1
|
Dorfman VB. Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus. VITAMINS AND HORMONES 2024; 127:51-78. [PMID: 39864946 DOI: 10.1016/bs.vh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins. Its expression has been described in the hypothalamus as well as in the whole reproductive axis and several extra reproductive tissues of mammals as well as fish and amphibians, but not in birds. KISS1 plays an essential role as a regulator of the reproductive axis by inducing the synthesis and release of GnRH, acting through specific receptors. The study of the kisspeptin system and its relation with reproduction in wild and non-classical laboratory species is extremely useful to understand and become aware of the role of KISS1 in the wide variety of possible different reproductive strategies. In this chapter, KISS1 involvement in non-classical laboratory rodents, fishes, and birds is discussed.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Simon K, Merten N, Schröder R, Hennen S, Preis P, Schmitt NK, Peters L, Schrage R, Vermeiren C, Gillard M, Mohr K, Gomeza J, Kostenis E. The Orphan Receptor GPR17 Is Unresponsive to Uracil Nucleotides and Cysteinyl Leukotrienes. Mol Pharmacol 2017; 91:518-532. [PMID: 28254957 DOI: 10.1124/mol.116.107904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Pairing orphan G protein–coupled receptors (GPCRs) with their cognate endogenous ligands is expected to have a major impact on our understanding of GPCR biology. It follows that the reproducibility of orphan receptor ligand pairs should be of fundamental importance to guide meaningful investigations into the pharmacology and function of individual receptors. GPR17 is an orphan receptor characterized by some as a dualistic uracil nucleotide/cysteinyl leukotriene receptor and by others as inactive toward these stimuli altogether. Whereas regulation of central nervous system myelination by GPR17 is well established, verification of activity of its putative endogenous ligands has proven elusive so far. Herein we report that uracil nucleotides and cysteinyl leukotrienes do not activate human, mouse, or rat GPR17 in various cellular backgrounds, including primary cells, using eight distinct functional assay platforms based on labelfree pathway-unbiased biosensor technologies, as well as canonical second-messenger or biochemical assays. Appraisal of GPR17 activity can neither be accomplished with co-application of both ligand classes, nor with exogenous transfection of partner receptors (nucleotide P2Y12, cysteinyl-leukotriene CysLT1) to reconstitute the elusive pharmacology. Moreover, our study does not support the inhibition of GPR17 by the marketed antiplatelet drugs cangrelor and ticagrelor, previously suggested to antagonize GPR17. Whereas our data do not disagree with a role of GPR17 per se as an orchestrator of central nervous system functions, they challenge the utility of the proposed (ant)agonists as tools to imply direct contribution of GPR17 in complex biologic settings.
Collapse
Affiliation(s)
- Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Ralf Schröder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Philip Preis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Nina-Katharina Schmitt
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Lucas Peters
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Ramona Schrage
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Celine Vermeiren
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Michel Gillard
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Klaus Mohr
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.).
| |
Collapse
|
3
|
Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016; 21:molecules21111516. [PMID: 27845727 PMCID: PMC6274472 DOI: 10.3390/molecules21111516] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.
Collapse
Affiliation(s)
- Rongjie Zhuo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Liu
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Reinscheid RK, Xu YL. Neuropeptide S and Its Receptor: A Newly Deorphanized G Protein–Coupled Receptor System. Neuroscientist 2016; 11:532-8. [PMID: 16282594 DOI: 10.1177/1073858405276405] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuropeptide S (NPS) is a recently discovered bioactive peptide that has shed new light on the neurobiology of sleep/wakefulness regulation and anxiety-like behavior. NPS can potently promote arousal and suppress all stages of sleep. This effect might be modulated by NPS receptors expressed in thalamic centers that are relays for transmitting arousing stimuli originating from the brainstem to the cortex. The peptide precursor is expressed most prominently in a novel nucleus located directly adjacent to the nora-drenergic locus coeruleus, a brain structure with well-defined functions in arousal, stress, and anxiety. NPS was also found to induce anxiolytic-like behavior in a battery of four different tests of innate responses to stress. This unique pharmacological profile of NPS offers significant potential for developing new drugs for the treatment of sleep and/or anxiety disorders.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Department of Pharmacology, University of California, Irvine, 92697-4625, USA.
| | | |
Collapse
|
5
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Luttrell LM. Minireview: More than just a hammer: ligand "bias" and pharmaceutical discovery. Mol Endocrinol 2014; 28:281-94. [PMID: 24433041 DOI: 10.1210/me.2013-1314] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Conventional orthosteric drug development programs targeting G protein-coupled receptors (GPCRs) have focused on the concepts of agonism and antagonism, in which receptor structure determines the nature of the downstream signal and ligand efficacy determines its intensity. Over the past decade, the emerging paradigms of "pluridimensional efficacy" and "functional selectivity" have revealed that GPCR signaling is not monolithic, and that ligand structure can "bias" signal output by stabilizing active receptor states in different proportions than the native ligand. Biased ligands are novel pharmacologic entities that possess the unique ability to qualitatively change GPCR signaling, in effect creating "new receptors" with distinct efficacy profiles driven by ligand structure. The promise of biased agonism lies in this ability to engender "mixed" effects not attainable using conventional agonists or antagonists, promoting therapeutically beneficial signals while antagonizing deleterious ones. Indeed, arrestin pathway-selective agonists for the type 1 parathyroid hormone and angiotensin AT1 receptors, and G protein pathway-selective agonists for the GPR109A nicotinic acid and μ-opioid receptors, have demonstrated unique, and potentially therapeutic, efficacy in cell-based assays and preclinical animal models. Conversely, activating GPCRs in "unnatural" ways may lead to downstream biological consequences that cannot be predicted from prior knowledge of the actions of the native ligand, especially in the case of ligands that selectively activate as-yet poorly characterized G protein-independent signaling networks mediated via arrestins. Although much needs to be done to realize the clinical potential of functional selectivity, biased GPCR ligands nonetheless appear to be important new additions to the pharmacologic toolbox.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
7
|
Abstract
The ability to assess whether individual proteins are involved in the signalling or regulation of G -protein-coupled receptor signalling is highly dependent on the pharmacological tools available. In the absence of appropriate pharmacological agents, alternative molecular approaches have been developed to alter either protein function or expression. This has included the use of mutants, for example catalytically inactive (kinase-dead) enzymes, which when overexpressed function as dominant negatives to inhibit endogenous enzyme function, and more latterly small (21-23 bp) interfering RNA dsRNA oligos, whose antisense strand is designed complementary to the target protein mRNA and which can be used to deplete target protein expression. Critically, the success of these approaches depends on the transfection efficiency, and the chosen experimental assay in the cell type studied. Therefore, three transfection techniques and their merits and drawbacks are described. In addition, one method of examining G protein-coupled receptor (GPCR) regulation, combining siRNA-mediated GRK depletion and imaging of fluorescent GPCR -signalling reporter biosensors in difficult-to-transfect cells is briefly described.
