1
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
2
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
3
|
Lee D, Ha J, Kang M, Yang Z, Jiang W, Kim BYS. Strategies of Perturbing Ion Homeostasis for Cancer Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - JongHoon Ha
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Zhaogang Yang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
4
|
Nesari F, Gholami M, Rezaian J, Pirnia A, Anbari K, Beigi Boroujeni M, Beigi Boroujeni M. Effects of zinc on expression of apoptosis-related genes in freezing thawing damage of adipose tissue derived mesenchymal stromal cells. Prep Biochem Biotechnol 2021; 52:640-647. [PMID: 34694192 DOI: 10.1080/10826068.2021.1983830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study was performed to investigate the effects of zinc supplementation on freezing thawing damage in adipose tissue-derived mesenchymal stromal cells (MSC) of mice through studying cellular viability and gene expression profile of apoptosis. Slow freezing method was conducted and the samples were treated with zinc doses 0, 2.5, 5, 10, 25, 50 and 100 µM. Viability was increased in groups of 2.5, 10 and 25 µM zinc in comparison to the control group. Gene expression study showed that in the group of 2.5 µM zinc, Fas, Bax and Caspase3 had down regulation. Up regulation of Bcl2 was observed in the groups of 10 and 25 µM zinc. P53 did not have a protecting regulation in the groups of study. The present study showed that doses 2.5-25 µM of zinc had a rather safe toxicity, increased cellular viability, and ameliorated expression of apoptosis-related genes in both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Fatemeh Nesari
- Department of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Rezaian
- Department of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Pirnia
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Department of Community Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoud Beigi Boroujeni
- Department of Biochemistry, Payame Noor University, Faculty of Tehran, Branch of Tehran-Shargh, Tehran, Iran
| | - Mandana Beigi Boroujeni
- Department of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
A Metabolomics Investigation of the Metabolic Changes of Raji B Lymphoma Cells Undergoing Apoptosis Induced by Zinc Ions. Metabolites 2021; 11:metabo11100689. [PMID: 34677404 PMCID: PMC8540409 DOI: 10.3390/metabo11100689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc plays a pivotal role in the function of cells and can induce apoptosis in various cancer cells, including Raji B lymphoma. However, the metabolic mechanism of Zn-induced apoptosis in Raji cells has not been explored. In this study, we performed global metabolic profiling using UPLC−Orbitrap−MS to assess the apoptosis of Raji cells induced by Zn ions released from ZnO nanorods. Multivariate analysis and database searches identified altered metabolites. Furthermore, the differences in the phosphorylation of 1380 proteins were also evaluated by Full Moon kinase array to discover the protein associated Zn−induced apoptosis. From the results, a prominent increase in glycerophosphocholine and fatty acids was observed after Zn ion treatment, but only arachidonic acid was shown to induce apoptosis. The kinase array revealed that the phosphorylation of p53, GTPase activation protein, CaMK2a, PPAR−γ, and PLA−2 was changed. From the pathway analysis, metabolic changes showed earlier onset than protein signaling, which were related to choline metabolism. LC−MS analysis was used to quantify the intracellular choline concentration, which decreased after Zn treatment, which may be related to the choline consumption required to produce choline-containing metabolites. Overall, we found that choline metabolism plays an important role in Zn-induced Raji cell apoptosis.
Collapse
|
6
|
Li J, Tian J, Yin H, Peng Y, Liu S, Yao S, Zhang L. Chemical conjugation of FITC to track silica nanoparticles in vivo and in vitro: An emerging method to assess the reproductive toxicity of industrial nanomaterials. ENVIRONMENT INTERNATIONAL 2021; 152:106497. [PMID: 33714870 DOI: 10.1016/j.envint.2021.106497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that silica nanoparticle (SiNP) exposure induces pulmonary and cardiovascular diseases, yet their transportation and degradation in vivo have not been fully elucidated. From the perspective of reproduction, this study was implemented to examine the uterine accumulation of SiNP and explore its reproductive toxicity and pathogenic mechanisms. First, we coupled FITC onto SiNPs and intratracheally instilled them into pregnant mice on the fifth gestational day, and the toxic effect of SiNP was evaluated in vitro and in vivo. It was found that SiNP penetrated the trophoblast membrane, leading to apoptosis and suppression of cell proliferation, tube formation, and invasion in a dose-dependent manner. Mechanistically, SiNP dysregulated the expression of Scd1, Slc27a1, and Cpt1a, and induced over synthesis and efflux obstruction of fatty acid through the PPARγ signaling pathway. The downregulation of Caspase-3 triggered apoptosis of trophoblast, which was causally associated with intracellular fatty acid accumulation as revealed by the correlation analysis. Besides, SiNP induced uterine inflammation in vivo, which aggravated with the observation prolongation within 24 h. Overall, SiNPs were visualized by coupling with FITC, and the uterine accumulation of SiNP induced fatty acid metabolic disorder, biological dysfunction, and trophoblast apoptosis, which were mediated in part by the PPARγ signaling pathway. These findings would contribute to understanding the environmental impacts of SiNP better, as well as the development of control measures for environmental pollution.
Collapse
Affiliation(s)
- Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Song Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
7
|
Hatching gland development and hatching in zebrafish embryos: A role for zinc and its transporters Zip10 and Znt1a. Biochem Biophys Res Commun 2020; 528:698-705. [PMID: 32517868 DOI: 10.1016/j.bbrc.2020.05.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
Zinc transporters of the ZIP (Slc39, importers) and ZnT (Slc30, exporters) protein families have evolutionary conserved roles in biology. The aim of the present study was to explore the role of zinc, and zinc transporters Zip10 and Znt1a in zebrafish hatching gland development and larval hatching. In the study, knockdown of genes for Zip10 and Znt1a in zebrafish embryos was achieved using morpholino-modified oligonucleotides. A partial loss-of-function Znt1a mutant (Znt1asa17) allowed comparison with the Znt1a morphant. Free Zn2+ in embryos and apoptosis were investigated using fluorescent dyes whereas gene expression was investigated by whole-mount in situ hybridization (WISH). The results showed high levels of free Zn2+ in the hatching gland cells (HGC) along with abundant expression of zip10 and znt1a in normal embryo. Knockdown of zip10 reduced free Zn2+ in HGC, ceased their normal developmental apoptosis, and resulted in displacement and later disappearance of hatching glands and hatching enzymes he1a and catL1b, and inability to hatch. Conversely, knockdown of znt1a or the Znt1asa17 mutation accelerated hatching and coincided with high expression of hatching enzymes and free Zn2+ in the HGC. Thus, Zip10 and free Zn2+ in the HGC are required both for their development and function. This study also demonstrated the opposite functions of the two zinc transporters, ZIP10 and ZnT1 as well as shedding light on the role of Zn2+ in regulation of the human hatching enzyme homologue, ovastacin, which is activated by zinc and cleaves the zona pellucida protein, ZP2, to prevent polyspermy.
