1
|
Wu TW, Chu YC, Chang CH, Hsieh YH, Tang MH, Hsu PH, Wu HY, Chen JJ, Shih TL. Flavonol-Ruthenium Complexes as Antioxidant and Anticancer Agents. ChemMedChem 2024; 19:e202400313. [PMID: 39261284 DOI: 10.1002/cmdc.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Flavonol-metal complexes can enhance the biological activity of flavonols. Inspired by the potential of ruthenium-based drugs in pharmaceutical applications, seven flavonol-Ru (II) complexes were synthesized to evaluate their biological activities. Among these compounds, compounds 8, 11, and 12 showed potent antioxidant activities. Compound 12 exhibited superior anti-inflammatory activity to natural quercetin, which served as a positive control. This study is the first to report the free radical scavenging abilities and antioxidant activity of flavonol-Ru (II) complexes. Furthermore, compound 12 demonstrated comparable efficacy to 5-FU against human non-small-cell lung cancer cells (A549). These results strongly support the potential of flavonol-Ru (II) agents.
Collapse
Affiliation(s)
- Ting-Wei Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Yi-Cheng Chu
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, 300102, Hsinchu, Taiwan
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, 333324, Taoyuan, Taiwan
| | - Yu-Hui Hsieh
- Biomedical Industry Ph.D. Program School of Life Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
| | - Mei-Hsin Tang
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Pei-Hsuan Hsu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Hsin-Ying Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 404333, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, 110301, Taipei, Taiwan
| | - Tzenge-Lien Shih
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| |
Collapse
|
2
|
Wang J, Behl T, Rana T, Sehgal A, Wal P, Saxena B, Yadav S, Mohan S, Anwer MK, Chigurupati S, Zaheer I, Shen B, Singla RK. Exploring the pathophysiological influence of heme oxygenase-1 on neuroinflammation and depression: A study of phytotherapeutic-based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155466. [PMID: 38461764 DOI: 10.1016/j.phymed.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technology, University of A Coruña, A Coruña, Spain
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Punjab, India; Government Pharmacy College, Seraj-175123, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah-51452, Kingdom of Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, India
| | - Imran Zaheer
- Department of Pharmacology, College of Medicine, (Al-Dawadmi Campus), Shaqra University, Al-Dawadmi, 11961, Kingdom of Saudi Arabia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| |
Collapse
|
3
|
Saini D, Jangid D, Fernandes RA. Asymmetric total synthesis of diosniponols A and B. Org Biomol Chem 2023; 21:6524-6530. [PMID: 37523207 DOI: 10.1039/d3ob00863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A concise asymmetric total synthesis of diosniponols A and B has been achieved based on an enantioselective Jacobsen kinetic resolution of racemic epoxide and the important 2,3-dihydro-4H-pyran-4-one moiety being installed by the metal-free δ-hydroxyalkynone rearrangement catalyzed by p-TsOH. A diastereoselective catalytic hydrogenation set the required all-syn stereochemistry leading to diosniponol A, which then, under the Mitsunobu inversion conditions, provided diosniponol B. The structure and absolute stereochemistry of the natural products were further confirmed.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Dashrath Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
4
|
Hsu JH, Yang CS, Chen JJ. Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants (Basel) 2022; 11:2222. [PMID: 36421408 PMCID: PMC9686747 DOI: 10.3390/antiox11112222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 10/29/2023] Open
Abstract
The root bark of Morus alba L. (Mori Cortex) is used to treat diuresis and diabetes in Chinese traditional medicine. We evaluated different solvent extracts and bioactive components from the root bark of Morus alba L. for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory activities. Acetone extract showed potent antioxidant activity, with SC50 values of 242.33 ± 15.78 and 129.28 ± 10.53 µg/mL in DPPH and ABTS radical scavenging assays, respectively. Acetone and ethyl acetate extracts exhibited the strongest anti-α-glucosidase activity, with IC50 values of 3.87 ± 1.95 and 5.80 ± 2.29 μg/mL, respectively. In the antityrosinase assay, the acetone extract showed excellent activity, with an IC50 value of 7.95 ± 1.54 μg/mL. In the anti-inflammatory test, ethyl acetate and acetone extracts showed significant anti-nitric oxide (NO) activity, with IC50 values of 10.81 ± 1.41 and 12.00 ± 1.32 μg/mL, respectively. The content of the active compounds in the solvent extracts was examined and compared by HPLC analysis. Six active compounds were isolated and evaluated for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory properties. Morin (1) and oxyresveratrol (3) exhibited effective antioxidant activities in DPPH and ABTS radical scavenging assays. Additionally, oxyresveratrol (3) and kuwanon H (6) showed the highest antityrosinase and anti-α-glucosidase activities among all isolates. Morusin (2) demonstrated more significant anti-NO and anti-iNOS activities than the positive control, quercetin. Our study suggests that the active extracts and components from root bark of Morus alba should be further investigated as promising candidates for the treatment or prevention of oxidative stress-related diseases, hyperglycemia, and pigmentation disorders.
Collapse
Affiliation(s)
- Jui-Hung Hsu
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chang-Syun Yang
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
5
|
New Insights on Phytochemical Features and Biological Properties of Alnus glutinosa Stem Bark. PLANTS 2022; 11:plants11192499. [PMID: 36235365 PMCID: PMC9570633 DOI: 10.3390/plants11192499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022]
Abstract
Alnus glutinosa (namely black alder or European alder) is a tree of the Betulaceae family widely spread through Europe, Southeastern Asia, the Caucasus mountains, and Western Siberia. Its bark is traditionally used for medicinal purposes as an astringent, cathartic, febrifuge, emetic, hemostatic, and tonic, suggesting that it may contain bioactive compounds useful to counteract inflammation. The aim of this study was to investigate the phytochemical profile of A. glutinosa stem bark extract (AGE) by LC-DAD-ESI-MS/MS analysis and to validate some biological activities such as antioxidant, anti-inflammatory and anti-angiogenic properties by in vitro and in vivo models (chick chorioallantoic membranes and zebrafish embryos), that can justify its use against inflammatory-based diseases. The AGE showed a high total phenols content expressed as gallic acid equivalents (0.71 g GAE/g of AGE). Diarylheptanoids have been identified as the predominant compounds (0.65 g/g of AGE) with oregonin, which alone constitutes 74.67% of the AGE. The AGE showed a strong and concentration-dependent antioxidant (IC50 0.15–12.21 µg/mL) and anti-inflammatory (IC50 5.47–12.97 µg/mL) activity. Furthermore, it showed promising anti-angiogenic activity, inhibiting both the vessel growth (IC50 23.39 µg/egg) and the release of an endogenous phosphatase alkaline enzyme (IC50 44.24 µg/embryo). In conclusion, AGE is a promising source of antioxidant, anti-inflammatory and angio-modulator compounds.