Collapse
Affiliation(s)
- Jonathon M Willets
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK.
| |
Collapse
|
8
|
Hudson B, Smith NJ, Milligan G. Experimental Challenges to Targeting Poorly Characterized GPCRs: Uncovering the Therapeutic Potential for Free Fatty Acid Receptors. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:175-218. [DOI: 10.1016/b978-0-12-385952-5.00006-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Matsubayashi J, Takanashi M, Oikawa K, Fujita K, Tanaka M, Xu M, De Blasi A, Bouvier M, Kinoshita M, Kuroda M, Mukai K. Expression of G protein-coupled receptor kinase 4 is associated with breast cancer tumourigenesis. J Pathol 2008; 216:317-27. [PMID: 18767025 DOI: 10.1002/path.2414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptor kinases (GRKs) comprise a family of seven mammalian serine/threonine protein kinases that phosphorylate and regulate agonist-bound, activated, G-protein-coupled receptors (GPCRs). GRKs and beta-arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization. Here we show that GRK4 isoforms are expressed in human breast cancer but not in normal epithelia. In addition, GRK4-over-expressing cells activated the mitogen-activated protein kinase (MAPK) mediated by ERK 1/2 and JNK phosphorylation in breast cancer-derived cell lines. Furthermore, suppression of beta-arrestins decreased GRK4-stimulated ERK 1/2 or JNK phosphorylations. These data indicate that high-level expression of GRK4 may activate MAPK signalling pathways mediated by beta-arrestins in breast cancer cells, suggesting that GRK4 may be implicated in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- J Matsubayashi
- Department of Diagnostic Pathology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Debouck C. Integrating genomics across drug discovery and development. Toxicol Lett 2008; 186:9-12. [PMID: 18930125 DOI: 10.1016/j.toxlet.2008.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/17/2008] [Indexed: 12/22/2022]
Abstract
The sequencing of the human genome was an exceptional achievement, but it was not an end in itself as it set the foundation for building new knowledge in biology and medicine. The laborious, multifaceted science of drug discovery and development also draws tremendous benefits from mining the human genome and exploiting the large palette of genomic technologies. This article discusses how diverse genomic tools have been used to date and how they will continue to be utilized in the future to impact drug discovery and development. Integrating genomics across drug discovery and development will undoubtedly help to shorten timelines, increase success rates at all stages and ultimately bring the right drugs to the right patients at the right times.
Collapse
|
11
|
|
12
|
Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2008; 47:1668-71. [PMID: 18236494 DOI: 10.1002/anie.200704282] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jakob J Lopez
- Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Lopez J, Shukla A, Reinhart C, Schwalbe H, Michel H, Glaubitz C. The Structure of the Neuropeptide Bradykinin Bound to the Human G-Protein Coupled Receptor Bradykinin B2 as Determined by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704282] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Thompson MD, Cole DEC, Jose PA. Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol Biol 2008; 448:77-107. [PMID: 18370232 DOI: 10.1007/978-1-59745-205-2_6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification and characterization of the processes of G protein-coupled receptor (GPCR) activation and inactivation have refined not only the study of the GPCRs but also the genomics of many accessory proteins necessary for these processes. This has accelerated progress in understanding the fundamental mechanisms involved in GPCR structure and function, including receptor transport to the membrane, ligand binding, activation and inactivation by GRK-mediated (and other) phosphorylation. The catalog of G(s)alpha and Gbeta subunit polymorphisms that result in complex phenotypes has complemented the effort to catalog the GPCRs and their variants. The study of the genomics of GPCR accessory proteins has also provided insight into pathways of disease, such as the contributions of regulator of G protein signaling (RGS) protein to hypertension and activator of G protein signaling (AGS) proteins to the response to hypoxia. In the case of the G protein-coupled receptor kinases (GRKs), identified originally in the retinal tissues that converge on rhodopsin, proteins such as GRK4 have been identified that have been subsequently associated with hypertension. Here, we review the structure and function of GPCR and associated proteins in the context of the gene families that encode them and the genetic disorders associated with their altered function. An understanding of the pharmacogenomics of GPCR signaling provides the basis for examining the GPCRs disrupted in monogenic disease and the pharmacogenetics of a given receptor system.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Krum H, Kemp W. Therapeutic potential of blockade of the urotensin II system in systemic hypertension. Curr Hypertens Rep 2007; 9:53-8. [PMID: 17362672 DOI: 10.1007/s11906-007-0010-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II, an 11-amino acid peptide, has been found to be the most potent vasoconstrictor yet described, in certain vascular beds. Discovery of its endogenous receptor (UII-R) has ignited considerable interest in this system's role in disease states associated with increased vascular tone (eg, systemic hypertension). Urotensin II was shown to have direct effects on the heart in addition to effects on vascular tone. In human systemic hypertension, increased plasma levels of urotensin II were noted, with a weak but significant correlation to absolute blood pressure levels. Furthermore, hypertensive patients demonstrate net vasoconstrictor responsiveness in skin microcirculation compared to normal controls. Highly selective UII-R antagonists have been developed based on the known structure of UII-R. Early preclinical and clinical studies report potential beneficial effects in renal disease, heart failure, and diabetes, although effects on blood pressure have been equivocal.
Collapse
Affiliation(s)
- Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University/Alfred Hospital, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | | |
Collapse
|
16
|
Derks RJE, Letzel T, Jong CF, Marle A, Lingeman H, Leurs R, Irth H. SEC–MS as an Approach to Isolate and Directly Identifying Small Molecular GPCR–Ligands from Complex Mixtures Without Labeling. Chromatographia 2006. [DOI: 10.1365/s10337-006-0058-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Rouzaud F, Costin GE, Yamaguchi Y, Valencia JC, Berens WF, Chen KG, Hoashi T, Böhm M, Abdel-Malek ZA, Hearing VJ. Regulation of constitutive and UVR-induced skin pigmentation by melanocortin 1 receptor isoforms. FASEB J 2006; 20:1927-9. [PMID: 16877522 DOI: 10.1096/fj.06-5922fje] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Melanin synthesized by epidermal melanocytes protects the skin against UVR-induced DNA damage and skin cancer. Exposure to UVR increases the synthesis of the photoprotective eumelanin on activation of MC1R, a melanoma susceptibility gene. We studied the expression of MC1R under UVR and alpha-MSH stimulation in skin of different ethnic origins and in melanocytes of various pigmentary levels. This study identifies and characterizes a novel MC1R isoform (MC1R350) generated by alternative splicing of the classically known MC1R (MC1R317). We demonstrate that the melanin content of melanocytes shows a significant positive correlation with MC1R317 levels but correlates inversely with the amount of MC1R350, suggesting that this latter isoform could act as a negative regulator of melanin synthesis. We confirmed that hypothesis by showing that while MC1R317 signaling significantly increases the expression of MITF and tyrosinase, two key factors in the melanin synthesis pathway, MC1R350 dramatically hampers their expression. In the skin, we show that UVR does not increase MC1R350 expression but does significantly increase MC1R317. Taken together, our results strongly suggest that MC1R350 acts as a negative regulator of skin pigmentation and demonstrate for the first time that MC1R isoform-specific expression is closely related to skin pigmentation and photoprotection.