Collapse
|
8
|
Hacioglu C, Kacar S, Kar F, Kanbak G, Sahinturk V. Concentration-Dependent Effects of Zinc Sulfate on DU-145 Human Prostate Cancer Cell Line: Oxidative, Apoptotic, Inflammatory, and Morphological Analyzes. Biol Trace Elem Res 2020; 195:436-444. [PMID: 31463762 DOI: 10.1007/s12011-019-01879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Zinc takes part in several of cellular signaling pathways, containing defense against free radicals, apoptosis, and inflammation. However, interaction between zinc and prostate cancer progression is poorly understood. Therefore, zinc treatment in DU-145 human prostate cancer cells was investigated. First, zinc sulfate (ZnSO4) concentrations with antiproliferative effect were determined using MTT assay. Then, ZnSO4-induced oxidative damage was evaluated by malondialdehyde (MDA) levels, glutathione (GSH) levels, total oxidant status (TOS) levels, and total antioxidant status (TAS) levels. Apoptotic effects of ZnSO4 were determined by measuring biochemical and immunohistochemical parameters including caspase 3 (CASP3), cytochrome C (CYC), Bcl-2-associated X protein (Bax), and B cell CLL/lymphoma 2 (Bcl-2) levels. Inflammatory effects of ZnSO4 were investigated by measuring interleukin-6 (IL-6) levels and tumor necrosis factor-alpha (TNF-α) levels. Finally, morphological analysis was performed using hematoxylin-eosin staining. We found that ZnSO4 caused a concentration-dependent increase in oxidative stress, apoptosis, and inflammation pathways. Moreover, there were a number of morphological alterations in treated cells depending on the ZnSO4 concentration. Consequently, our data showed that zinc acts as a regulator of increased oxidative damage and apoptosis through the upregulation of TNF-α and IL-6.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
9
|
Özsobacı NP, Ergün DD, Tunçdemir M, Özçelik D. Protective Effects of Zinc on 2.45 GHz Electromagnetic Radiation-Induced Oxidative Stress and Apoptosis in HEK293 Cells. Biol Trace Elem Res 2020; 194:368-378. [PMID: 31317470 DOI: 10.1007/s12011-019-01811-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
Several epidemiological studies have shown that exposure to electromagnetic radiation (EMR) can be harmful to human health. The purpose of this study was to examine oxidative parameters and apoptosis induced by EMR in human kidney embryonic cells (HEK293) and to investigate whether zinc (Zn) has protective effect on EMR-induced apoptosis in HEK293 cells. For our experiment, HEK293 cells were divided into four main groups, control, EMR, 50 μM Zn + EMR, and 100 μM Zn + EMR. HEK293 cells of EMR groups were exposed to 2.45 GHz EMR for 1 h. In Zn groups, HEK293 cells were incubated with different concentrations of Zn for 48 h before EMR exposure. Oxidative stress parameters were determined by spectrophotometric method; bcl-2 and caspase-3 were assessed immunohistochemically and TUNEL method was performed for apoptotic activity. EMR group had higher malondialdehyde (MDA) level and lower superoxide dismutase (SOD) activity compared with control group. In Zn-applied groups, MDA was decreased and SOD activity was increased compared with EMR group. The number of the apoptotic cells and caspase-3 immunopositive cells at EMR group was increased significantly compared with the control group, whereas bcl-2 was decreased. Besides, Zn-treated groups showed a significant reduction in the number of apoptotic cells and caspase-3 from that of EMR group, whereas there was an increase in bcl-2 immunopositivity. Our findings show that EMR caused oxidative stress and apoptotic activation in HEK293 cells. Zn seems to have protective effects on the EMR by increasing SOD activity and bcl-2 immunopositivity, decreasing lipid peroxidation and caspas-3 immunopositivity.
Collapse
Affiliation(s)
- Nural Pastacı Özsobacı
- Biophysics Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Dilek Düzgün Ergün
- Biophysics Department, Faculty of Medicine, Istanbul Aydın University, Istanbul, Turkey
| | - Matem Tunçdemir
- Medical Biology Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Derviş Özçelik
- Biophysics Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
El-Desouky MA, Fahmi AA, Abdelkader IY, Nasraldin KM. Anticancer Effect of Amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the Presence and Absence of Zinc. Anticancer Agents Med Chem 2020; 20:486-494. [PMID: 31958042 DOI: 10.2174/1871520620666200120095525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Amygdalin (Vitamin B-17) is a naturally occurring vitamin found in the seeds of the fruits of Prunus Rosacea family including apricot, bitter almond, cherry, and peach. OBJECTIVE The purpose of this study was to examine the effect of amygdalin with and without zinc on hepatocellular carcinoma (HepG2) cell line. METHODS MTT assay was used to evaluate the cytotoxicity of amygdalin without zinc, amygdalin + 20μmol zinc, and amygdalin + 800μmol zinc on HepG2 cell lines. The cell cycle distribution assay was determined by flow cytometry. Apoptosis was confirmed by Annexin V-FITC/PI staining assay. Moreover, the pathway of apoptosis was determined by the percentage of change in the mean levels of P53, Bcl2, Bax, cytochrome c, and caspase-3. RESULTS Amygdalin without zinc showed strong anti-HepG2 activity. Furthermore, HepG2 cell lines treatment with amygdalin + 20μmol zinc and amygdalin + 800μmol zinc showed a highly significant apoptotic effect than the effect of amygdalin without zinc. Amygdalin treatment induced cell cycle arrest at G2/M and increased the levels of P53, Bax, cytochrome c, and caspase-3 significantly, while it decreased the level of anti-apoptotic Bcl2. CONCLUSION Amygdalin is a natural anti-cancer agent, which can be used for the treatment of hepatocellular carcinoma. It promotes apoptosis via the intrinsic cell death pathway (the mitochondria-initiated pathway) and cell cycle arrest at G/M. The potency of amygdalin in HepG2 treatment increased significantly by the addition of zinc.