Collapse
|
6
|
Chen SC, Yang CS, Chen JJ. Main Bioactive Components and Their Biological Activities from Natural and Processed Rhizomes of Polygonum sibiricum. Antioxidants (Basel) 2022; 11:antiox11071383. [PMID: 35883874 PMCID: PMC9311596 DOI: 10.3390/antiox11071383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Polygonatum sibiricum (Asparagaceae) is often used as an herbal drug in the traditional medicine of Southeast Asia. Its rhizome, called “Huang Jing”, is used in traditional Chinese medicine as an immune system stimulant, hypolipidemic agent, anti-aging agent, anti-fatigue agent, and cardiovascular protectant. We investigated the antioxidant, anti-acetylcholinesterase (AChE), anti-inflammatory, and anti-α-glucosidase effects of various solvent extracts and major bioactive components of Polygonatum sibiricum (PS) and processed Polygonatum sibiricum (PPS). Dichloromethane extract of PS showed stronger antioxidant effects by DPPH, ABTS, and FRAP assays, and EtOAc extract displayed relatively high antioxidant activity by a superoxide radical scavenging test. Moreover, acetone, EtOAc, and dichloromethane extracts displayed a significant anti-α-glucosidase effect. EtOH and CH2Cl2 extracts showed effective AChE inhibitory activity. In addition, dichloromethane extract showed the best inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) accumulation in RAW264.7 macrophages. HPLC analysis was used to investigate and compare the content of major active components of various solvent extracts of PS and PPS. Rutin showed the most effective scavenging of DPPH and ABTS free radicals, while scopoletin and isoquercetin displayed the strongest anti-α-glucosidase and anti-AChE effect, respectively. Rutin showed the best inhibition against LPS-induced NO production and also inhibited inducible nitric oxide synthase (iNOS) expression in Western blot. The molecular docking of AChE and iNOS revealed that active components could have a better antagonistic effect than positive controls (common inhibitors). This study shows that the active extracts and components of Polygonatum sibiricum have the potential to be further developed as a natural anti-AChE, anti-α-glucosidase, antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Shih-Chi Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (S.-C.C.); (C.-S.Y.)
| | - Chang-Syun Yang
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (S.-C.C.); (C.-S.Y.)
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (S.-C.C.); (C.-S.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Correspondence: ; Tel.: +886-2-2826-7195; Fax: +886-2-2823-2940
| |
Collapse
|
7
|
Lee BW, Ha JH, Ji Y, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Kim JC, Ryu YB, Lee IC. Alnus hirsuta (Spach) Rupr. Attenuates Airway Inflammation and Mucus Overproduction in a Murine Model of Ovalbumin-Challenged Asthma. Front Pharmacol 2021; 12:614442. [PMID: 33643046 PMCID: PMC7902870 DOI: 10.3389/fphar.2021.614442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Alnus hirsuta (Spach) Rupr. (AH), a member of the Betulaceae family, is widely used in Eastern Asia of as a source of medicinal compounds for the treatment of hemorrhage, diarrhea, and alcoholism. In this study, we investigated the protective effects of a methanolic extract of AH branches against airway inflammation and mucus production in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in an ovalbumin (OVA)-challenged allergic asthma mouse model. Female BALB/c mice were injected with OVA (40 μg) and aluminum hydroxide (2 mg) on days 0 and 14 to induce allergic airway inflammation. The mice were then challenged with 1% OVA from days 21–23. Mice were treated with AH (50 and 100 mg/kg/day; 2% DMSO) or dexamethasone (positive control; 3 mg/kg/day) from days 18–23. AH treatment effectively attenuated airway resistance/hyperresponsiveness and reduced levels of T helper type 2 (Th2) cytokines, eotaxins, and number of inflammatory cells in bronchoalveolar lavage fluid, and immunoglobulin E in serums of OVA-challenged mice. In histological analysis, AH treatment significantly inhibited airway inflammation and mucus production in OVA-challenged mice. AH treatment downregulated the phosphorylation of I kappa B-alpha, p65 nuclear factor-kappa B (p65NF-κB), and mitogen-activated protein kinases with suppression of mucin 5AC (MUC5AC) in lung tissue. Moreover, AH treatment decreased the levels of pro-inflammatory cytokines and Th2 cytokines, as well as MUC5AC expression, and inhibited the phosphorylation of p65NF-κB in TNF-α-stimulated NCI-H292 cells. These results indicate that AH might represent a useful therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Yeongseon Ji
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jihye Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jong-Choon Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| |
Collapse
|
8
|
Vanucci-Bacqué C, Bedos-Belval F. Anti-inflammatory activity of naturally occuring diarylheptanoids - A review. Bioorg Med Chem 2021; 31:115971. [PMID: 33422907 DOI: 10.1016/j.bmc.2020.115971] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023]
Abstract
Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, if it becomes uncontrolled, inflammation may result in autoimmune or auto inflammatory disorders, neurodegenerative diseases or cancers. The currently available anti-inflammatory drug therapy is often not successful or induces severe side effects. Thus, the search of new therapeutic options for the treatment of inflammation is highly required. Medicinal plants have been an interesting source for obtaining new active compounds. Diarylheptanoids characterized by a 1, 7-diphenylheptane structural skeleton, are a class of secondary plant metabolites that have gained increasing interest over the last few decades due to a wide variety of biological activities. This review covers 182 natural linear or macrocyclic diarylheptanoids described in the period of 1982 to 2020 with anti-inflammatory activities evaluated using quantified in vitro and/or in vivo assays. All of these data highlight the pharmacological potential of these natural compounds to act as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Corinne Vanucci-Bacqué
- Université Paul Sabatier, Toulouse III, UMR 5068, Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Florence Bedos-Belval
- Université Paul Sabatier, Toulouse III, UMR 5068, Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| |
Collapse
|
9
|
In vitro and in vivo anti-inflammatory activity and chemical composition of Renealmia petasites Gagnep. Inflammopharmacology 2021; 29:451-465. [PMID: 33452968 DOI: 10.1007/s10787-020-00786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The study aimed to investigate the chemical composition and the anti-inflammatory activity of the hydroethanolic rhizomes, stems, and leaf extracts of Renealmia petasites using in vitro and in vivo assays. The chemical composition of the extracts was characterized in a linear iron trap mass spectrometer. Total phenolic, flavonoid, and tannin content were determined by spectrophotometry analyses. In vitro anti-inflammatory activity was investigated in lipopolysaccharide-stimulated macrophages evaluating the influence on the production of superoxide anion (O2-), nitric oxide (NO), and the pro-inflammatory cytokines tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). In vivo effects were determined using the air pouch model in which were inoculated carrageenan and thereafter treated with 50 mg/kg of the hydroethanolic extracts of R. petasites. After 4 and 24 h, the cellular influx, protein exudation, cytokines, and nitric oxide were evaluated. Eight compounds were tentatively identified in the R. petasites extracts, suggesting five diarylheptanoids, one flavonoid, and two fatty alcohols. The in vitro results showed that the extracts were capable of blocking free radicals and/or inhibiting their intracellular actions by inhibiting the production of important mediators of the inflammatory process, such as NO, O2-, TNF-α, and IL-6. In vivo, R. petasites significantly decrease the influx of leukocytes, mainly neutrophils, protein exudation, NO, TNF-α, and IL-6 concentration in the air pouch model. The results evidenced that R. petasites can be considered a promising alternative therapy for the treatment and management of osteoarthritis and other inflammatory diseases.