Collapse
Affiliation(s)
- Francois Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Singh G, Davenport AP. Neuropeptide B and W: neurotransmitters in an emerging G-protein-coupled receptor system. Br J Pharmacol 2006; 148:1033-41. [PMID: 16847439 PMCID: PMC1752024 DOI: 10.1038/sj.bjp.0706825] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deorphanised G-protein-coupled receptors represent new and expanding targets for drug development. Neuropeptide B (NPB) and W (NPW) have recently been identified as the cognate endogenous ligands for the orphan receptor GPR7, now designated as NPBW(1). NPB and NPW also bound to a second related orphan receptor, GPR8, now designated as NPBW(2) that is present in humans but not rats or mice. In humans, high levels of NPW mRNA have been visualised in the substantia nigra, whereas moderate expression levels have been detected in the amygdala and hippocampus. In peripheral tissues, expression of NPW mRNA has been confirmed in the progenital system, comprising the kidney, testis, uterus, ovary and placenta, and also in stomach homogenates. Immunocytochemical, molecular biological and autoradiography techniques have revealed a discrete CNS distribution for NPBW(1) in human, mouse and rat. Highest expression of NPBW(1) mRNA and protein was identified in the amygdala and hypothalamic nuclei known to regulate feeding behaviour. [(125)I]-NPW bound with a single high affinity to rat amygdala, K(D)=0.44 nM and 150 fmol mg(-1) protein. Physiological studies demonstrate that intracerebroventricular infusion of NPBW(1) ligands modulates feeding behaviour, regulates the release of corticosterone, prolactin and growth hormone while also manipulating pain pathway. Mouse knockout models of the gene encoding either NPB or NPBW(1) have a gender-specific phenotype, with moderate obesity evident in males but not females. Further investigation is required to elucidate the precise physiological role of NPB and NPW as neurotransmitters.
Collapse
Affiliation(s)
- Gurminder Singh
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Box 110, Level Six, Addenbrooke's Hospital, Cambridge CB2 2QQ
| | - Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Box 110, Level Six, Addenbrooke's Hospital, Cambridge CB2 2QQ
- Author for correspondence:
| |
Collapse
|
19
|
Abstract
This paper describes a virtual screening methodology that generates a ranked list of high-binding small molecule ligands for orphan G protein-coupled receptors (oGPCRs), circumventing the requirement for receptor three-dimensional structure determination. Features representing the receptor are based only on physicochemical properties of primary amino acid sequence, and ligand features use the two-dimensional atomic connection topology and atomic properties. An experimental screen comprised nearly 2 million hypothetical oGPCR-ligand complexes, from which it was observed that the top 1.96% predicted affinity scores corresponded to "highly active" ligands against orphan receptors. Results representing predicted high-scoring novel ligands for many oGPCRs are presented here. Validation of the method was carried out in several ways: (1) A random permutation of the structure-activity relationship of the training data was carried out; by comparing test statistic values of the randomized and nonshuffled data, we conclude that the value obtained with nonshuffled data is unlikely to have been encountered by chance. (2) Biological activities linked to the compounds with high cross-target binding affinity were analyzed using computed log-odds from a structure-based program. This information was correlated with literature citations where GPCR-related pathways or processes were linked to the bioactivity in question. (3) Anecdotal, out-of-sample predictions for nicotinic targets and known ligands were performed, with good accuracy in the low-to-high "active" binding range. (4) An out-of-sample consistency check using the commercial antipsychotic drug olanzapine produced "active" to "highly-active" predicted affinities for all oGPCRs in our study, an observation that is consistent with documented findings of cross-target affinity of this compound for many different GPCRs. It is suggested that this virtual screening approach may be used in support of the functional characterization of oGPCRs by identifying potential cognate ligands. Ultimately, this approach may have implications for pharmaceutical therapies to modulate the activity of faulty or disease-related cellular signaling pathways. In addition to application to cell surface receptors, this approach is a generalized strategy for discovery of small molecules that may bind intracellular enzymes and involve protein-protein interactions.
Collapse
Affiliation(s)
- Joel R Bock
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA
| | | |
Collapse
|
20
|
Calo G, Guerrini R, Rizzi A, Salvadori S, Burmeister M, Kapusta DR, Lambert DG, Regoli D. UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS DRUG REVIEWS 2005; 11:97-112. [PMID: 16007234 PMCID: PMC6741746 DOI: 10.1111/j.1527-3458.2005.tb00264.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Centre, University of Ferrara, via Fossato di Mortara, 19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
22
|
Pick H, Schmid EL, Tairi AP, Ilegems E, Hovius R, Vogel H. Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 2005; 127:2908-12. [PMID: 15740126 DOI: 10.1021/ja044605x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding cellular signaling mediated by cell surface receptors is key to modern biomedical research and drug development. The discovery of a growing number of potential molecular targets and therapeutic compounds requires downscaling and accelerated functional screening. Receptor-mediated cellular responses are typically investigated on single cells or cell populations. Here, we show how to monitor cellular signaling reactions at a yet unreached miniaturization level. On the basis of our observations, cytochalasin induces mammalian cells to extrude from their plasma membrane submicrometer-sized native vesicles. They comprise functional cell surface receptors correctly exposing their extracellular ligand binding sites on the outer vesicle surface and retaining cytosolic proteins in the vesicle interior. As a prototypical example, ligand binding to the ionotropic 5-HT(3) receptor and subsequent transmembrane Ca(2+) signaling were monitored in single attoliter vesicles. Thus, native vesicles are the smallest autonomous containers capable of performing cellular signaling reactions under physiological conditions. Because a single cell delivers about 50 native vesicles, which can be isolated and addressed as individuals, our concept allows multiple functional analyses of individual cells having a limited availability and opens new vistas for miniaturized bioanalytics.
Collapse
Affiliation(s)
- Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Ecublens, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 2004; 43:487-97. [PMID: 15312648 DOI: 10.1016/j.neuron.2004.08.005] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 07/06/2004] [Accepted: 07/30/2004] [Indexed: 01/04/2023]
Abstract
Arousal and anxiety are behavioral responses that involve complex neurocircuitries and multiple neurochemical components. Here, we report that a neuropeptide, neuropeptide S (NPS), potently modulates wakefulness and could also regulate anxiety. NPS acts by activating its cognate receptor (NPSR) and inducing mobilization of intracellular Ca2+. The NPSR mRNA is widely distributed in the brain, including the amygdala and the midline thalamic nuclei. Central administration of NPS increases locomotor activity in mice and decreases paradoxical (REM) sleep and slow wave sleep in rats. NPS was further shown to produce anxiolytic-like effects in mice exposed to four different stressful paradigms. Interestingly, NPS is expressed in a previously undefined cluster of cells located between the locus coeruleus (LC) and Barrington's nucleus. These results indicate that NPS could be a new modulator of arousal and anxiety. They also show that the LC region encompasses distinct nuclei expressing different arousal-promoting neurotransmitters.