Collapse
Affiliation(s)
| | - Abdelgawad A Fahmi
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ibrahim Y Abdelkader
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt (BUE), El-Shorouk, Egypt
| | - Karima M Nasraldin
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt (BUE), El-Shorouk, Egypt
| |
Collapse
|
11
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
12
|
Ischia J, Bolton DM, Patel O. Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application. Metallomics 2019; 11:1330-1343. [PMID: 31204765 DOI: 10.1039/c9mt00079h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemia (interruption in the blood/oxygen supply) and subsequent damage induced by reperfusion (restoration of blood/oxygen supply) ultimately leads to cell death, tissue injury and permanent organ dysfunction. The impact of ischaemia reperfusion injury (IRI) is not limited to heart attack and stroke but can be extended to patients undergoing surgeries such as partial nephrectomy for renal cancer, liver resection for colorectal cancer liver metastasis, cardiopulmonary bypass, and organ transplantation. Unfortunately, there are no drugs that can protect organs against the inevitable peril of IRI. Recent data show that a protocol incorporating specific Zn formulation, dosage, number of dosages, time of injection, and mode of Zn delivery (intravenous) and testing of efficacy in a large preclinical sheep model of IRI strongly supports human trials of Zn preconditioning. No doubt, scepticism still exists among funding bodies and research fraternity on whether Zn, a naturally occurring metal, will work where everything else has failed. Therefore, in this article, we review the conflicting evidence on the promoter and protector role of Zn in the case of IRI and highlight factors that may help explain the contradictory evidence. Finally, we review the literature related to the knowledge of Zn's mechanism of action on ROS generation, apoptosis, HIF activation, inflammation, and signal transduction pathways, which highlight Zn's likelihood of success compared to various other interventions targeting IRI.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Damien M Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
13
|
Heng S, Zhang X, Pei J, Adwal A, Reineck P, Gibson BC, Hutchinson MR, Abell AD. Spiropyran-Based Nanocarrier: A New Zn 2+ -Responsive Delivery System with Real-Time Intracellular Sensing Capabilities. Chemistry 2018; 25:854-862. [PMID: 30414294 DOI: 10.1002/chem.201804816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 11/10/2022]
Abstract
A new spiropyran-based stimuli-responsive delivery system is fabricated. It encapsulates and then releases an extraneous compound in response to elevated levels of Zn2+ , a critical factor in cell apoptosis. A C12 -alkyl substituent on the spiropyran promotes self-assembly into a micelle-like nanocarrier in aqueous media, with nanoprecipitation and encapsulation of added payload. Zn2+ binding occurs to an appended bis(2-pyridylmethyl)amine group at biologically relevant micromolar concentration. This leads to switching of the spiropyran (SP) isomer to the strongly fluorescent ring opened merocyanine-Zn2+ (MC-Zn2+ ) complex, with associated expansion of the nanocarriers to release the encapsulated payload. Payload release is demonstrated in solution and in HEK293 cells by encapsulation of a blue fluorophore, 7-hydroxycoumarin, and monitoring its release using fluorescence spectroscopy and microscopy. Furthermore, the use of the nanocarriers to deliver a caspase inhibitor, Azure B, into apoptotic cells in response to an elevated Zn2+ concentration is demonstrated. This then inhibits intracellular caspase activity, as evidenced by confocal microscopy and in real-time by time-lapsed microscopy. Finally, the nanocarriers are shown to release an encapsulated proteasome inhibitor (5) in Zn2+ -treated breast carcinoma cell line models. This then inhibits intracellular proteasome and induces cytotoxicity to the carcinoma cells.
Collapse
Affiliation(s)
- Sabrina Heng
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Xiaozhou Zhang
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jinxin Pei
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,Department of Physiology, Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Alaknanda Adwal
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Philipp Reineck
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,CNBP, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Brant C Gibson
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,CNBP, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Mark R Hutchinson
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,Department of Physiology, Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Andrew D Abell
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, The University of Adelaide, Australia.,Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
14
|
Li DD, Luo Z, Ling SC, Wu K, Chen GH, Cheng J. Mitochondrial apoptotic pathway mediated the Zn-induced lipolysis in yellow catfish Peteobagrus fulvidraco. CHEMOSPHERE 2018; 208:907-915. [PMID: 30068034 DOI: 10.1016/j.chemosphere.2018.05.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
In the study, effects of waterborne zinc (Zn) exposure on apoptosis were investigated, and the potential mechanism of apoptosis participating in the Zn-induced variations of lipid metabolism was explored in a low vertebrate, yellow catfish Pelteobagrus fulvidraco. We found that Zn induced occurrence of apoptosis of livers and hepatocytes in yellow catfish. Waterborne Zn also increased hepatic transcriptional levels of p53, cytochrome c (Cycs), caspase 3a (Casp3a) and caspase 3b (Casp3b) of yellow catfish. Zn increased caspase 3 activity and reduced the mitochondrial permeability transition (MTP) in yellow catfish hepatocytes. Z-VAD-fmk (caspase inhibitor) and CsA pretreatment (MTP inhibitor) attenuated the Zn-induced apoptosis and reduction in MTP. Z-VAD-fmk pretreatments attenuated the Zn-induced increase in transcriptional levels of p53, Cycs and Casp3b although the differences were not statistically significant between the Zn group and Zn + Z-VAD-fmk group. In contrast, Zn and N-acetylcysteine (NAC) did not significantly influence the reactive oxygen species (ROS) production. Zn significantly reduced triglyceride (TG) content, increased the activities of carnitine palmitoyltransferase 1 (CPT I), hormone-sensitive lipase (HSL) and adipose TAG lipase (ATGL), and the transcriptional levels of p53, Cycs and caspase 3b of the hepatocytes; these Zn-induced effects on TG contents, activities of CPT I, HSL and ATGL, and mRNA levels of p53, Cycs and caspase 3b could partly be reversed by Z-VAD-fmk, suggesting that Zn induced the mitochondrial-mediated apoptosis and reduced lipid accumulation. Taken together, our study demonstrated the importance of mitochondria-mediated apoptosis in Zn-induced lipolysis, which suggested a new mechanism for elucidating metal element influencing lipid metabolism.
Collapse
Affiliation(s)
- Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Eron SJ, MacPherson DJ, Dagbay KB, Hardy JA. Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8. ACS Chem Biol 2018; 13:1279-1290. [PMID: 29364645 PMCID: PMC5959779 DOI: 10.1021/acschembio.8b00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.
Collapse
Affiliation(s)
- Scott J. Eron
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Derek J. MacPherson
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Kevin B. Dagbay
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Jeanne A. Hardy
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
16
|
Cai Y, Kirschke CP, Huang L. SLC30A family expression in the pancreatic islets of humans and mice: cellular localization in the β-cells. J Mol Histol 2018; 49:133-145. [DOI: 10.1007/s10735-017-9753-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
17
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
18
|
Bae SN, Lee KH, Kim JH, Lee SJ, Park LO. Zinc induces apoptosis on cervical carcinoma cells by p53-dependent and -independent pathway. Biochem Biophys Res Commun 2016; 484:218-223. [PMID: 27998772 DOI: 10.1016/j.bbrc.2016.12.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE There is evidence that the mineral zinc is involved in the apoptotic cell death of various carcinoma cells. In this study, we aim to determine whether zinc in the form of CIZAR induces apoptosis in cervical carcinoma cells by increasing intracellular zinc concentration. STUDY DESIGN CaSki and HeLa cervical carcinoma cells and HPV-16 DNA-transformed keratinocyte (CRL2404) were treated with different concentrations of CIZAR. The cell viability test was carried out, the intracellular level of zinc was determined, and apoptosis was confirmed by flow cytometry after propidium iodide (PI) staining and fluorescence microscopy under DAPI staining. The expression of cell-cycle regulators was analyzed by Western blot, including the knock down of p53 and expression of HPV E6 and E7 genes by RT-PCR. RESULTS Intracellular zinc accumulation induced the down-regulation of E6/E7 proteins through targeting of the specific transcriptional factors in the upstream regulatory region. p53 was induced after CIZAR treatment and p53-dependent apoptosis did not occur after knock down by p53 siRNA. In cervical carcinoma cells, regardless of HPV-infection, CIZAR induces apoptosis by the activation of the p53-independent pathways through the up-regulation of p21waf1, the down-regulation of c-Myc, and by decreasing the Bcl-2/Bax ratio. CONCLUSIONS CIZAR induces apoptosis not only through the restoration of p53/Rb-dependent pathways in HPV-positive cells, but also through the activation of p53/Rb-independent pathways and the mitochondrial death-signal pathway in cervical carcinoma cells regardless of HPV-infection.