Collapse
|
10
|
Wu PS, Jeng J, Yang JJ, Kao V, Yen JH, Wu MJ. Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown exert anti-inflammatory activities and relieve oxidative stress via Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113155. [PMID: 32736054 PMCID: PMC7385944 DOI: 10.1016/j.jep.2020.113155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown have anti-inflammatory properties and are popularly used as complementary and alternative medicine in Asia. AIM OF THE STUDY To investigate the underlying molecular mechanism and active chemicals in the ethanol extracts of V. patula (VP) and L. chinensis (LC). MATERIALS AND METHODS The inhibitory activities of VP and LC on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and interleukin-6 (IL-6) production were investigated in RAW264.7 macrophages and BV2 microglia. Downregulation of pro-inflammatory genes and upregulation of Nrf2 (NF-E2 p45-related factor 2)-ARE (antioxidant response element) pathway were investigated using RT-Q-PCR and Western blotting. Direct antioxidant capacities were measured using free radical scavenging and Folin-Ciocalteu assays. The flavonoids and triterpenes in VP and LC were identified by HPLC-ESI-MS. RESULTS VP and LC inhibited NO and IL-6 production and suppressed iNOS, IL-6, IL-1β and CCL2 gene expression. VP and LC were potent direct antioxidants and effective indirect antioxidants assayed by Nrf2 activation and induction of heme oxygenase (HO)-1, glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H quinone oxidoreductase 1 (NQO1). Three flavonoids including apigenin (1), luteolin (2) and chryseriol (3), and one triterpene betulinic acid (4) were found in VP; while compounds 1-4 and oleanolic acid (5) were in LC. CONCLUSION Anti-inflammatory and antioxidant activities of VP and LC may be in great part attributed to the identified Nrf2 activating compounds, which induce expression of Phase II enzymes and attenuate the upregulation of pro-inflammatory genes.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jingyueh Jeng
- Bachelor Program in Cosmeceutical and Biotech Industry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jeng-Jer Yang
- Bachelor Program in Pharmaceutical Botanicals & Health Applications, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Vivia Kao
- Bachelor Program in Cosmeceutical and Biotech Industry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan.
| |
Collapse
|
11
|
Wang HW, Lai EHH, Yang CN, Lin SK, Hong CY, Yang H, Chang JZC, Kok SH. Intracanal Metformin Promotes Healing of Apical Periodontitis via Suppressing Inducible Nitric Oxide Synthase Expression and Monocyte Recruitment. J Endod 2019; 46:65-73. [PMID: 31753516 DOI: 10.1016/j.joen.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We have previously shown that intracanal metformin ameliorates apical periodontitis, partially by modulation of osteoblast apoptosis. The action of metformin on other cell types pertinent to the development of apical periodontitis needs to be examined. In the present study, we aimed to analyze whether its effects on the expression of inducible nitric oxide synthase (iNOS) and monocyte recruitment contribute to the therapeutic effect on apical periodontitis. METHODS Lipopolysaccharide (LPS)-induced expression of iNOS in a human monocytic cell line, Mono-Mac-6, was assessed by Western blot. The amount of nitrite in culture medium was assessed to quantify nitric oxide (NO) production. C-C motif chemokine ligand-2 (CCL-2) synthesis was measured by enzyme-linked immunosorbent assay. Experimental apical periodontitis in rats was treated with root canal debridement with or without intracanal metformin medication. Lesion progression was assessed by conventional radiography and micro-computed tomographic imaging. Cellular expression of iNOS and the number of monocytes/macrophages were assessed by immunohistochemistry. RESULTS Metformin suppressed LPS-induced iNOS and NO production by monocytes. More importantly, metformin inhibited LPS-enhanced CCL-2 synthesis through modulation of the iNOS/NO pathway. Intracanal metformin reduced bone resorption associated with apical periodontitis and suppressed iNOS expression and monocyte recruitment. CONCLUSIONS Our results confirmed the therapeutic efficacy of intracanal metformin for apical periodontitis. Suppression of monocyte recruitment through modulation of iNOS expression and NO production is an important mechanism underlying the beneficial effect of metformin.
Collapse
Affiliation(s)
- Han-Wei Wang
- Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenny Zwei-Chieng Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Ganapathy G, Preethi R, Moses J, Anandharamakrishnan C. Diarylheptanoids as nutraceutical: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019; 19:101109. [PMID: 32288931 PMCID: PMC7102868 DOI: 10.1016/j.bcab.2019.101109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
Phenolic compounds are naturally occurring compounds present ubiquitously in plants. They have potential health benefits and substantiate evidence for their nutraceutical applications. Diarylheptanoids are part of the broad class of plant phenolics with structurally divergent compounds. They have been used in traditional medicines and homemade remedies to treat various ailments, as organoleptic additives in foods, and also for aesthetic purposes. With their potential therapeutic and organoleptic characteristics, diarylhepatanoids can be rightly termed as nutraceuticals. This review summarizes the wide range of pharmacological activities of diarylhepatanoids and nutraceutical formulations, with relevance to human health.
Collapse
Affiliation(s)
- G. Ganapathy
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - R. Preethi
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - J.A. Moses
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - C. Anandharamakrishnan
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| |
Collapse
|
13
|
Shi Q, Zhang Q, Peng Y, Zhang X, Wang Y, Shi L. A natural diarylheptanoid protects cortical neurons against oxygen–glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019; 71:1110-1118. [DOI: 10.1111/jphp.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This study aims to investigate the neuroprotective effects of curcumin analogues, 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) on oxygen–glucose deprivation and re-oxygenation (OGD/R) induced injury in cortical neurons, which is a widely accepted in-vitro model for ischaemic reperfusion.
Methods
In this study, AO-2 was added to cortical neurons for 2 h as pretreatment, and then cortical neurons were subjected to OGD/R in the presence of AO-2 for 4 h. Cell viability was tested by 2′, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and apoptosis by flow cytometry and Live & Dead cell assay. Western blot analysis detected the change in AKT/mTOR (mammalian target of rapamycin) signalling pathway.
Key findings
Treatment of AO-2 increased cell survival of OGD/R-treated cortical neurons. Transient AKT/mTOR inhibition, induction of the autophagy marker LC3-II (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate), and cleavage of the apoptosis marker Caspase-3 were observed at different stages of OGD/R, and AO-2 reversed all three events. Importantly, treatment of the mTOR inhibitor rapamycin blocked the neuroprotective effects of AO-2 on reducing LC3-II and cleaved Caspase-3 expression and cancelled AO-2-mediated neuronal survival.
Conclusions
These results demonstrate that AO-2 increases resistance of cortical neurons to OGD/R by decreasing autophagy and cell apoptosis, which involves an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoqi Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Shepherd's Purse Polyphenols Exert Its Anti-Inflammatory and Antioxidative Effects Associated with Suppressing MAPK and NF- κB Pathways and Heme Oxygenase-1 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7202695. [PMID: 30733853 PMCID: PMC6348798 DOI: 10.1155/2019/7202695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 01/24/2023]
Abstract
Shepherd's purse (Capsella bursa-pastoris (L.) Medik.), a wild herb as a traditional herbal medicine, has been proved with multiple healthy benefits. In this study, the chemical constituents of shepherd's purse were identified by UPLC-QTOF-MS/MS. The antioxidative and anti-inflammatory potential of shepherd's purse extract (SPE) were also investigated applying lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 macrophages and a carrageenan-induced mice paw edema model. Twenty-four chemical compounds were identified mainly including phenolic acids and flavonoids. The data also indicated SPE inhibited the productions of NO, PGE2, TNF-α, and IL-6 stimulated with LPS. In addition, SPE inhibited the increase of reactive oxygen species (ROS) and upregulated the expression of heme oxygenase-1 (HO-1). We further found that SPE inhibited the phosphorylation of P38 MAPK and activation of NF-κB. In vivo mice model also indicated that SPE showed strong antioxidative and anti-inflammatory activity.