Collapse
Affiliation(s)
- Yan-Ling Xu
- Department of Pharmacology, University of California Irvine, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Adie EJ, Francis MJ, Davies J, Smith L, Marenghi A, Hather C, Hadingham K, Michael NP, Milligan G, Game S. CypHer 5: a generic approach for measuring the activation and trafficking of G protein-coupled receptors in live cells. Assay Drug Dev Technol 2004; 1:251-9. [PMID: 15090190 DOI: 10.1089/15406580360545062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
GPCRs are one of the most popular classes of therapeutic drug targets. It is therefore important to design specific assay formats to readily identify ligands at these receptors. CypHer 5 technology utilizes the general ability of GPCRs to be internalized into the endosomal pathway of a cell in response to agonist ligands. The CypHer 5 dye is fluorescent in acidic environments, but nonfluorescent at neutral pH. When CypHer 5 is bound to a receptor on the extracellular surface of the cell, it is essentially nonfluorescent. On internalization into a cell, it displays a significant increase in fluorescence. Here we demonstrate the detection of agonist activation of two GPCRs in stably transfected live cells using CypHer 5 technology. The G(q)-coupled TRHR-1 and the G(s)-coupled beta(2)-adrenoceptor were both N-terminally tagged with VSV-G. Following addition of CypHer 5-labeled anti-VSV-G antibodies to HEK 293 cells stably expressing the beta(2)-adrenoceptor or CHO-K1 cells stably expressing the TRHR-1, the cells were treated with agonists and then imaged on Amersham Biosciences' IN Cell Analyzer 3000. Data were quantified using a granularity analysis module. Concentration-response curves were obtained with signal-to-background ratios of 7:1 for both receptors. An EC(50) of 0.52 nM was observed on TRH stimulation of the TRHR-1, and an EC(50) of 30 nM was obtained on isoprenaline stimulation of the beta(2)-adrenoceptor. These results demonstrated that the CypHer technology was capable of measuring high-potency agonist responses. The beta(2)-adrenoceptor antagonist, alprenolol, competed for isoprenaline with an IC(50) of 30 nM, indicating that a high-potency antagonist inhibition curve could also be observed using CypHer. CypHer 5 provides a generic tool to measure GPCR activation in a live cell, homogeneous assay format, and may be equally suitable for detecting activation of other classes of cell surface receptors.
Collapse
Affiliation(s)
- Elaine J Adie
- Bioassays, Development, Amersham Biosciences, Whitchurch, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ton VK, Rao R. Functional expression of heterologous proteins in yeast: insights into Ca2+signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 2004; 287:C580-9. [PMID: 15308463 DOI: 10.1152/ajpcell.00135.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease.
Collapse
Affiliation(s)
- Van-Khue Ton
- Dept. of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
26
|
Sadler K, Tam JP. Shape-mimetics of G-protein-coupled receptors in therapeutic drug design and screening. Drug Dev Res 2004. [DOI: 10.1002/ddr.10391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Douglas SA, Ohlstein EH, Johns DG. Techniques: Cardiovascular pharmacology and drug discovery in the 21st century. Trends Pharmacol Sci 2004; 25:225-33. [PMID: 15063087 DOI: 10.1016/j.tips.2004.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The latter half of the 20th century has been characterized by pharmacologists as the 'age of the receptor', an era in which the bioassay, that stalwart of classical pharmacology, has played a seminal role in identifying novel cardiovascular medicines. In this article, we ask what, if anything, has changed in the pharmacologist's approach to discovering novel cardiovascular drugs on this, the 25th anniversary of the inaugural publication of Trends in Pharmacological Sciences.
Collapse
Affiliation(s)
- Stephen A Douglas
- Vascular Thrombosis and Inflammation (UW2510), Cardiovascular and Urogenital Centre of Excellence for Drug Discovery, GlaxoSmithKline, King of Prussia, PA 19406-0939, USA.
| | | | | |
Collapse
|
28
|
Niedernberg A, Tunaru S, Blaukat A, Harris B, Kostenis E. Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. ACTA ACUST UNITED AC 2004; 8:500-10. [PMID: 14567777 DOI: 10.1177/1087057103257555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A variety of functional assays are available for agonist or antagonist screening of G protein-coupled receptors (GPCRs), but it is a priori not predictable which assay is the most suitable to identify agonists or antagonists of GPCRs with therapeutic value in humans. More specifically, it is not known how a given set of GPCR agonists compares in different functional assays with respect to potency and efficacy and whether the level of the signaling cascade that is analyzed has any impact on the detection of agonistic responses. To address this question, the authors used the recently cloned human S1P(5) receptor as a model and compared a set of 3 lipid ligands (sphingosine 1-phosphate [S1P], dihydro sphingosine 1-phosphate [dhS1P], and sphingosine) in 5 different functional assays: GTPgammaS binding, inhibition of adenylyl cyclase activity, mobilization of intracellular Ca(2+) via the FLIPR and aequorin technology, and MAP kinase (ERK1/2) activation. S1P induced agonistic responses in all except the ERK1/2 assays with EC(50) values varying by a factor of 10. Whereas dhS1P was identified as a partial agonist in the GTPgammaS assay, it behaved as a full agonist in all other settings. Sphingosine displayed partial agonistic activity exclusively in GTPgammaS binding assays. The findings suggest that assays in a given cellular background may vary significantly with respect to suitability for agonist finding and that ligands producing a response may not readily be detectable in all agonist assays.
Collapse
Affiliation(s)
- Anke Niedernberg
- Cardiovascular Disease Group, Aventis Pharma, 65926 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
The completion of the human genome sequencing project has identified approximately 720 genes that belong to the G-protein coupled receptor (GPCR) superfamily. Approximately half of these genes are thought to encode sensory receptors. Of the remaining 360 receptors, the natural ligand has been identified for approximately 210 receptors, leaving 150 so-called orphan GPCRs with no known ligand or function. The identification of ligands active at orphan GPCRs has been achieved through the development of a number of experimental approaches, including the screening of putative small molecule and peptide ligands, reverse pharmacology, and the use of bioinformatics to predict candidate ligands. In this review, we discuss the methodologies developed for the identification of ligands at orphan GPCRs and include examples of their successful application.