Collapse
Affiliation(s)
- Seog Nyeon Bae
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea.
| | - Jin Hwi Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Sung Jong Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Lae Ok Park
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| |
Collapse
|
19
|
Huang S, Hill RD, Wally OSD, Dionisio G, Ayele BT, Jami SK, Stasolla C. Hemoglobin Control of Cell Survival/Death Decision Regulates in Vitro Plant Embryogenesis. PLANT PHYSIOLOGY 2014; 165:810-825. [PMID: 24784758 PMCID: PMC4044835 DOI: 10.1104/pp.114.239335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) in multicellular organisms is a vital process in growth, development, and stress responses that contributes to the formation of tissues and organs. Although numerous studies have defined the molecular participants in apoptotic and PCD cascades, successful identification of early master regulators that target specific cells to live or die is limited. Using Zea mays somatic embryogenesis as a model system, we report that the expressions of two plant hemoglobin (Hb) genes (ZmHb1 and ZmHb2) regulate the cell survival/death decision that influences somatic embryogenesis through their cell-specific localization patterns. Suppression of either of the two ZmHbs is sufficient to induce PCD through a pathway initiated by elevated NO and Zn2+ levels and mediated by production of reactive oxygen species. The effect of the death program on the fate of the developing embryos is dependent on the localization patterns of the two ZmHbs. During somatic embryogenesis, ZmHb2 transcripts are restricted to a few cells anchoring the embryos to the subtending embryogenic tissue, whereas ZmHb1 transcripts extend to several embryonic domains. Suppression of ZmHb2 induces PCD in the anchoring cells, allowing the embryos to develop further, whereas suppression of ZmHb1 results in massive PCD, leading to abortion. We conclude that regulation of the expression of these ZmHbs has the capability to determine the developmental fate of the embryogenic tissue during somatic embryogenesis through their effect on PCD. This unique regulation might have implications for development and differentiation in other species.
Collapse
Affiliation(s)
- Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Owen S D Wally
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Giuseppe Dionisio
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Sravan Kumar Jami
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (S.H., R.D.H., O.S.D.W., B.T.A., S.K.J., C.S.); andDepartment of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark (G.D.)
| |
Collapse
|
20
|
Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Methods Enzymol 2014; 544:215-49. [PMID: 24974292 DOI: 10.1016/b978-0-12-417158-9.00009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most promising and as yet underutilized means of regulating protein function is exploitation of allosteric sites. All caspases catalyze the same overall reaction, but they perform different biological roles and are differentially regulated. It is our hypothesis that many allosteric sites exist on various caspases and that understanding both the distinct and overlapping mechanisms by which each caspase can be allosterically controlled should ultimately enable caspase-specific inhibition. Here we describe the ongoing work and methods for compiling a comprehensive map of apoptotic caspase allostery. Central to this approach are the use of (i) the embedded record of naturally evolved allosteric sites that are sensitive to zinc-mediated inhibition, phosphorylation, and other posttranslational modifications, (ii) structural and mutagenic approaches, and (iii) novel binding sites identified by both rationally-designed and screening-derived small-molecule inhibitors.
Collapse
Affiliation(s)
- Kevin Dagbay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Scott J Eron
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Banyuhay P Serrano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Yunlong Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Di Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sravanti Vaidya
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
21
|
Hong SH, Choi YS, Cho HJ, Lee JY, Kim JC, Hwang TK, Kim SW. Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chin J Cancer Res 2013; 24:124-9. [PMID: 23359768 DOI: 10.1007/s11670-012-0124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 02/25/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To investigate the antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer (HRPC). METHODS HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc, citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound. Mitochondrial (m)-aconitase activity was determined using aconitase assay. DNA laddering analysis was performed to investigate apoptosis of DU145 cells. Molecular mechanism of apoptosis was investigated by Western blot analysis of P53, P21(waf1), Bcl-2, Bcl-xL and Bax, and also caspase-3 activity analysis. RESULTS Treatment with zinc-citrate compound resulted in a time- and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1. M-aconitase activity was significantly decreased. DNA laddering analysis indicated apoptosis of DU145 cells. Zinc-citrate compound increased the expression of P21(waf1) and P53, and reduced the expression of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein. Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway. CONCLUSION Zinc-citrate compound can induce apoptotic cell death in DU145, by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.
Collapse
Affiliation(s)
- Sung Hoo Hong
- Department of Urology, College of Medicine, the Catholic University of Korea, Seoul 137701, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Fernández MB, Daleo GR, Guevara MG. DEVDase activity is induced in potato leaves during Phytophthora infestans infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:197-203. [PMID: 23127523 DOI: 10.1016/j.plaphy.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/11/2012] [Indexed: 05/09/2023]
Abstract
Programmed cell death (PCD) occurs in plants, animals and several branches of unicellular eukaryotes as a part of developmental and/or defense processes. Caspase proteases are universal mediators of animal apoptosis, a type of PCD. In plants, there are not animal caspase homologs; therefore, the characterization of caspase-like activities is of considerable importance to our understanding of PCD in plants. Here we report for the first time the involvement of caspase-3-like activity in the resistance mechanism of potato to Phytophthora infestans infection. We showed that disease development in infected potato leaves is dependent of caspase-3-like activity. Unlike plant DEVDases previously reported, this DEVDase activity was sensitive to the serine protease inhibitor PMSF. As reported for other subtilisin- like proteases with caspase activity, potato DEVDase activity was mainly localized in the apoplast. We demonstrated that in total protein extract DEVDase activity accounts for a 60% of serine proteases; however, this percentage increases to 100% in the apoplast. Additionally, this caspase-3-like activity is constitutively expressed in the apoplast of potato leaves. Total DEVDase activity is induced only in potato cultivars with high field resistance to P. infestans. These results show that potato caspase-3-like protease could constitute a tool in the potato defense mechanisms resulting in partial resistance, although further assays would be necessary in order to elucidate its role.
Collapse
Affiliation(s)
- María Belén Fernández
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina.
| | | | | |
Collapse
|
23
|
Hong SH, Choi YS, Cho HJ, Lee JY, Hwang TK, Kim SW. Induction of apoptosis of bladder cancer cells by zinc-citrate compound. Korean J Urol 2012. [PMID: 23185674 PMCID: PMC3502741 DOI: 10.4111/kju.2012.53.11.800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose Zinc is one of the trace minerals in the body and is known to have an anticancer effect by inducing apoptosis in prostate cancer. We aimed to investigate the antiproliferative effects of a zinc-citrate compound in bladder cancer. Materials and Methods A bladder cancer cell line (MBT-2) was treated with a zinc-citrate compound at different time intervals and concentrations. Mitochondrial (m)-aconitase activity was determined by use of the aconitase assay. DNA laddering analysis was performed to investigate apoptosis of MBT-2 cells. The molecular mechanism of apoptosis was investigated by Western blot analysis of p53, p21waf1, Bcl-2, Bcl-xL, and Bax and also by caspase-3 activity analysis. Results Treatment with the zinc-citrate compound resulted in a time- and dose-dependent decrease in cell number of MBT-2 cells. M-aconitase activity was significantly decreased. DNA laddering analysis indicated apoptosis of MBT-2 cells. The zinc-citrate compound increased the expression of p21waf1 and p53 and reduced the expression of Bcl-2 and Bcl-xL proteins but induced expression of Bax protein. The zinc-citrate compound induced apoptosis of MBT-2 cells by activation of the caspase-3 pathway. Conclusions We have shown that a zinc-citrate compound induces apoptotic cell death in a bladder cancer cell line, MBT-2, by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.