Collapse
|
15
|
Krasilnikova J, Lauberte L, Stoyanova E, Abadjieva D, Chervenkov M, Mori M, De Paolis E, Mladenova V, Telysheva G, Botta B, Kistanova E. Oregonin from Alnus incana bark affects DNA methyltransferases expression and mitochondrial DNA copies in mouse embryonic fibroblasts. J Enzyme Inhib Med Chem 2018; 33:1055-1063. [PMID: 29877148 PMCID: PMC6010114 DOI: 10.1080/14756366.2018.1476504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023] Open
Abstract
Oregonin is an open-chain diarylheptanoid isolated from Alnus incana bark that possesses remarkable antioxidant and anti-inflammatory properties, inhibits adipogenesis, and can be used in the prevention of obesity and related metabolic disorders. Here, we aimed to investigate the effects of oregonin on the epigenetic regulation in cells as well as its ability to modulate DNA methylating enzymes expression and mitochondrial DNA (mtDNA) copies. Our results show that oregonin altered the expression of DNA methyltransferases and mtDNA copy numbers in dependency on concentration and specificity of cells genotype. A close correlation between mtDNA copy numbers and mRNA expression of the mtDnmt1 and Dnmt3b was established. Moreover, molecular modeling suggested that oregonin fits the catalytic site of DNMT1 and partially overlaps with binding of the cofactor. These findings further extend the knowledge on oregonin, and elucidate for the first time its potential to affect the key players of the DNA methylation process, namely DNMTs transcripts and mtDNA.
Collapse
Affiliation(s)
| | - Liga Lauberte
- Latvian State Institute of Wood Chemistry, Riga, Latvia
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mihail Chervenkov
- Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Elisa De Paolis
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Vanya Mladenova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
16
|
The Mycobacterial Adjuvant Analogue TDB Attenuates Neuroinflammation via Mincle-Independent PLC-γ1/PKC/ERK Signaling and Microglial Polarization. Mol Neurobiol 2018; 56:1167-1187. [PMID: 29876879 DOI: 10.1007/s12035-018-1135-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Microglial activation has long been recognized as a hallmark of neuroinflammation. Recently, the bacillus Calmette-Guerin (BCG) vaccine has been reported to exert neuroprotective effects against several neurodegenerative disorders. Trehalose-6,6'-dibehenate (TDB) is a synthetic analogue of trehalose-6,6'-dimycolate (TDM, also known as the mycobacterial cord factor) and is a new adjuvant of tuberculosis subunit vaccine currently in clinical trials. Both TDM and TDB can activate macrophages and dendritic cells through binding to C-type lectin receptor Mincle; however, its action mechanism in microglia and their relationship with neuroinflammation are still unknown. In this article, we found that TDB inhibited LPS-induced M1 microglial polarization in primary microglia and BV-2 cells. However, TDB itself had no effects on IKK, p38, and JNK activities or cytokine expression. In contrast, TDB activated ERK1/2 through PLC-γ1/PKC signaling and in turn decreased LPS-induced NF-κB nuclear translocation. Furthermore, TDB-induced AMPK activation via PLC-γ1/calcium/CaMKKβ-dependent pathway and thereby enhanced M2 gene expressions. Interestingly, knocking out Mincle did not alter the anti-inflammatory and M2 polarization effects of TDB in microglia. Conditional media from LPS-stimulated microglial cells can induce in vitro neurotoxicity, and this action was attenuated by TDB. Using a mouse neuroinflammation model, we found that TDB suppressed LPS-induced M1 microglial activation and sickness behavior, but promoted M2 microglial polarization in both WT and Mincle-/- mice. Taken together, our results suggest that TDB can act independently of Mincle to inhibit LPS-induced inflammatory response through PLC-γ1/PKC/ERK signaling and promote microglial polarization towards M2 phenotype via PLC-γ1/calcium/CaMKKβ/AMPK pathway. Thus, TDB may be a promising therapeutic agent for the treatment of neuroinflammatory diseases.
Collapse
|
17
|
Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, Wang L, Shen M, She G. The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities. Molecules 2017; 22:E1383. [PMID: 28825681 PMCID: PMC6152317 DOI: 10.3390/molecules22081383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 01/30/2023] Open
Abstract
The genus Alnus (Betulaceae) is comprised of more than 40 species. Many species of this genus have a long history of use in folk medicines. Phytochemical investigations have revealed the presence of diarylheptanoids, polyphenols, flavonoids, terpenoids, steroids and other compounds. Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are the dominant constituents in the genus, whose anticancer effect has been brought into focus. Pure compounds and crude extracts from the genus exhibit a wide spectrum of pharmacological activities both in vitro and in vivo. This paper compiles 273 naturally occurring compounds from the genus Alnus along with their structures and pharmacological activities, as reported in 138 references.
Collapse
Affiliation(s)
- Xueyang Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Ting He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanli Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yicheng Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xiaoyi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Shaojuan Bai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Le Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Meng Shen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Gaimei She
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
18
|
Diarylheptanoid-rich extract of grey and black alder barks: an effective dietary antioxidant in mayonnaise. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0017-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ding HY, Wu PS, Wu MJ. Cleome rutidosperma and Euphorbia thymifolia Suppress Inflammatory Response via Upregulation of Phase II Enzymes and Modulation of NF-κB and JNK Activation in LPS-Stimulated BV2 Microglia. Int J Mol Sci 2016; 17:ijms17091420. [PMID: 27618898 PMCID: PMC5037699 DOI: 10.3390/ijms17091420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022] Open
Abstract
Cleome rutidosperma DC. and Euphorbia thymifolia L. are herbal medicines used in traditional Indian and Chinese medicine to treat various illnesses. Reports document that they have antioxidant and anti-inflammatory activities; nonetheless, the molecular mechanisms involved in their anti-inflammatory actions have not yet been elucidated. The anti-neuroinflammatory activities and underlying mechanisms of ethanol extracts of Cleome rutidosperma (CR) and Euphorbia thymifolia (ET) were studied using lipopolysaccharide (LPS)-stimulated microglial cell line BV2. The morphology changes and production of pro-inflammatory mediators were assayed. Gene expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1β, and CC chemokine ligand (CCL)-2, as well as phase II enzymes such as heme oxygenase (HO)-1, the modifier subunit of glutamate cysteine ligase (GCLM) and NAD(P)H quinone dehydrogenase 1 (NQO1), were further investigated using reverse transcription quantitative-PCR (RT-Q-PCR) and Western blotting. The effects of CR and ET on mitogen activated protein kinases (MAPKs) and nuclear factor (NF)-κB signaling pathways were examined using Western blotting and specific inhibitors. CR and ET suppressed BV2 activation, down-regulated iNOS and COX-2 expression and inhibited nitric oxide (NO) overproduction without affecting cell viability. They reduced LPS-mediated tumor necrosis factor (TNF) and IL-6 production, attenuated IL-1β and CCL2 expression, but upregulated HO-1, GCLM and NQO1 expression. They also inhibited p65 NF-κB phosphorylation and modulated Jun-N terminal kinase (JNK) activation in BV2 cells. SP600125, the JNK inhibitor, significantly augmented the anti-IL-6 activity of ET. NF-κB inhibitor, Bay 11-7082, enhanced the anti-IL-6 effects of both CR and ET. Znpp, a competitive inhibitor of HO-1, attenuated the anti-NO effects of CR and ET. Our results show that CR and ET exhibit anti-neuroinflammatory activities by inhibiting pro-inflammatory mediator expression and production, upregulating HO-1, GCLM and NQO1, blocking NF-κB and modulating JNK signaling pathways. They may offer therapeutic potential for suppressing overactivated microglia and alleviating neurodegeneration.
Collapse
Affiliation(s)
- Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Pei-Shan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
20
|
4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells. Int Immunopharmacol 2015; 31:186-94. [PMID: 26745712 DOI: 10.1016/j.intimp.2015.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023]
Abstract
Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.
