive mechanisms in rheumatoid arthritis. Arthritis Res Ther 2015; 17:153. [PMID: 26055925 PMCID: PMC4495696 DOI: 10.1186/s13075-015-0664-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction This study investigates the role of Toll-like receptor 2 (TLR2) in the regulation of migratory and invasive mechanisms in rheumatoid arthritis (RA). Methods Invasion, migration, matrix metalloproteinase (MMP)-1, -3 and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) expression, β-integrin binding, cytoskeletal rearrangement and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation in response to a TLR2-ligand, Pam3CSK4 (1 μg/ml), in ex vivo RA synovial tissue explants, primary RA synovial fibroblasts (RASFC) and microvascular endothelial cells (HMVEC) were assessed by Transwell Matrigel™ invasion chambers, enzyme-linked immunosorbent assay (ELISA), multiplex adhesion binding assay, reverse transcription polymerase chain reaction (RT-PCR), F-actin immunofluorescent staining, matrigel synovial outgrowths, Rac1 pull-down assays/Western blot and zymography. β1-integrin expression in RA/control synovial tissue was assessed by immunohistology. The effect of Pam3CSK4 on cell migration, invasion, MMP-3 and Rac1 activation was examined in the presence or absence of anti-β1-integrin (10 μg/ml) or anti-IgG control (10 μg/ml). The effect of an anti-TLR-2 mAb (OPN301)(1 μg/ml) or immunoglobulin G (IgG) control (1 μg/ml) on RASFC migration and RA synovial tissue MMP activity was assessed by wound assays, ELISA and zymography. Results Pam3CSK4 significantly induced cell migration, invasion, MMP-1, MMP-3, MMP-2 and MMP-9 expression and induced the MMP-1/TIMP-3 and MMP-3/TIMP-3 ratio in RASFC and explants (p <0.05). β1-integrin expression was significantly higher in RA synovial tissue compared to controls (p <0.05). Pam3CSK4 specifically induced β1-integrin binding in RASFC (p <0.05), with no effect observed for β2-4, β6, αvβ5 or α5β1. Pam3CSK4 increased β1-integrin mRNA expression, Rac1 activation, RASFC outgrowths and altered cytoskeletal dynamic through induction of filopodia formation. Pam3CSK4-regulated cell migration and invasion processes, but not MMP-3, were inhibited in the presence of anti-β1-integrin (p <0.05), with no effect observed for anti-IgG control. Furthermore, anti-β1-integrin inhibited Pam3CSK4-induced Rac1 activation. Finally, blockade of TLR2 with OPN301 significantly decreased spontaneous release of MMP-3, MMP-2 and MMP-9 and increased TIMP-3 secretion from RA synovial explant cultures (p <0.05). Incubation of RASFC with OPN301 RA ex vivo conditioned media inhibited migration and invasion compared to IgG control. Conclusions TLR2 activation induces migrational and invasive mechanisms, which are critically involved in the pathogenesis of RA, suggesting TLR2 as a potential therapeutic target for the treatment of RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0664-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trudy McGarry
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Douglas J Veale
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Gao
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Carl Orr
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ursula Fearon
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mary Connolly
- Department of Rheumatology, St. Vincent's University Hospital, Elm Park, Dublin Academic Health Care and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
50
|
Farnebo L, Shahangian A, Lee Y, Shin JH, Scheeren FA, Sunwoo JB. Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma. Oncotarget 2015; 6:9897-907. [PMID: 25846753 PMCID: PMC4496405 DOI: 10.18632/oncotarget.3393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
Infection-driven inflammation has been proposed to be involved in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC). Oral HNSCC is often colonized with microbes such as gram-positive bacteria and yeast, where ligands derived from their wall components have been shown to specifically bind to Toll-like receptor 2 (TLR2). Although TLR2 has been described to be expressed in oral HNSCC, its function has not been well characterized. Here, we show the expression of TLR2 in both HNSCC cell lines and primary patient-derived HNSCC xenograft tumors. Activation of TLR2 with a yeast-derived ligand of TLR2, zymosan, promoted organoid formation in an ex vivo model of tumor growth, while blockade with anti-TLR2 antibodies inhibited organoid formation. Zymosan also induced phosphorylation of ERK and the p65 subunit of NF-κB, which was inhibited in the presence of anti-TLR2 antibodies, indicating that this receptor is functional in HNSCC and that the signaling through these pathways is intact. TLR2 blockade also inhibited growth of human xenografted tumors in immunodeficient mice. In summary, our data show that TLR2 is a functional receptor expressed in human HNSCC that plays a direct pro-tumorigenic role, and that it can be therapeutically targeted with blocking antibodies to reduce tumor growth.
Collapse
Affiliation(s)
- Lovisa Farnebo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Arash Shahangian
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Yunqin Lee
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - June Ho Shin
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ferenc A. Scheeren
- The Netherlands Cancer Institute, The Netherlands
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - John B. Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|