Collapse
Affiliation(s)
- Sung-Hoo Hong
- Department of Urology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Velázquez-Delgado EM, Hardy JA. Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem 2012; 287:36000-11. [PMID: 22891250 DOI: 10.1074/jbc.m112.397752] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation.
Collapse
|
25
|
Huber KL, Hardy JA. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci 2012; 21:1056-65. [PMID: 22573662 DOI: 10.1002/pro.2090] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/25/2012] [Indexed: 11/05/2022]
Abstract
Zinc-mediated inhibition is implicated in global caspase regulation, with relief of zinc-mediated inhibition central to both small-molecule and natively induced caspase activation. As an initiator, caspase-9 regulates the upstream stages of the apoptotic caspase cascade, making it a critical control point. Here we identify two distinct zinc-binding sites on caspase-9. The first site, composed of H237, C239, and C287, includes the active site dyad and is primarily responsible for zinc-mediated inhibition. The second binding site at C272 is distal from the active site. Given the amino-acid conservation in both regions, these sites appear to be present across the caspase family underscoring the importance of zinc-mediated regulation of this class of enzymes.
Collapse
Affiliation(s)
- Kristen L Huber
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
26
|
Muneyuki E, Sekimoto K. Allosteric model of an ion pump. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011137. [PMID: 20365353 DOI: 10.1103/physreve.81.011137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 11/25/2009] [Indexed: 05/29/2023]
Abstract
We present a simple model of a free-energy transducer made of allosterically coupled two ratchet subsystems. Each of the subsystems transports particles from one particle reservoir to another. The coupling of the subsystems imposes correlated transitions of the potential profiles of the two subsystems. As a result, a downhill flux in one subsystem with higher chemical-potential difference drives an uphill flux in the other subsystem with lower chemical-potential difference. The direction of the driven flux inverts depending on the direction of the driving flux. The ratio between the fluxes conveyed by the two subsystems is variable and nonstoichiometric. By selecting appropriate parameters, the maximum ratio of the driven flux to driving flux and maximum free-energy transducing efficiency reaches some 90 and 40%, respectively. At a stalled state, the driven flux vanishes while the driving flux remains finite. The allosteric model enables explicit analysis of the timing between binding-unbinding of particles and transitions of potential profile. The behavior of the model is similar to but different from that of the alternate access model, which is a biochemical model for active transport proteins. Our model works also as a regulatory system. We suggest that the correlated transitions of the subsystems (subunits or domains) through allosteric interaction are the origin of the diverse functions of the protein machineries.
Collapse
Affiliation(s)
- Eiro Muneyuki
- Faculty of Science and Engineering, Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | |
Collapse
|
27
|
Comparative in vitro toxicity of seven zinc-salts towards neuronal PC12 cells. Toxicol In Vitro 2009; 23:653-9. [PMID: 19306923 DOI: 10.1016/j.tiv.2009.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 11/21/2022]
Abstract
Currently much attention has been given to the neurotoxicity of zinc, yet little is known about the influence of the counterions present. Therefore, we investigated the influence of different Zn(2+)-salts (concentrations range 0.05-0.3 mM) on cell viability, ATP and glutathione concentration and caspase activation in differentiated PC12 cells as a model for neuronal cells. Generally, at concentrations of 0.05 mM most Zn(2+)-salts were not cytotoxic except for zinc-citrate. At concentrations between 0.1 and 0.3 mM Zn(2+) a significant decrease in GSH and ATP levels preceded cell death induced by all salts, except of zinc-histidinate. Zinc-citrate and zinc-sulphate turned out to be the most toxic salts particularly at low concentrations. Analyses of caspase 3/7 activity showed that dependent on the concentration and the type of the salt used cell death may show more or less signs of both, necrosis and apoptosis. Interestingly, the uptake of Zn(2+) from zinc-sulphate and zinc-citrate was significantly higher than that of other salts, implicating a correlation between uptake and toxicity. In conclusion, Zn(2+)-salts could be divided into three categories with high (zinc-citrate, zinc-sulphate), moderate (zinc-orotate, zinc-acetate, zinc-chloride(,) zinc-gluconate) and low cytotoxicity (zinc-histidinate).
Collapse
|
28
|
Donadelli M, Dalla Pozza E, Scupoli MT, Costanzo C, Scarpa A, Palmieri M. Intracellular zinc increase inhibits p53(-/-) pancreatic adenocarcinoma cell growth by ROS/AIF-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:273-80. [PMID: 18951928 DOI: 10.1016/j.bbamcr.2008.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
We show that treatment with non-toxic doses of zinc in association to the ionophore compound pyrrolidine dithiocarbamate (PDTC) inhibits p53(-/-) pancreatic cancer cell growth much more efficiently than gemcitabine, the gold standard chemotherapeutic agent for pancreatic cancer. Both the metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and the radical scavenger N-acetyl-l-cysteine are able to recover cell growth inhibition by Zn/PDTC, demonstrating that this effect depends on the increased levels of intracellular zinc and of reactive oxygen species (ROS). Zn/PDTC treatment induces a strong apoptotic cell death that is associated to ROS-dependent nuclear translocation of the mitochondrial factor AIF, but not to the regulation of apoptotic genes and caspase activation. Primary fibroblasts are more resistant than pancreatic cancer cells to Zn/PDTC treatment and exhibit a lower basal and Zn/PDTC-induced enhancement of intracellular zinc. We show that Zn/PDTC induces p53 proteasomal degradation and that the proteasome inhibitor MG132 further increases fibroblast growth inhibition by Zn/PDTC, suggesting that p53 degradation plays an important role in fibroblast resistance to Zn/PDTC.
Collapse
Affiliation(s)
- M Donadelli
- Department of Morphological and Biomedical Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Ostan R, Alberti S, Bucci L, Salvioli S, Pasi S, Cevenini E, Capri M, Di Iorio A, Ginaldi L, De Martinis M, Franceschi C, Monti D. Effect of zinc ions on apoptosis in PBMCs from healthy aged subjects. Biogerontology 2007; 7:437-47. [PMID: 17028933 DOI: 10.1007/s10522-006-9059-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Immunosenescence features, such as thymic involution, alteration of T-cell repertoire, autoimmunity and accumulation of memory/effector T cells, may be the result, at least in part, of a zinc deficiency, which is often observed during ageing. Zinc, as essential trace element, affects the immune system function and it is an important regulator of apoptosis of immune cells. In this study we addressed the question whether zinc supplementation in vitro at physiological doses can affect spontaneous and oxidative stress-induced apoptosis in peripheral blood mononuclear cells from subjects of three different age groups: young (mean age 28 years), old (mean age 72 years) and nonagenarians. We studied different parameters related to apoptosis (phosphatydilserine exposure, mitochondrial membrane potential, caspase 3 cleavage) and we found that zinc, while decreasing spontaneous apoptosis, can increase oxidative stress-induced apoptosis in an age-related fashion, being this effect more evident in nonagenarians than in old or young subjects. In particular, zinc can increase late apoptosis/necrosis, a phenomenon that could trigger unnecessary inflammation in vivo. We surmise that these age-associated alterations in susceptibility to apoptosis may be due to a different effect of zinc on T cell subsets, that are altered in very old people, and finally that the zinc deficiency, which is often observed in aged subjects, could be a compensatory mechanism to counteract the inflammatory status of the elderly.