Collapse
|
21
|
Chiou SY, Ha CL, Wu PS, Yeh CL, Su YS, Li MP, Wu MJ. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria. Int J Mol Sci 2015; 16:29522-41. [PMID: 26690417 PMCID: PMC4691127 DOI: 10.3390/ijms161226184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/29/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022] Open
Abstract
Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.
Collapse
Affiliation(s)
- Shu-Yuan Chiou
- Crop Environment Section, Hualien District Agricultural Research and Extension Station, Hualien 973, Taiwan.
| | - Choi-Lan Ha
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Pei-Shan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Chiu-Ling Yeh
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ying-Shan Su
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Man-Po Li
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
22
|
Wang R, Zhang CY, Bai LP, Pan HD, Shu LM, Kong ANT, Leung ELH, Liu L, Li T. Flavonoids derived from liquorice suppress murine macrophage activation by up-regulating heme oxygenase-1 independent of Nrf2 activation. Int Immunopharmacol 2015; 28:917-24. [PMID: 25871879 DOI: 10.1016/j.intimp.2015.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 01/21/2023]
Abstract
Liquiritigenin (LQG), isoliquiritin (ILQ) and isoliquiritigenin (ILG) are flavonoids derived from liquorice and all possess a similar chemical structural backbone. In the current study, we found that ILQ and ILG had suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophage by suppressing the iNOS and COX-2 proteins and mRNA expression. A mechanistic study indicated that the effect was associated with an induction of antioxidant and detoxification enzymes, including UGT1A1, NQO1, and heme oxygenase-1 (HO-1) mRNA expression. The regulator of these enzymes, nuclear factor-erythroid 2-related factor 2 (Nrf2), which plays a critical role in LPS-induced inflammatory responses, could be activated by ILQ and ILG. Additionally, ILQ and ILG promoted Nrf2 signaling activation by inhibiting the Kelch-like ECH-associated protein 1 (Keap1) and increasing Nrf2 translocation, inducing the expression of these antioxidant enzymes. We further found that ILQ and ILG induced HO-1 expression independent of Nrf2 expression. With respect to the effect of these compounds on NF-κB signaling, ILG was found to markedly inhibit IκBα degradation and phosphorylation, while LQG and ILQ had no significant effects. These results indicate that there are correlations between the anti-inflammatory responses and the chemical structural properties of these flavonoids.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Cheng Yue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Hu Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li Min Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
23
|
Tsai CF, Kuo YH, Yeh WL, Wu CYJ, Lin HY, Lai SW, Liu YS, Wu LH, Lu JK, Lu DY. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int J Mol Sci 2015; 16:5572-89. [PMID: 25768341 PMCID: PMC4394493 DOI: 10.3390/ijms16035572] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jheng-Kun Lu
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 404, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
24
|
Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages. Biochem Biophys Res Commun 2015; 458:693-699. [PMID: 25686497 DOI: 10.1016/j.bbrc.2015.01.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 12/21/2022]
Abstract
Inflammation in the vascular wall is important for the development of atherosclerosis. We have previously shown that inflammatory macrophages are more abundant in human atherosclerotic lesions than in healthy arteries. Activated macrophages produce reactive oxygen species (ROS) that promote local inflammation in atherosclerotic lesions. Here, we investigated the role of oregonin, a diarylheptanoid, on proinflammatory responses in primary human macrophages and found that oregonin decreased cellular lipid accumulation and proinflammatory cytokine secretion. We also found that oregonin decreased ROS production in macrophages. Additionally, we observed that treatment of lipopolysaccharide-exposed macrophages with oregonin significantly induced the expression of antioxidant-related genes, including Heme oxygenase-1 and NADPH dehydrogenase quinone 1. In summary, we have shown that oregonin reduces lipid accumulation, inflammation and ROS production in primary human macrophages, indicating that oregonin has anti-inflammatory bioactivities.
Collapse
|
25
|
Yadav J, Singh VK, Thirupathaiah B, Reddy AB. First total synthesis and reassignment of absolute configuration of diosniponol A and B. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Anti-inflammatory effect and mechanism of the green fruit extract of Solanum integrifolium Poir. BIOMED RESEARCH INTERNATIONAL 2014; 2014:953873. [PMID: 25133186 PMCID: PMC4123553 DOI: 10.1155/2014/953873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022]
Abstract
The green fruit of Solanum integrifolium Poir. has been used traditionally as an anti-inflammatory and analgesic remedy in Taiwanese aboriginal medicine. The goal of this study is to evaluate the anti-inflammatory activity and mechanism of the green fruit extract of S. integrifolium. A bioactivity-guided fractionation procedure was developed to identify the active partition fraction. The methanol fraction (ME), with the highest phenolic content, exhibited the strongest inhibitory effect against LPS-mediated nitric oxide (NO) release and cytotoxicity in RAW264.7 macrophages. ME also significantly downregulated the expression of LPS-induced proinflammatory genes, such as iNOS, COX-2, IL-1β, IL-6, CCL2/MCP-1, and CCL3/MIP1α. Moreover, ME significantly upregulated HO-1 expression and stimulated the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2). Pretreatment of cells with the HO-1 inhibitor zinc protoporphyrin and MEK/ERK inhibitor U0126 attenuated ME's inhibitory activity against LPS-induced NO production. Taken together, this is the first study to demonstrate the anti-inflammatory activity of green fruit extract of S. integrifolium and its activity may be mediated by the upregulation of HO-1 expression and activation of ERK1/2 pathway.