Collapse
Affiliation(s)
- Alan Wise
- 7TMR Systems Research Europe, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom.
| | | | | |
Collapse
|
30
|
Sakamoto T, Fujimoto M, Andot M. Fishy tales of prolactin-releasing peptide. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:91-130. [PMID: 12696591 DOI: 10.1016/s0074-7696(05)25003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, but a specific PRL-releasing factor, PRL-releasing peptide (PrRP), was isolated only recently from mammals and teleosts. Although this peptide seems to be a strong candidate for being a physiologically relevant stimulator of PRL expression and secretion in teleost pituitary and peripheral organs, it may not be a typical or classic hypothalamic releasing factor in rats. We now know that its biological actions are not limited solely to PRL stimulation, because it is also a neuromodulator of several hypothalamus-pituitary axes and is involved in some brain circuits with the regulation of food intake and cardiovascular functions. Moreover, it plays a direct role in hypertension and retinal information processing. It is the purpose of this review to provide a comprehensive survey of our current knowledge of PrRP and to provide a comparative point of view.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Okayama University, Okayama 701-4303, Japan
| | | | | |
Collapse
|
31
|
Abstract
G-protein-coupled receptor kinases (GRKs) comprise a family of seven mammalian serine/threonine protein kinases that phosphorylate and regulate agonist-occupied or constitutively active G-protein-coupled receptors (GPCRs). Studies of the details and consequences of these mechanisms have focused heavily on the original beta-adrenoceptor kinase (beta-ARK) family (GRK2 and GRK3) and, in particular, on phosphorylation-dependent recruitment of adaptor proteins such as the beta-arrestins. However, recent work has indicated roles for the other, non-visual GRKs (GRK4, GRK5 and GRK6) and has revealed potential phosphorylation-independent regulation of GPCRs by GRK2 and GRK3. In this article, we review this newer information and attempt to put it into context with GRKs as physiological regulators that could be appropriate targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Jonathon M Willets
- Department of Cell Physiology & Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, LE1 9HN, Leicester, UK
| | | | | |
Collapse
|
32
|
Kotarsky K, Nilsson NE, Olde B, Owman C. Progress in Methodology Improved Reporter Gene Assays Used to Identify Ligands Acting on Orphan Seven-Transmembrane Receptors. ACTA ACUST UNITED AC 2003; 93:249-58. [PMID: 14675457 DOI: 10.1111/j.1600-0773.2003.pto930601.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Seven-transmembrane G-protein-coupled receptors play a central role in physiology by facilitating cell communication through recognition of a wide range of ligands. Even more important, they represent important drug targets. Unfortunately, for many of these receptors the endogenous ligands, and hence their functions, remain to be identified. These receptors are referred to as "orphan" receptors. A pre-requisite for the identification of ligands activating orphan receptors is powerful assay systems. Until now, reporter gene assays have not been in common use in this process. Here, we summarize our development of improved reporter gene assays. We optimized reporter gene assays in respect of (i) the promoter region of the construct, (ii) the reporter enzyme used, (iii) and the assay procedure. Furthermore, an unique fluorescence-based clone selection step was introduced, allowing rapid selection of the most sensitive reporter cell clones when establishing stable reporter cell lines. Mathematical formulae are provided to enable a simple and reliable comparison between different cell lines, when tested with a compound of interest. The resulting reporter cell lines responded in a very sensitive way to the stimulation of various test receptors. The reporter system was termed HighTRACE (high-throughput reporter assay with clone election). Its high assay quality makes it suitable as a primary screening tool. Ligands for two recently unknown 7TM receptors were identified using the HighTRACE system i.e., two cell surface free fatty acid receptors, GPR40 (FFA1R) and GPR43 (FFA2R). The identification was accomplished using a reverse pharmacology approach.
Collapse
Affiliation(s)
- Knut Kotarsky
- Division of Molecular Neurobiology, Department of Physiological Sciences, Wallenberg Neuroscience Center, S-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
33
|
Robas N, Mead E, Fidock M. MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 2003; 278:44400-4. [PMID: 12915402 DOI: 10.1074/jbc.m302456200] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MrgX2 is a recently identified orphan G-protein-coupled receptor whose ligand and physiological function were unknown. Here we describe cortistatin, a neuropeptide for which no specific receptor has been identified previously, as a high potency ligand at MrgX2. Cortistatin has several biological functions including roles in sleep regulation, locomotor activity, and cortical function. Using a "reverse pharmacology" approach, we have identified a number of additional cyclic peptide agonists for MrgX2, determined their rank order of potency, and demonstrated that this receptor has a pharmacological profile distinct from the other characterized members of the Mrg (Mas-related genes) family. In MrgX2-expressing cells, cortistatin-stimulated increases in intracellular Ca2+ but had no effect on basal or forskolin-stimulated cAMP levels, suggesting that this receptor is Gq-coupled. Immunohistochemical and quantitative PCR studies show MrgX2 to have a limited expression profile, both peripheral and within the central nervous system, with highest levels in dorsal root ganglion.
Collapse
Affiliation(s)
- Nicola Robas
- Department of Target Genomics, Pfizer Global Research and Development, Sandwich, Kent, CT13 N9J, United Kingdom
| | | | | |
Collapse
|
34
|
Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M. The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci U S A 2003; 100:10706-11. [PMID: 12960362 PMCID: PMC196868 DOI: 10.1073/pnas.1834523100] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the perception of smell, light, taste, and pain. They are involved in signal recognition and cell communication and are some of the most important targets for drug development. Because currently no direct structural information on high-affinity ligands bound to GPCRs is available, rational drug design is limited to computational prediction combined with mutagenesis experiments. Here, we present the conformation of a high-affinity peptide agonist (neurotensin, NT) bound to its GPCR NTS-1, determined by direct structural methods. Functional receptors were expressed in Escherichia coli, purified in milligram amounts by using optimized procedures, and subsequently reconstituted into lipid vesicles. Solid-state NMR experiments were tailored to allow for the unequivocal detection of microgram quantities of 13C,15N-labeled NT(8-13) in complex with functional NTS-1. The NMR data are consistent with a disordered state of the ligand in the absence of receptor. Upon receptor binding, the peptide undergoes a linear rearrangement, adopting a beta-strand conformation. Our results provide a viable structural template for further pharmacological investigations.
Collapse
Affiliation(s)
- Sorin Luca
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M, Greene J, Monsma F, Zhang FL. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 2003; 278:27652-7. [PMID: 12714592 DOI: 10.1074/jbc.m302945200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orphan G-protein-coupled receptors are a large class of receptors whose cognate ligands are unknown. SP9155 (also referred to as AQ27 and GPR103) is an orphan G-protein-coupled receptor originally cloned from a human brain cDNA library. SP9155 was found to be predominantly expressed in brain, heart, kidney, retina, and testis. Phylogenetic analysis shows that SP9155 shares high homology with Orexin, NPFF, and cholecystokinin (CCK) receptors, but identification of the endogenous ligand for SP9155 has not been reported. In this study, we have used a novel method to predict peptides from genome data bases. From these predicted peptides, a novel RF-amide peptide, P52 was shown to selectively activate SP9155-transfected cells. We subsequently cloned the precursor gene of the P52 ligand and characterized the activity of other possible peptides encoded by the precursor. This revealed an extended peptide, P518, which exhibited high affinity for SP9155 (EC50 = 7 nm). mRNA expression analysis revealed that the peptide P518 precursor gene is predominantly expressed in various brain regions, coronary arteries, thyroid and parathyroid glands, large intestine, colon, bladder, testes, and prostate. These results indicate the existence of a novel RF-amide neuroendocrine peptide system, and suggest that SP9155 is likely the relevant G-protein-coupled receptor for this peptide.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Discovery Technology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Masuda K, Itoh H, Sakihama T, Akiyama C, Takahashi K, Fukuda R, Yokomizo T, Shimizu T, Kodama T, Hamakubo T. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Galpha and Galphao coupling to a human leukotriene B4 receptor. J Biol Chem 2003; 278:24552-62. [PMID: 12721292 DOI: 10.1074/jbc.m302801200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.