Collapse
Affiliation(s)
- R Ostan
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
El Mchichi B, Hadji A, Vazquez A, Leca G. p38 MAPK and MSK1 mediate caspase-8 activation in manganese-induced mitochondria-dependent cell death. Cell Death Differ 2007; 14:1826-36. [PMID: 17585337 DOI: 10.1038/sj.cdd.4402187] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heavy metals are important regulators of cell apoptosis. Manganese (Mn(2+)) is a potent inducer of apoptosis in different cell types, but the precise mechanisms that mediate such effects are not well defined. We previously reported that Mn(2+) was a potent apoptotic agent in human B cells, including lymphoma B cell lines. We show here that Mn(2+)-induced cell death in human B cells is associated with caspase-8-dependent mitochondrial activation leading to caspase-3 activity and apoptosis. We used specific caspase-8 interfering shRNAs to reduce caspase-8 expression, and this also reduced Mn(2+)-induced caspase-3 activation and apoptosis. Mn(2+)-triggered caspase-8 activation is associated with a specific pathway, which is independent of Fas-associated death domain protein, and dependent on the sequential activation of p38-mitogen-activated protein kinase (p38 MAPK) and mitogen- and stress-response kinase 1 (MSK1). Inhibition of p38 activity using either pharmacological inhibitors or dominant-negative mutant forms of p38 blocked Mn(2+)-mediated phosphorylation of MSK1 and blocked subsequent caspase-8 activation. However, specific inhibitors and the expression of a dominant-interfering mutant of MSK1 only inhibited caspase-8 activation, but not p38 activity. These findings suggest a novel model for the regulation of caspase-8 during Mn(2+)-induced apoptosis based on the sequential activation of p38 MAPK, MSK1, caspase-8 and mitochondria, respectively.
Collapse
Affiliation(s)
- B El Mchichi
- INSERM, UMR 542, Université Paris-Sud, Hôpital Paul Brousse, 14 avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | | | | | | |
Collapse
|
31
|
Bae SN, Lee YS, Kim MY, Kim JD, Park LO. Antiproliferative and apoptotic effects of zinc-citrate compound (CIZAR(R)) on human epithelial ovarian cancer cell line, OVCAR-3. Gynecol Oncol 2006; 103:127-36. [PMID: 16624386 DOI: 10.1016/j.ygyno.2006.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 01/16/2006] [Accepted: 02/03/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Zinc inhibits the growth of several carcinoma cells through induction of cell cycle arrest and apoptosis. The intracellular concentration of zinc and its dynamic changes are critically important in cell biology. We investigated the effects of zinc-citrate compound (CIZAR) on normal human ovarian epithelial cells (NOSE) and human epithelial ovarian cancer cell line, OVCAR-3. METHODS To investigate the potential effect of CIZAR on cell growth and survival, cells were treated with different doses and exposed to different times. Intracellular concentration of zinc was measured by colorimetric assay. Mitochondrial aconitase activity was determined in cell extracts using aconitase assay. The flow cytometric assay, DNA laddering, and morphological analysis were done to investigate cytotoxic effects of CIZAR. Molecular mechanism of cell death was investigated by p53, Bcl-xL, Bcl-2, Bax protein, activity of caspase-3 and -12, and activity of telomerase. RESULTS CIZAR-induced zinc accumulation in OVCAR-3 cells was higher than that in NOSE cells. CIZAR(R) treatment resulted in a time- and dose-dependent decrease in cell number in OVCAR-3 cells in comparison with NOSE cells. M-aconitase activity was significantly decreased in OVCAR-3 cells within 4 h exposure to CIZAR but relatively constant in NOSE cells. The flow cytometric assay, DNA laddering, and morphological analysis indicated apoptosis in OVCAR-3 cells but not in NOSE cells. CIZAR increased the expression of p21(waf1) which is a part of p53-independent pathway and induced reduction of telomerase activity. CIZAR reduced expression of Bcl-2 and Bcl-xL proteins but induced expression of Bax protein. CIZAR induced apoptosis of OVCAR-3 cells by activation of caspase-12 and caspase-3 pathway. CONCLUSIONS Exposure to CIZAR induces apoptosis in OVCAR-3 cells which accumulate high intracellular levels of zinc, but not in NOSE cells, which do not accumulate high levels of zinc. CIZAR(R) prevents the proliferation of OVCAR-3 cells by inactivation of m-aconitase activity and induces apoptosis by induction of proapoptotic gene (Bax), repression of antiapoptotic genes (Bcl-2, Bcl-xL), and consequently activation of caspase-3. CIZAR also induced activation of caspase-12. The CIZAR will offer new window in prevention and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Seog Nyeon Bae
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Kangnam St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
32
|
Bae SN, Kim J, Lee YS, Kim JD, Kim MY, Park LO. Cytotoxic effect of zinc-citrate compound on choriocarcinoma cell lines. Placenta 2006; 28:22-30. [PMID: 16503348 DOI: 10.1016/j.placenta.2006.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/14/2005] [Accepted: 01/05/2006] [Indexed: 11/17/2022]
Abstract
This study investigated the cytotoxic effect of zinc-citrate compound (CIZAR) on choriocarcinoma cell lines. Primary cultured normal trophoblast cells (NPT), human tumorigenic poorly differentiated trophoblast cell line (HT), and choriocarcinoma cell line (BeWo) were exposed to different concentrations of CIZAR and cultured at different times. Cell viability was determined by CCK-8 assay. The effects on cell cycle progression, population distribution and apoptotic incidence were determined by flow cytometry. The appearance of apoptosis was confirmed by DNA laddering and DAPI staining. The quantitative analysis of telomerase was measured by TRAPeze telomerase detection kit. The molecular mechanism of CIZAR-induced apoptosis was examined with Western blot analysis and colorimetric caspase-3 activity assay. In in vitro condition, CIZAR had a selective cytotoxic effect on choriocarcinoma cell line in dose- and time-dependent patterns. Flow cytometric analysis, DNA laddering, and DAPI staining indicated that BeWo cells only have been induced apoptosis by CIZAR. Shortening of telomere was also observed only in BeWo cells. Results also displayed that CIZAR-induced apoptosis involves the up-regulation of p21(WAF1) and Bax protein and down-regulation of Bcl-2 which were accompanied by the activation of caspase-3. Taken together, our results suggest that CIZAR is an apoptotic inducer in malignant trophoblast cells (BeWo).
Collapse
Affiliation(s)
- S N Bae
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Kangnam St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul 137-040, South Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Lee JY, Hwang JJ, Park MH, Koh JY. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain. Eur J Neurosci 2006; 23:435-42. [PMID: 16420450 DOI: 10.1111/j.1460-9568.2005.04553.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.