Collapse
|
27
|
3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide (LPS)-induced inflammation by Nrf2 activation in vitro and improves survival of mice in LPS-induced endotoxemia model in vivo. Mol Cell Biochem 2014; 390:143-53. [DOI: 10.1007/s11010-014-1965-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
28
|
Kang CH, Choi YH, Moon SK, Kim WJ, Kim GY. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol 2013; 17:808-13. [DOI: 10.1016/j.intimp.2013.09.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
|
29
|
Huang C, Wang Y, Wang J, Yao W, Chen X, Zhang W. TSG (2,3,4' ,5-tetrahydroxystilbene 2-O-β-D-glucoside) suppresses induction of pro-inflammatory factors by attenuating the binding activity of nuclear factor-κB in microglia. J Neuroinflammation 2013; 10:129. [PMID: 24144353 PMCID: PMC3854509 DOI: 10.1186/1742-2094-10-129] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Induction of pro-inflammatory factors is one of the characteristics of microglia activation and can be regulated by numerous active components of Chinese traditional herbs. Suppression of pro-inflammatory factors is beneficial to alleviate microglia-mediated cell injury. The present study aims to investigate the effect and possible mechanism of 2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) on LPS-mediated induction of pro-inflammatory factors in microglia. METHODS Western blot, ELISA, and Hoechst 33258 were used to measure the protein expression, TNF-α/IL-6 content, and apoptotic nuclei, respectively. The mRNA level was measured by real time-PCR. Nitric oxide (NO) content, lactate dehydrogenase (LDH) content, and NF-κB binding activity were assayed by commercial kits. RESULTS TSG reduced iNOS protein expression as well as TNF-α, IL-6, and NO content in LPS-stimulated BV-2 cells. TSG attenuated the increase in apoptotic nuclei, caspase-3 cleavage, and LDH content induced by BV-2 cell-derived conditioned medium in primary hippocampal neurons. Mechanistic studies showed that TSG reduced the mRNA level of iNOS, TNF-α, and IL-6. TSG failed to suppress IκB-α degradation, NF-κB phosphorylation and nuclear translocation, and ERK1/2, JNK, and p38 phosphorylation. TSG, however, markedly reduced the binding of NF-κB to its DNA element. Chromatin immunoprecipitation (ChIP) assays confirmed that TSG reduced NF-κB binding to the iNOS promoter. These findings were ascertained in primary microglia where the LPS-induced increase in iNOS expression, NO content, apoptotic nuclei, and NF-κB binding to its DNA element were diminished by TSG. CONCLUSIONS These studies demonstrate that TSG attenuates LPS-mediated induction of pro-inflammatory factors in microglia through reducing the binding activity of NF-κB. This might help us to further understand the pharmacological role of TSG in inflammatory response in the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of Pharmacology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
30
|
Lee JW, Choi YJ, Park JH, Sim JY, Kwon YS, Lee HJ, Kim SS, Chun W. 3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells. Biomol Ther (Seoul) 2013; 21:60-5. [PMID: 24009860 PMCID: PMC3762302 DOI: 10.4062/biomolther.2012.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/05/2022] Open
Abstract
3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-α, and IL-1β. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Pharmacology, College of Medicine, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yadav D, Gupta MM. Simultaneous Quantification of Diarylheptanoids in Alnus nepalensis Using a Validated HPTLC Method. J Chromatogr Sci 2013; 52:905-10. [DOI: 10.1093/chromsci/bmt115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Woo KW, Moon E, Kwon OW, Lee SO, Kim SY, Choi SZ, Son MW, Lee KR. Anti-neuroinflammatory diarylheptanoids from the rhizomes of Dioscorea nipponica. Bioorg Med Chem Lett 2013; 23:3806-9. [PMID: 23707257 DOI: 10.1016/j.bmcl.2013.04.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Abstract
In a continuing search for bioactive constituents from Dioscoreaceae medicinal plants, two new cyclic diarylheptanoids, diosniponol A (1) and B (2), together with 10 known compounds (3-12) were isolated from the rhizomes of Dioscorea nipponica. The structures of these new compounds were determined by spectroscopic analyses, including extensive two-dimensional nuclear magnetic resonance, high-resolution mass spectrometry, and optical rotation. All isolated compounds 1-12 were evaluated for their effects on nitric oxide (NO) production in murine microglia cell line BV-2. Compounds 8 and 11 showed potent inhibitory activities on NO production (IC50 13.36 and 14.36 μM, respectively) without cell toxicity in lipopolysaccharide-activated BV-2 cells.
Collapse
Affiliation(s)
- Kyeong Wan Woo
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Chonchon-dong, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng YB, Fazary AE, Lin YC, Lo IW, Ong SC, Chen SY, Chien CT, Lin YJ, Lin WW, Shen YC. Hyperinakin, a new anti-inflammatory phloroglucinol derivative fromHypericum nakamurai. Nat Prod Res 2013; 27:727-34. [DOI: 10.1080/14786419.2012.695365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Terazawa R, Akimoto N, Kato T, Itoh T, Fujita Y, Hamada N, Deguchi T, Iinuma M, Noda M, Nozawa Y, Ito M. A kavalactone derivative inhibits lipopolysaccharide-stimulated iNOS induction and NO production through activation of Nrf2 signaling in BV2 microglial cells. Pharmacol Res 2013; 71:34-43. [PMID: 23419834 DOI: 10.1016/j.phrs.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 01/11/2023]
Abstract
Neuroinflammation and oxidative stress are involved in the pathogenesis of neurodegenerative diseases such as Alzheimer's diseases and Parkinson's disease. Naturally derived kavalactones isolated from Piper methysticum (Piperaceae) have been shown to exhibit neuroprotective effects. We have previously reported that a chemically synthesized kavalactone derivative, 2',6'-dichloro-5-methoxymethyl-5,6-dehydrokawain (compound 1) protects against oxidative stress-induced neuronal cell death through activation of Nrf2 signaling. In the present study, we examined the effect of compound 1 on neuroinflammation. In BV2 microglial cells, compound 1 strongly inhibited LPS-stimulated iNOS induction and NO production, but did not affect LPS-stimulated induction of COX2. At 6h after LPS challenge, when iNOS induction was not clearly seen, treatment with LPS or compound 1 alone increased expression of heme oxygenase 1 (HO-1) whose transcription is regulated by Nrf2. When treated with both, compound 1 enhanced LPS-stimulated HO-1 induction, which was more evident at 24h after LPS treatment. Furthermore, LPS-stimulated activation of Nrf2 signaling and nuclear translocation of Nrf2 were potentiated by compound 1. The mechanism by which compound 1 activated Nrf2 signaling was supposed to be a covalent modification of the sulfhydryl groups of Keap1 by an α,β-unsaturated carbonyl group present in the compound 1. Treatment with hemin, a HO-1 inducer, and with [Ru(CO)₃Cl₂]₂, a CO donor, decreased LPS-stimulated iNOS induction and NO production. In contrast, siRNA-mediated knockdown of HO-1 expression reduced the inhibitory effect of compound 1 on LPS-stimulated iNOS induction and NO production. The compound 1 inhibited LPS-stimulated ERK phosphorylation after LPS treatment. Finally, compound 1 suppressed LPS/IFN-γ-stimulated NO production in primary microglial cells. These results suggest that compound 1 is capable of inhibiting LPS-stimulated iNOS induction and NO production via activation of Nrf2 signaling and HO-1 induction in microglial cells. Taken together, compound 1 has a potential to reduce neuroinflammation as well as oxidative stress in neurodegenerative diseases through activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Riyako Terazawa
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen TY, Sun HL, Yao HT, Lii CK, Chen HW, Chen PY, Li CC, Liu KL. Suppressive effects of Indigofera suffruticosa Mill extracts on lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Food Chem Toxicol 2013; 55:257-64. [PMID: 23352929 DOI: 10.1016/j.fct.2012.12.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022]
Abstract
Indigofera suffruticosa Mill is used as an herbal medicine for the treatment of inflammation. The aim of this study is to assess the anti-inflammatory potency of I. suffruticosa and its likely molecular mechanisms of action in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Both water and ethanolic extracts of I. suffruticosa significantly decreased LPS-induced nitric oxide (NO) as well as the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α, and pro-interleukin-1β. Moreover, LPS-induced inhibitory factor-κB-α phosphorylation, nuclear factor-κB (NF-κB) nuclear protein-DNA binding affinity, and NF-κB reporter gene activity were dramatically inhibited by I. suffruticosa extracts. Exogenous addition of I. suffruticosa significantly induced heme oxygenase-1 (HO-1) expression, and the presence of HO-1 small interfering RNA partly reversed the inhibitory effects of I. suffruticosa on LPS-induced NO production and iNOS expression. Furthermore, I. suffruticosa induced HO-1 expression may be through activation of the ERK/nuclear factor E2-related factor 2 pathway. Eight phenolic compounds were found in the I. suffruticosa extracts, but salicylic acid was the only one detected in the plasma of mice fed with I. suffruticosa extracts. In summary, I. suffruticosa have a strong anti-inflammatory property that diminishes pro-inflammatory mediator expressions by lessening LPS-induced NF-κB activation and inducing HO-1 expression in macrophages.