Collapse
Affiliation(s)
- Kazuyuki Masuda
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
An approach to discover sequence patterns characteristic of ligand classes is described and applied to aminergic G protein-coupled receptors (GPCRs). Putative ligand-binding residue positions were inferred from considering three lines of evidence: conservation in the subfamily absent or underrepresented in the superfamily, any available mutation data, and the physicochemical properties of the ligand. For aminergic GPCRs, the motif is composed of a conserved aspartic acid in the third transmembrane (TM) domain (rhodopsin position 117) and a conserved tryptophan in the seventh TM domain (rhodopsin position 293); the roles of each are readily justified by molecular modeling of ligand-receptor interactions. This minimally defined motif is an appropriate computational tool for identifying additional, potentially novel aminergic GPCRs from a set of experimentally uncharacterized "orphan" GPCRs, complementing existing sequence matching, clustering, and machine-learning techniques. Motif sensitivity stems from the stepwise addition of residues characteristic of an entire class of ligand (and not tailored for any particular biogenic amine). This sensitivity is balanced by careful consideration of residues (evidence drawn from mutation data, correlation of ligand properties to residue properties, and location with respect to the extracellular face), thereby maintaining specificity for the aminergic class. A number of orphan GPCRs assigned to the aminergic class by this motif were later discovered to be a novel subfamily of trace amine GPCRs, as well as the successful classification of the histamine H4 receptor.
Collapse
Affiliation(s)
- Enoch S Huang
- Pfizer Discovery Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Kotarsky K, Antonsson L, Owman C, Olde B. Optimized reporter gene assays based on a synthetic multifunctional promoter and a secreted luciferase. Anal Biochem 2003; 316:208-15. [PMID: 12711342 DOI: 10.1016/s0003-2697(03)00082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Efficient screening for ligands of seven-transmembrane, G-protein-coupled receptors, whether transfected or endogenously expressed, often involves cell-based reporter assays. Here we describe the development of reporter gene assays in HeLa cells. The reporter construct includes a synthetic multifunctional promoter with several different response motifs (NF-kappaB, STAT, and AP-1) and hence efficiently funnels several signaling pathways. The assay, performed with the resulting reporter cell line HFF11, has an exceptional high Z-factor and a large signal-to-background ratio. To facilitate cell handling during screening, we introduced a secreted Renilla luciferase as a reporter enzyme. HR36 reporter cells, equipped with the construct, were added to ligands present in a multiwell plate and after addition of coelenterazine they produced a luminescence readout. This procedure economizes cell handling and at the same time increases assay quality and sensitivity
Collapse
Affiliation(s)
- Knut Kotarsky
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | |
Collapse
|
39
|
Weber D, Berger C, Eickelmann P, Antel J, Kessler H. Design of selective peptidomimetic agonists for the human orphan receptor BRS-3. J Med Chem 2003; 46:1918-30. [PMID: 12723954 DOI: 10.1021/jm0210921] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New tool substances may help to unravel the physiological role of the human orphan receptor BRS-3 and its possible use as a drug target for the treatment of obesity and cancer. In continuation of our work on BRS-3, the solid- and solution-phase synthesis of a library of low molecular weight peptidomimetic agonists based on the recently developed short peptide agonist 4 is described. Functional potencies of the compounds were determined measuring calcium mobilization in a fluorometric imaging plate reader (FLIPR) assay. Focusing on the N-terminus, the d-Phe-Gln moiety of 4 was modified in a combinatorial SAR-oriented medicinal chemistry approach. With the incorporation of N-arylated glycine and alanine building blocks azaglycine, piperazine, or piperidine and the synthesis of semicarbazides and semicarbazones, a number of highly potent and selective compounds with a reduced number of peptide bonds were obtained, which also should have enhanced metabolic stability.
Collapse
Affiliation(s)
- Dirk Weber
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
40
|
Jiang C, Chen G, Zeng X, Ouyang K, Hu Y. Generation of a bioactive neuropeptide in a cell-free system. Anal Biochem 2003; 316:34-40. [PMID: 12694724 DOI: 10.1016/s0003-2697(03)00040-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have developed an in vitro assay for pre-pro-neuropeptide synthesis and processing. Mouse proopiomelanocortin (POMC) cDNA was cloned into a vector containing T7 promoter. In vitro transcription and translation were carried out to produce the proopiomelanocortin peptide. The pro-peptide was processed by incubating with cell extract of mouse and rat pituitary cell lines. The activity of processed mature peptide was tested in a cell line expressing human melanocortin 4 receptor (MC4R). Using this approach, we produced biologically active alpha-melanocyte-stimulating hormone (alpha-MSH). Furthermore, we developed a universal functional assay for G-protein-coupled receptors (GPCRs) using a reporter gene assay. More than 20 different GPCRs were examined using this functional assay. Our results demonstrated that the activity of all GPCRs could be measured by the functional assay. It should be possible to identify novel bioactive peptides for orphan GPCRs by the combination of in vitro processing and GPCR functional assays.
Collapse
Affiliation(s)
- Cecilia Jiang
- Genomics Institute of Novartis Research Foundation, 10675 John Jay Hopkins Dr., San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
41
|
Bhattacharyya S, Luan J, Challis B, Schmitz C, Clarkson P, Franks PW, Middelberg R, Keogh J, Farooqi IS, Montague C, Brennand J, Wareham NJ, O'Rahilly S. Association of polymorphisms in GPR10, the gene encoding the prolactin-releasing peptide receptor with blood pressure, but not obesity, in a U.K. Caucasian population. Diabetes 2003; 52:1296-9. [PMID: 12716769 DOI: 10.2337/diabetes.52.5.1296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its G-protein-coupled receptor, GPR10, have been implicated in the central control of appetite and blood pressure. To determine whether mutations in these genes might contribute to morbid obesity, we screened both genes in 94 subjects with severe early-onset obesity. Four rare silent variants in PrRP and eight polymorphisms in GPR10 were found, two of which (V283I and P305L) altered amino acid sequence but were also found in U.K. Caucasian control subjects. Cells expressing the P305L variant receptor generated less intracellular calcium in response to PrRP than cells expressing the wild-type receptor. To examine whether genetic variation of the GPR10 locus might be associated with phenotypes relevant to obesity and/or blood pressure, the most common noncoding (G-62A) and coding (C914T [P305L]) polymorphisms were typed in 1,084 U.K. Caucasians. While no association was found with BMI, carriers of the P305L allelic variant had significantly lower systolic (123.95 vs. 128.55 mmHg, P < 0.05) and diastolic (74.90 vs. 78.20 mmHg, P < 0.01) blood pressure than wild-type subjects. In conclusion, we have conducted the first genetic study of GPR10 and its ligand PrRP in relation to metabolic phenotypes and have identified an association between GPR10 polymorphisms and diastolic and systolic blood pressure. The alteration in signaling properties of the receptor produced by P305L may provide a functional basis for this association.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278:11312-9. [PMID: 12496283 DOI: 10.1074/jbc.m211609200] [Citation(s) in RCA: 1736] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GPR41 and GPR43 are related members of a homologous family of orphan G protein-coupled receptors that are tandemly encoded at a single chromosomal locus in both humans and mice. We identified the acetate anion as an agonist of human GPR43 during routine ligand bank screening in yeast. This activity was confirmed after transient transfection of GPR43 into mammalian cells using Ca(2+) mobilization and [(35)S]guanosine 5'-O-(3-thiotriphosphate) binding assays and by coexpression with GIRK G protein-regulated potassium channels in Xenopus laevis oocytes. Other short chain carboxylic acid anions such as formate, propionate, butyrate, and pentanoate also had agonist activity. GPR41 is related to GPR43 (52% similarity; 43% identity) and was activated by similar ligands but with differing specificity for carbon chain length, with pentanoate being the most potent agonist. A third family member, GPR42, is most likely a recent gene duplication of GPR41 and may be a pseudogene. GPR41 was expressed primarily in adipose tissue, whereas the highest levels of GPR43 were found in immune cells. The identity of the cognate physiological ligands for these receptors is not clear, although propionate is known to occur in vivo at high concentrations under certain pathophysiological conditions.