Collapse
Affiliation(s)
- Joo-Yong Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
34
|
Abstract
Clioquinol, a metal chelator, has been used for many years as an antimicrobial agent and more recently as a potential treatment for Alzheimer's disease. Because it binds copper and zinc, metals essential for the activity of the enzyme superoxide dismutase-1 (SOD1), a potential target for anticancer drug development, we investigated its effects on human cancer cells. Treatment with clioquinol reduced the viability of eight different human cancer cell lines in a concentration-dependent manner, with IC(50) values in the low micromolar range. Biochemical analysis revealed that clioquinol induced cancer cell death through apoptotic pathways that require caspase activity. Although clioquinol induced modest inhibition of SOD1 activity in treated cells, comparable inhibition by a known SOD1 inhibitor, diethyldithiocarbamate, did not result in cytotoxicity. The addition of copper, iron, or zinc did not rescue cells from cliquinol-induced cytotoxicity but enhanced its killing, arguing against metal chelation as its major mechanism of action. To test if clioquinol might act as an ionophore, a fluorescent probe was used to monitor intracellular zinc concentrations. The addition of clioquinol resulted in elevated levels of intracellular zinc, indicating that clioquinol acts as a zinc ionophore. In an in vivo xenografts mouse model, clioquinol inhibited tumor growth of xenografts over a 6-week period, without inducing visible toxicity. Our results show that clioquinol has anticancer effects both in vitro and in vivo. Transition metal ionophores may be a subclass of metal chelators with anticancer activity deserving of further development.
Collapse
Affiliation(s)
- Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
35
|
Cardoso SM, Rego AC, Pereira C, Oliveira CR. Protective effect of zinc on amyloid-beta 25-35 and 1-40 mediated toxicity. Neurotox Res 2005; 7:273-81. [PMID: 16179264 DOI: 10.1007/bf03033885] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid beta-peptide (Abeta) is widely held to be associated with Alzheimer's disease, the insoluble aggregates of the peptide being the major constituents of senile plaques. In this study, we evaluated the effect of Zn(2+) (5, 50 and 200 microM) on Abeta induced toxicity using the human teratocarcinome (NT2) cell line. Our results proved that 50 and 200 microM Zn(2+) protected NT2 cells from Abeta 25-35 toxicity. Zinc was also shown to be effective by preventing the loss of mitochondrial membrane potential (DeltaPsi(m)) induced by Abeta 25-35, not allowing cytochrome c release from mitochondria, and subsequently, caspase 3 activation. However, when the cells were treated with Abeta 1-40, only Zn(2+) 5 microM had a protective effect. We have further observed that 5 microM Zn(2+) prevented Abeta 1-40 aggregation into a beta-sheet structure. Considering the results presented, we argue that Zn(2+) has a concentration-dependent protective effect.
Collapse
Affiliation(s)
- S M Cardoso
- Center for Neuroscience and Cellular Biology of Coimbra and Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
36
|
Kondoh M, Tasaki E, Takiguchi M, Higashimoto M, Watanabe Y, Sato M. Activation of Caspase-3 in HL-60 Cells Treated with Pyrithione and Zinc. Biol Pharm Bull 2005; 28:757-9. [PMID: 15802826 DOI: 10.1248/bpb.28.757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transition metal zinc (Zn) is an endogenous regulator of apoptosis. The ability of Zn to modulate apoptosis is believed to be mediated by the regulation of caspase activity. Previously, we reported that an acute influx of labile Zn induced apoptosis via activation of caspase in human leukemia HL-60 cells treated with a Zn ionophore (Py, pyrithione) and Zn at 1 and 25 microM, respectively. In the present study, we investigated the involvement of caspase-3 in Py (1 microM)/Zn (25 microM)-induced apoptosis in HL-60 cells. Pro-caspase-3 is an inactive form of caspase-3. The processing of pro-caspase-3, a sign of caspase-3 activation, occurred 6 h after treatment with Py/Zn. Proteolysis of poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3, was also observed 6 h after treatment with Py/Zn. We also confirmed the elevation of caspase-3 activity as an index of the cleavage of amino acid sequences recognized by activated caspase-3. An inhibitor of caspase-3 attenuated the appearance of the DNA ladder. Taken together, these results indicate that the activation of caspase-3 is partly responsible for the induction of apoptosis in Py/Zn-treated HL-60 cells.
Collapse
Affiliation(s)
- Masuo Kondoh
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kasai T, Jeang KT. Two discrete events, human T-cell leukemia virus type I Tax oncoprotein expression and a separate stress stimulus, are required for induction of apoptosis in T-cells. Retrovirology 2004; 1:7. [PMID: 15169569 PMCID: PMC419724 DOI: 10.1186/1742-4690-1-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 05/06/2004] [Indexed: 11/16/2022] Open
Abstract
Background It is poorly understood why many transforming proteins reportedly enhance both cell growth (transformation) and cell death (apoptosis). At first glance, the ability to transform and the ability to engender apoptosis seem to be contradictory. Interestingly, both abilities have been widely reported in the literature for the HTLV-I Tax protein. Results To reconcile these apparently divergent findings, we sought to understand how Tax might cause apoptosis in a Jurkat T-cell line, JPX-9. Tax expression can be induced equally by either cadmium (Cd) or zinc (Zn) in JPX-9 cells. Surprisingly, when induced by Zn, but not when induced by Cd, Tax-expression produced significant apoptosis. Under our experimental conditions, Zn but not Cd, induced SAPK (stress activated protein kinase)/JNK (Jun kinase) activation in cells. We further showed that transient over-expression of Tax-alone or Jun-alone did not induce cell death. On the other hand, co-expression of Tax plus Jun did effectively result in apoptosis. Conclusion We propose that Tax-expression alone in a T-cell background insufficiently accounts for apoptosis. On the other hand, Tax plus activation of a stress kinase can induce cell death. Thus, HTLV-I infection/transformation of cells requires two discrete events (i.e. oncoprotein expression and stress) to produce apoptosis.
Collapse
Affiliation(s)
- Takefumi Kasai
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| |
Collapse
|
38
|
Jiménez Del Río M, Vélez-Pardo C. Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: an in vitro model for neurodegeneration. Arch Med Res 2004; 35:185-93. [PMID: 15163458 DOI: 10.1016/j.arcmed.2004.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 01/23/2004] [Indexed: 11/30/2022]
Abstract
BACKGROUND Redox transition metals have been implicated as crucial players in pathogenesis of neurodegenerative diseases. Intracellular signaling mechanism(s) responsible for oxidative stress and death in single-cell model exposed to metals has not yet been fully elucidated. The objective of the study was to determine the mechanism by which metals induced apoptosis in human peripheral blood lymphocytes (PBL). METHODS PBL were exposed to 50, 100, 250, 500, and 1,000 microM (Fe2+), (Mn2+), (Cu2+), and (Zn2+)-(SO4). Apoptotic/necrotic morphology was assessed with acridine orange/ethidium bromide staining. Further evaluations comprised production of H2O2, generation of hydroxyl radical (.OH), disruption of mitochondrial transmembrane potential (DeltaPsim), caspase-3 activation, and activation of NF-kappaB and p53 transcriptional factors. RESULTS Morphologic analysis showed that 500 microM provoked maximal percentage of apoptosis (22-30% AO/EB) and minimal necrosis (3-7%), whereas low concentrations were innocuous but 1,000 microM induced mainly necrosis (>40% AO/EB). Metals generated both H2O2 and (.OH) by Fenton reaction. Hydroxyl scavengers protected PBL from metal-induced apoptosis. All metals induced mitochondrial depolarization (17-62% nonfluorescent cells) and activated caspase-3 concomitantly with apoptotic morphology (25-32% AO/EB) at 24 h, and neither NF-kappaB nor p53 transcription factor showed activation. CONCLUSIONS This study provides evidence that redox-active (Fe2+), (Mn2+), (Cu2+), and (Zn2+) ion-induced apoptosis in PBL by (H2O2)/(.OH) generation, resulting in mitochondria depolarization, caspase-3 activation, and nuclear fragmentation independent of NF-kappaB and p53 transcription factors activation. Our data highlight the potential use of lymphocytes as a model to screen antioxidant strategies designed to remove H2O2/.OH associated with metal-catalyzed reactions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Marlene Jiménez Del Río
- Facultad de Medicina, Departamento de Medicina Interna, Programa de Investigación en Neurociencias, Universidad de Antioquia, Medellín, Colombia.