Collapse
Affiliation(s)
- Tzy-Yen Chen
- Division of Gastroenterology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lai YC, Chen CK, Lin WW, Lee SS. A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana. PHYTOCHEMISTRY 2012; 73:84-94. [PMID: 21388646 DOI: 10.1016/j.phytochem.2011.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/20/2010] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
This study was aimed to investigate thoroughly the diarylheptanoids in the n-BuOH soluble fraction of leaves of Alnus formosana in order to examine their anti-inflammatory activities. The application of HPLC-SPE-NMR as a preliminary chemical screening led to characterization of eleven compounds. Further separation resulted in isolation of 28 compounds, of which 10 diarylheptanoids and 2-coumaroylxyloside are new natural products. Compound 1 and alnuside A (27) were found to possess good activities against LPS-induced NO production with respective IC(50) values of 7.99 and 8.08 μM, and which were devoid of significant cytotoxicity.
Collapse
Affiliation(s)
- Yi-Chun Lai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
37
|
Huang M, Zhang S, Zhang M, Ou S, Pan Z. Effects of polysaccharides from Morchella conica on nitric oxide production in lipopolysaccharide-treated macrophages. Appl Microbiol Biotechnol 2011; 94:763-71. [DOI: 10.1007/s00253-011-3711-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/20/2011] [Accepted: 11/05/2011] [Indexed: 01/20/2023]
|
38
|
Lim SS, Lee MY, Ahn HR, Choi SJ, Lee JY, Jung SH. Preparative isolation and purification of antioxidative diarylheptanoid derivatives from Alnus japonica by high-speed counter-current chromatography. J Sep Sci 2011; 34:3344-52. [PMID: 22083971 DOI: 10.1002/jssc.201100484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/10/2011] [Accepted: 09/10/2011] [Indexed: 11/12/2022]
Abstract
This study employed the online HPLC-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)(+) bioassay to rapidly determine the antioxidant compounds occurring in the crude extract of Alnus japonica. The negative peaks of the ABTS(+) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three negative peaks exhibited antioxidant activity. High-speed counter-current chromatography (HSCCC) was used for preparative scale separation of the three active peaks from the extract. The purity of the isolated compounds was analyzed by HPLC and their structures were identified by (1)H- and (13)C-nuclear magnetic resonance spectrometry (NMR), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum correlation (HSQC). Two solvent systems composed of n-hexane/ethylacetate/methanol/water (4:6:4:6, v/v) and of ethyl acetate/methanol/water (1:0.1:1, v/v) were performed in high-speed counter-current chromatography. Consequently, a total of 527 mg of hirsutanonol 5-O-β-D-glucopyranoside, 80.04 mg of 3-deoxohirsutenonol 5-O-β-D-glucopyranoside, and 91.0 mg of hirsutenone were obtained with purity of 94.7, 90.5, and 98.6%, respectively.
Collapse
Affiliation(s)
- Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Park PH, Hur J, Kim YC, An RB, Sohn DH. Involvement of heme oxygenase-1 induction in inhibitory effect of ethyl gallate isolated from Galla Rhois on nitric oxide production in RAW 264.7 macrophages. Arch Pharm Res 2011; 34:1545-52. [DOI: 10.1007/s12272-011-0917-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/14/2011] [Accepted: 04/22/2011] [Indexed: 02/04/2023]
|
40
|
Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, Choi HJ. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 2011; 58:153-60. [DOI: 10.1016/j.neuint.2010.11.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/25/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
|
41
|
Lee JK, Jung JS, Park SH, Park SH, Sim YB, Kim SM, Ha TS, Suh HW. Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Arch Pharm Res 2010; 33:1843-50. [DOI: 10.1007/s12272-010-1117-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 11/29/2022]
|
42
|
Kazłowska K, Hsu T, Hou CC, Yang WC, Tsai GJ. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:123-30. [PMID: 20051261 DOI: 10.1016/j.jep.2009.12.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/27/2009] [Accepted: 12/28/2009] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Porphyra dentata, a red edible seaweed, has long been used worldwide in folk medicine for the treatment of inflammatory diseases such as hypersensitivity, lymphadenitis, bronchitis. AIMS OF STUDY To clarify the anti-inflammatory role of Porphyra dentata crude extract and its identified phenolic compounds by investigating their effect on the nitric oxide (NO)/inducible nitric oxide synthase (iNOS) transcription pathway in macrophage RAW 264.7 cells. MATERIALS AND METHODS Porphyra dentata crude extract was prepared with methanol. High performance liquid chromatography (HPLC) hyphenated to electrospray ionization mass spectrometry (ESI-MS) and UV detection were utilized to analyze the extract fingerprints. Nitrite measurement, iNOS promoter activity and nuclear factor-kappaB (NF-kappaB) enhancer activity were used to assess the anti-inflammatory effect in lipopolysaccharide (LPS) challenged mouse RAW 264.7 cell line. RESULTS Phenolic compounds (catechol, rutin and hesperidin) were identified in the crude extract of Porphyra dentata. The crude extract and the phenolic compounds inhibited the production of NO in LPS-stimulated RAW 264.7 cells. Catechol was a more potent suppressor of the up-regulation of iNOS promoter and NF-kappaB enhancer than rutin and yet, hesperidin alone failed to inhibit either activity. CONCLUSION Our results indicate that catechol and rutin, but not hesperidin, are primary bioactive phenolic compounds in the crude extract to suppress NO production in LPS-stimulated macrophages via NF-kappaB-dependent iNOS gene transcription. The data also explain the anti-inflammatory use and possible mechanism of Porphyra dentata in iNOS implicated diseases.
Collapse
Affiliation(s)
- Katarzyna Kazłowska
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | | | | | | | | |
Collapse
|
43
|
Park PH, Kim HS, Hur J, Jin XY, Jin YL, Sohn DH. YL-I-108, a synthetic chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 murine macrophages: Involvement of heme oxygenase-1 induction and blockade of activator protein-1. Arch Pharm Res 2009; 32:79-89. [DOI: 10.1007/s12272-009-1121-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/04/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
|
44
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
45
|
Inhibition of activated responses in dendritic cells exposed to lipopolysaccharide and lipoteichoic acid by diarylheptanoid oregonin. Int Immunopharmacol 2008; 8:748-55. [DOI: 10.1016/j.intimp.2008.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 01/27/2008] [Accepted: 01/28/2008] [Indexed: 01/22/2023]
|
46
|
Han JM, Lee WS, Kim JR, Son J, Kwon OH, Lee HJ, Lee JJ, Jeong TS. Effect of 5-O-Methylhirsutanonol on nuclear factor-kappaB-dependent production of NO and expression of iNOS in lipopolysaccharide-induced RAW264.7 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:92-98. [PMID: 18069795 DOI: 10.1021/jf0721085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Diarylheptanoids are known to have anti-inflammatory and anti-atherosclerotic activities in various cell types, including macrophages. 5- O-Methylhirsutanonol (5-MH) isolated from the leaves of Alnus japonica Steud exhibited the antioxidant activities on Cu (2+)- and AAPH-mediated low-density lipoprotein (LDL) oxidation in the thiobarbituric acid-reactive substances (TBARS) assay as well as the macrophage-mediated LDL oxidation. In the main study, we examined anti-inflammatory activities of 5- O-methylhirsutanonol (5-MH) on nuclear factor kappaB (NF-kappaB)-dependent nitric oxide (NO) production and expression of inducible nitric oxide synthease (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. 5-MH inhibited NO production with an IC 50 value of 14.5 microM and expression of both iNOS protein and iNOS mRNA in a parallel dose-response manner. Then, expression of inflammation-associated genes, such as TNF-alpha, COX-2, and IL-1beta, was suppressed by 5-MH, as determined by reverse transcriptase polymerase chain reaction analysis. Moreover, 5-MH attenuated NF-kappaB activation by inhibition of hyperphosphorylation of IkappaB-alpha and its subsequent proteolytic degradation and p65 nuclear translocation, as well as preventing DNA-binding ability. In addition, 5-MH suppressed the mRNA expression of the gene reactive oxygen species (ROS) concerned in the regulation of NF-kappaB signaling.