Collapse
Affiliation(s)
- Andrew J Brown
- Department of 7TMR Systems Research, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu AMF, Ho MKC, Wong CSS, Chan JHP, Pau AHM, Wong YH. Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization. JOURNAL OF BIOMOLECULAR SCREENING 2003; 8:39-49. [PMID: 12854997 DOI: 10.1177/1087057102239665] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
G protein-coupled receptors (GPCRs) represent a class of important therapeutic targets for drug discovery. The integration of GPCRs into contemporary high-throughput functional assays is critically dependent on the presence of appropriate G proteins. Given that different GPCRs can discriminate against distinct G proteins, a universal G protein adapter is extremely desirable. In this report, the authors evaluated two highly promiscuous Galpha(16/z) chimeras, 16z25 and 16z44, for their ability to translate GPCR activation into Ca(2+) mobilization using the fluorescence imaging plate reader (FLIPR) and aequorin. A panel of 24 G(s)- or G(i)-coupled receptors was examined for their functional association with the Galpha(16/z) chimeras. Although most of the GPCRs tested were incapable of inducing Ca(2+) mobilization upon their activation by specific agonists, the introduction of 16z25 or 16z44 allowed all of these GPCRs to mediate agonist-induced Ca(2+) mobilization. In contrast, only 16 of the GPCRs tested were capable of using Galpha(16) to mobilize intracellular Ca(2+). Analysis of dose-response curves obtained with the delta-opioid, dopamine D(1), and Xenopus melatonin Mel1c receptors revealed that the Galpha(16/z) chimeras possess better sensitivity than Galpha(16) in both the FLIPR and aequorin assays. Collectively, these studies help to validate the promiscuity of the Galpha(16/z) chimeras as well as their application in contemporary drug-screening assays that are based on ligand-induced Ca(2+) mobilization.
Collapse
Affiliation(s)
- Andrew M F Liu
- Department of Biochemisty, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
44
|
Tsukada S, Iwai M, Nishiu J, Itoh M, Tomoike H, Horiuchi M, Nakamura Y, Tanaka T. Inhibition of experimental intimal thickening in mice lacking a novel G-protein-coupled receptor. Circulation 2003; 107:313-9. [PMID: 12538434 DOI: 10.1161/01.cir.0000043804.29963.b4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular restenosis attributable to intimal thickening remains a major problem after percutaneous transluminal coronary angioplasty (PTCA). METHODS AND RESULTS Through differential-display analysis, we have identified a novel gene whose expression was increased after catheter injury of rabbit aorta. The gene that is expressed predominantly in vascular smooth muscle cells encodes a novel protein with 7 transmembrane domains, and we termed it ITR (intimal thickness-related receptor). The ITR sequence contains a motif common to the Rhodopsin-like GPCR (G-protein-coupled receptor) superfamily. In vivo analyses of this gene revealed that expression of ITR protein increased with intimal thickening induced by cuff placement around murine femoral artery. Furthermore, ITR-knockout mice were found to be resistant to this experimental intimal thickening. CONCLUSIONS ITR thus seems to be a novel receptor that may play a role in vascular remodeling and that may represent a good target for development of drugs in the prevention of vascular restenosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Aorta/pathology
- Base Sequence
- COS Cells
- Cell Line
- Chromosomes, Human, Pair 13/genetics
- Constriction, Pathologic/genetics
- Constriction, Pathologic/pathology
- Constriction, Pathologic/prevention & control
- Disease Models, Animal
- Femoral Artery/metabolism
- Femoral Artery/pathology
- GTP-Binding Proteins/metabolism
- Gene Targeting
- Humans
- Immunohistochemistry
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Organ Specificity
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Tunica Media/metabolism
- Tunica Media/pathology
Collapse
Affiliation(s)
- Shuichi Tsukada
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Meeusen T, Mertens I, De Loof A, Schoofs L. G Protein-Coupled Receptors in Invertebrates: A State of the Art. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 230:189-261. [PMID: 14692683 DOI: 10.1016/s0074-7696(03)30004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest and most ancient superfamilies of membrane-spanning proteins. We focus on neuropeptide GPCRs, in particular on those of invertebrates. In general, such receptors mediate the responses of signaling molecules that constitute the highest hierarchical position in the regulation of physiological processes. Until recently, only a few of these receptors were identified in invertebrates. However, the availability of a plethora of genomic information has boosted the discovery of novel members in several invertebrate species, such as Drosophila, in which 18 neuropeptide GPCRs have been characterized. The finalization of genomic projects in other invertebrates will lead to a similar expansion of GPCR understanding. Many new insights regarding neuropeptide regulation have followed from the discovery of their cognate receptors. Furthermore, information on GPCR signaling is still fragmentary and the elucidation of these pathways in model insects such as Drosophila will lead to further insights in other species, including mammals. In this review we present the current status of what is known about invertebrate GPCRs, discuss some novel perceptions that follow from the identified members, and, finally, present some future prospects.