| | | |
Collapse
|
39
|
Pal S, He K, Aizenman E. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pflugers Arch 2004; 448:296-303. [PMID: 15024658 PMCID: PMC2945503 DOI: 10.1007/s00424-004-1256-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 02/18/2004] [Indexed: 12/13/2022]
Abstract
Nitrosative stress has been implicated in a large number of neurological disorders. The molecular mechanisms underlying the neuronal injury associated with this stimulus, however, are not clearly understood. Emerging evidence suggests that the liberation of intracellular zinc as well as over-activation of potassium channels may be two important components of nitrosative stress-induced neuronal death.
Collapse
Affiliation(s)
- Sumon Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1456 BST, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
40
|
Smolewski P, Darzynkiewicz Z, Robak T. Caspase-mediated cell death in hematological malignancies: theoretical considerations, methods of assessment, and clinical implications. Leuk Lymphoma 2003; 44:1089-104. [PMID: 12916860 DOI: 10.1080/1042819031000077007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Apoptosis, the caspase-mediated cell death, plays an important role in the etiology, pathogenesis and therapy of a variety of diseases. Abnormalities of apoptosis regulation, resulting in either its inhibition or enhancement, play a key role in the development of various malignant hematological disorders. Several routine and new therapeutic strategies in Oncohematology are based on apoptosis modulation. Cytotoxic effects of most antineoplastic drugs are based on induction of apoptosis. The accurate estimate of incidence of apoptosis, therefore, is of importance in Oncohematology. In this review we provide an overview of the methods designed to measure the incidence of apoptosis, including the recently developed assays that are based on detection of caspases activation. We also review recent findings on the role of caspase-mediated cell death in hematological malignancies and discuss their clinical implications, including new therapeutical strategies that evolve from these findings.
Collapse
Affiliation(s)
- Piotr Smolewski
- Department of Hematology, Medical University of Lodz, Copernicus Hospital, ul. Ciokowskiego 2, 93-510 Lodz, Poland.
| | | | | |
Collapse
|
41
|
Kondoh M, Tasaki E, Araragi S, Takiguchi M, Higashimoto M, Watanabe Y, Sato M. Requirement of caspase and p38MAPK activation in zinc-induced apoptosis in human leukemia HL-60 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6204-11. [PMID: 12473116 DOI: 10.1046/j.1432-1033.2002.03339.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zinc (Zn), an endogenous regulator of apoptosis, and has abilities both to induce apoptosis and inhibit the induction of apoptosis via the modulation of caspase activity. Due to the multifunctions of Zn, the intracellular Zn level is strictly regulated by a complex system in physiological and pathological conditions. The commitment of Zn to the regulation of apoptosis is not fully understood. In the present study, we investigated the role of intracellular Zn level in the induction of apoptosis in human leukemia cells (HL-60 cells) using a Zn ionophore [pyrithione (Py)]. Treatment of HL-60 cells with Zn for 6 h in the presence of Py (1 micro m) exhibited cytotoxicity in a Zn dose-dependent manner (25-200 micro m). Necrotic cells, assayed by trypan blue permeability, increased in number in a Zn dose-dependent fashion (50-100 micro m), but the appearance of apoptotic cells, assayed by formation of a DNA ladder and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling method, peaked at 25 micro m, suggesting the dependence of intracellular Zn level on the execution of apoptosis. In fact, treatment with Py resulted in increases in intracellular Zn levels, and N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine, a cell-permeable Zn chelator, inhibited DNA ladder formation induced by Py/Zn treatment (1 micro m Py and 25 micro m Zn). Py/Zn treatment activated the caspases, as assessed by the proteolysis of poly(ADP-ribose) polymerase (PARP), which is a substrate of caspase, and activated p38 mitogen-activated protein kinase (p38MAPK), which is a transducer of apoptotic stimuli to the apparatus of the apoptosis execution. Z-Asp-CH2-DCB, a broad-spectrum inhibitor of caspase, attenuated proteolysis of PARP and DNA ladder formation by Py/Zn, indicating that apoptosis induced by Py/Zn is mediated by caspase activation. The p38MAPK-specific inhibitor SB203580 also inhibited induction of apoptosis by Py/Zn. Although SB203580 suppressed the proteolysis of PARP, Z-Asp-CH2-DCB did not inhibit the phosphorylation of p38MAPK, raising the possibility that apoptosis triggered by Py/Zn might be mediated by the p38MAPK/caspase pathway.
Collapse
Affiliation(s)
- Masuo Kondoh
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Seve M, Chimienti F, Favier A. [Role of intracellular zinc in programmed cell death]. PATHOLOGIE-BIOLOGIE 2002; 50:212-21. [PMID: 11980336 DOI: 10.1016/s0369-8114(02)00290-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis is a type of cell death involved in several biological events during tissue development, remodelling or involution. It could be induced by several extracellular or intracellular stimuli with an important role for metals like zinc or calcium. Cellular zinc is described as an inhibitor of apoptosis, while its depletion induces death in many cell lines. Using different chemical tools like specific zinc-chelators or ionophores, it is possible to study and understand the mechanisms of programmed cell death induction. The decrease in intracellular zinc concentration induces a characteristic apoptosis with apoptotic bodies formation and nuclear DNA condensation and fragmentation. This zinc depletion activates the caspases-3, -8 and -9, responsible for the proteolysis of several target proteins like poly(ADP-ribose) polymerase or transcription factors. Zinc addition in cell culture medium prevents the apparition of morphological and biochemical signs induced by intracellular zinc chelation, but also by other apoptosis inducers like etoposide or tumour necrosis factor alpha (TNF alpha). However, excess of zinc can also be cytotoxic. The balance between life and cell death is maintained by several zinc channels, controlling the intracellular zinc movements and the free amount of the metal.
Collapse
Affiliation(s)
- M Seve
- Laboratoire de biologie du stress oxydant LRC 8M CEA associé INRA, université J. Fourier, Domaine de la Merci, 38700 La Tronche, France.
| | | | | |
Collapse
|