Collapse
Affiliation(s)
- Jong-Min Han
- National Research Laboratory of Lipid Metabolism and Atherosclerosis, System Proteomics Research Center, and Molecular Cancer Research Center, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuo CH, Lee CW, Lai YC, Lee SS. Determination of oregonin in Alnus plants and biological samples by capillary electrophoresis. J Pharm Biomed Anal 2007; 47:195-200. [PMID: 18242034 DOI: 10.1016/j.jpba.2007.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 11/27/2022]
Abstract
Oregonin, existing primarily in the Alnus plants, displayed anti-inflammatory and antioxidative activities. The capillary zone electrophoresis (CZE) method was developed in this study to quantitatively determine oregonin content in the Alnus plants for the first time. Various parameters, including buffer concentration, pH and applied voltage, were evaluated for their optimum analytical conditions. The optimized buffer was composed of 30 mM sodium tetraborate at pH 8.0. The separation voltage was set at 30 kV and the UV detection wavelength was set at 220 nm. Oregonin could be determined within 6 min under such optimized conditions. Relative standard deviation (R.S.D.) of the run-to-run repeatability and intermediate precision of the retention time of oregonin was within 1.36%. Run-to-run repeatability and intermediate precision of the peak area ratios of oregonin to internal standard, theophylline, were both within 1.55% R.S.D. The presented method was applied to analyze oregonin in leaves of Alnus formosana, seeds of various Alnus plants as well as biological samples. The stability of oregonin in biological system was indicated in this study. It demonstrates the potential of this developed method in natural product research.
Collapse
Affiliation(s)
- Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, 12F, No. 1 Jen-Ai Road, Sec. 1, Taipei, Taiwan.
| | | | | | | |
Collapse
|
48
|
Han JM, Lee WS, Kim JR, Son J, Nam KH, Choi SC, Lim JS, Jeong TS. Effects of diarylheptanoids on the tumor necrosis factor-alpha-induced expression of adhesion molecules in human umbilical vein endothelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9457-9464. [PMID: 17929893 DOI: 10.1021/jf072157h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by infiltration of mononuclear lymphocytes into the intima through the expression of adhesion molecules on the arterial wall. In the present study, we report the inhibitory effects of two diarylheptanoids, 5-O-methylhirsutanonol (1) and oregonin (2), isolated from the methanolic extracts of Alnus japonica leaves, on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). Compounds 1 and 2 inhibited tumor necrosis factor (TNF)-alpha-induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), which also prevented adhesion of monocytes to HUVECs, and slightly suppressed the mRNA expression of the inflammation-associated gene interleukin-1beta (IL-1beta). A further study demonstrated the inhibitory effect of compound 1 on DNA-binding of nuclear factor kappaB (NF-kappaB) and on the phosphorylation and degradation of inhibitory factor kappaBalpha (IkappaBalpha) in TNF-alpha-stimulated HUVECs. These results indicate that compounds 1 and 2 may be useful in the prevention and treatment of atherosclerosis through attenuation of adhesion molecule expression by inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- Jong-Min Han
- National Research Laboratory of Lipid Metabolism & Atherosclerosis, Bio-Evaluation Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Leon-Chavez BA, Aguilar-Alonso P, Gonzalez-Barrios JA, Eguibar JR, Ugarte A, Brambila E, Ruiz-Arguelles A, Martinez-Fong D. Increased nitric oxide levels and nitric oxide synthase isoform expression in the cerebellum of the taiep rat during its severe demyelination stage. Brain Res 2006; 1121:221-30. [PMID: 17022950 DOI: 10.1016/j.brainres.2006.08.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/23/2006] [Accepted: 08/25/2006] [Indexed: 11/21/2022]
Abstract
We have previously reported progressive reactive astrocytes in the cerebellum of taiep rats, one of the most regions affected by demyelination, and activation of cerebellar glial cells in vitro. Based on the hypothesis that activated glial cells produce high levels of reactive nitrogen intermediates, we assessed the production of nitric oxide (NO) and the expression of the three NO synthases (NOS) in the cerebellum of 6-month-old taiep rats. A significant 40% increase of NO levels was measured in taiep rats when compared with controls. The protein and mRNA levels of the three NOS isoforms were also significantly increased. In contrast to controls, immunostaining assays against nNOS or iNOS showed an increased number of immunoreactive glial cells in the granular layer (nNOS) and Purkinje layer (iNOS) of cerebellum of taiep rats. Microglia-macrophages and both CD4- and CD8-immunoreactive cells were observed in cerebellar white matter of taiep rats only, thus suggesting other possible cell sources of those NOSs. Differences in the cellular location for eNOS immunoreactivity were not observed. The enhanced levels of NO, NOS proteins, mRNAs, and NOS immunoreactivities in glial cells and microglia strongly suggest glial activation together with the professional immune cells can aggravate the demyelination of aged taiep rats.
Collapse
Affiliation(s)
- Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, BUAP, 14 sur y Av. San Claudio, Edif. 138, San Claudio, 72570 Puebla, Pue., México
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lund S, Christensen KV, Hedtjärn M, Mortensen AL, Hagberg H, Falsig J, Hasseldam H, Schrattenholz A, Pörzgen P, Leist M. The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 2006; 180:71-87. [PMID: 16996144 DOI: 10.1016/j.jneuroim.2006.07.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 07/05/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Overall, the inflammatory potential of lipopolysaccharide (LPS) in vitro and in vivo was investigated using different omics technologies. We investigated the hippocampal response to intracerebroventricular (i.c.v) LPS in vivo, at both the transcriptional and protein level. Here, a time course analysis of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) showed a sharp peak at 4 h and a return to baseline at 16 h. The expression of inflammatory mediators was not temporally correlated with expression of the microglia marker F4/80, which did not peak until 2 days after LPS injection. Of 480 inflammation-related genes present on a microarray, 29 transcripts were robustly up-regulated and 90% of them were also detected in LPS stimulated primary microglia (PM) cultures. Further in vitro to in vivo comparison showed that the counter regulation response observed in vivo was less evident in vitro, as transcript levels in PM decreased relatively little over 16 h. This apparent deficiency of homeostatic control of the innate immune response in cultures may also explain why a group of genes comprising tnf receptor associated factor-1, endothelin-1 and schlafen-1 were regulated strongly in vitro, but not in vivo. When the overall LPS-induced transcriptional response of PM was examined on a large Affymetrix chip, chemokines and cytokines constituted the most strongly regulated and largest groups. Interesting new microglia markers included interferon-induced protein with tetratricopeptide repeat (ifit), immune responsive gene-1 (irg-1) and thymidylate kinase family LPS-inducible member (tyki). The regulation of the former two was confirmed on the protein level in a proteomics study. Furthermore, conspicuous regulation of several gene clusters was identified, for instance that of genes pertaining to the extra-cellular matrix and enzymatic regulation thereof. Although most inflammatory genes induced in vitro were transferable to our in vivo model, the observed discrepancy for some genes potentially represents regulatory factors present in the central nervous system (CNS) but not in vitro.
Collapse
|