Collapse
Affiliation(s)
- Tom Meeusen
- Laboratory of Developmental Physiology, Genomics, and Proteomics, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
46
|
D'Ursi AM, Albrizio S, Di Fenza A, Crescenzi O, Carotenuto A, Picone D, Novellino E, Rovero P. Structural studies on Hgr3 orphan receptor ligand prolactin-releasing peptide. J Med Chem 2002; 45:5483-91. [PMID: 12459016 DOI: 10.1021/jm020975p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolactin-releasing peptides (PrRPs) are two novel bioactive peptides of 20 and 31 residues, dubbed respectively PrRP20 and PrRP31, isolated from bovine hypothalamic tissues as ligands of the orphan seven-transmembrane domain receptor Hgr3. The first biological activity identified for these peptides was the release of prolactin. Recent data on biological activities of PrRPs as well as on the localization of their receptors in numerous central nervous system sites suggested new potential actions of PrRPs in the regulation of the central nervous system and the possibility of identifying an alternative central role for these peptides. We describe here the synthesis and the structural characterization of the peptide PrRP20 by CD and NMR spectroscopies. A 3D model was built on the basis of the NMR data collected in a water/sodium dodecyl sulfate mixture. This system provides an amphipatic medium able to mimic the cell membrane. The main structural feature of the PrRP20 is an alpha-helical secondary structure spanning the 10 C-terminal residues. The conformational properties of PrRP20 are discussed in considering the sequence similarity observed between the Hgr3 and the neuropeptide Y (NPY) receptors. This similarity, together with the data showing a number of biological activities common to PrRP and NPY peptides, leads us to formulate the hypothesis that similar structural elements could exist in the ligands as well. In fact, PrRP20 and NPY are well aligned in the C-terminal portion, where they share an amphipatic alpha-helical secondary structure. Interestingly, the homology between the two sequences involves residues crucial for NPY biological activity. The conformational characterization of PrRP20 and the comparison with NPY are a valuable starting point for the rational design of subsequent SAR studies aimed at identifying PrRP analogues acting as either agonists or antagonists at the Hgr3 receptor. Such PrRP analogues could be useful receptorial tools able to clarify the multiple biological functions hypothesized for the PrRP receptor in the central nervous system.
Collapse
Affiliation(s)
- Anna Maria D'Ursi
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo 11C, I-84084 Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T, Ohnuki T. Identification of a novel human eicosanoid receptor coupled to G(i/o). J Biol Chem 2002; 277:31459-65. [PMID: 12065583 DOI: 10.1074/jbc.m203194200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have conducted an in silico data base search for and cloned a novel G-protein-coupled receptor (GPCR) named TG1019. Dot and Northern blotting analyses showed that transcripts of the novel GPCR were expressed in various tissues except brain, and the expression was more intense in liver, kidney, peripheral leukocyte, lung, and spleen than in other tissues. By GTP gamma S binding assay using the TG1019-G alpha(i1)-protein fusion expressed in insect cells, eicosanoids, and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5(S)-hydroperoxy-6E,8Z, 11Z,14Z-eicosatetraenoic acid, and arachidonic acid were identified to exhibit agonistic activities against TG1019. 5-oxo-ETE was the most potent to enhance the specific binding by 6-fold at a maximum effect dose of submicromolar to micromolar order with an ED(50) value of 5.7 nM. Conversely, polyunsaturated fatty acids such as docosahexaenoic acid and eicosapentaenoic acid showed antagonistic activities against TG1019. In Chinese hamster ovary cells transiently expressing TG1019, the forskolin-stimulated production of cAMP was inhibited up to approximately 70% by 5-oxo-ETE, with an IC(50) value of 33 nM. This inhibition was sensitive to pretreatment of the cells with pertussis toxin.
Collapse
Affiliation(s)
- Takeshi Hosoi
- Discovery Research Laboratory, Tanabe Seiyaku Co. Ltd., 2-50 Kawagishi-2-chome, Toda-shi, Saitama 335-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chalmers DT, Behan DP. The use of constitutively active GPCRs in drug discovery and functional genomics. Nat Rev Drug Discov 2002; 1:599-608. [PMID: 12402500 DOI: 10.1038/nrd872] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The complete sequencing of the human genome has afforded researchers the opportunity to identify novel G-protein-coupled receptors (GPCRs) that are expressed in human tissues. The successful identification of hundreds of GPCRs represents the single greatest opportunity for novel drug development today. However, the lack of identified ligands for these GPCRs has limited their utility for traditional drug discovery approaches that focus on ligand-based assay methods to discover and pharmacologically characterize drug candidates. Here, we review the use of constitutively activated GPCRs in the discovery pathway, both as a means to overcome the limitations of traditional drug discovery at novel GPCRs and as a tool to investigate the functionality of these receptors.
Collapse
Affiliation(s)
- Derek T Chalmers
- Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San Diego, California 92121, USA.
| | | |
Collapse
|
49
|
Ramsay D, Kellett E, McVey M, Rees S, Milligan G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J 2002; 365:429-40. [PMID: 11971762 PMCID: PMC1222697 DOI: 10.1042/bj20020251] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/17/2002] [Accepted: 04/24/2002] [Indexed: 11/17/2022]
Abstract
Homo- and hetero-oligomerization of G-protein-coupled receptors (GPCRs) were examined in HEK-293 cells using two variants of bioluminescence resonance energy transfer (BRET). BRET(2) (a variant of BRET) offers greatly improved separation of the emission spectra of the donor and acceptor moieties compared with traditional BRET. Previously recorded homo-oligomerization of the human delta-opioid receptor was confirmed using BRET(2). Homo-oligomerization of the kappa-opioid receptor was observed using both BRET techniques. Both homo- and hetero-oligomers, containing both delta- and kappa-opioid receptors, were unaffected by the presence of receptor ligands. BRET detection of opioid receptor homo- and hetero-oligomers required expression of 50,000-100,000 copies of the receptor energy acceptor construct per cell. The effectiveness of delta-kappa-opioid receptor hetero-oligomer formation was as great as for homomeric interactions. The capacity of the two opioid receptors to form oligomeric complexes with the beta(2)-adrenoceptor was also assessed. Although such interactions were detected, at least 250,000 copies per cell of the energy acceptor were required. Requirement for high levels of receptor expression was equally pronounced in attempts to measure hetero-oligomer formation between the kappa-opioid receptor and the thyrotropin-releasing hormone receptor-1. These studies indicate that constitutively formed homo- and hetero-oligomers of opioid receptor subtypes can be detected in living cells containing less than 100,000 copies of the receptors. However, although hetero-oligomeric interactions between certain less closely related GPCRs can be detected, they appear to be of lower affinity than homo- or hetero-oligomers containing closely related sequences. Interactions recorded between certain GPCR family members in heterologous expression systems are likely to be artefacts of extreme levels of overexpression.
Collapse
Affiliation(s)
- Douglas Ramsay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
50
|
Bockaert J, Claeysen S, Bécamel C, Pinloche S, Dumuis A. G protein-coupled receptors: dominant players in cell-cell communication. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:63-132. [PMID: 11804040 DOI: 10.1016/s0074-7696(01)12004-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The G protein-coupled receptors (GPCRs) are the most numerous and the most diverse type of receptors (1-5% of the complete invertebrate and vertebrate genomes). They transduce messages as different as odorants, nucleotides, nucleosides, peptides, lipids, and proteins. There are at least eight families of GPCRs that show no sequence similarities and that use different domains to bind ligands and activate a similar set of G proteins. Homo- and heterodimerization of GPCRs seem to be the rule, and in some cases an absolute requirement, for activation. There are about 100 orphan GPCRs in the human genome which will be used to find new message molecules. Mutations of GPCRs are responsible for a wide range of genetic diseases. The importance of GPCRs in physiological processes is illustrated by the fact that they are the target of the majority of therapeutical drugs and drugs of abuse.
Collapse
|